
Proceedings of Machine Learning Research vol 99:1–33, 2019 32nd Annual Conference on Learning Theory

Active Regression via Linear-Sample Sparsification

Xue Chen XUE.CHEN1@NORTHWESTERN.EDU
Northwestern University

Eric Price ECPRICE@CS.UTEXAS.EDU

The University of Texas at Austin

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We present an approach that improves the sample complexity for a variety of curve fitting prob-
lems, including active learning for linear regression, polynomial regression, and continuous sparse
Fourier transforms. In the active linear regression problem, one would like to estimate the least
squares solution β∗ minimizing ‖Xβ − y‖2 given the entire unlabeled dataset X ∈ Rn×d but only
observing a small number of labels yi. We show that O(d) labels suffice to find a constant factor
approximation β̃:

E[‖Xβ̃ − y‖22] ≤ 2E[‖Xβ∗ − y‖22].

This improves on the best previous result of O(d log d) from leverage score sampling. We also
present results for the inductive setting, showing when β̃ will generalize to fresh samples; these
apply to continuous settings such as polynomial regression. Finally, we show how the techniques
yield improved results for the non-linear sparse Fourier transform setting.
Keywords: Linear regression, active regression, leversage score, spectral sparsification, sparse
Fourier transform

1. Introduction

We consider the query complexity of recovering a signal f(x) in a given family F from noisy
observations. This problem takes many forms depending on the family F , the access model, the
desired approximation norms, and the measurement distribution. In this work, we consider the `2
norm and use D to denote the distribution on the domain of F measuring the distance between
different functions, which is not necessarily known to our algorithms.

Our main results are sampling mechanisms that improve the query complexity and guarantees
for two specific families of functions — linear families and continuous sparse Fourier transforms.

Active Linear Regression on a Finite Domain. We start with the classical problem of linear
regression, which involves a matrix X ∈ Rn×d representing n points with d features, and a vector
y ∈ Rn representing the labels associated with those points. The least squares solution is

β∗ := arg min ‖Xβ − y‖22.

In one active learning setting, we receive the entire matrix X but not the entire set of labels y (e.g.,
receiving any given yi requires paying someone to label it). Instead, we can pick a small subset
S ⊆ [n] of size m � n, observe yS , and must output β̃ that accurately predicts the entire set of

c© 2019 X. Chen & E. Price.



ACTIVE REGRESSION VIA LINEAR-SAMPLE SPARSIFICATION

labels y. In particular, one would like

‖Xβ̃ − y‖22 ≤ (1 + ε)‖Xβ∗ − y‖22

or

‖Xβ̃ −Xβ∗‖22 ≤ ε‖Xβ∗ − y‖22. (1)

This is known as the “transductive” setting, because it only considers the prediction error on the
given set of points X; in the next section we will consider the “inductive” setting where the sample
points Xi are drawn from an unknown distribution and we care about the generalization to fresh
points.

The simplest approach to achieve (1) would be to sample S uniformly over [n]. However,
depending on the matrix, the resulting query complexity m can be very large – for example, if one
row is orthogonal to all the others, it must be sampled to succeed, making m ≥ n for this approach.

A long line of research has studied how to improve the query complexity by adopting some form
of importance sampling. Most notably, sampling proportional to the leverage scores of the matrix
X improves the sample complexity to O(d log d+ d/ε) (see, e.g., Mahoney (2011)).

In this work, we give an algorithm that improves this to O(d/ε), which we show is optimal.
The O(d log d) term in leverage score sampling comes from the coupon-collector problem, which
is inherent to any i.i.d. sampling procedure. By using the randomized linear-sample spectral spar-
sification algorithm of Lee and Sun Lee and Sun (2015), we can avoid this term. Note that not
every linear spectral sparsifier would suffice for our purposes: deterministic algorithms like Batson
et al. (2012) cannot achieve (1) for m � n (see Boutsidis et al. (2013)). We exploit the particular
behavior of Lee and Sun (2015) to bound the expected noise in each step.

Theorem 1 Given any n × d matrix X and vector y ∈ Rn, let β∗ = arg min
β∈Rd

‖Xβ − y‖22. For

any ε < 1, we present an efficient randomized algorithm that looks at X and produces a diagonal
matrix WS with support S ⊆ [n] of size |S| ≤ O(d/ε), such that

β̃ := arg min
β
‖WSX · β −WS · y‖2

satisfies
E
[
‖X · β̃ −X · β∗‖22

]
≤ ε · ‖X · β∗ − y‖22.

In particular, this implies ‖X · β̃ − y‖2 ≤
(
1 +O(ε)

)
· ‖X · β∗ − y‖2 with 99% probability.

At the same time, we provide a theoretic information lower bound m = Ω(d/ε) matching the
query complexity up to a constant factor, when y is Xβ∗ plus i.i.d. Gaussian noise.

Generalization for Active Linear Regression. We now consider the inductive setting, where the
(x, y) pairs come from some unknown distribution over Rd × R. As in the transductive setting, we
see n unlabeled points X ∈ Rn×d, choose a subset S ⊂ [n] of size m to receive the labels yS for,
and output β̃. However, the guarantee we want is now with respect to the unknown distribution: for

β∗ := arg min E
x,y

[(xTβ − y)2],
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we would like
E
x,y

[(xT β̃ − y)2] ≤ (1 + ε) E
x,y

[(xTβ∗ − y)2]

or
E
x
[(xT β̃ − xTβ∗)2] ≤ ε E

x,y
[(xTβ∗ − y)2].

In this inductive setting, there are now two parameters we would like to optimize: the number
of labels m and the number of unlabeled points n. Our main result shows that there is no significant
tradeoff between the two: as soon n is large enough that the empirical risk minimizer (ERM) for a
fully labeled dataset would generalize well, one can apply Theorem 1 to only label O(d/ε) points;
and even with an infinitely large unlabeled data set, one would still require Θ(d/ε) labels.

But how many unlabeled points do we need for the ERM to generalize? To study this, we
consider a change in notation that makes it more natural to consider problems like polynomial
regression. In polynomial regression, suppose that y ≈ p(x), for p a degree d− 1 polynomial and x
on [−1, 1]. This is just a change in notation, since one could express p(x) as (1, x, ..., xd−1)Tβ for
some β. How many observations yi = p(xi) + g(xi) do we need to learn the polynomial for any
noise function g, in the sense that

E
x∈[−1,1]

[(p̃(x)− p(x))2] ≤ O(1) · E[g(x)2]?

If we sample x uniformly on [−1, 1], then Ω(d2) samples are necessary; if we sample x proportional
to the Chebyshev weight 1√

1−x2 , then O(d log d) samples suffice (this is effectively leverage score
sampling); and if we sample x more carefully, we can bring this down to O(d) Cohen et al. (2013);
Chen et al. (2016). This work shows how to perform similarly for any linear family of functions,
including multivariate polynomials. We also extend the result to unknown distributions on x.

In the model we consider, then, x is drawn from an unknown distribution D over an arbitrary
domain G, and y = y(xi) is sampled from another unknown distribution conditioned on xi. We are
given a dimension-d linear family F of functions f : G → C. Given n samples xi, we can pick m
of the yi to observe, and would like to output a hypothesis f̃ ∈ F that is predictive on fresh samples:

‖f̃ − f∗‖2D
def
:= E

x∼D
[|f̃(x)− f∗(x)|2] ≤ ε · E

x,y
[|y − f∗(x)|2] (2)

where f∗ ∈ F minimizes that RHS. The polynomial regression problem is when F is the set of
degree-(d− 1) polynomials in the limit as n→∞, since we know the distribution D and can query
any point in it.

Theorem 2 Let F be a linear family of functions from a domain G to C with dimension d, and
consider any (unknown) distribution on (x, y) over G×C. Let D be the marginal distribution over
x, and suppose it has bounded “condition number”

K := sup
h∈F :h6=0

supx∈G |h(x)|2

‖h‖2D
. (3)

Let f∗ ∈ F minimize E[|f(x)− y|2]. For any ε < 1, there exists an efficient randomized algorithm
that takes O(K log d + K

ε ) unlabeled samples from D and requires O(dε ) labels to output f̃ such
that

E
f̃

E
x∼D

[|f̃(x)− f∗(x)|2] ≤ ε · E
x,y

[|y − f∗(x)|2].
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A few points are in order. First, notice that if we merely want to optimize the number of labels,
it is possible to take infinite number of samples from D to learn it and then query whatever desired
labels on x ∈ supp(D). This is identical to the query access model, where Θ(d/ε) queries is
necessary and sufficient from Theorem 1. On the other hand, if we focus on unlabeled sample
complexity, a natural solution is to query every sample point and calculating the ERM f̃ ; one can
show that this takes Θ(K log d + K/ε) samples Cohen et al. (2013). Thus both the unlabeled and
labeled sample complexity of our algorithm are optimal up to a constant factor.

Finally, in settings with a “true” signal f(x) one may want f̃ ≈ f rather than f̃ ≈ f∗. Such a
result follows directly from the Pythagorean theorem, although (if the noise is biased, so f∗ 6= f )
the approximation becomes (1 + ε) rather than ε:

Corollary 3 Suppose that y(x) = f(x)+g(x), where f ∈ F is the “true” signal and g is arbitrary
and possibly randomized “noise”. Then in the setting of Theorem 2, with ‖ · ‖D defined as in (2),

1. E[‖f̃ − f‖2D] ≤ ε · E[‖g‖2D], if each g(x) is a random variable with Ex,g[g(x)] = 0.

2. Otherwise, ‖f̃ − f‖D ≤ (1 +O(ε)) · ‖g‖D with probability 0.99.

To make the result concrete, we present the following implication:

Example 1 Consider fitting n-variate degree-d polynomials on [−1, 1]n. There are
(
n+d
d

)
monomi-

als in the family, so Theorem 2 shows that querying O(
(
n+d
d

)
) points can achieve a constant-factor

approximation to the optimal polynomial. By contrast, uniform sampling would work well for low
d, but loses a poly(d) factor; Chebyshev sampling would work well for low n, but loses a 2O(n)

factor; leverage score sampling would lose a log
(
n+d
d

)
factor.

Continuous Sparse Fourier transform. Next we study sampling methods for learning a non-
linear family: k-Fourier-sparse signals in the continuous domain. We consider the family of ban-
dlimited k-Fourier-sparse signals

F =

f(x) =
k∑
j=1

vj · e2πifjx

∣∣∣∣fj ∈ R ∩ [−F, F ], vj ∈ C

 (4)

over the domain D uniform on [−1, 1].
Because the frequencies fj can be any real number in [−F, F ], this family is not well condi-

tioned. If all fj → 0, a Taylor approximation shows that one can arbitrarily approximate any degree
(k − 1) polynomial; hence K in (3) is at least Θ(k2).

To improve the sample complexity of learning F , we apply importance sampling for it by bi-
asing x ∈ [−1, 1] proportional to the largest variance at each point: sup

f∈F

|f(x)|2
‖f‖2D

. This is a natural

extension of leverage score sampling, since it matches the leverage score distribution when F is
linear. Our main contribution is a simple upper bound that closely approximates the importance
sampling weight for k-Fourier-sparse signals at every point x ∈ (−1, 1).

Theorem 4 For any x ∈ (−1, 1),

sup
f∈F

|f(x)|2

‖f‖2D
.
k log k

1− |x|
.
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Combining this with the condition number bound K = Õ(k4) in Chen et al. (2016), this gives an
explicit sampling distribution with a “reweighted” condition number (as defined in Section 2) of
O(k log2 k); this is almost tight, since k is known to be necessary. We show the weight density in
Figure 1.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

min(k logk
1 |x| , K = O(k4))

Figure 1: Explicit weights for k-Fourier-sparse signals

The reweighted condition number indicates that m = Õ(k) suffices for the empirical estimation
of ‖f‖D for any fixed f ∈ F . We show that this implies that m = Õ(k4 + k2 · logF ) guarantees
the empirical estimation of all f ∈ F , so that the ERM f̃ ≈ f (The extra loss of m is due to the
infinitely many possible frequencies in this family). This is a much better polynomial in k than was
previously known to be possible for the problem Chen et al. (2016). We believe that this sampling
approach directly translates to improvements in the polynomial time recovery algorithm of Chen
et al. (2016), but that algorithm is quite complicated so we leave this for future work.

1.1. Related Work

Linear regression. A large body of work considers ways to subsample linear regression prob-
lems so the solution β̃ to the subsampled problem approximates the overall solution β∗. The most
common such method is leverage score sampling, which achieves the guarantee of Theorem 1 with
O(d log d+d/ε) samples Drineas et al. (2008); Magdon-Ismail (2010); Mahoney (2011); Woodruff
(2014).

Several approaches have attempted to go beyond thisO(d log d) sample complexity. Both Bout-
sidis et al. (2013) and Song et al. (2019) apply the deterministic linear-sample spectral sparsification
of Batson et al. (2012) to the matrix n× (d+ 1) matrix [X|y], to find a size O(d/ε) set that would
suffice for Theorem 1. However, this procedure requires knowing the entirety of y to find S Bout-
sidis et al. (2013), so it does not help for active learning. Allen-Zhu et al. (2017) showed how such
a procedure can additionally have a number of extra properties, such as that each sample has equal
weight. However, all these results involve deterministic sampling procedures, so cannot tolerate
adversarial noise.
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Another line of research on minimizing the query complexity of linear regression is volume
sampling, which samples a set of points proportional to the volume of the parallelepiped spanned
by these points. Recently, Derezinski and Warmuth (2017) showed that exactly d points chosen
from volume sampling can achieve the guarantee of Theorem 1, except with an approximation ratio
d + 1 rather than 1 + O(ε). In a subsequent work, Derezinski et al. (2018) showed that standard
volume sampling would need Ω(K) samples to achieve any constant approximation ratio, but that
a variant of volume sampling can match leverage score sampling with O(d log d+ d/ε) samples.

# queries Remark

Uniform sampling Cohen et al. (2013); Hsu and Sabato (2016) O(K log d)

Leverage score sampling Mahoney (2011) Θ(d log d)

Boutsidis et al. Boutsidis et al. (2013) |supp(D)| only needs O(d) points in (2)

Volume sampling Derezinski and Warmuth (2017) d for ε = d+ 1

Derezinski et al. (2018) Ω
(
K
)

for ε = 0.5

Rescaled volume sampling Derezinski et al. (2018) O(d log d)

This work O(d)

Table 1: Summary on the sample complexity of learning linear families, for ε = Θ(1)
unless otherwise specified. Note that K ≥ d.

For active regression, Sabato and Munos (2014) provide an algorithm of O(d log d)5/4 labels to
achieve the desired guarantee of ERM, while they do not give an explicit bound on the number of
unlabeled points in the algorithm. Chaudhuri et al. (2015) propose a different approach assuming
additional structure for the distributionD and knowledge about the noise g, allowing stronger results
than are possible in our setting.

One linear family of particular interest is univariate polynomials of degree d with the uniform
distribution over [−1, 1]. Cohen et al. (2013) show that O(K log d) samples suffices for (2) for any
linear family. In particular, they prove m = O(d log d) samples generated from the Chebyshev
weight are sufficient, because it is the limit of the leverage scores of univarite polynomials. Chen
et al. (2016) avoids the extra loss log d by generating every point xi using a distinct distribution: it
partitions the Chebyshev weight intoO(d) intervals of equal summations and sample one point from
each interval. However, this partition may not exist for arbitrary linear families and distributions.

Sparse Fourier transform. There is a long line of research on sparse Fourier transform in the con-
tinuous setting, e.g., Prony’s method from 1795, Hilbert’s inequality by Montgomery and Vaughan
(1974) and Matrix Pencil method Bresler and Macovski (1986); Moitra (2015) to name a few. At
the same time, less is known about the worst case guarantees without any assumption on separation
between the frequencies; this depends on the condition number K, which is between k2 and Õ(k4)
as noted above Chen et al. (2016). We note in passing the bound on K and Theorem 4 is analogous
to Markov Brothers’ inequality and the Bernstein inequality for univariate polynomials.

A number of works have studied importance sampling for sparse recovery and sparse Fourier
transforms. Rauhut and Ward (2012) considered the case where F is sparse in a well-behaved
orthonormal basis such as polynomials sparse in Legendre basis using the Chebyshev distribution.
We refer to the survey Ward (2015) for a detailed discussion. Recently, Avron et al. (2017) give
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a study about kernel ridge scores for signals with known Fourier transform structures such as the
Gaussian kernel in multi-dimension. However, the weight shown in Avron et al. (2017) is not close
to optimal for multi-dimension, while our weight is almost tight.

Organization. We introduce our approaches and “well-balanced” procedures and outline the proofs
of our results in Section 2. After introducing notation and tools in Section A, we prove a “well-
balanced” procedure guarantees (2) with high probability. Then we show the randomized spectral
sparsification of Lee and Sun (2015) is “well-balanced” in Section C. For completeness, we analyze
the number of samples generated by one distribution in Section D. Next we combine the results of
the previous two sections to prove our results about active learning in Section E. We show informa-
tion lower bound on the sample complexity in Section F. Finally, we prove our results about sparse
Fourier transform in Section G.

2. Proof Overview

We present our proof sketch in the notation of Theorem 2. Consider observations of the form
y(x) = f(x) + g(x) for f in a (not yet necessarily linear) family F and g an arbitrary, possibly
random function.

Improved conditioning by better sampling. We start with the noiseless case of g = 0 in the
query access model, and consider the problem of estimating ‖y‖2D = ‖f‖2D with high probability.
If we sample points xi ∼ D′ for some distribution D′, then we can estimate ‖f‖2D as the empirical
norm

1

m

m∑
i=1

D(xi)

D′(xi)
|f(xi)|2 (5)

which has the correct expectation. To show the expectation concentrates, we should bound the
maximum value of the summand, which we define to be the “reweighted” condition number

KD′ = sup
x

{
sup
f∈F

{D(x)

D′(x)
· |f(x)|2

‖f‖2D

}}
.

We define DF to minimize this quantity, by making the inner term the same for every x. Namely,
we pick

DF (x) =
1

κ
D(x) · sup

f∈F

|f(x)|2

‖f‖2D
for κ = E

x∼D

[
sup
f∈F

|f(x)|2

‖f‖2D

]
. (6)

This shows that by sampling from DF rather than D, the condition number of our estimate (5)

improves from K = sup
x∈supp(D)

{
sup
f∈F

|f(x)|2
‖f‖2D

}
to κ = E

x∼D

[
sup
f∈F

|f(x)|2
‖f‖2D

]
.

From the Chernoff bound, O(
κ·log 1

δ
ε2

) samples fromDF let us estimate ‖f‖2D to within accuracy
1 ± ε with probability 1 − δ for any fixed function f ∈ F . To be able to estimate every f ∈ F , a
basic solution would be to apply a union bound over an ε-net of F .

Linear function families F let us improve the result in two ways. First, we observe that κ = d
for any dimension d linear function space; in fact, DF is the leverage score sampling distribution.
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Second, we can replace the union bound by a matrix concentration bound, showing that O(
d log d

δ
ε2

)
samples from DF suffice to estimate ‖f‖2D to within 1 ± ε for all f ∈ F with probability 1 − δ.
However, this approach needs Ω(d log d) samples due to a coupon-collector argument, because it
only samples points from one distribution DF .

The effect of noise. The spectral sparsifier given by Batson et al. (2012) could replace the matrix
concentration bound above, and estimate ‖f‖2D for every f ∈ F with only O(d) samples. The issue
with this is that it would not be robust against adversarial noise, because the sample points xi are de-
terministic. Now we consider our actual problem, which is to estimate f from y = f+g for nonzero
noise g of E[‖g‖2D] = σ2. We need our sample points to both be sampled non-independently (to
avoid coupon-collector issues) but still fairly randomly (so adversarial noise cannot predict it). A
natural approach is to design a sequence of distributions D1, · · · , Dm (m is not necessarily fixed)
then sample xi ∼ Di and assign a weight wi for xi, where Di+1 could depend on the previous
points x1, · · · , xi.

Given samples (x1, · · · , xm) with weights (w1, · · · , wm), the empirical risk minimizer is the
function f̃ ∈ F closest to y under the empirical norm

∑
i∈[m]

wi · |f(xi)|2. When F is a linear family,

the solution f̃ is a linear projection, so it acts on f and g independently. If the empirical norm is a
good estimator for F , the projection of f ∈ F into the linear subspace F equals f . Hence the error
f̃ − f is the projection of g onto F under the empirical norm.

First, suppose that g is orthogonal to F under the true norm ‖ · ‖D—for instance, if g(x) is an
independent mean-zero random variable for each x. In this case, the expected value of the projection
of g is zero. At the same time, we can bound the variance of the projection of a single random
sample of g drawn from Di by the condition number KDi · σ2. Ideally each KDi would be O(d),
but we do not know how to produce such distributions while still getting linear sample spectral
sparsification. Therefore we use a coefficient αi to control every KDi , and set wi = αi · D(xi)

Di(xi)

instead of D(xi)
mDi(xi)

. The result is that—if
∑

i αi = O(1)—the projection of the noise has variance
O
(
max
i∈[m]
{αiKDi}

)
· σ2. This motivates our definition of “well-balanced” sampling procedures:

Definition 5 Given a linear family F and underlying distribution D, let P be a random sampling
procedure that terminates in m iterations (m is not necessarily fixed) and provides a coefficient αi
and a distribution Di to sample xi ∼ Di in every iteration i ∈ [m].

We say P is an ε-well-balanced sampling procedure if it satisfies the following two properties:

1. With probability 0.9, for weight wi = αi · D(xi)
Di(xi)

of each i ∈ [m],

m∑
i=1

wi · |h(xi)|2 ∈
[

3

4
,
5

4

]
· ‖h‖2D ∀h ∈ F .

Equivalently (as shown in Lemma 11 in Section B.1), given any orthonormal basis v1, . . . , vd
of F under D, the matrix A(i, j) =

√
wi · vj(xi) ∈ Cm×d has λ(A∗A) ∈ [3

4 ,
5
4 ].

2. The coefficients always have
∑

i αi ≤
5
4 and αi ·KDi ≤ ε/2.

Intuitively, the first property says that the sampling procedure preserves the signal, and the
second property says that the recovery algorithm does not blow up the noise on average. For such a
sampling procedure we consider the ERM from its execution as follows.

8
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Our definition of a well-balanced sampling procedure allows property 1 to fail 10% of the time,
but our algorithm will only perform well in expectation when property 1 is satisfied. Therefore we
rerun the sampling procedure until it has a “good” execution that satisfies property 1.

Definition 6 Given a well-balanced sampling procedure P , we say one execution of P is good only
if the samples xi with weights wi = αi · D(xi)

Di(xi)
satisfy the first property in Definition 5, which can

be checked efficiently by calculating λ(A∗A).
Given a joint distribution (D,Y ) and an execution of a well-balanced sampling procedure P

with xi ∼ Di and wi = αi · D(xi)
Di(xi)

of each i ∈ [m], let the weighted ERM of this execution be

f̃ = arg min
h∈F

{∑m
i=1wi · |h(xi)− yi|2

}
by querying yi ∼ (Y |xi) for each point xi .

In Section B we prove that f̃ satisfies the desired guarantee, which implies Theorem 1.

Theorem 7 Given a linear family F , joint distribution (D,Y ), and ε > 0, let P be an ε-well-
balanced sampling procedure for F and D, and let f = arg min

h∈F
E

(x,y)∼(D,Y )
[|y−h(x)|2] be the true

risk minimizer. Then the weighted ERM f̃ of a good execution of P satisfies

‖f − f̃‖2D ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] in expectation.

For a noise function g not orthogonal to F in expectation, let g⊥ and g‖ denote the decompo-
sition of g where g⊥ is the orthogonal part and g‖ = g − g⊥ ∈ F . The above theorem indicates
‖f̃−f‖D ≤ ‖g‖‖D+

√
ε·‖g⊥‖D, which gives (1+ε)‖g‖D-closeness via the Pythagorean theorem.

This result appears in Corollary 10 of Section B.

Well-balanced sampling procedures. We observe that two standard sampling procedures are
well-balanced, so they yield agnostic recovery guarantees by Theorem 7. The simplest approach is
to set eachDi to be a fixed distributionD′ and αi = 1/m for all i. Form = O(KD′ log d+KD′/ε),
this gives an ε-well-balanced sampling procedure. These results appear in Section D.

We get a stronger result ofm = O(d/ε) using the randomized BSS algorithm from Lee and Sun
(2015). The Lee and Sun (2015) algorithm iteratively chooses points xi from distributions Di. A
term considered in their analysis—the largest increment of eigenvalues—is equivalent to our KDi .
By looking at the potential functions in their proof, we can extract coefficients αi bounding αiKDi

in our setting. This lets us show that the algorithm is a well-balanced sampling procedure; we do so
in Section C.

Active learning. Next we consider the active learning setting, where we don’t know the distri-
bution D and only receive samples xi ∼ D, but can choose which xi receive labels yi. Let K be
the condition number of the linear family F . Our algorithms uses n = O(K log d + K

ε ) unlabeled
samples and m = O(dε ) labeled samples, and achieves the same guarantees as in the query access
model.

For simplicity, we start with g orthogonal to F under ‖ · ‖D. At first, let us focus on the number
of unlabeled points. We could take n = O(K log d + K

ε ) points from D and request the label of
each point xi. By Theorem 7 with the simpler well-balanced sampling procedure mentioned above
using D′ = D, the ERM f ′ on these n points is ε · E

D
[|g(x)|2]-close to f .

9
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Then let us optimize the number of labeled samples. For n random points from D, let D0

denote the uniform measurement on these points. Although we cannot apply the linear-sample
well-balanced sampling procedure P to the unknown D, we can apply it to D0. By Theorem 7, the
ERM f̃ of P on D0 satisfies ‖f̃ − f ′‖2D0

≤ ε · E
x∼D0

[|y(x)− f ′(x)|2]. By the triangle inequality and

the fact that D0 is an good empirical estimation of F under measurement D, this gives ‖f − f̃‖2D .
ε · E

D
[|g(x)|2].

Notice that f ′ only appears in the analysis and we do not need it in the calculation of f̃ given
D0. By rescaling a constant factor of ε, this leads to the following theorem proved in Section E.

Theorem 8 Consider any dimension d linear space F of functions from a domain G to C. Let
(D,Y ) be a joint distribution over G× C and f = arg min

h∈F
E

(x,y)∼(D,Y )
[|y − h(x)|2].

Let K = sup
h∈F :h6=0

supx∈G |h(x)|2
‖h‖2D

. For any ε > 0, there exists an efficient algorithm that takes

O(K log d+ K
ε ) unlabeled samples from D and requests O(dε ) labels to output f̃ satisfying

E
x∼D

[|f̃(x)− f(x)|2] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] in expectation.

Lower bounds. We first prove a lower bound on the query complexity using information theory.
The Shannon-Hartley Theorem indicates that under the i.i.d. Gaussian noise N(0, 1/ε), for a func-
tion f with |f(x)| ≤ 1 at every point x, any observation y(x) = f(x) + N(0, 1/ε) obtains O(ε)
information about f . Because the dimension of F is d, this indicates Ω(d/ε) queries is necessary to
recover a function in F .

Next, for any K, d, and ε we construct a distribution D and dimension-d linear family F with
condition numberK overD, such that the sample complexity of achieving (2) is Ω(K log d+K/ε).
The first term comes from the coupon collector problem, and the second comes from the above
query bound. We summarize the upper bounds and lower bounds for sample complexity and query
complexity in Table 2.

Optimal value Lower bound Upper bound
Query complexity Θ(d/ε) Theorem 28 Theorem 1
Sample complexity Θ(K log d+K/ε) Theorem 31 Theorem 22

Table 2: Lower bounds and upper bounds in different access models

Signals with k-sparse Fourier transform. We now consider the nonlinear family F of functions
with k-sparse Fourier transform defined in (4), over the distribution D = [−1, 1]. As discussed
at (6), even for nonlinear function families, sampling from DF proportional to sup

f∈F

|f(x)|2
‖f‖2D

improves

the condition number from K to κ = E
x∈D

sup
f∈F

|f(x)|2
‖f‖2D

, which is Õ(k) given Theorem 4 and K =

Õ(k4).
Before sketching the proof of Theorem 4, let us revisit the Õ(k4) bound for K shown in Chen

et al. (2016). The key step—Claim 5.2 in Chen et al. (2016)—showed that for any ∆ > 0 and
f ∈ F , f(x) can be expressed as a linear combination of

{
f(x+ j∆) | j = 1, . . . , l} with constant

10
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coefficients and l = Õ(k2). This upper bounds |f(−1)|2 in terms of |f(−1 + ∆)|2 + · · ·+ |f(−1 +
l ·∆)|2 and then |f(−1)|2/‖f‖2D by integrating ∆ from 0 to 2/l.

The improvement of Theorem 4 contains two steps. In the first step, we show that f(x) can be
expressed as a constant-coefficient linear combination of the elements of an O(k)-length arithmetic
sequence on both sides of x, namely, {f(x−2k ·∆), . . . , f(x+2k ·∆)}\f(x). This is much shorter
than the Õ(k2) elements required by Chen et al. (2016) for the one-sided version, and provides an
Õ(k2) factor improvement. Next we find k such linear combinations that are almost orthogonal to
each other to remove the extra k factor. These two let us show that

sup
f∈F

|f(x)|2

‖f‖2D
= O

(
k log k

1− |x|

)
for any x ∈ (−1, 1). This leads to κ = O(k log2 k), which appears in Theorem 32 of Section G.
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Appendix A. Notation

We use [k] to denote the subset {1, 2, . . . , k} and 1E ∈ {0, 1} to denote the indicator function of an
event E.

For a vector v =
(
v(1), . . . , v(m)

)
∈ Cm, let ‖v‖k denote the `k norm, i.e.,

(∑
i∈[m] |v(i)|k

)1/k.

Given a self-adjoint matrixA ∈ Cm×m, let ‖A‖ denote the operator norm ‖A‖ = maxv 6=0
‖Av‖2
‖v‖2

and λ(A) denote all eigenvalues ofA. For convenience, let λmin(A) and λmax(A) denote the small-
est eigenvalue and the largest eigenvalue of A. Given a matrix B, let B∗ denote the conjugate
transpose of B, i.e., B∗(j, i) = B(i, j).

Given a function f with domain G and a distribution D over G, we use ‖f‖D to denote the
expected `2 norm of f(x) where x ∼ D, i.e., ‖f‖D =

(
E

x∼D
[|f(x)|2]

)1/2. Given a sequence

S = (x1, . . . , xm) (allowing repetition in S) and corresponding weights (w1, . . . , wm), let ‖f‖2S,w
denote the weighted `2 norm

∑m
j=1wj · |f(xj)|2. For convenience, we omit w if it is a uniform

distribution on S, i.e., ‖f‖S =
(
Ei∈[m]

[
|f(xi)|2

])1/2
.

Weights between different distributions. Given a distribution D, to estimate ‖h‖2D of a function
h through random samples from D′, we use the following notation to denote the re-weighting of h
between D′ and D.

Definition 9 For any distributionD′ over the domainG and any function h : G→ C, let h(D′)(x) =√
D(x)
D′(x) · h(x) such that E

x∼D′

[
|h(D′)(x)|2

]
= E

x∼D′

[
D(x)
D′(x) |h(x)|2

]
= E

x∼D

[
|h(x)|2

]
. When the

family F and D is clear, we use KD′ to denote the condition number of sampling from D′, i.e.,

KD′ = sup
x

{
sup
h∈F

{
|h(D′)(x)|2

‖hD′‖2D′

}}
= sup

x

{
D(x)

D′(x)
· sup
h∈F

{ |h(x)|2

‖h‖22

}}
.

By the same reason, for a random sample x from distribution D′, we always use wx = D(x)
D′(x) to

re-weight the sample x such that it keeps the same expectation:

E
x∼D′

[wx · |h(x)|2] = E
x∼D′

[
D(x)

D′(x)
· |h(x)|2] = E

x∼D
[|h(x)|2] = ‖h‖2D.

Appendix B. Recovery Guarantee for Well-Balanced Samples

In this section, we show for well-balanced sampling procedures (per Definition 5) that the weighted
ERM of a good execution (per Definition 6) approximates the true risk minimizer, and hence the
true signal. For generality, we first consider points and labels from a joint distribution (D,Y ).

13
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Theorem 7 Given a linear family F , joint distribution (D,Y ), and ε > 0, let P be an ε-well-
balanced sampling procedure for F and D, and let f = arg min

h∈F
E

(x,y)∼(D,Y )
[|y−h(x)|2] be the true

risk minimizer. Then the weighted ERM f̃ of a good execution of P satisfies

‖f − f̃‖2D ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] in expectation.

Next, we provide a corollary for specific kinds of noise. In the first case, we consider noise
functions representing independently mean-zero noise at each position x such as i.i.d. Gaussian
noise. Second, we consider arbitrary noise functions on the domain.

Corollary 10 Given a linear family F and distribution D, let y(x) = f(x) + g(x) for f ∈ F
and g a randomized function. Let P be an ε-well-balanced sampling procedure for F and D. The
weighted ERM f̃ of a good execution of P satisfies

1. ‖f̃ − f‖2D ≤ ε · E
g
[‖g‖2D] in expectation, when g(x) is a random function from G to C where

each g(x) is an independent random variable with E
g
[g(x)] = 0.

2. With probability 0.99, ‖f̃ − f‖D ≤ (1 +O(ε)) · ‖g‖D for any other noise function g.

In the rest of this section, we prove Theorem 7 in Section B.1 and Corollary 10 in Section B.2.
We discuss the speedup of the calculation of the ERM in Section B.3.

B.1. Proof of Theorem 7

We introduce a few more notation in this proof. Given F and the measurement D, let {v1, . . . , vd}
be a fixed orthonormal basis of F , where inner products are taken under the distribution D, i.e.,
E

x∼D
[vi(x)·vj(x)] = 1i=j for any i, j ∈ [d]. For any function h ∈ F , let α(h) denote the coefficients

(α(h)1, . . . , α(h)d) under the basis (v1, . . . , vd) such that h =
∑d

i=1 α(h)i · vi and ‖α(h)‖2 =
‖h‖D.

We characterize the first property in Definition 5 of well-balanced sampling procedures as
bounding the eigenvalues of A∗ ·A, where A is the m×d matrix defined as A(i, j) =

√
wi · vj(xi).

Lemma 11 For any ε > 0, given S = (x1, . . . , xm) and their weights (w1, . . . , wm), let A be the
m× d matrix defined as A(i, j) =

√
wi · vj(xi). Then

‖h‖2S,w :=
m∑
j=1

wj · |f(xj)|2 ∈ [1± ε] · ‖h‖2D for every h ∈ F

if and only if the eigenvalues of A∗A are in [1− ε, 1 + ε].

Proof Notice that
A · α(h) =

(√
w1 · h(x1), . . . ,

√
wm · h(xm)

)
. (7)

Because

‖h‖2S,w =

m∑
i=1

wi|h(xi)|2 = ‖A·α(h)‖22 = α(h)∗·(A∗·A)·α(h) ∈ [λmin(A∗·A), λmax(A∗·A)]·‖h‖2D

14
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and h is over the linear family F , these two properties are equivalent.

Next we consider the calculation of the weighted ERM f̃ . Given the weights (w1, · · · , wm)
on (x1, . . . , xm) and labels (y1, . . . , ym), let yw denote the vector of weighted labels (

√
w1 ·

y1, . . . ,
√
wm · ym). From (7), the empirical distance ‖h − (y1, . . . , ym)‖2S,w equals ‖A · α(h) −

yw‖22 for any h ∈ F . The function f̃ minimizing ‖h − (y1, . . . , ym)‖S,w = ‖A · α(h) − yw‖2
overall all h ∈ F is the pseudoinverse of A on yw, i.e.,

α(f̃) = (A∗ ·A)−1 ·A∗ · yw and f̃ =

d∑
i=1

α(f̃)i · vi.

Finally, we consider the distance between f = arg min
h∈F

{
E

(x,y)∼(D,Y )
[|h(x) − y|2]

}
and f̃ . For

convenience, let fw =
(√
w1 · f(x1), . . . ,

√
wm · f(wm)

)
. Because f ∈ F , (A∗ ·A)−1 ·A∗ · fw =

α(f). This implies

‖f̃ − f‖2D = ‖α(f̃)− α(f)‖22 = ‖(A∗ ·A)−1 ·A∗ · (yw − fw)‖22.

We assume λ
(
(A∗ ·A)−1

)
is bounded and consider ‖A∗ · (yw − fw)‖22.

Lemma 12 Let P be an random sampling procedure terminating in m iterations (m is not nec-
essarily fixed) that in every iteration i, it provides a coefficient αi and a distribution Di to sample
xi ∼ Di. Let the weight wi = αi · D(xi)

Di(xi)
and A ∈ Cm×d denote the matrix A(i, j) =

√
wi · vj(xi).

Then for f = arg min
h∈F

E
(x,y)∼(D,Y )

[|y − h(x)|2],

E
P

[
‖A∗(yw − fS,w)‖22

]
≤ sup

P

{ m∑
i=1

αi
}
·max

j

{
αj ·KDj

}
E

(x,y)∼(D,Y )
[|y − f(x)|2],

where KDi is the condition number for samples from Di: KDi = sup
x

{
D(x)
Di(x) · sup

v∈F

{ |v(x)|2
‖v‖22

}}
.

Proof For convenience, let gj denote yj − f(xj) and gw ∈ Cm denote the vector
(
√
wj ·

gj |j=1,...,m

)
= yw − fS,w for j ∈ [m] such that A∗ · (yw − fS,w) = A∗ · gw.

E[‖A∗ · gw‖22] = E

 d∑
i=1

( m∑
j=1

A∗(i, j)gw(j)
)2

=
d∑
i=1

E

( m∑
j=1

wjvi(xj) · gj
)2 =

d∑
i=1

E

 m∑
j=1

w2
j · |vi(xj)|2 · |gj |2

 ,
where the last step uses the following fact

E
xj∼Dj

[wjvi(xj) ·gj ] = E
xj∼Dj

[
αj ·

D(xj)

Dj(xj)
vi(xj)gj

]
= αj · E

xj∼D,yj∼Y (xj)

[
vi(xj)(yj−f(xj))

]
= 0.
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We swap i and j:

d∑
i=1

E

 m∑
j=1

w2
j · |vi(xj)|2 · |gj |2

 =

m∑
j=1

E

[
d∑
i=1

wj |vi(xj)|2 · wj |gj |2
]

≤
m∑
j=1

sup
xj

{
wj

d∑
i=1

|vi(xj)|2
}
· E
[
wj · |gj |2

]
.

For E
[
wj · |gj |2

]
, it equals E

xj∼Dj ,yj∼Y (xj)

[
αj · D(xj)

Dj(xj)

∣∣yj − f(xj)
∣∣2] = αj · E

xj∼D,yj∼Y (xj)

[∣∣yj−
f(xj)

∣∣2].
For supxj

{
wj
∑d

i=1 |vi(xj)|2
}

, we bound it as

sup
xj

{
wj

d∑
i=1

|vi(xj)|2
}

= sup
xj

{
αj ·

D(xj)

Dj(xj)

d∑
i=1

|vi(xj)|2
}

= αj sup
xj

{
D(xj)

Dj(xj)
· sup
h∈F

{ |h(xj)|2

‖h‖2D

}}
= αj ·KDj .

We use the fact sup
h∈F

{ |h(xj)|2
‖h‖2D

}
= sup

(a1,...,ad)

{ |∑d
i=1 aivi(xj)|2∑d
i=1 |ai|2

}
=

(
∑d
i=1 |ai|2)(

∑d
i=1 |vi(xj)|2)∑d

i=1 |ai|2
by the

Cauchy-Schwartz inequality. From all discussion above, we have

E[‖A∗·gw‖22] ≤
∑
j

(
αjKDj · αj · E

(x,y)∼(D,Y )
[|y − f(x)|2]

)
≤ (
∑
j

αj) max
j

{
αjKDj

}
· E
(x,y)∼(D,Y )

[|y−f(x)|2].

We combine all discussion above to prove Theorem 7.

Proof of Theorem 7. We assume the first property λ(A∗ · A) ∈ [1− 1/4, 1 + 1/4] from Defini-
tion 6. On the other hand, E[‖A∗ · (yw − fw)‖22] ≤ ε/2 · E

(x,y)∼(D,Y )
[|y − f(x)|2] from Lemma 12.

Conditioned on the first property, we know it is still at most ε
2·0.9 · E

(x,y)∼(D,Y )
[|y − f(x)|2]. This

implies E
[
‖(A∗ ·A)−1 ·A∗ · (yw − fw)‖22

]
≤ ε · E

(x,y)∼(D,Y )
[|y − f(x)|2].

B.2. Proof of Corollary 10

For the first part, let (D,Y ) =
(
D, f(x) + g(x)

)
be our joint distribution of (x, y). Because the

expectation E[g(x)] = 0 for every x ∈ G, arg min
v∈V

E
(x,y)∼(D,Y )

[|y − v(x)|2] = f . From Theorem 7,

for α(f̃) = (A∗ ·A)−1 ·A∗ · yw and m = O(d/ε),

‖f̃ − f‖2D = ‖α(f̃)− α(f)‖22 ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] = ε · E[‖g‖2D].

For the second part, let g‖ be the projection of g(x) to F and g⊥ = g − g‖ be the orthogonal
part to F . Let α(g‖) denote the coefficients of g‖ in the fixed orthonormal basis (v1, . . . , vd) so that
‖α(g‖)‖2 = ‖g‖‖D. We decompose yw = fw + gw = fw + g‖

w + g⊥
w. Therefore

α(f̃) = (A∗A)−1 ·A∗ · (fw + g‖
w + g⊥

w) = α(f) + α(g‖) + (AA∗)−1A∗ · g⊥
w.
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The distance ‖f̃ − f‖D = ‖α(f̃)− α(f)‖2 equals

‖(A∗A)−1·A∗·yw−α(f)‖2 = ‖α(f)+α(g‖)+(A∗A)−1·A∗·g⊥
w−α(f)‖2 = ‖α(g‖)+(A∗A)−1·A∗·g⊥

w‖2.

We apply Markov’s inequality to Theorem 7: with probability 0.99, ‖(A∗A)−1 ·A∗ · g⊥
w‖2 ≤

10
√
ε · ‖g⊥‖D. Thus

‖(A∗A)−1 ·A∗ · yw − α(f)‖2 = ‖α(g‖) + (A∗A)−1 ·A∗ · g⊥
w‖2

≤ ‖g‖‖D + 10
√
ε · ‖g⊥‖D.

Let 1− β denote ‖g‖‖D/‖g‖D such that ‖g⊥‖D/‖g‖D =
√

2β − β2. We rewrite it as(
1− β + 10

√
ε ·
√

2β − β2
)
‖g‖D ≤ (1−β+10

√
ε·
√

2β)‖g‖D ≤
(

1− (
√
β − 5

√
2ε)2 + 50ε

)
‖g‖D.

From all discussion above, ‖f̃ − f‖D = ‖α(f̃) − α(f)‖2 = ‖(A∗A)−1 · A∗ · yw − α(f)‖2 ≤
(1 +O(ε))‖g‖D.

B.3. Running time of finding ERM

Given the orthonormal basis v1, · · · , vd ofF underD, the ERM on noisy observations y(x1), · · · , y(xm)
with weightsw1, · · · , wm is (A∗A)−1 ·A∗ ·yw forA ∈ Cm×d defined asA(i, j) =

√
wi ·vj(xi) and

yw =
(√
w1 · y(x1), . . . ,

√
wm · y(xm)

)
. Since well-balanced procedures guarantee λ(A∗ · A) ∈

[3/4, 5/4], we could calculate an δ-approximation of the ERM using Taylor expansion (A∗A)−1 ≈∑t
i=0(I − A∗A)i for t = O(log 1

δ ). This saves the cost of calculating the inverse (A∗A)−1 and
improves it to O(m · d · log 1

δ ) for any linear family.

Observation 13 Let A be a m × d matrix defined as A(i, j) =
√
wi · vj(xi) with λ(A∗ · A) ∈

[3/4, 5/4]. Given δ, for t = O(log 1/δ) and any vector y ∈ Rm,

‖(A∗ ·A)−1 ·A∗ · y −
( t∑
i=0

(I −A∗ ·A)i
)
·A∗ · y‖2 ≤ δ · ‖(A∗ ·A)−1 ·A∗ · y‖2.

Appendix C. A Linear-Sample Algorithm for Known D

We provide a well-balanced sampling procedure with a linear number of random samples in this
section. The procedure requires knowing the underlying distribution D, which makes it directly
useful in the query setting or the “fixed design” active learning setting, where D can be set to the
empirical distribution D0.

Lemma 14 Given any dimension d linear space F , any distribution D over the domain of F , and
any ε > 0, there exists an efficient ε-well-balanced sampling procedure that terminates in O(d/ε)
rounds with probability 1− 1

200 .

Theorem 1 follows from Theorem 7 using the above well-balanced sampling procedure. We
state the following version for specific types of noise after plugging the above well-balanced sam-
pling procedure in Corollary 10.
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Theorem 15 Given any dimension d linear space F of functions and any distribution D on the
domain of F , let y(x) = f(x) + g(x) be our observed function, where f ∈ F and g denotes a noise
function. For any ε > 0, there exists an efficient algorithm that observes y(x) at m = O(dε ) points
and outputs f̃ such that in expectation,

1. ‖f̃ − f‖2D ≤ ε ·Eg [‖g‖2D], when g(x) is a random function from G to C where each g(x) is an

independent random variable with E
g
[g(x)] = 0.

2. ‖f̃ − f‖D ≤ (1 + ε) · ‖g‖D for any other noise function g.

We show how to extract the coefficients α1, · · · , αm from the randomized BSS algorithm by
Lee and Sun (2015) in Algorithm 1. Given ε, the linear family F , and the distribution D, we fix
γ =

√
ε/C0 for a constant C0 and v1, . . . , vd to be an orthonormal basis of F in this section. For

convenience, we use v(x) to denote the vector
(
v1(x), . . . , vd(x)

)
.

In the rest of this section, we prove Lemma 14 in Section C.1.

Algorithm 1 A well-balanced sampling procedure based on Randomized BSS
1: procedure RANDOMIZEDSAMPLINGBSS(F , D, ε)
2: Find an orthonormal basis v1, . . . , vd of F under D;
3: Set γ =

√
ε/C0 and mid = 4d/γ

1/(1−γ)−1/(1+γ) ;
4: j = 0;B0 = 0;
5: l0 = −2d/γ;u0 = 2d/γ;
6: while uj+1 − lj+1 < 8d/γ do;
7: Φj = Tr(ujI −Bj)−1 + Tr(Bj − ljI)−1; . The potential function at iteration j.
8: Set the coefficient αj = γ

Φj
· 1
mid ;

9: Set the distribution Dj(x) = D(x) ·
(
v(x)>(ujI − Bj)

−1v(x) + v(x)>(Bj −

ljI)−1v(x)

)
/Φj for v(x) =

(
v1(x), . . . , vd(x)

)
;

10: Sample xj ∼ Dj and set a scale sj = γ
Φj
· D(x)
Dj(x) ;

11: Bj+1 = Bj + sj · v(xj)v(xj)
>;

12: uj+1 = uj + γ
Φj(1−γ) ; lj+1 = lj + γ

Φj(1+γ) ;
13: j = j + 1;
14: end while
15: m = j;
16: Assign the weight wj = sj/mid for each xj ;
17: end procedure

C.1. Proof of Lemma 14

We state a few properties of randomized BSS Batson et al. (2012); Lee and Sun (2015) that will be
used in this proof. The first property is that matrices B1, . . . , Bm in Procedure RANDOMIZEDBSS
always have bounded eigenvalues.
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Lemma 16 (Batson et al. (2012); Lee and Sun (2015)) For any j ∈ [m], λ(Bj) ∈ (lj , uj).

Lemma 3.6 and 3.7 of Lee and Sun (2015) shows that with high probability, the while loop in
Procedure RANDOMIZEDSAMPLINGBSS finishes within O( d

γ2
) iterations and guarantees the last

matrix Bm is well-conditioned, i.e., λmax(Bm)
λmin(Bm) ≤

um
lm
≤ 1 +O(γ).

Lemma 17 (Lee and Sun (2015)) There exists a constant C such that with probability at least
1 − 1

200 , Procedure RANDOMIZEDSAMPLINGBSS takes at most m = C · d/γ2 random points
x1, . . . , xm and guarantees that umlm ≤ 1 + 8γ.

We first show that (A∗ · A) is well-conditioned from the definition of A. We prove that our choice
of mid is very close to

∑m
j=1

γ
φj

= um+lm
1

1−γ+ 1
1+γ

≈ um+lm
2 .

Claim 18 After exiting the while loop in Procedure RANDOMIZEDBSS, we always have

1. um − lm ≤ 9d/γ.

2. (1− 0.5γ2

d ) ·
∑m

j=1
γ
φj
≤ mid ≤

∑m
j=1

γ
φj

.

Proof Let us first bound the last term γ
φm

in the while loop. Since um−1 − lm−1 < 8d/γ, φm ≥
2d · 1

4d/γ ≥
γ
2 , which indicates the last term γ

φm
≤ 2. Thus

um − lm ≤ 8d/γ + 2(
1

1− γ
− 1

1 + γ
) ≤ 8d/γ + 5γ.

From our choice mid = 4d/γ
1/(1−γ)−1/(1+γ) = 2d(1− γ2)/γ2 and the condition of the while loop

um − lm =
∑m

j=1(γ/φj) · ( 1
1−γ −

1
1+γ ) + 4d/γ ≥ 8d/γ, we know

m∑
j=1

γ

φj
≥ mid = 2d(1− γ2)/γ2.

On the other hand, since um−1 − lm−1 < 8d/γ is in the while loop,
∑m−1

j=1
γ
φj
< mid. Hence

mid >
m−1∑
j=1

γ

φj
≥

m∑
j=1

γ

φj
− 2 ≥ (1− 0.5γ2/d) · (

m∑
j=1

γ

φj
).

Lemma 19 Given um
lm
≤ 1 + 8γ, λ(A∗ ·A) ∈ (1− 5γ, 1 + 5γ).

Proof For Bm =
∑m

j=1 sjv(xj)v(xj)
>, λ(Bm) ∈ (lm, um) from Lemma 16. At the same time,

given wj = sj/mid,

(A∗A) =
m∑
j=1

wjv(xj)v(xj)
> =

1

mid
·
m∑
j=1

sjv(xj)v(xj)
> =

Bm
mid

.
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Since mid ∈ [1− 3γ2

d , 1] · (
∑m

j=1
γ
φj

) = [1− 3γ2

d , 1] · ( um+lm
1

1−γ+ 1
1+γ

) ⊆ [1−2γ2, 1−γ2] · (um+lm
2 ) from

Claim 18, λ(A∗ ·A) = λ(Bm)/mid ∈ (lm/mid, um/mid) ⊂ (1− 5γ, 1 + 5γ) given um
lm
≤ 1 + 8γ

in Lemma 17.

We finish the proof of Lemma 14 by combining all discussion above.

Proof of Lemma 14. From Lemma 17 and Lemma 19, m = O(d/γ2) and λ(A∗A) ∈ [1 −
1/4, 1 + 1/4] with probability 0.995.

For αi = γ
Φi
· 1
mid , we bound

∑m
i=1

γ
Φi
· 1
mid by 1.25 from the second property of Claim 18.

Then we bound αj · KDj . We notice that sup
h∈F

|h(x)|2
‖h‖2D

=
∑

i∈[d] |vi(x)|2 for every x ∈ G be-

cause sup
h∈F

|h(x)|2
‖h‖2D

= sup
α(h)

∣∣∑
i α(h)i·vi(x)

∣∣2
‖α(h)‖22

=
∑

i |vi(x)|2 by the Cauchy-Schwartz inequality. This

simplifies KDj to supx{
D(x)
Dj(x) ·

∑d
i=1 |ui(x)|2} and bounds αj ·KDj by

γ

Φj ·mid
· sup

x

{
D(x)

Dj(x)
·

d∑
i=1

|vi(x)|2
}

=
γ

mid
· sup

x

{ ∑d
i=1 |vi(x)|2

v(xj)>(ujI −Bj)−1v(xj) + v(xj)>(Bj − ljI)−1v(xj)

}

≤ γ

mid
· sup

x

{ ∑d
i=1 |vi(x)|2

λmin

(
(ujI −Bj)−1

)
· ‖v(xj)‖22 + λmin

(
(Bj − ljI)−1

)
· ‖v(xj)‖22

}
≤ γ

mid
· 1

1/(uj − lj) + 1/(uj − lj)

=
γ

mid
· uj − lj

2
(apply the first property of Claim 18)

≤4.5 · d
mid

≤ 3γ2 = 3ε/C2
0 .

By choosing C0 = 3, this satisfies the second property of well-balanced sampling procedures. At
the same time, by Lemma 11, Algorithm 1 also satisfies the first property of well-balanced sampling
procedures.

Appendix D. Performance of i.i.d. Distributions

Given the linear family F of dimension d and the measure of distance D, we provide a distribution
DF with a condition number KDF = d.

Lemma 20 Given any linear family F of dimension d and any distribution D, there always exists
an explicit distribution DF such that the condition number

KDF = sup
x

{
sup
h∈F

{ D(x)

DF (x)
· |h(x)|2

‖h‖2D

}}
= d.
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Next, for generality, we bound the number of i.i.d. random samples from an arbitrary distribution
D′ to fulfill the requirements of well-balanced sampling procedures in Definition 5.

Lemma 21 There exists a universal constant C1 such that given any distribution D′ with the same
support of D and any ε > 0, the random sampling procedure with m = C1(KD′ log d +

KD′
ε )

i.i.d. random samples from D′ and coefficients α1 = · · · = αm = 1/m is an ε-well-balanced
sampling procedure.

By Theorem 7, we state the following result, which will be used in active learning. For G =
supp(D) and any x ∈ G, let Y (x) denote the conditional distribution (Y |D = x) and (D′, Y (D′))
denote the distribution that first generates x ∼ D′ then generates y ∼ Y (x).

Theorem 22 Consider any dimension d linear space F of functions from a domain G to C. Let
(D,Y ) be a joint distribution over G× C, and f = arg min

h∈F
E

(x,y)∼(D,Y )
[|y − h(x)|2].

Let D′ be any distribution on G and KD′ = sup
x

{
sup
h∈F

{ D(x)
D′(x) ·

|h(x)|2
‖h‖2D

}}
. The weighted ERM f̃

of m = O(KD′ log d +
KD′
ε ) random queries of (D′, Y (D′)) with weights wi = D(xi)

m·D′(xi) for each
i ∈ [m] satisfies

‖f̃ − f‖2D = E
x∼D

[
|f̃(x)− f(x)|2

]
≤ ε · E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
with probability 1− 10−4.

We show the proof of Lemma 20 in Section D.1 and the proof of Lemma 21 in Section D.2.

D.1. Optimal Condition Number

We describe the distribution DF with KDF = d. We first observe that for any family F (not

necessarily linear), we could always scale down the condition number to κ = E
x∼D

[
sup

h∈F :h6=0

|h(x)|2
‖h‖2D

]
.

Claim 23 For any family F and any distribution D on its domain, let DF be the distribution

defined as DF (x) =
D(x)· sup

h∈F:h 6=0

|h(x)|2

‖h‖2
D

κ with κ. The condition number KDF is at most κ.

Proof For any g ∈ F and x in the domain G,

|g(x)|2

‖g‖2D
· D(x)

DF (x)
=

|g(x)|2
‖g‖2D

·D(x)

suph∈F
|h(x)|2
‖h‖2D

·D(x)/κ
≤ κ.

Next we use the linearity of F to prove κ = d. Let {v1, . . . , vd} be any orthonormal basis of F ,
where inner products are taken under the distribution D.
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Algorithm 2 SampleDF

1: procedure GENERATINGDF(F = span{v1, . . . , vd}, D)
2: Sample j ∈ [d] uniformly.
3: Sample x from the distribution Wj(x) = D(x) · |vj(x)|2.
4: Set the weight of x to be d∑d

i=1 |vi(x)|2
.

5: end procedure

Lemma 24 For any linear family F of dimension d and any distribution D,

E
x∼D

sup
h∈F :‖h‖D=1

|h(x)|2 = d

such that DF (x) = D(x) · sup
h∈F :‖h‖D=1

|h(x)|2/d has a condition number KDF = d. Moreover,

there exists an efficient algorithm to sample x from DF and compute its weight D(x)
DF (x) .

Proof Given an orthonormal basis v1, . . . , vd of F , for any h ∈ F with ‖h‖D = 1, there exists
c1, . . . , cd such that h(x) = ci · vi(x). Then for any x in the domain, from the Cauchy-Schwartz
inequality,

sup
h

|h(x)|2

‖h‖2D
= sup

c1,...,cd

|
∑

i∈[d] civi(x)|2∑
i∈[d] |ci|2

=
(
∑

i∈[d] |ci|2) · (
∑

i∈[d] |vi(x)|2)∑
i∈[d] |ci|2

=
∑
i∈[d]

|vi(x)|2.

This is tight because there always exist c1 = v1(x), c2 = v2(x), . . . , cd = vd(x) such that |
∑
i∈[d]

civi(x)|2 =

(
∑
i∈[d]

|ci|2) · (
∑
i∈[d]

|vi(x)|2). Hence

E
x∼D

sup
h∈F :h6=0

|h(x)|2

‖h‖2D
= E

x∼D

[∑
i∈[d]

|vi(x)|2
]

= d.

By Claim 23, this indicates KDF = d. At the same time, this calculation indicates

DF (x) =

D(x) · sup
‖h‖D=1

|h(x)|2

d
=
D(x) ·

∑
i∈[d] |vi(x)|2

d
.

We present our sampling procedure in Algorithm 2.

D.2. Proof of Lemma 21

We use the matrix Chernoff theorem to prove the first property in Definition 5. We still use A to
denote the m× d matrix A(i, j) =

√
wi · vj(xi).
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Lemma 25 Let D′ be an arbitrary distribution over G and

KD′ = sup
h∈F :h6=0

sup
x∈G

|h(D′)(x)|2

‖h‖2D
. (8)

There exists an absolute constant C such that for any n ∈ N+, linear family F of dimension d,
ε ∈ (0, 1) and δ ∈ (0, 1), when S = (x1, . . . , xm) are independently from the distribution D′ with
m ≥ C

ε2
·KD′ log d

δ and wj =
D(xj)

m·D′(xj) for each j ∈ [m], the m× d matrix A(i, j) =
√
wi · vj(xi)

satisfies
‖A∗A− I‖ ≤ ε with probability at least 1− δ.

Before we prove Lemma 25, we state the following version of the matrix Chernoff bound.

Theorem 26 (Theorem 1.1 of Tropp (2012)) Consider a finite sequence {Xk} of independent,
random, self-adjoint matrices of dimension d. Assume that each random matrix satisfies

Xk � 0 and λ(Xk) ≤ R.

Define µmin = λmin(
∑

k E[Xk]) and µmax = λmax(
∑

k E[Xk]). Then

Pr

{
λmin(

∑
k

Xk) ≤ (1− δ)µmin

}
≤ d

(
e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1], and (9)

Pr

{
λmax(

∑
k

Xk) ≥ (1 + δ)µmax

}
≤ d

(
e−δ

(1 + δ)1+δ

)µmax/R

for δ ≥ 0 (10)

Proof Let v1, . . . , vd be the orthonormal basis of F in the definition of matrix A. For any h ∈ F ,
let α(h) = (α1, . . . , αd) denote the coefficients of h under v1, . . . , vd such that ‖h‖2D = ‖α(h)‖22.

At the same time, for any fixed x, sup
h∈F

|h(D′)(x)|2
‖h‖2D

= sup
α(h)

|
∑d
i=1 α(h)i·v

(D′)
i (x)|2

‖α(h)‖22
=
∑

i∈[d] |v
(D′)
i (x)|2

by the tightness of the Cauchy Schwartz inequality. Thus

KD′
def
= sup

x∈G

{
sup

h∈F :h6=0

|h(D′)(x)|2

‖h‖2D

}
indicates sup

x∈G

∑
i∈[d]

|v(D′)
i (x)|2 ≤ KD′ . (11)

For each point xj in S with weight wj =
D(xj)

m·D′(xj) , let Aj denote the jth row of the matrix A. It is

a vector in Cd defined by Aj(i) = A(j, i) =
√
wj · vi(xj) =

v
(D′)
i (xj)√

m
. So A∗A =

∑m
j=1A

∗
j ·Aj .

For A∗j ·Aj , it is always � 0. Notice that the only non-zero eigenvalue of A∗j ·Aj is

λ(A∗j ·Aj) = Aj ·A∗j =
1

m

∑
i∈[d]

|v(D′)
i (xj)|2

 ≤ KD′

m

from (11).
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At the same time,
∑m

j=1 E[A∗j · Aj ] equals the identity matrix of size d× d because the expec-
tation of the entry (i, i′) in A∗j ·Aj is

E
xj∼D′

[A(j, i) ·A(j, i′)] = E
xj∼D′

[
v

(D′)
i (xj) · v(D′)

i′ (xj)

m
]

= E
xj∼D′

[
D(x) · vi(xj) · vi′(xj)

m ·D′(xj)
] = E

xj∼D
[
vi(xj) · vi′(xj)

m
] = 1i=i′/m.

Now we apply Theorem 26 on A∗A =
∑m

j=1(A∗j ·Aj):

Pr [λ(A∗A) /∈ [1− ε, 1 + ε]] ≤ d
(

e−ε

(1− ε)1−ε

)1/
KD′
m

+ d

(
e−ε

(1 + ε)1+ε

)1/
KD′
m

≤ 2d · e−
ε2· m

KD′
3 ≤ δ given m ≥

6KD′ log d
δ

ε2
.

Then we finish the proof of Lemma 21.

Proof of Lemma 21. Because the coefficient αi = 1/m = O(ε/KD′) and
∑

i αi = 1, this
indicates the second property of well-balanced sampling procedures.

Since m = Θ(KD′ log d), by Lemma 25, we know all eigenvalues of A∗ ·A are in [1−1/4, 1 +
1/4] with probability 1 − 10−3. By Lemma 11, this indicates the first property of well-balanced
sampling procedures.

Appendix E. Results for Active Learning

In this section, we investigate the case where we do not know the distribution D of x and only
receive random samples from D. We finish the proof of Theorem 8 that bounds the number of
unlabeled samples by the condition number of D and the number of labeled samples by dim(F) to
find the truth through D.

Theorem 8 Consider any dimension d linear space F of functions from a domain G to C. Let
(D,Y ) be a joint distribution over G× C and f = arg min

h∈F
E

(x,y)∼(D,Y )
[|y − h(x)|2].

Let K = sup
h∈F :h6=0

supx∈G |h(x)|2
‖h‖2D

. For any ε > 0, there exists an efficient algorithm that takes

O(K log d+ K
ε ) unlabeled samples from D and requests O(dε ) labels to output f̃ satisfying

E
x∼D

[|f̃(x)− f(x)|2] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] in expectation.

Notice that Theorem 2 follows from Corollary 10 and the guarantee of Theorem 8. For gen-
erality, we bound the number of labels using any well-balanced sampling procedure, such that
Theorem 8 follows from this lemma with the linear sample procedure in Lemma 14.
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Lemma 27 Consider any dimension d linear space F of functions from a domain G to C. Let
(D,Y ) be a joint distribution over G× C and f = arg min

h∈F
E

(x,y)∼(D,Y )
[|y − h(x)|2].

Let K = sup
h∈F :h6=0

supx∈G |h(x)|2
‖h‖2D

and P be a well-balanced sampling procedure terminating in

mp(ε) rounds with probability 1 − 10−3 for any linear family F , measurement D, and ε. For any
ε > 0, Algorithm 3 takes O(K log d+ K

ε ) unlabeled samples from D and requests at most mp(ε/8)

labels to output f̃ satisfying

E
x∼D

[|f̃(x)− f(x)|2] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] in expectation.

Algorithm 3 first takes m0 = O(K log d + K/ε) unlabeled samples and defines a distribution
D0 to be the uniform distribution on these m0 samples. Then it uses D0 to simulate D in P , i.e.,
it outputs the ERM of a good execution of the well-balanced sampling procedure P with the linear
family F , the measurement D0, and ε

8 .

Algorithm 3 Regression over an unknown distribution D
1: procedure REGRESSIONUNKNOWNDISTRIBUTION(ε,F , D, P )
2: Set C to be a large constant and m0 = C · (K log d+K/ε) .
3: Take m0 unlabeled samples x1, . . . , xm0 from D.
4: Let D0 be the uniform distribution over (x1, . . . , xm0).
5: Output the ERM f̃ of a good execution of P with parameters F , D0, ε/8.
6: end procedure

Proof We still use ‖f‖D′ to denote
√

E
x∼D′

[|f(x)|2] and D1 to denote the weighted distribution

generated by Procedure P given F , D0, ε. By Lemma 21 with D and the property of P , with
probability at least 1− 2 · 10−3,

‖h‖2D0
= (1± 1/4) · ‖h‖2D and ‖h‖2D1

= (1± 1/4) · ‖h‖2D0
for every h ∈ F . (12)

We assume (12) holds in the rest of this proof.
Let yi denote a random label of xi from Y (xi) for each i ∈ [m0] including the unlabeled samples

in the algorithm and the labeled samples in Step 5 of Algorithm 3. Let f ′ be the weighted ERM of
(x1, · · · , xm) and (y1, · · · , ym) over D0, i.e.,

f ′ = arg min
h∈F

E
xi∼D0,yi∼Y (xi)

[
|yi − h(xi)|2

]
. (13)

Given Property (12) and Lemma 21,

E
(x1,y1),...,(xm0 ,ym0 )

[‖f ′ − f‖2D] ≤ ε · E
(x,y)∼(D,Y )

[|y − f(x)|2] from the proof of Theorem 7 .

In the rest of this proof, we show that the weighted ERM f̃ of a good execution of P with
measurement D0 guarantees ‖f̃ − f ′‖2D0

. E
(x,y)∼(D,Y )

[
|y − f(x)|2

]
with high probability. Given

Property (12) and the guarantee of Procedure P , we have

E
P

[‖f̃ − f ′‖2D0
] ≤ ε · E

x∼D0

[
|yi − f ′(xi)|2

]
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from the proof of Theorem 7. Next we bound the right hand side E
xi∼D0

[
|yi − f ′(xi)|2

]
by E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
over the randomness of (x1, y1), . . . , (xm0 , ym0):

E
(x1,y1),...,(xm0 ,ym0 )

[
E

xi∼D0

[
|yi − f ′(xi)|2

]]
≤ E

(x1,y1),...,(xm0 ,ym0 )

[
2 E
xi∼D0

[
|yi − f(xi)|2

]
+ 2‖f − f ′‖2D0

]
≤2 E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
+ 3 E

(x1,y1),...,(xm0 ,ym0 )

[
‖f − f ′‖2D

]
from (12)

Hence E
(x1,y1),...,(xm0 ,ym0 )

[
E
P

[‖f̃ − f ′‖2D0
]
]
. ε · E

(x,y)∼(D,Y )

[
|y − f(x)|2

]
.

From all discussion above, by rescaling ε, we have

‖f̃−f‖2D ≤ 2‖f̃−f ′‖2D+2‖f ′−f‖2D ≤ 3‖f̃−f ′‖2D0
+
ε

4
· E
(x,y)∼(D,Y )

[|y−f(x)|2] ≤ ε· E
(x,y)∼(D,Y )

[|y−f(x)|2]

Appendix F. Lower Bounds

We present two lower bounds on the number of samples in this section. We first prove a lower bound
on the query complexity based on the dimension d. Then we prove a lower bound on the the sample
complexity based on the condition number of the sampling distribution.

Theorem 28 For any d and any ε < 1
10 , there exist a distribution D and a linear family F of

functions with dimension d such that for the i.i.d. Gaussian noise g(x) = N(0, 1
ε ), any algorithm

which observes y(x) = f(x)+g(x) for f ∈ F with ‖f‖D = 1 and outputs f̃ satisfying ‖f− f̃‖D ≤
0.1 with probability ≥ 3

4 , needs at least m ≥ 0.8d
ε queries.

Notice that this lower bound matches the upper bound in Theorem 1 up to a constant factor. In the
rest of this section, we focus on the proof of Theorem 28. Let F = {f : [d] → R} and D be the
uniform distribution over [d]. We first construct a packing setM of F .

Claim 29 There exists a subsetM = {f1, . . . , fn} ⊆ F with the following properties:

1. ‖fi‖D = 1 for each fi ∈M.

2. ‖fi‖∞ ≤ 1 for each fi ∈M.

3. ‖fi − fj‖D > 0.2 for distinct fi, fj inM.

4. n ≥ 20.7d.

Proof We constructM from U =
{
f : [d] → {±1}

}
in Procedure CONSTRUCTM. Notice that

|U | = 2d before the while loop. At the same time, Procedure CONSTRUCTM removes at most(
d

≤0.01d

)
≤ 20.3d functions every time because ‖g − h‖D < 0.2 indicates Pr[g(x) 6= h(x)] ≤

(0.2)2/4 = 0.01. Thus n ≥ 2d/20.3d ≥ 20.7d.
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Algorithm 4 ConstructM
1: procedure CONSTRUCTM(d)
2: Set n = 0 and U =

{
f : [d]→ {±1}

}
.

3: while U 6= ∅ do
4: Choose any h ∈ U and remove all functions h′ ∈ U with ‖h− h′‖D < 0.2.
5: n = n+ 1 and fn = h.
6: end while
7: ReturnM = {f1, . . . , fn}.
8: end procedure

We finish the proof of Theorem 28 using the Shannon-Hartley theorem.

Theorem 30 (The Shannon-Hartley Theorem Hartley (1928); Shannon (1949)) Let S be a real-
valued random variable with E[S2] = τ2 and T ∼ N(0, σ2). The mutual information I(S;S+T ) ≤
1
2 log(1 + τ2

σ2 ).

Proof of Theorem 28. Because of Yao’s minimax principle, we assume A is a deterministic
algorithm given the i.i.d. Gaussian noise. Let I(f̃ ; fj) denote the mutual information of a random
function fj ∈M andA’s output f̃ givenm observations (x1, y1), . . . , (xm, ym) with yi = fj(xi)+

N(0, 1
ε ). When the output f̃ satisfies ‖f̃ − fj‖D ≤ 0.1, fj is the closest function to f̃ inM from

the third property ofM. From Fano’s inequality Fano (1961), H(fj |f̃) ≤ H(1
4) + log(|M|−1)

4 . This
indicates

I(fj ; f̃) = H(fj)−H(fj |f̃) ≥ log |M| − 1− log(|M| − 1)/4 ≥ 0.7 log |M| ≥ 0.4d.

At the same time, by the data processing inequality, the algorithmAmakesm queries
(
x1, . . . , xm

)
and sees

(
y1, . . . , ym

)
, which indicates

I(f̃ ; fj) ≤ I
((
y1, . . . , ym

)
; fj

)
=

m∑
i=1

I

(
yi; fj(xi)

∣∣y1, · · · , yi−1

)
. (14)

For the query xi, let Di,j denote the distribution of fj ∈ M in the algorithm A given the first i− 1
observations

(
x1, y1

)
, . . . ,

(
xi−1, yi−1

)
. We apply Theorem 30 on Di,j such that it bounds

I

(
yi = fj(xi) +N(0,

1

ε
); fj(xi)

∣∣y1, · · · , yi−1

)
≤1

2
log

1 +

E
f∼Di,j

[f(xi)
2]

1/ε


≤1

2
log

1 +

max
f∈M

[f(xi)
2]

1/ε


=

1

2
log
(
1 + ε

)
≤ ε

2
,
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where we apply the second property ofM in the second step to bound f(x)2 for any f ∈M. Hence
we bound

∑m
i=1 I(yi; fj |y1, · · · , yi−1) by m · ε2 . This implies

0.4d ≤ m · ε
2
⇒ m ≥ 0.8d

ε
.

Next we consider the sample complexity of linear regression.

Theorem 31 For any K, d, and ε > 0, there exist a distribution D, a linear family of functions F

with dimension d whose condition number sup
h∈F :h6=0

{
sup
x∈G

|h(x)|2
‖h‖2D

}
equals K, and a noise function g

orthogonal to V such that any algorithm observing y(x) = f(x) + g(x) of f ∈ F needs at least
Ω(K log d+ K

ε ) samples from D to output f̃ satisfying ‖f̃ − f‖D ≤ 0.1
√
ε · ‖g‖D with probability

3
4 .

Proof We fixK to be an integer and set the domain of functions in F to be [K]. We chooseD to be
the uniform distribution over [K]. Let F denote the family of functions

{
f : [K]→ C|f(d+ 1) =

f(d+ 2) = · · · = f(K) = 0
}

. Its condition number sup
h∈F :h6=0

{
sup
x∈G

|h(x)|2
‖h‖2D

}
equals K. h(x) = 1x=1

provides the lower bound≥ K. At the same time, |h(x)|2
‖h‖2D

= |h(x)|2∑K
i=1 |h(x)|2/K

≤ K indicates the upper

bound ≤ K.
We first consider the case K log d ≥ K

ε . Let g = 0 such that g is orthogonal to V . Notice that
‖f̃ − f‖D ≤ 0.1

√
ε · ‖g‖D indicates f̃(x) = f(x) for every x ∈ [d]. Hence the algorithm needs to

sample f(x) for every x ∈ [d] when sampling from D: the uniform distribution over [K]. From the
lower bound of the coupon collector problem, this takes at least Ω(K log d) samples from D.

Otherwise, we prove that the algorithm needs Ω(K/ε) samples. Without loss of generality, we
assume E

x∼[d]

[
|f(x)|2

]
= 1 for the truth f in y. Let g(x) = N(0, 1/ε) for each x ∈ [d]. From

Theorem 28, to find f̃ satisfying E
x∼[d]

[
|f̃(x) − f(x)|2

]
≤ 0.1 E

x∼[d]

[
|f(x)|2

]
, the algorithm needs

at least Ω(d/ε) queries of x ∈ [d]. Hence it needs Ω(K/ε) random samples from D, the uniform
distribution over [K].

Appendix G. Application to Continuous k-sparse Fourier Transforms

We consider the nonlinear function space containing signals with k-sparse Fourier transform in the
continuous setting. Let D be the uniform distribution over [−1, 1] and F be the bandlimit of the
frequencies. We fix the family F in this section to be

F =

f(x) =
k∑
j=1

vje
2πi·fjx

∣∣∣∣vj ∈ C, |fj | ≤ F

 .

The main result in this section is an estimation of the importance sampling of x ∈ [−1, 1].
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Theorem 4 For any x ∈ (−1, 1),

sup
f∈F

|f(x)|2

‖f‖2D
.
k log k

1− |x|
.

This directly improves κ = E
x∈[−1,1]

[sup
f∈F

|f(x)|2
‖f‖2D

] for signals with k-sparse Fourier transform,

which is better than the condition number sup
x∈[−1,1]

[sup
f∈F

|f(x)|2
‖f‖2D

] used in Chen et al. (2016).

Theorem 32 For signals with k-sparse Fourier transform,

E
x∈[−1,1]

[
sup
f∈F

|f(x)|2

‖f‖2D

]
= O(k log2 k).

Moreover, there exists a constant c = Θ(1) such that a distribution

DF (x) =

{
c

(1−|x|) log k , for |x| ≤ 1− 1
k3 log2 k

c · k3 log k, for |x| > 1− 1
k3 log2 k

guarantees for any f(x) =
k∑
j=1

vje
2πifjx and any x ∈ [−1, 1], |f(x)|2 · D(x)

DF (x)
= O(k log2 k) · ‖f‖2D.

We first state the condition number result in the previous work Chen et al. (2016).

Lemma 33 (Lemma 5.1 of Chen et al. (2016)) For any f(x) =
∑k

j=1 vje
2πifjx,

sup
x∈[−1,1]

|f(x)|2

‖f‖2D
= O(k4 log3 k).

We first show an interpolation lemma of f(x) then finish the proof of Theorem 4.

Claim 34 Given f(x) =
∑k

j=1 vje
2πifj ·x and ∆, there exists l ∈ [2k] such that for any t,

|f(t+ l ·∆)|2 .
∑

j∈[2k]\{l}

|f(t+ j ·∆)|2.

Proof Given k frequencies f1, . . . , fk and ∆, we set z1 = e2πif1·∆, . . . , zk = e2πifk·∆. Let V be
the linear subspace(α(0), . . . , α(2k − 1)

)
∈ C2k

∣∣ 2k−1∑
j=0

α(j) · zji = 0, ∀i ∈ [k]

 .

Because the dimension of V is k, let α1, . . . , αk ∈ V be k orthogonal coefficient vectors with unit
length ‖αi‖2 = 1. From the definition of αi, we have∑
j∈[2k]

αi(j) · f(t+ j ·∆) =
∑
j∈[2k]

αi(j)
∑
j′∈[k]

vj′ · e2πifj′ ·(t+j∆)

=
∑
j∈[2k]

αi(j)
∑
j′∈[k]

vj′ · e2πifj′ t · zjj′ =
∑
j′

vj′ · e2πifj′ t
∑
j∈[2k]

αi(j) · zjj′ = 0.
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Let l be the coordinate in [2k] with the largest weight
∑k

i=1 |αi(l)|2. For every i ∈ [k], from the
above discussion,

− αi(l) · f(t+ l ·∆) =
∑

j∈[2k]\{l}

αi(j) · f(t+ j ·∆). (15)

Let A ∈ R[k]×[2k−1] denote the matrix of the coefficients excluding the coordinate l, i.e.,

A =


α1(0) · · · α1(l − 1) α1(l + 1) · · · α1(2k − 1)
α2(0) · · · α2(l − 1) α2(l + 1) · · · α2(2k − 1)

...
...

...
...

...
...

αk(0) · · · αk(l − 1) αk(l + 1) · · · αk(2k − 1)

 .

For the k × k matrix A ·A∗, its entry (i, i′) equals∑
j∈[2k]\{l}

αi(j) · αi′(j) = 〈αi, αi′〉 − αi(l) · αi′(l) = 1i=i′ − αi(l) · αi′(l).

Thus the eigenvalues ofA·A∗ are bounded by 1+
∑

i∈[k] |αi(l)|2, which also bounds the eigenvalues
of A∗ ·A by 1 +

∑
i∈[k] |αi(l)|2. From (15),∑

i∈[k]

|αi(l) · f(t+ l ·∆)|2 ≤ λmax(A∗ ·A) ·
∑

j∈[2k]\{l}

|f(t+ j ·∆)|2

⇒
(∑
i∈[k]

|αi(l)|2
)
· |f(t+ l ·∆)|2 ≤ (1 +

∑
i∈[k]

|αi(l)|2) ·
∑

j∈[2k]\{l}

|f(t+ j ·∆)|2.

Because l = arg maxj∈[2k]

{∑
i∈[k] |αi(j)|2

}
and α1, . . . , αk are unit vectors,

∑
i∈[k] |αi(l)|2 ≥∑k

i=1 ‖αi‖22/2k ≥ 1/2. Therefore

|f(t+ l ·∆)|2 ≤ 3
∑

j∈[2k]\{l}

|f(t+ j ·∆)|2.

Corollary 35 Given f(x) =
∑k

j=1 vje
2πifj ·x, for any ∆ and t,

|f(t)|2 .
2k∑
i=1

|f(t+ i∆)|2 +

2k∑
i=1

|f(t− i∆)|2.

Next we finish the proof of Theorem 4.

Proof of Theorem 4. We assume t = 1− ε for an ε ≤ 1 and integrate ∆ from 0 to ε/2k:
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ε/2k · |f(t)|2 .
∫ ε/2k

∆=0

2k∑
i=1

|f(t+ i∆)|2 +
2k∑
i=1

|f(t− i∆)|2d∆

=
∑

i∈[1,...,2k]

∫ ε/2k

∆=0
|f(t+ i∆)|2 + |f(t− i∆)|2d∆

.
∑

i∈[1,...,2k]

1

i
·
∫ ε·i/2k

∆′=0
|f(t+ ∆′)|2d∆′ +

∑
i∈[1,...,2k]

1

i
·
∫ ε·i/2k

∆′=0
|f(t−∆′)|2d∆′

.
∑

i∈[1,...,2k]

1

i
·
∫ ε

∆′=−ε
|f(t+ ∆′)|2d∆′

. log k ·
∫ 1

x=−1
|f(x)|2dx.

From all discussion above, we have |f(1− ε)|2 . k log k
ε · E

x∈[−1,1]
[|f(x)|2].

Proof of Theorem 32. We bound

κ = E
x∈[−1,1]

[sup
f∈F

|f(x)|2

‖f‖2D
]

=
1

2

∫ 1

x=−1
sup
f∈F

|f(x)|2

‖f‖2D
dx

.
∫ 1−ε

x=−1+ε
sup
f∈F

|f(x)|2

‖f‖2D
dx+ ε · k4 log3 k from Lemma 33

.
∫ 1−ε

x=−1+ε

k log k

1− |x|
dx+ ε · k4 log3 k from Theorem 4

. k log k · log
1

ε
+ ε · k4 log3 k . k log2 k

by choosing ε = 1
k3 log k

. Next we define DF (x) = D(x) ·
sup

f∈F,f 6=0

|f(x)|2

‖f‖2
D

κ . The description of

DF (x) follows the upper bound of sup
f∈F ,f 6=0

|f(x)|2
‖f‖2D

in Lemma 33 and Theorem 4. From Claim 23,

its condition number is κ = O(k log2 k).

Before we show a sample-efficient algorithm, we state the following version of the Chernoff
bound that will used in this proof.

Lemma 36 (Chernoff Bound Chernoff (1952); Tarjan (2009) ) LetX1, X2, . . . , Xn be indepen-
dent random variables. Assume that 0 ≤ Xi ≤ 1 always, for each i ∈ [n]. Let X = X1 + X2 +
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Algorithm 5 Recover k-sparse FT
1: procedure SPARSEFT(y, F, T, ε)
2: m← O(k4 log3 k + k2 log2 k log FT

ε )
3: Sample t1, . . . , tm from DF independently
4: Set the corresponding weights (w1, . . . , wm) and S = (t1, . . . , tm)
5: Query y(t1), . . . , y(tm) from the observation y
6: Nf ← ε

T ·kCk2
· Z ∩ [−F, F ] for a constant C

7: for all possible k frequencies f ′1, . . . , f
′
k in Nf do

8: Find h(x) in span{e2πi·f ′1x, . . . , e2πi·f ′kx} minimizing ‖h− y‖S,w
9: Update f̃ = h if ‖h− y‖S,w ≤ ‖f̃ − y‖S,w

10: end for
11: Return f̃ .
12: end procedure

· · ·+Xn and µ = E[X] =
n∑
i=1

E[Xi]. Then for any ε > 0,

Pr[X ≥ (1 + ε)µ] ≤ exp(− ε2

2 + ε
µ) and Pr[X ≥ (1− ε)µ] ≤ exp(−ε

2

2
µ).

Corollary 37 Let X1, X2, . . . , Xn be independent random variables in [0, R] with expectation 1.
For any ε < 1/2, X =

∑n
i=1Xi
n with expectation 1 satisfies

Pr[|X − 1| ≥ ε] ≤ 2 exp(−ε
2

3
· n
R

).

Finally, we provide a relatively sample-efficient algorithm to recover k-Fourier-sparse signals. Ap-
plying the same proof with uniform samples would require a K/κ = O(k3) factor more samples.

Corollary 38 For any F > 0, T > 0, ε > 0, and observation y(x) =
∑k

j=1 vje
2πifjx + g(x) with

|fj | ≤ F for each j, there exists a non-adaptive algorithm that takes m = O(k4 log3 k+ k2 log2 k ·
log FT

ε ) random samples t1, . . . , tm from DF and outputs f̃(x) =
∑k

j=1 ṽje
2πif̃jx satisfying

E
x∼[−T,T ]

[
|f̃(x)− f(x)|2

]
. E

x∼[−T,T ]

[
|g(x)|2

]
+ ε E

x∼[−T,T ]

[
|f(x)|2

]
with probability 0.9.

Proof We first state the main tool from the previous work. From Lemma 2.1 in Chen et al. (2016),
let Nf = ε

T ·kCk2
· Z ∩ [−F, F ] denote a net of frequencies for a constant C. For any signal

f(x) =
∑k

j=1 vje
2πifj(x), there exists a k-sparse signal

f ′(x) =

k∑
j=1

v′je
2πif ′j(x) satisfying ‖f − f ′‖D ≤ ε‖f‖D

whose frequencies f ′1, . . . , f
′
k are in Nf . We rewrite y = f + g = f ′ + g′ where g′ = g + f − f ′

with ‖g′‖D ≤ ‖g‖D + ε‖f‖D. Our goal is to recover f ′.
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We construct a δ-net with δ = 0.05 forh(x) =
2k∑
j=1

vje
2πi·ĥjx

∣∣∣∣‖h‖D = 1, ĥj ∈ Nf

 .

We first pick 2k frequencies ĥ1, . . . , ĥ2k inNf then construct a δ-net on the linear subspace span{e2πiĥ1x, . . . , e2πiĥ2kx}.
Hence the size of our δ net is(4FT ·kCk2

ε

2k

)
· (12/δ)2k ≤ (

4FT · kCk2

ε · δ
)3k.

Now we consider the number of random samples from DF to estimate signals in the δ-net. Based
on the condition number of DF in Theorem 32 and the Chernoff bound of Corollary 37, a union
bound over the δ-net indicates

m = O(
k log2 k

δ2
· log |net|) = O

(
k log2 k

δ2
· (k3 log k + k log

FT

εδ
)

)
random samples from DF would guarantee that for any signal h in the net, ‖h‖2S,w = (1± δ)‖h‖2D.
From the property of the net,

for any h(x) =

2k∑
j=1

vje
2πihj(x) with ĥj ∈ Nf , ‖h‖2S,w = (1± 2δ)‖h‖2D,

which is sufficient to recover f ′.
We present the algorithm in Algorithm 5 and bound ‖f − f̃‖D as follows. The expectation of

‖f − f̃‖D over the random samples S = (t1, . . . , tm) is

‖f − f ′‖D + ‖f ′ − f̃‖D ≤ ‖f − f ′‖D + 1.1‖f ′ − f̃‖S,w
≤ ‖f − f ′‖D + 1.1(‖f ′ − y‖S,w + ‖y − f̃‖S,w)

≤ ‖f − f ′‖D + 1.1(‖g′‖S,w + ‖y − f ′‖S,w)

≤ ε‖f‖D + 2.2(‖g‖D + ε‖f‖D).

From the Markov inequality, with probability 0.9, ‖f − f̃‖D . ε‖f‖D + ‖g‖D.
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