
Proceedings of Machine Learning Research vol 99:1–28, 2019 32nd Annual Conference on Learning Theory

Testing Symmetric Markov Chains Without Hitting

Yeshwanth Cherapanamjeri YESHWANTH@BERKELEY.EDU
UC Berkeley

Peter L. Bartlett PETER@BERKELEY.EDU

UC Berkeley

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We study the problem of identity testing of symmetric markov chains. In this setting, we are given
access to a single trajectory from a markov chain with unknown transition matrix Q and the goal is
to determine whether Q = P for some known matrix P or Dist(P ,Q) ≥ ε where Dist is suitably
defined. In recent work by Daskalakis et al. (2018a), it was shown that it is possible to distinguish
between the two cases provided the length of the observed trajectory is at least super-linear in the
hitting time of P which may be arbitrarily large.

In this paper, we propose an algorithm that avoids this dependence on hitting time thus enabling
efficient testing of markov chains even in cases where it is infeasible to observe every state in the
chain. Our algorithm is based on combining classical ideas from approximation algorithms with
techniques for the spectral analysis of markov chains.

1. Introduction

Statistical hypothesis testing is the principal method for lending statistical validity to claims made
about the real world and is a vital step in any scientific enterprise. In the framework of statistical
hypothesis testing, an investigator subjects hypotheses made as part of their inquiry by testing it
against data collected from the real world. While the abstract framework of hypothesis testing is
very powerful, its usefulness is limited by the range of hypotheses for which statistically efficient
procedures have been developed. Furthermore, these tests also need to be computationally viable
with large datasets. Unfortunately, most cases for which efficient procedures are known are con-
cerned with the setting where we have access to independent and identically distributed observations
from some underlying distribution. This severely restricts the use of these procedures.

Motivated by these considerations, recent work by Daskalakis et al. (2018a) studied the problem
of identity testing of symmetric markov chains given a single trajectory where strong correlations
may exist between successive samples. They propose an algorithm to test whether the transition ma-
trix, Q, underlying the observed trajectory is equal to a known transition matrix, P , or sufficiently
far from it. They propose a notion of difference between markov chains which takes into account
the connectivity properties of the chain to ensure that the problem remains well posed. However, a
major drawback of their approach is that their runtime depends on the hitting time of P and an open
question from their work is whether this dependence is truly necessary and conjectured it was not.

The approach of Daskalakis et al. (2018a) is to convert the identity testing problem on markov
chains to the simpler problem of identity testing of distributions given iid samples. The main idea
is to use the observed trajectory to simulate samples from the distribution characterized by 1

nP .
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To simulate one sample from this distribution, one first picks a row of P uniformly at random and
sample from the row using the trajectory. However, to generate the number of samples required
to distinguish the two chains via this method, one needs to sample every row of P at least once
with high probability. This leads to the dependence on the hitting time in the length of the observed
trajectory.

In this work, we propose an algorithm for identity testing of markov chains that avoids the
dependence on the hitting time of P . That is, we would like to solve the identity testing problem
even in settings where one may not even be able to observe all the states in the chain. Similar
to Daskalakis et al. (2018a), we reduce the identity testing problem on markov chains to simpler
identity testing problems on distributions given iid samples. However, instead of a reduction to a
single identity testing problem, we formulate several identity testing problems. Our main insight is
that to distinguish two sufficiently different markov chains, it is sufficient to analyze the trajectory
in subsets of states which are close to being disconnected from the rest of the state space but well
connected within themselves. That is, we formulate for each such subset S, an identity testing
problem whose solution also resolves the testing problem on markov chains. However, this approach
is throttled by two main difficulties:

1. Computing these “high-information” subsets and

2. Ensuring we have sufficiently many samples from these subsets

Our first main requirement of these subsets is that they have enough information to distinguish
two different markov chains. We use as a sufficient criterion the property that these sets are poorly
connected to the rest of the state space. The next crucial property that we will require is that the
identity testing problem defined by the set can be simulated given a small number of samples from
the set. We show that this property too can be related to the expansion properties of the set. This
is guaranteed for a candidate set, S if for all subsets, R ⊂ S, R is well-connected to the rest of the
set. Given these two requirements, our goal is to compute sets well connected within themselves
and poorly connected to the rest of the state space. To do so, we generalize classical approximation
algorithms for the Sparsest-Cut problem. However, this only ensures the first required property.
To ensure the second property of being well connected within the set, we combine this approach
with a divide and conquer framework. We then recursively extract such “high-information” subsets
to obtain a partitioning of the state space into several “high-information” sets and a single “low-
information” set.

To tackle the second problem of ensuring we have enough points from these “high-information”
subsets in the observed trajectory, we use techniques from the spectral analysis of markov chains to
show that the chain does not spend too much time in the “low-information” component of the chain.
The failure of our graph partitioning algorithm to partition the “low-information” component means
that all subsets of the “low-information” component are well connected to the rest of the state space.
This ensures that the chain escapes from this component fairly quickly if it enters it.

Related Work: In the statistics community, a variety of tests have been developed for dis-
tribution testing in the iid scenario: Cramer-von Mises (Cramér (1928)), χ2 (Pearson (1900)),
Kolmogorov-Smirnov (Smirnov (1939)) and for more recent results, Agresti (2013); D’Agostino
(2017). However, the analysis of these methods pertains to the asymptotic distribution of the test
statistic without finite sample guarantees. In the computer science community, there has been a
flurry of recent work in this setting, with a focus on finite sample lower bounds and statistical
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and computational tractability: Batu et al. (2004); Acharya et al. (2015); Canonne et al. (2016);
Daskalakis et al. (2018b,a); Valiant (2011); Chan et al. (2014); Diakonikolas et al. (2015); Rubin-
feld and Servedio (2009); Valiant (2011); Valiant et al. (2013); Valiant and Valiant (2017); Rubin-
feld (2012); Blais et al. (2017); Batu et al. (2000, 2001); Paninski (2008); Acharya et al. (2015);
Diakonikolas and Kane (2016); Diakonikolas et al. (2016).

The problem of identity testing and estimation in markov chains was, to the best of our knowl-
edge, first studied in the seminal works of Bartlett (1951); Anderson and Goodman (1957); Billings-
ley (1961). However, the results obtained are in the asymptotic regime with the number of samples
tending to infinity. Daskalakis et al. (2018a) provide finite sample analysis for the identity testing of
markov chains but the length of the trajectory required depends on delicate connectivity properties
of the chain like hitting times which may be arbitrarily large. In concurrent work, Wolfer and Kon-
torovich (2019) study the problem of identity testing of markov chains under a different notion of
distance from the one used in this paper and Daskalakis et al. (2018a) which also apply to assymetric
markov chains. However, they do not yield non-trivial guarantees in the setting where the state space
of the markov chain consists of disjoint or close to disjoint connected components as they have a
dependence on the mixing times of the reference chain. In contrast, we obtain non-trivial sample
complexity even in situations where the hitting times of the reference chain are extremely large.
Furthermore, the mixing time of the reference chain might be undefined if the chain is periodic.

The sparsest cut problem has been intensely studied with the breakthrough result of Leighton
and Rao (1999) devising the first O(log n) approximation algorithm followed by a subsequent re-
sult by Linial et al. (1995) which interprets the algorithm from a metric embedding perspective
(Bourgain (1985)). The O(log n) barrier was subsequently improved to O(

√
log n) in another

beautiful result by Arora et al. (2009). These algorithms have been used in divide and conquer
based approaches to several combinatorial problems (Shmoys (1997)) and constructing approxima-
tion algorithms for unique games (Trevisan (2005)). While graph decomposition techniques have
been studied previously (see, for example, Spielman and Teng (2004); Trevisan (2005); Goldre-
ich and Ron (1999)), approaches based on spectral techniques yield weaker guarantees than those
based on sparsest cut approximations. Graph decompositions based on Leighton and Rao (1999)
have been studied in Trevisan (2005) however these results are not strong enough for our setting
as they only imply the existence of internally well-connected partitions with potentially several
“low-information” sets whereas, we crucially require that there exists at most one such set.

The relationship between the sparsest cut value of a markov chain and its spectral properties are
well known (Cheeger (1970); Sinclair and Jerrum (1989)) and have numerous applications (Chung
and Graham (1997); Kannan et al. (1997); Lee and Vempala (2018)). In the analysis of our algo-
rithm, we use these techniques to bound hitting times in markov processes restricted to subsets of
the state space and escape times from subsets of the state space where we bound the top eigenvalue
of sub-matrices of the transition matrix as opposed to the second eigenvalue of the transition matrix.

2. Preliminaries

We denote scalar values by small letters such as a, vectors with bolded small letters such as v and
matrices with bolded capital letters like P . We use capital letters like P,Q,R chiefly to denote
subsets of [n] and calligraphic capital letters S to denote sets of such subsets. For a vector v, vi
denotes the ith entry in the vector. For a matrix P and two subsets R and S, Pi denotes the ith

column of a matrix, Pij denote the jth entry of the ith row of the matrix, PR,S corresponds to the
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|R| × |S| sized sub-matrix corresponding to the rows in R and columns in S and PR is used as
shorthand for PR,R. We use Õ and Ω̃ to hide logarithmic factors in n and ε. We use ρ(M) to
denote the largest eigenvalue of the matrix M . We restate the definitions of the Total Variation and
Hellinger distances (as stated in Daskalakis et al. (2018a)):

Definition 1 For two distributions p and q over a support [n], we have the Hellinger and Total
Variation distances, denoted by dHel and dTV respectively, defined by:

d2
Hel(p, q) =

1

2

∑
i∈[n]

(
√
pi −

√
qi)

2 = 1−
∑
i∈[n]

√
piqi, dTV =

1

2

∑
i∈[n]

|pi − qi|

Furthermore, the two distances enjoy the following relationship:
√

2dHel(p, q) ≥ dTV (p, q) ≥ d2
Hel(p, q)

Now, we will introduce some notations for markov chains:

2.1. Markov Chains

In this paper, we are only concerned with finite-dimensional markov chains:

Definition 2 A finite dimensional homogeneous markov chain is a stochastic process {Xt}t∈N over
a state space [n] which satisfies the following property:

P {Xt+1 = j|X0 = i0, . . . , Xt−1 = it−1, Xt = i} = pi,j

That is the probability of the state at time step t+ 1 given the states from X0, . . . , Xt only depends
on the previous time step and this transition probability does not depend on the specific time step t.

We will use w to denote a finite sample from a markov chain and w∞ to denote an infinite
sample from the markov chain. We will denote the transition matrices of markov chains usually by
P and Q. In our case, we are concerned with the symmetric case where P and Q are symmetric. We
will also assume that P and Q are irreducible. We will now restate a distance measure, proposed in
Kazakos (1978), between two transition matrices P and Q (as stated in Daskalakis et al. (2018a)):

Definition 3 (Distance between Markov Chains) For two symmetric transition matrices P and
Q, the distance between them is defined by:

Dist(P ,Q) = 1− ρ(Sq(P ,Q))

where the function Sq : Rn×n+ × Rn×n+ → Rn×n+ is defined by:

(Sq(P ,Q))ij =
√
PijQij

Definition 4 Let P be a symmetric irreducible markov chain and T ⊂ [n] be a subset of states.
Now, let Y = Y1, Y2, . . . be a markov process with transition matrix P and let τ1, τ2, . . . be defined
such that:

τ1 = min{j : Yj ∈ T}, τi = min{j : j > τi−1 ∧ Yj ∈ T}

Then the sequence X = Yτ1 , Yτ2 , . . . is defined to be the markov process, Y , observed on T .
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We will now state some definitions which we will relate to the spectral properties of the markov
chain. The first definition is the notion of expansion of a set of states which intuitively measures
how well the set of states is connected to the rest of the state space:

Definition 5 (Expansion) Given a matrix, P , with positive entries, the expansion of a set S, de-
noted by hP (S) is defined as:

hP (S) =

∑
i∈S,j /∈S Pij

min(|S|, |S̄|)

The Cheeger constant of a markov chain is defined as the minimum of the expansion over all
subsets of the state space.

Definition 6 (Cheeger Constant) The Cheeger Constant of a Markov Chain with transition matrix,
P , is the minimum expansion of any subset of the state space.

χ(P ) = min
S⊂[n]

hP (S)

The following relationship between the Cheeger constant of a markov chain and the spectrum
of its transition matrix is well known from the work of Sinclair and Jerrum (1989).

Lemma 7 (Sinclair and Jerrum (1989)) Let P be the transition matrix of a symmetric markov
chain with eigen values 1 = λ1 > λ2 ≥ · · · ≥ λn ≥ −1. Furthermore, assume that P satisfies
χ(P ) ≥ α > 0. Then, we have:

λ2 ≤ 1− α2

2

Now, we define the hitting time of a markov chain.

Definition 8 Let P be the transition matrix of a markov chain, X , over state space [n]. Let
τj = min{t : Xt = j}. Then, the hitting time of P , denoted by HitT(P ) is defined as follows:

HitT(P ) = max
i,j∈[n]

E[τj |X0 = i]

2.2. Sparsest Cut

Here, we will state some definitions relating to the graph decomposition algorithm we use for par-
titioning the state space of our markov chain. Our first definition is one that is closely related to the
notion of expansion defined previously:

Definition 9 (Cut Value) Given a non-negative matrix, P , the Cut Value of a set S, is defined as:

gP (S) =

∑
i∈S,j∈S̄ Pij

|S||S̄|

The Sparsest Cut problem is then defined as the problem of finding the set obtaining the mini-
mum cut value over all subsets.
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Question 1 (Sparsest Cut) Given a non-negative matrix P , the goal is to find a subset S∗:

S∗ = arg min
S⊂[n]

gP (S)

The Sparsest Cut problem is well known to be NP-Hard in general (Matula and Shahrokhi,
1990). However, good polynomial-time approximation algorithms are known to give a subset whose
Cut Value is within logarithmic factors of the Sparsest Cut value (Leighton and Rao, 1999).

3. Testing Markov Chains

In this section, we state and prove the main result of the paper. We introduce our algorithm for iden-
tity testing of markov chains and prove statistical and computational guarantees on its performance.
As stated before, our algorithm follows the reduction framework of Daskalakis et al. (2018a) but
instead of a reduction to a single distribution testing problem, we instead reduce the problem to mul-
tiple distinct distribution testing problems where each problem corresponds to a disjoint subset of
the state space. The main insight of our algorithm is that to distinguish between two markov chains
that are sufficiently far from each other, it is sufficient to perform a test in such “high-information”
sets. Our algorithm proceeds along three main steps:

1. State Partitioning: Partition the states into S1, . . . , Sk, T where the subsets S1, . . . , Sk are
the “high-information” sets and T is a single “low-information” set.

2. Generate IID Samples: Check whether we have enough samples from one of the Si to
generate samples for the iid distribution problem corresponding to it.

3. Run Identity Tester: If so, return the result of the test or declare Dist(P ,Q) ≥ ε.

The full algorithm is described in Algorithm 2 with supplementary algorithms for graph parti-
tioning in Algorithms 3 and 4 and to simulate iid samples in Algorithm 1. The main result of our
paper is the following performance guarantee on Algorithm 2:

Theorem 10 There is a polynomial time algorithm (Algorithm 2) which given access to Õ
(
n/ε4

)
samples from a markov process with transition matrix Q and a symmetric transition matrix P
correctly distinguishes between the two cases:

Case 1: Q = P , Case 2: Dist(Q,P ) ≥ ε

with probability at least 2/3.

We start by giving a description of the type of the distributions for which we will employ our
iid distribution tester:

Definition 11 Let P be the transition matrix of a symmetric markov chain and let R be a subset
of its states, then we have the distribution Dist(R,P ) defined over a support of size |R|2 + 1
composed of {(i, j) : i, j ∈ R} ∪ {η} where η denotes an element which is none of the elements
(i, j), i, j ∈ [n]:

∀i, j ∈ R, (Dist(R,P ))((i, j)) =
Pij
|R|

, (Dist(R,P ))(η) = 1− 1

|R|
∑
i,j∈R

Pij
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Therefore, given a partitioning of the state space such that distributions of the above type are
sufficiently different, it suffices to have enough samples from any one of the partitions. However,
there are two questions that need to be answered before we can proceed:

1. Which partitions of the state space should we use to define such distributions?

2. How many samples does one need from each of the partitions?

It turns out that answers to both questions depend on the expansion properties of the sets. How-
ever, for the first property, we would like to have sets of low expansion, that is, subsets of the state
space that are poorly connected to the rest of the state space while for the second property, we would
like sets which are well connected internally. We will see that the second property relates to the hit-
ting time of the markov process defined on the specific subset of states which is small if the original
subset is well connected within itself. Therefore, one would like decompositions of the state space
which are poorly connected to the rest of the state space but are well connected within themselves.

We would like to point out that conventional graph decomposition algorithms decompose the
graph into subsets which are well connected internally while removing a very small number of
edges which guarantees the first property for a large fraction of the subsets in terms of total number
of states. However, for the remaining subsets, we have no such guarantees and therefore, it is unclear
whether samples from such subsets can be used to distinguish the two markov chains. Even though
one can guarantee that upon entering such subsets, the trajectory is likely to quickly leave the subset,
one cannot guarantee that the next partition that the chain visits is a “high-information” subset. An
alternate approach is to group all such “low-information” subsets into a single set but in this case,
one loses the expansion guarantees of the individual sets which again makes it hard to bound the
amount of time needed to escape from this set.

In light of all the above mentioned difficulties, we devise a new graph partitioning algorithm
which decomposes the graph into potentially several well connected “high-information” sets and
a single well connected “low-information” set from which one can guarantee that we escape from
quickly and therefore reach a “high-information” set. We generalize conventional linear program-
ming relaxations for the sparsest cut problem to respect component constraints and then use the
above generalization to recursively partition the graph into subsets while measuring sparsest cut
values with respect to the original graph instead of sub-graphs formed after removing partitions.
The full details of our algorithm are deferred to the Appendix (See Algorithms 3 and 4).

Note that following the approach of Daskalakis et al. (2018a), we can sample from Dist(T,P )
given access to an infinite word. Firstly, note that it is possible to sample from Dist(T,P ) by first
sampling an element from T and then sampling from the distribution corresponding to the sampled
element in Dist(T,P ). Therefore, to obtain l samples from Dist(T,P ), we start by first generating
l samples from Uniform(T ). Let the number of times we generated state i ∈ T be denoted by
ri. Now, we simply scan the infinite word sequentially and each time we encounter an element
j ∈ T at position t, we reject the sample if j has been encountered more than rj times or add
the transition j → wt+1 to our samples if wt+1 ∈ T or add η to our samples if wt+1 /∈ T . The
correctness of the described procedure follows from the markov property which ensures that all
the transitions generated previously are independent of the ones generated after. The procedure is
formally described in Algorithm 1.
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Algorithm 1 Generate IID Samples
1: Input: Finite word w ∈ [n]m, Subset T ,

Number of samples l
2: v ← l samples from Uniform(T )
3: r ← Histogram(v)
4: S ← {}
5: for i = 1 : m− 1 do
6: j ← wi
7: if rj > 0 and wi+1 ∈ T then
8: S ← S ∪ (j, wi+1)
9: else if rj > 0 and wi+1 /∈ T then

10: S ← S ∪ η
11: end if
12: rj ← rj − 1
13: end for
14: if ∃i ∈ T : ri > 0 then
15: Return: False
16: end if
17: Return: S

Algorithm 2 Identity Test of Markov Chains
1: Input: Finite word w ∈ [n]m, Target Tran-

sition Matrix P , Target Accuracy ε
2: (S, T )← Partition Graph(P , ε/16)
3: for S ∈ S do
4: l′ ← O

(
|S| log(n)

ε2

)
5: RS ← Generate IID Samples(w, S, l′)
6: ifRS 6= False then
7: Ans← ID Test

(
RS ,Dist(S,P ), ε

2

32

)
8: Return: Ans
9: end if

10: end for
11: Return: False

4. Proof

In this section, we will present the proof of Theorem 10. As mentioned before, the guarantees
provided by conventional graph partitioning algorithms are not strong enough to ensure the small
trajectory lengths required for the success of Theorem 10. In the first subsection, we will describe
some key lemmas relating to the graph decomposition technique detailed in Algorithm 4.

4.1. Markov Chain Decomposition

This first lemma, proved in Appendix A.3, describes the expansion properties of the partition of
the markov chain state space obtained from Algorithm 4. Intuitively, it decomposes the graph into
a set of subsets S which consists of sets which are well connected within themselves but poorly
connected to the rest of the state space and a single set T in which every subset is well connected to
the rest of the state space. The sets in S refer to the “high-information” sets alluded to previously
while the set T is the single “low-information” subset of the state space.

Lemma 12 Algorithm 4 given as input a transition matrix, P and a tolerance parameter, β ∈
[0, 1], returns a tuple (S, T ) such that we have for all S ∈ S:

Claim 1:

∑
i,j∈S Pij

|S|
≥ 1− β Claim 2: ∀R ⊂ S

∑
i∈R,j∈(S\R) Pij

min(|R|, |S \R|)
≥ Ω

(
β

log2 n

)
And T satisfies:

Claim 3: ∀R ⊆ T
∑

i∈R,j∈R̄Pij

|R|
≥ Ω

(
β

log n

)
8
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Furthermore, the subsets in S along with T form a partition of [n].

Our next lemma, proved in Appendix C.1, shows that the distributions from Definition 11 are
far in Hellinger distance if the original markov chains are far.

Lemma 13 Let P and Q be transition matrices of symmetric markov chains such that Dist(P ,Q) ≥
ε. Suppose now, that T ⊆ [n] satisfies:∑

i,j∈T Pij

|T |
≥ 1− ε

16

Then, we have:

d2
Hel (Dist(T,P ),Dist(T,Q)) ≥ ε2

32

In the next lemma, whose proof may be found in Appendix C.4, we analyze the spectral proper-
ties of the markov processes observed on a subset of states. This lemma will be crucial in bounding
the number of samples we need to see from this subset in order to generate a large number of
samples from the distribution corresponding to this subset.

Lemma 14 Let P be a symmetric irreducible markov chain and T ⊂ [n] be a subset of states.
Let Y = Y1, Y2, . . . be a markov process with transition matrix P and let X = X1, X2, . . . be
the markov process observed on the subset T . Then, X is also a symmetric markov process with
transition matrix:

Q = PT +
∞∑
i=1

PT,T̄P
i
T̄PT̄ ,T

The next corollary is an application of Lemma 14 to markov processes defined on the “high-
information” sets by exploiting their good expansion properties within the set itself. Its proof may
be found in Appendix C.5.

Corollary 15 In the setting of Lemma 14, suppose in addition that T satisfies:

∀R ⊂ T
∑

i∈R,j∈(T\R) Pij

min(|R|, |T \R|)
≥ α

Then, the transition matrix Q of the chain X satisfies:

χ(Q) ≥ α

We now bound the hitting time of markov processes defined on “high-information” subsets. See
Appendix C.6 for the proof.

Lemma 16 Let P be the transition matrix of a symmetric markov chain, over state space [n],
satisfying χ(P ) ≥ α > 0. Then, the hitting time of P is bounded as follows:

HitT(P ) ≤ Õ
( n
α2

)
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The next lemma, which is a consequence of Theorem 1 from Daskalakis et al. (2018b) (Also
stated in Daskalakis et al. (2018a)), bounds the number of samples required to distinguish two
distributions over the same support given a lower bound on their Hellinger distance.

Lemma 17 Given a discrete distribution p on [n] and given access to i.i.d samples from a distribu-
tion q with the same support, there is a tester which can distinguish whether p = q or dHel(p, q) ≥ ε
with O(

√
n
ε2

log 1/δ) samples and failure probability at most δ.

In the next lemma, we show how the expansion properties of the “low-information” set obtained
before can be used to obtain a guarantee on the number of samples observed from the “High-
information” sets. To prove the below bound, we bound the spectral norm of PT which controls the
amount of time needed to escape from the set T . Our proof mirrors that of Lemma 3.3 in Sinclair and
Jerrum (1989) but we bound the first eigenvalue of a sub-matrix as opposed to the second eigenvalue
of the whole transition matrix. The full details of the proof are deferred to Appendix C.2.

Lemma 18 Let P be the transition matrix of a symmetric markov chain. Furthermore, let T ⊂ [n]
be such that:

∀R ⊆ T,
∑

i∈R,j∈R̄Pij

|R|
≥ α

Then, in a word of length l ≥ 16 1
α2 log(n) log(1/δ), we have:

l∑
i=1

1{Xi /∈ T} ≥
l

8 log nα2

with probability at least 1− δ.

The next lemma (Lemma 4.1 from Daskalakis et al. (2018a)) lower bounds the number of times
we observe a certain state in a suitably long trajectory of a markov chain. We will use the lemma
below for sub-chains consisting of chains corresponding to the “high-information” sets.

Lemma 19 Let X1, . . . , Xm be a word of length m from an irreducible markov chain, over state
space [n] and transition matrix P . Then for m ≥ Õ(HitT(P ) log HitT(P )), we have:

P
{
∃i : |{t : Xt = i}| ≤ m

8en

}
≤ ε2

n

where the probability is over the sampling of X1, . . . , Xm.

4.2. Sample Generation Phase

In this subsection, we will state and prove key lemmas relating to the sample generation phase of the
algorithm. Here, we will assume that the observed word w is a subset of an infinite word w∞ from
a markov process with the same starting distribution and transition matrix. We will first analyze the
sample generation process on the infinite word w∞. Assuming that we have access to the infinite
word w∞, we see that the sample generation process will never fail as we see each state infinitely
many times with probability 1. In the first lemma, proven in Appendix C.7, we show that given
access to w∞, we will be able to use any of the “high-information” sets to test between the two
chains:
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Lemma 20 Suppose (S, T ) is a decomposition of a markov chain P obtained from Algorithm 2
and that we are given an infinite word w∞ from a markov process with transition matrix Q and we
are guaranteed one of the following two cases:

Case 1: Dist(P ,Q) ≥ ε Case 2: P = Q

Now, for each set S ∈ S, let lS = Ω̃(|S|/ε2), let RS = Generate IID Samples(w∞, S, lS). Then,
we have:

P
{
∃S ∈ S : ID Test(RS ,Dist(S,P ), ε2/32) 6= 1 {P = Q}

}
≤ 1

10

The above lemma shows that if we are able to generate samples from even one of the subsets
S ∈ S, we will be able to correctly answer the identity testing problem with high confidence.
Therefore, to ensure the correctness of Algorithm 2, we simply need to show that the probability of
being able to generate enough samples from the distribution corresponding to at least one of the sets
S ∈ S is large. The next lemma, proved in the Appendix C.3, is used to bound the number of times
we will sample a particular state in the running of Algorithm 1.

Lemma 21 LetX1, . . . , Xm bem iid samples from Uniform([k]). Let v = Histogram(X1, . . . , Xm).
Suppose further that m ≥ 10k log(n/ε) for some n > k. Then, we have:

max
i∈[k]

vi ≤ 2
m

k

with probability at least 1− ε
n2 .

In the following lemma (See Appendix C.8 for proof), we show that the number of samples in a
trajectory from S ∈ S we will need to observe to generate lS samples from Dist(S,P ) is small.

Lemma 22 Suppose (S, T ) is a decomposition of a markov chain P obtained in Algorithm 2 and
that w∞ is an infinite length trajectory from a markov process with transition matrix P . Now for
each S ∈ S , let lS = Õ(|S|/ε2) and let wτS1 , wτS2 , . . . , wτSNS

be the indices corresponding to the

entries in S encountered in the running of Generate IID Samples(w∞, S, lS). Then we have:

P
{
∀S ∈ S : NS ≤ Õ(|S|/ε2)

}
≥ 9

10

4.3. Proof of Theorem 10

We are now ready to prove Theorem 10. First, let A(u) denote the output of Algorithm 2 on
trajectory u and let w bet generated as a prefix of an infinite word, w∞ with transition kernel, Q.
We will prove the theorem in two cases:

Case 1: P = Q. We will first upper bound the probability that the sample generation process
fails. To do this, we see from Lemma 18 and the properties of the sets, (S, T ) returned by the
running of Algorithm 4 in Algorithm 2 guaranteed by Lemma 12, that if we have a trajectory of
length m ≥ Ω̃(n/ε4), then we have:

m∑
i=1

1 {Xi /∈ T} ≥ Ω̃
( n
ε2

)
11
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with probability at least 0.9. Therefore, we have with probability at least 0.9, there exists at
least one set S ∈ S:

m∑
i=1

1 {Xi ∈ S} ≥ Ω̃

(
|S|
ε2

)
Therefore, the probability that the sample generation process fails is at most:

P
{
∃S ∈ S : NS ≥ Ω̃

(
|S|
ε2

)}
+ P

{
∀S ∈ S :

m∑
i=1

1 {Xi ∈ S} ≤ Ω̃

(
|S|
ε2

)}
≤ 2

10

where NS and the bound on the first term are from Lemma 22. We now have from Lemma 20:

P {A(w) is wrong} ≤ P {A(w) = A(w∞) and A(w∞) is wrong}+ P {A(w) 6= A(w∞)}

≤ P {A(w∞) is wrong}+ P {A(w) 6= A(w∞)} ≤ 3

10

Case 2: Dist(P ,Q) ≥ ε. In this case, we see that the Algorithm 2 always returns the correct
answer if the sample generation process fails. Therefore, we have in this case:

P {A(w) is wrong} ≤ P {A(w) = A(w∞) and A(w∞) is wrong}+ P {A(w) 6= A(w∞)}

≤ P {A(w∞) is wrong} ≤ 1

10

The above two cases conclude the proof of the theorem.

5. Conclusion

We have presented an algorithm for identity testing of markov chains which avoids any dependence
on brittle connectivity properties like the hitting time resolving a open question from Daskalakis
et al. (2018a). However, there are several open questions potentially relating to identity testing and
graph partitioning arising from this work:

1. The sample complexity of our approach Õ(n/ε4) is sub-optimal in its dependence on the
error parameter ε. Can our approach be improved to the Ω(n/ε) lower bound for the problem
established in Daskalakis et al. (2018a).

2. One reason for this dependence on ε is due to the graph partitioning algorithm which guaran-
tees sets of low expansion. Is it possible to improve upon such graph partitioning algorithms
or devise new graph partitioning algorithms to achieve improved error dependence?

3. Markov chains are arguably the simplest possible model for sequential data analysis. How
can we quantify distances between models for more complicated methods? What assumptions
does one need to place on the model to ensure that statistical and computational efficiency is
possible for such hypothesis testing tasks?

12



TESTING SYMMETRIC MARKOV CHAINS WITHOUT HITTING

References

Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for properties of
distributions. In Advances in Neural Information Processing Systems, pages 3591–3599, 2015.

Alan Agresti. Categorical Data Analysis. John Wiley & Sons, 2013.

Theodore W Anderson and Leo A Goodman. Statistical inference about Markov chains. The Annals
of Mathematical Statistics, pages 89–110, 1957.

Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph
partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

Maurice S Bartlett. The frequency goodness of fit test for probability chains. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 47, pages 86–95. Cambridge Uni-
versity Press, 1951.

Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D Smith, and Patrick White. Testing that
distributions are close. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 259–269. IEEE, 2000.

Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick White.
Testing random variables for independence and identity. In Foundations of Computer Science,
2001. Proceedings. 42nd IEEE Symposium on, pages 442–451. IEEE, 2001.

Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing monotone and
unimodal distributions. In Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pages 381–390. ACM, 2004.

Patrick Billingsley. Statistical methods in Markov chains. The Annals of Mathematical Statistics,
pages 12–40, 1961.

Eric Blais, Clément L Canonne, and Tom Gur. Distribution testing lower bounds via reductions
from communication complexity. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 79. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.
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Appendix A. Decomposing a Markov Chain into Well Connected Components

A.1. Sparsest Cut with Component Constraints

In this section, we will design and analyze an algorithm for decomposing the state space of a Markov
Chain into components that are internally well connected but poorly connected to the rest of the state
space. Our algorithm is based on generalizations to the classical linear programming relaxations of
the Sparsest Cut problem which is known to be NP-Hard in general. We will start by stating some
classical results used to analyze such relaxations and adapt them to our setting. Our first result is
Bourgain’s famous metric-embedding theorem:

Theorem 23 (Bourgain (1985); Linial et al. (1995)) Let X be a finite metric space of size n en-
dowed with a metric d. Then, there exists a function f : X → Rm and a constant C > 0 such
that:

∀x, y ∈ X , d(x, y) ≤ ‖f(x)− f(y)‖1 ≤ C log nd(x, y)

And furthermore, m is at most O(log2 n) and can be found in randomized polynomial time.

We will now describe the linear programming relaxation to the Sparsest Cut problem. Before
we describe the formulation, we first introduce the notion of a Cut Metric:

Definition 24 (Cut Metric) For a state space [n], the Cut Metric associated with a subset S ⊂ [n]
is defined as follows:

δS(i, j) =

{
0, if i, j ∈ S or i, j ∈ S̄
1, otherwise

It follows that the Cut Value of a subset can be restated in terms of the cut metric corresponding
to the subset as follows:

gP (S) =

∑
i,j∈[n] PijδS(i, j)∑
i,j∈[n] δS(i, j)

The Linear Programming relaxation to the Sparsest Cut problem (See Leighton and Rao (1999);
Linial et al. (1995) for details), can now be seen naturally as broadening the class of metrics in the
Sparsest Cut formulation from the set of cut metrics to the set of all metrics and is described below:

min
∑
i,j∈[n]

δijPij

such that δii = 0∀i
δij ≤ δik + δkj ∀i, j, k∑

i,j∈[n]

δij = 1

δij ≥ 0 (LP-CUT)

16
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where the second constraint is a normalization factor.
We will work with a natural variant of the sparsest cut problem where we are given a priori a

subset T of states all of which we require to be in the same component:

Question 2 Sparsest Cut with Component Constraints (SPCCC): Given a non-negative matrix, P
and a set of states T that are all required to be in the same component, we define the Sparsest Cut
Problem with Component Constraints as follows:

S∗ = arg min
T⊆S⊂[n]

∑
i,j∈[n] δS(i, j)Pij∑
i,j∈[n] δS(i, j)

Now, we give our Linear Programming relaxation of the SPCCC problem. As for the Sparsest
Cut problem, we relax the class of metrics beyond Cut Metrics, but we include the constraint that
the distance between vertices in T is 0 and all the vertices in T have the same distance to every other
vertex:

min
∑
i,j∈[n]

δijPij

such that δii = 0∀i
δij ≤ δik + δkj ∀i, j, k∑

i,j∈[n]

δij = 1

δij ≥ 0

δij = 0 if i, j ∈ T
δik = δjk ∀i, j ∈ T, k ∈ [n] (LP-CCC)

The last two constraints in the relaxation defined above ensure that there is no distance between
any two states in T and the distance from the states in T to every other state is the same. We will
now denote by (δ, v) = LP-CCC(P , T ) a pair of metric δ and a value v returned by LP-CCC. We
will now prove a lemma showing that the function f guaranteed by Theorem 23 can be shown to
have special structure.

Lemma 25 Given an instance of the SPCCC problem, (P , T ) and solution (δ, v) = LP-CCC(P , T ),
there exists a function f : V → Rm and a constant C > 0 such that:

Claim 1 : δij ≤ ‖f(i)− f(j)‖1 ≤ C log n δij , Claim 2 : f(i) = f(j) ∀i, j ∈ T

Furthermore, m is at most O(log2 n) and f can be found in randomized polynomial time.

Proof Let f be the function whose existence is guaranteed by Theorem 23. Note that f satisfies
Claim 1 of the lemma. For Claim 2, let i, j ∈ T . We know from the constraints on LP-CCC that
δij = 0. Therefore, from Theorem 23, we may again conclude that:

‖f(i)− f(j)‖1 = 0 =⇒ f(i) = f(j)

17
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Thus proving Claim 2.

The next lemma from Linial et al. (1995) shows that it is possible to express the l1 metric defined
by f on the state space as a sum of cut metrics.

Lemma 26 (Linial et al. (1995)) Given f : [n] → Rm, it is possible to find in time poly(n,m) a
polynomial number of subsets S1, . . . , Sr and associated constants αSi > 0 such that:

‖f(j)− f(k)‖1 =
r∑
i=1

αSiδSi(j, k) ∀j, k ∈ [n]

Now, finally, we conclude that the integrality gap of the Linear Programming Relaxation LP-
CCC is small and furthermore, a cut obtaining such a value can be found efficiently.

Theorem 27 Given an instance of the SPCCC problem (P , T ), there exists a polynomial time
algorithm, FindComp which returns a cut S∗ satisfying:∑

i,j∈[n] δS∗(i, j)Pij∑
i,j∈[n] δS∗(i, j)

≤ O(log n) min
T⊆S⊂V

∑
i,j∈[n] δS(i, j)Pij∑
i,j∈[n] δS(i, j)

Furthermore, we have that T ∩ S∗ = φ

Proof First, let (δ, v) = LP-CCC(P , T ) and let f be the function whose existence is guaranteed
by Lemma 25. Furthermore S1, . . . , Sr denote the cuts with the associated constants αSr > 0 as
obtained from Lemma 26. Now, we have:

min
i∈[r]

∑
j,k∈[n] δSi(j, k)Pjk∑
j,k∈[n] δSi(j, k)

≤
∑r

i=1 αSi

∑
j,k∈[n] δSi(j, k)Pjk∑r

i=1 αSi

∑
j,k∈[n] δSi(j, k)

=

∑
j,k∈[n]‖f(j)− f(k)‖1Pjk∑
j,k∈[n]‖f(j)− f(k)‖1

≤ O(log n)v

where the first inequality follows from the fact that mini{aibi } ≤
∑
ai∑
bi

and the final inequality
follows by applying the lower bound from Theorem 23 to the denominator and the upper bound to
the numerator. But since v is less than the optimal value of the sparsest cut as it is a relaxation of the
problem, we have proved the first claim of the theorem as we simply return the cut which minimizes
the above ratio.

The final result of the theorem will follow from the claim that for all i ∈ [r], we have either
T ⊆ Si or T ⊆ S̄i and we return whichever one does not contain T . To prove the claim, assume for
the sake of contradiction that there exists i ∈ [r] and j, k ∈ T such that j ∈ Si and k ∈ S̄i. Then,
we have:

0 = ‖f(k)− f(j)‖1 =

r∑
h=1

αSh
δSh

(j, k) ≥ αSiδSi(j, k) = αSi > 0

which is a contradiction. This proves the claim and the second result of the theorem.
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A.2. Extracting a Single Component

For the purposes of our algorithm, we will consider a slightly different version of the sparsest cut
problem. We begin by restating the definition of the expansion of a subset of the state space S:

Definition 28 (Expansion) Given a matrix, P , with non-negative entries, the expansion of a set S,
denoted by hP (S) is defined as:

hP (S) =

∑
i∈S,j /∈S Pij

min(|S|, |S̄|)

We will now re-state the definition of the Cheeger constant of a graph:

Definition 29 (Cheeger Constant) The Cheeger Constant of a Markov Chain with transition ma-
trix, P , is the minimum expansion of any subset of the state space.

χ(P ) = min
S⊂[n]

hP (S)

Algorithm 3 Extract Component
1: Input: Transition Matrix P , Extracted States T , Tolerance β
2: S0 ← FindComp([n],P , T ), t← 0
3: v0 ← hP (S0)
4: if v0 ≥ β/8 then
5: S0 ← [n] \ T
6: v0 ← |S0|−1

∑
i,j∈S0

Pij
7: if v0 ≤ 1− β/8 then
8: Return: False
9: end if

10: end if
11: while |St| > 1 do
12: S′t ← FindComp(St,PSt , φ)
13: vt ← hPSt

(S′t)
14: if vt ≥ β/(8 log n) then
15: break
16: end if
17: uS′t ←

∑
i,j∈S′t

Pij

|S′t|
, uS̄′t

←
∑

i,j∈(St\S′t)
Pij

|St\S′t|
18: if uS′t ≤ uS̄′t then
19: St+1 ← S′t
20: else
21: St+1 ← St \ S′t
22: end if
23: t← t+ 1
24: end while
25: Return: St

Here, we state a short lemma relating the expansion of a subset to its cut value.
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Lemma 30 For a matrix P with positive entries and a subset S, we have:

n

2
gP (S) ≤ hP (S) ≤ ngP (S)

Consequently, we have for the cut, S∗ returned by FindComp when run with input (P , T ):

hP (S∗) ≤ O(log n) min
T⊆S⊂[n]

hP (S)

Proof We first consider the case that |S| ≤ n/2. In this case, we have that n/2 ≤ |S̄| ≤ n and
consequently:

n

2
gP (S) ≤ hP (S) ≤ ngP (S)

The alternate case is proved similarly.
For the second claim of the lemma, we will again assume that |S∗| ≤ n/2. Now, have from

Theorem 27 and the equation above:

hP (S∗) ≤ ngP (S∗) ≤ n ·O(log n) min
T⊆S⊂[n]

gP (S) ≤ O(log n) min
T⊆S⊂V

n · 2

n
· hP (S)

This proves the second claim of the lemma.

The next lemma is the main result of the subsection concerning the performance of Algorithm 3.

Lemma 31 Algorithm 3, when given as input a transition matrix, P , a set of extracted states,
T , and a tolerance parameter, β ∈ [0, 1], runs in randomized polynomial time and either returns
partition S disjoint from T satisfying:

Claim 1:

∑
i,j∈S Pij

|S|
≥ 1− β Claim 2: ∀R ⊂ S

∑
i∈R,j∈(S\R) Pij

min(|R|, |S \R|)
≥ Ω

(
β

log2 n

)
Or returns False and certifies for all subsets S ⊂ ([n] \ T ), we have:

Claim 3: hP (S) ≥ Ω

(
β

log n

)
Claim 4:

∑
i,j∈[n]\T Pij

n− |T |
≤ 1− β

8

Proof We will first prove the third claim of the lemma. Let S̃ be the set returned in Line 2 of the
algorithm. The only way the algorithm returns False is if Line 8 is executed. Therefore, we have
from the second claim of Lemma 30 and the fact that Line 8 is executed:

β

8
≤ hP (S̃) ≤ O(log n) min

T⊆S⊂[n]
hP (S)

This proves the third claim of the lemma. The fourth claim of the lemma follows trivially from
the fact that the if condition in Line 7 evaluates to true.

Now, we will assume that the Algorithm is in the case where a set S is returned. For the second
claim of the lemma, the algorithm either returns a set containing a single element in which case,
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the claim is trivially true. In the alternate case, the break statement in Line 15 was executed and we
have again from Lemma 30:

β

8 log n
≤ hPS

(S′) ≤ O(log n) min
R⊂S

hPS
(S)

which implies the second claim of the Lemma.
For the first claim of the lemma, assume that the inner loop runs forK time steps. Now, consider

the times t0, . . . , tk defined as follows:

t0 = 0, tk = min{t ∈ [K] : |St| ≤ |Stk−1
|/2} ∀k ∈ {1, . . . ,K − 1}, tk = K

It is clear that k is at most log n. Now, we will prove the following claim:

Claim 1 ∀i ∈ {0, . . . , k}, we have that Sti satisfies:∑
i,j∈Sti

Pij

|Sti |
≥ 1− β

8
− iβ

4 log n

Instantiating Claim 1, with i = k, proves the first claim of the Lemma by nothing that k is at most
log n. Now, we will prove the claim via induction.
Base Case: i = 0: The base case is true as the algorithm only proceeds beyond Line 10 if:∑

i∈S0,j∈S̄0
Pij

|S0|
≤ β

8
=⇒

∑
i,j∈S0

Pij

|S0|
≥ 1− β

8

Inductive Step: Suppose that the claim is true for l, we will verify the claim for l + 1. Let Rm
denote the sets (Sm \ Sm+1) for m ∈ {tl, . . . , tl+1 − 1}. Now, for m ∈ {tl, . . . , tl+1 − 1}:∑

i,j∈Sm

Pij =
∑

i,j∈Sm+1

Pij +
∑

i,j∈Rm

Pij +
∑

i∈Sm+1,j∈Rm

Pij

Therefore, we have:

∑
i,j∈Sm+1

Pij +
∑

i,j∈Rm

Pij =
∑

i,j∈Sm

Pij −
∑

i∈Sm+1,j∈Rm

Pij ≥
∑

i,j∈Sm

Pij −
β

8 log n
|Rm|

where the last inequality follows because the algorithm will only proceed to step m + 1 if
the condition in Line 14 of the Algorithm 3 fails. Rewriting the above inequality in terms of the
quantities uS′m , uS̄′m , we get:

|S′m|uS′m + |S̄′m|uS̄′m ≥
∑

i,j∈Sm

Pij −
β

8 log n
|Rm|

From the above inequality, we may conclude by dividing both sides by |Sm| that (As the average
of two numbers is always smaller than the larger number):∑

i,j∈Sm+1
Pij

|Sm+1|
≥
∑

i,j∈Sm
Pij

|Sm|
− β · |Rm|

8 log n · |Sm|

≥
∑

i,j∈Sm
Pij

|Sm|
− β · |Rm|

8 log n · |Stl |/2
=

∑
i,j∈Sm

Pij

|Sm|
− β · |Rm|

4 log n · |Stl |
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where the second inequality follows from the fact that in the range of m, |Sm| ≥ |Stl |/2. By
summing up the above inequality for m ranging from tl to tl+1 − 1, we get:

∑
i,j∈Stl+1

Pij

|Stl+1
|

≥

∑
i,j∈Stl

Pij

|Stl |
−
β ·
∑tl−1

m=tl
|Rm|

4 log n · |Stl |
≥

∑
i,j∈Stl

Pij

|Stl |
− β

4 log n
≥ 1− β

8
− (l + 1)β

4 log n

where the second inequality follows from that fact that the Rm are disjoint subsets of Sm and the
second inequality follows from the inductive hypothesis. This proves Claim 1 and as explained
earlier, the claim implies the first claim of the lemma.

A.3. Partitioning the Markov Chain

In this subsection, we will design an algorithm to partition the entire state space of the Markov
Chain. Our graph partitioning algorithm is illustrated in Algorithm 4. We recursively call Algo-
rithm 3 and stop when no more components can be extracted from the state space. We then use the
guarantees provided by Lemma 31 to prove Lemma 12.

Algorithm 4 Partition Graph
1: Input: Transition Matrix P , Tolerance β
2: S ← {}
3: t← 0
4: Tt ← φ
5: St ← Extract Component(P , Tt, β)
6: while St 6= False do
7: S ← S ∪ {St}
8: Tt+1 ← Tt ∪ St
9: t← t+ 1

10: St ← Extract Component(P , Tt, β)
11: end while
12: Return: (S, [n] \ Tt)

We will now proceed with the proof of Lemma 12. We first note that Tt 6= φ at the end of the
algorithm as this would violate Claim 4 of Lemma 31. Now, we have by induction that T0 = φ and
Tt =

⋃t−1
i=0 Si. We also have by Lemma 31, that St is disjoint with Tt and is therefore disjoint with

S0, . . . , St−1. This shows that the subsets in S are disjoint. Suppose the algorithm terminates with
t = l, note that Tl =

⋃
S∈S S and consequently T = [n] \ Tl and this proves the final claim of the

lemma that the subsets in S along with T form a partition of [n].
For the first two claims of the lemma, we have for all S ∈ S, S is returned by Algorithm 3 and

the first two claims follow from the first two claims of Lemma 31.
We now prove the third claim of the lemma. We first note that if T 6= φ, then from Claim 4 of

Lemma 31 for T and Claim 1 of Lemma 31 for each S ∈ S:

β

8
· |T | ≤

∑
i∈T,j∈T̄

Pij =
∑
S∈S

∑
j∈S,i∈T

Pij ≤
∑
S∈S

β|S| =⇒ |T | ≤ 8n

9
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Now, let any R ⊂ T . In the case that |R| ≤ n/2, Claim 3 follows from Claim 3 of Lemma 31.
For |R| ≥ n/2, note that |R| ≤ 8n/9. Therefore, we have from Claim 3 of Lemma 31:

Ω

(
β

log n

)
≤ hP (R) =

∑
i∈R,j∈R̄Pij

|R̄|
≤ 9

∑
i∈R,j∈R̄Pij

n
≤ 9

∑
i∈R,j∈R̄Pij

|R|

and Claim 3 follows.

Appendix B. Markov Chain Properties

Our first lemma concerns bounding the amount of time the trajectory of the Markov Chain spends
in the component T . The proof of our lemma follows along the lines of Lemma 3.3 in Sinclair and
Jerrum (1989). In our lemma, we bound the first eigenvalue of a sub-matrix of the transition matrix
whereas in Sinclair and Jerrum (1989), the same techniques are used to bound the second eigenvalue
of the whole transition matrix.

Lemma 32 Let P be the transition matrix of a symmetric markov chain. Let T ⊂ [n] satisfy:

∀R ⊆ T
∑

i∈R,j∈R̄Pij

|R|
≥ α

Then, PT has the following bound on its spectral norm:

‖PT ‖ ≤ 1− α2

2

Proof Since PT is symmetric and positive, its top eigenvalue, denoted by λ, is the same as its
top singular value. Now, let |T | = m and let u ∈ Rm be the eigenvector associated with the top
eigenvalue. We will now suppose without loss of generality that u1 ≥ u2 . . .um−1 ≥ um ≥ 0
from the Perron-Frobenius Theorem. Now, we have:

PTu = λu =⇒ (I − PT )u = (1− λ)u =⇒ (1− λ) = u>(I − PT )u

We will now extend the vector u to a vector v ∈ Rm+1. Such that vi = ui for all i ∈ {1, . . . ,m}
and vm+1 = 0. Similarly, we extend PT to an matrix R ∈ R(m+1)×(m+1). Such that:

Rij =


(PT )ij , for i, j ∈ [m]

1−
∑

k∈[m](PT )ik, for i ∈ [m], j = m+ 1

1−
∑

k∈[m](PT )kj , for i = m+ 1, j ∈ [m]

0, otherwise

Notice that u>(I − PT )u = v>(I −R)v. Now, we expand the right hand side as follows:

v>(I−R)v =

m+1∑
i=1

v2
i −
∑
i,j

(R)ijvivj =

m+1∑
i=1

(1−Rii)v
2
i −2

∑
i<j

Rijvivj =
∑
i<j

Rij(vi−vj)2 (1)
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Now, consider the equation:∑
i<j

Rij(vi + vj)
2 ≤ 2

∑
i<j

Rij(v
2
i + v2

j ) ≤ 2
∑

i,j∈[m+1]

Rijv
2
i = 2 (2)

Now, we get from Equations 1 and 2:

v>(I −R)v ≥
∑
i<j

Rij(vi − vj)2 ·
∑

i<j Rij(vi + vj)
2

2
≥ 1

2
·

∑
i<j

Rij(v
2
i − v2

j )

2

(3)

where the last inequality follows from Cauchy-Schwarz. Now, we will bound the term in the paren-
thesis in the final expression on the right hand side:

∑
i<j

Rij(v
2
i − v2

j ) =
∑
i<j

Rij

j−1∑
k=i

(v2
k − v2

k+1) =
m∑
k=1

(v2
k − v2

k+1)
∑

j>k,i≤k
Rij

≥
m∑
k=1

(v2
k − v2

k+1)αk = α
m∑
j=1

m∑
k=j

(v2
k − v2

k+1) = α
m∑
j=1

v2
j = α

where the first inequality follows from the assumption on P and T and the subsequent equality
from the fact that vm+1 = 0. Substituting the inequality in Equation 3, we get the desired result.

Appendix C. Deferred Proofs from Section 4

C.1. Proof of Lemma 13

Let l = |T | and v = 1√
l
1T . Now, we consider two cases:

Case 1: First, we consider the case where
∑

i,j∈T Qij ≥ (1 − 5ε/16)l. In this case, we have
by the definition of Dist:

d2
Hel (Dist(T,P ),Dist(T,Q)) =

1

2

 ∑
i∈T,j∈T

1

l

(√
Pij −

√
Qij

)2
+
(√

Dist(T,P )(η)−
√

Dist(T,Q)(η)
)2


≥ 1

2l

∑
i,j∈T

(√
Pij −

√
Qij

)2
≥ 1− 3ε

16
−
∑
i,j∈T

√
PijQij

l

= 1− 3ε

16
− v>Sq(Q,P )v ≥ ε

2

where the second inequality is from our assumption on T and P and the final inequality is from
our definition of Dist(P ,Q).

Case 2: For the alternative case, we have s =
∑

i,j∈T Qij ≤ (1 − 5ε/16)l. In this case, we
have from the definition of dTV :

dTV (Dist(T,P ),Dist(T,Q)) ≥ 1

l

∑
i,j∈T

Pij −Qij ≥
ε

4
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Therefore, we have from the relationship between the Hellinger distance and Total Variation dis-
tance in Definition 1:

d2
Hel (Dist(T,P ),Dist(T,Q)) ≥ ε2

32

C.2. Proof of Lemma 18

We begin by partitioning the word into l/k blocks of length k = 2 logn
α2 and let Yj denote the random

variable denoting whether there is an element Xk /∈ T in the jth block. That is:

Yj = 1{∃i ∈ [(j − 1)k + 1, jk] : Xi /∈ T}

We will now prove a bound on P{Yj = 1|X1, . . . , X(j−1)k}. We will consider two cases:
Case 1: Xj(k−1)+1 /∈ T . In this case, we have P{Yj = 1|X1, . . . , X(j−1)k} = 1.
Case 2: In this case assume X(j−1)k+1 = x ∈ T . Here, we have from the property of the

Markov chain that:

P{Yj = 0|X1, . . . , X(j−1)k, X(j−1)k+1 = x} = e>xP
k−1
T 1 ≤

√
n‖PT ‖k−1 ≤ 1

2

where the first inequality follows form Cauchy-Schwarz and the second follows from Lemma 32.
Therefore, by combining the two cases above we have P{Yj = 1|X1, . . . , X(j−1)k} ≥ 0.5 and

we get:

P

{
l∑

i=1

1{Xi /∈ T} ≥
l

8 log nα2

}
≥ P


l/k∑
i=1

Yi ≥
l

4k

 ≥ 1− δ

via an application of Hoeffding’s inequality (See, for example, Boucheron et al. (2013)) and
using our bound on l/k.

C.3. Proof of Lemma 21

We start by first fixing a particular element i ∈ [k]. Now, we have:

E[vi] =
m

k

Therefore, we have by an application of Theorem 1.1 in Dubhashi and Panconesi (2009) that:

P
{
vi ≥ 2

m

k

}
≤ exp

(
−m

3k

)
≤ exp

(
−3 log

n

ε

)
≤
( ε
n

)3

Finally, we get via an application of the union bound:

P
{

max
i∈[k]

vi ≥ 2
m

k

}
≤ k

( ε
n

)3
≤ ε

n2
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C.4. Proof of Lemma 14

Since the chain Y is irreducible, we have that X is defined almost surely. Now, we will prove that
qij = P{Xk+1 = j|Xk = i} is independent of k. We will do this by showing that P [Xk+1 =
j|Xk = i, τk = l] is independent of l and k as:

P{Xk+1 = j|Xk = i} =
∞∑
l=1

P{Xk+1 = j, τk = l|Xk = i}

=
∞∑
l=1

P{τk = l|Xk = i}P{Xk+1 = j|τk = l,Xk = i}

Now, we define Pk to be sequences of states of length k that begin with i and end with j but the
elements in between are not in T . That is, if (i1, i2, . . . , ik) ∈ Pk, then we have i1 = i, ik = j and
il /∈ T, ∀l ∈ {2, . . . , k − 1}. Therefore, we get by the markov property of Y and the definition of
X:

P{Xk+1 = j|τk = l,Xk = i} = P{Yτk+1
= j|Yl = i} =

∞∑
m=l+1

P{τk+1 = m,Ym = j|Yl = i}

=
∞∑
m=2

P{τ2 = m,Ym = j|Y1 = i} =
∞∑
r=2

∑
i∈Pr

r−1∏
s=1

Pisis+1

= Pij + e>i

( ∞∑
t=1

PT,T̄P
t
T̄PT̄ ,T

)
ej

This is independent of k and therefore, the process X is a markov process and the claim about
the transition matrix follows from the above expression as, we have for all i, j ∈ T and k ∈ N
P[Xk+1 = j|Xk = i] = Qij .

C.5. Proof of Corollary 15

The corollary is immediate as ∀S ⊂ T, |S| ≤ |T |/2:

hQ(S) =

∑
i∈S,j∈T\S Qij

|S|
≥
∑

i∈S,j∈T\S Pij

|S|
≥ α

where the last bound follows from the fact that Qij ≥ Pij from Lemma 14.

C.6. Proof of Lemma 16

To start, consider the markov chain with transition matrix Q = 0.5(P + P 2). Given a trajectory
of length 2l from the transition matrix P , it is easy to simulate a trajectory of length l from Q by
simply taking the next element in the trajectory with probability 0.5 and skipping an element with
probability 0.5. It follows that HitT(P ) is upper bounded by 2HitT(Q).

Now, let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 be the eigenvalues of P and let v1, . . . , vn be the
eigenvectors. Note that we can take v1 to be the vector (1/

√
n, 1/

√
n, . . . , 1/

√
n) (The unit vector
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in the direction of the stationary distribution). Now, let π be any distribution over the states [n].
Now, we have 〈π, v1〉 = 1/

√
n. And furthermore, we have ∀i ∈ [n], 〈vi, π〉 ≤ 1. Now, note that

since P and Q have the same set of eigenvectors v1, . . . , vn and the corresponding eigenvalues for
Q are 0.5(λ1 + λ2

1), . . . , 0.5(λn + λ2
n). Now, let 1 = σ1 > σ2 · · · ≥ σn be the eigenvalues of Q

with eigenvectors v1, u2, . . . , un. We have from the previous Lemma 7 that:

|σi| ≤ 1− α2

2

as when λ ≤ 0, the maximum absolute value of 0.5(λ+ λ2) is 1/8. Now, let π0 be any starting
distribution over states, then the distribution over the states at time t, πt, is π0Q

t and π∗ be the
stationary distribution. Therefore, we get:

‖πt−π∗‖ =

∥∥∥∥∥ 1√
n
v1 − π∗ +

n∑
i=2

σti〈ui, π0〉ui

∥∥∥∥∥ ≤
n∑
i=2

σti |〈ui, π0〉| ≤ n
(

1− α2

2

)t
≤ n exp

(
−α

2

2
· t
)

Therefore, we have at t∗ = 4 log(10n)/α2, we have:

‖πt − π∗‖ ≤
1

4n
(4)

Therefore, we have by Equation 4:

HitT(Q) ≤ 4
log(10n)

α2
· 3

4n
+

(
1− 3

4n

)(
4

log(10n)

α2
+ HitT(Q)

)
By rearranging the above inequality, we get:

HitT(Q) ≤ 10
log(10n)

α2
=⇒ HitT(Q) ≤ Õ

( n
α2

)
=⇒ HitT(P ) ≤ Õ

( n
α2

)

C.7. Proof of Lemma 20

We will first consider a single set S ∈ S. In the case that P = Q, we have that RS consists of lS
samples from Dist(S,P ). Therefore, we have from the guarantees of ID Test from Theorem 17 that

P {ID Test(RS ,Dist(S,P )) = 1} ≥ 1− 1

10n

In the alternate case where Dist(P ,Q) ≥ ε, we have from Lemma 13 that d2
Hel(Dist(S,P ),Dist(S,Q)) ≥

ε2/32. Therefore, we have again from Lemma 17:

P {ID Test(RS ,Dist(S,P )) = 0} ≥ 1− 1

10n

The above two inequalities imply that for a fixed S ∈ S, we have:

P {ID Test(RS ,Dist(S,P )) = 1 {P = Q}} ≥ 1− 1

10n
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We note that since each S ∈ S is non-empty and along with T , they form a partition of [n],
there are at most n sets in S. Taking an union bound over the at most n sets in S, we get:

P
{
∃S ∈ S : ID Test(RS ,Dist(S,P ), ε2/32) 6= 1 {P = Q}

}
≤ 1

10

C.8. Proof of Lemma 22

As in the proof of Lemma 20, we first consider a single component S ∈ S . Note that the trajectory
w∞ observed on the set of states in S, wS

∞, is also a markov process. Furthermore, we know from
Lemmas 12, 16 and Corollary 15 that the hitting time of wS

∞ is Õ(|S|/ε2). Therefore, we have from
Lemma 19, that in a trajectory of length NS from wS

∞, we have:

P
{
∃i : |{t : Xt = i}| ≤ NS

8e|S|

}
≤ 1

20n

Similarly, to generate lS samples from Dist(S,P ), the maximum number of times any a par-
ticular state in S will be sampled in a run of Algorithm 1, denoted by mS , is upper bounded by
Lemma 21:

P
{
mS ≥ 2

lS
|S|

}
≤ 1

20n

Therefore, the probability that we succeed in generating lS samples from Dist(S,P ) is up-
per bounded by the probability that both the above events fail to occur as this implies the event
{∀i : |{t : Xt = i}| ≥ mS} ensuring the sample generation process succeeds. Therefore, we have:

P
{
NS ≥ Õ(|S|/ε2)

}
≤ 1

10n

By taking a union bound over the at most n subsets S ∈ S, we get:

P
{
∀S ∈ S : NS ≤ Õ(|S|/ε2)

}
≥ 9

10

28


	Introduction
	Preliminaries
	Markov Chains
	Sparsest Cut

	Testing Markov Chains
	Proof
	Markov Chain Decomposition
	Sample Generation Phase
	Proof of Theorem 10

	Conclusion
	Decomposing a Markov Chain into Well Connected Components
	Sparsest Cut with Component Constraints
	Extracting a Single Component
	Partitioning the Markov Chain

	Markov Chain Properties
	Deferred Proofs from Section 4
	Proof of Lemma 13
	Proof of Lemma 18
	Proof of Lemma 21
	Proof of Lemma 14
	Proof of Corollary 15
	Proof of Lemma 16
	Proof of Lemma 20
	Proof of Lemma 22


