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Abstract
We study the problem of testing if a function depends on a small number of linear directions

of its input data. We call a function f a linear k-junta if it is completely determined by some
k-dimensional subspace of the input space. In this paper, we study the problem of testing whether
a given n variable function f : Rn → {0, 1}, is a linear k-junta or ε-far from all linear k-juntas,
where the closeness is measured with respect to the Gaussian measure on Rn. Linear k-juntas are a
common generalization of two fundamental classes from Boolean function analysis (both of which
have been studied in property testing) 1. k- juntas which are functions on the Boolean cube which
depend on at most k of the variables and 2. intersection of k halfspaces, a fundamental geometric
concept class.

We show that the class of linear k-juntas is not testable, but adding a surface area constraint
makes it testable: we give a poly(k · s/ε)-query non-adaptive tester for linear k-juntas with surface
area at most s. We show that the polynomial dependence on s is necessary. Moreover, we show
that if the function is a linear k-junta with surface area at most s, we give a (s · k)O(k)-query non-
adaptive algorithm to learn the function up to a rotation of the basis. In particular, this implies that
we can test the class of intersections of k halfspaces in Rn with query complexity independent of
n.
Keywords: Linear juntas; Gaussian measure; Ornstein-Uhlenbeck operator;

1. Introduction

Property testing of Boolean functions was initiated in the seminal work of Blum, Luby and Rubin-
feld Blum et al. (1993) and Rubinfeld and Sudan Rubinfeld and Sudan (1996). The high level goal
of property testing is the following: Given (query) access to a Boolean function f , the algorithm
must distinguish between (i) the case that f belongs to a class C of Boolean functions (i.e., has
a property C), and (ii) the case that f is ε-far from every function belonging to C. Here the dis-
tance between functions is measured with respect to some underlying distribution D and is defined
as dist(f, g) = Prx∼D[f(x) 6= g(x)]. Also, the algorithm is randomized and thus only needs to
succeed with high probability (as opposed to probability one). The quality of a testing algorithm
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is measured by the number of oracle calls it makes to f – its query complexity – and the goal is to
minimize this query complexity.

Since the works of Blum et al. (1993); Rubinfeld and Sudan (1996), property testing of Boolean
functions has been a thriving field and by now several classes C have been studied from this perspec-
tive. These include classes such as linear functions Blum et al. (1993), low-degree polynomials Jutla
et al. (2004); Bhattacharyya et al. (2010), monotonicity Fischer et al. (2002); Chakrabarty and Se-
shadhri (2016); Khot et al. (2015), algebraic properties Kaufman and Sudan (2008); Bhattacharyya
et al. (2015, 2013) and juntas Fischer et al. (2004); Blais (2009); Chen et al. (2017b) among many
others (see the surveys Ron et al. (2010); Goldreich (2017)).

Special attention has been devoted to the problem of testing juntas. Recall that a Boolean func-
tion f : {−1, 1}n → {−1, 1} is said to be a k-junta if f is only dependent on a subset S ⊆ [n]
(of size k) of the coordinates. Given (query) access to a function f , the problem of testing juntas
is to decide whether f is a k-junta or ε-far from every k-junta (under the uniform distribution on
{−1, 1}n). Some of the initial motivation Fischer et al. (2004) to study this came from the problem
of long-code testing Bellare et al. (1998); Parnas et al. (2002) (related to PCPs and inapproxima-
bility). Another motivation comes from the feature selection problem in machine learning. It is
well-known (see, e.g. Blum (1994); Blum and Langley (1997)) that learning a k-junta requires at
least Ω(k log n) samples, however k-juntas can be tested with query complexity independent of
n Fischer et al. (2004).

The most obvious generalization of k-juntas to functions f : Rn → {−1, 1} is to consider
functions that depend only on k of the n coordinates. However, in many statistical and machine
learning models (e.g. PCA, ICA, kernel learning, dictionary learning) the choice of basis is not a
priori clear. Therefore, it is natural to consider a notion of junta that is linearly invariant. We define
a function f : Rn → {−1, 1} to be a linear k-junta if there are k unit vectors u1, . . . , uk ∈ Rn and
g : Rk → {−1, 1} such that f(x) = g(〈u1, x〉, . . . , 〈uk, x〉).

We note that the family of linear k-juntas includes important classes of functions that have been
studied in the learning and testing literature. Notably it includes:

• Boolean juntas: If h : {−1, 1}n → {0, 1} is a Boolean junta, then f(x) : Rn → {0, 1}
defined as f(x) = h(sgn(x1), . . . , sgn(xn)) is a linear k-junta.

• Functions of halfspaces: Linear k-juntas include as a special case both halfspaces and inter-
sections of k-halfspaces. The testability of halfspaces was studied in Matulef et al. (2009,
2010); Ron and Servedio (2015).

We consider the scenario where the ambient dimension n is large but the dimension of the relevant
subspace, i.e., k is small. In this setting, we consider the following property testing question:

Question 1 Given oracle access to a function f , is it possible to test in number of queries that
depends on k (but not on n) whether f is a linear k-junta or far from all linear k-juntas?

The problem of testing linear-juntas is closely related to the problem of model compression in ma-
chine learning. The goal of model compression is to take as an input a complex predictor/classifier
function and to output a simpler predictor/classifier see e.g Buciluă et al. (2006). The question
of model compression is extensively studied in the context of deep nets, see e.g., Ba and Caruana
(2014), and follow up work, where the models are often rotationally invariant (with the caveat that
the regularization often used in optimization might not be). Thus as a motivating example we may
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ask: given a complex deep net classifier, is there a classifier that has essentially the same perfor-
mance and depends only on k of the features?

To formally state question 1 we need to define what “close” means. The standard definition is
to state that f is close to g if Pr[f(x) 6= g(x)] is small, for some probability measure Pr. The
most natural choice of Pr for learning and testing functions f : Rn → {−1, 1} is the Gaussian
measure Matulef et al. (2009); Kothari et al. (2014); Neeman (2014); Balcan et al. (2012); Chen
et al. (2017a); Klivans et al. (2008); Vempala (2010a); Diakonikolas et al. (2018); Balcan and Long
(2013); Harsha et al. (2012). It is particularly natural in our setup since the Gaussian measure is
invariant under many linear transformations, e.g., all rotations.

It is possible to show that the answer to question 1 is no even if n = 2 and k = 1, since without
smoothness assumptions, measurable functions f : Rn → {−1, 1} can look arbitrarily random
to any finite number of queries (a more formal statement with stronger results will be discussed
shortly). Since the groundbreaking work of Klivans et al. (2008), it was recognized that the surface
area of a function f : Rn → {−1, 1} is a natural complexity parameter (roughly speaking, if
A = {x : f(x) = 1}, then the surface area of f is the size of the boundary of A weighted by the
Gaussian measure). We therefore ask the following question:

Question 2 Given oracle access to a function f , is it possible to test in number of queries that
depends on k and s (but not on n) if f is close to any linear k-junta with surface area at most s?

In our main result we give an affirmative answer to the question above:

Theorem 3 There is an algorithm Test-linear-junta which has the following guarantee: Given or-
acle access to f : Rn → {−1, 1}, rank parameter k, surface area parameter s and error parameter
ε > 0, it makes poly(s, ε−1, k) queries and distinguishes between the following cases:

1. The function f is a linear k-junta whose surface area is at most s.

2. The function f is ε-far from any linear k-junta with surface area at most s(1 + ε).

The proof can be found in the full version (and a detailed sketch is given in Section 3). We note that
while the tester allows a slack of 1 + ε in the surface area between the soundness and completeness
cases, such a slack factor is required even for the easier problem of estimating surface area in
R2 Neeman (2014). In fact, as the next theorem shows, our tester is optimal in its dependence on s
up to polynomial factors (proof in the full version).

Theorem 4 Any non-adaptive algorithm for testing whether an unknown Boolean function f is a
linear 1-junta with surface area at most s versus Ω(1)-far from a linear 1-junta makes at least s

1
10

queries.

FINDING THE LINEAR-INVARIANT STRUCTURE

Given the previous theorem it is natural to ask for more, i.e., not just test if the function is a linear-
junta but also find the junta in number of queries that depends only on k and s (but not on n). In other
words, could we output g : Rk → {−1, 1} such that there exists a projection matrix A : Rn → Rk
and f is close to g(Ax) with query complexity independent of n? We give an affirmative answer to
this question:
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Theorem 5 Let f : Rn → {−1, 1} be a linear k-junta with surface area at most s. Given the
error parameter ε > 0, the algorithm Find-invariant-structure makes (s · k/ε)O(k) queries and
outputs g : Rk → [−1, 1] so that the following holds: there exists an orthonormal set of vectors
w1, . . . , wk ∈ Rn such that

E[|f(x)− g(〈w1, x〉, . . . , 〈wk, x〉)|] = O(ε).

Moreover, for some g∗ : Rk → R:

f(x) = g∗(〈w1, x〉, . . . , 〈wk, x〉).

Informally, the theorem states that it is possible to find the “linear-invariant” structure (i.e., the
structure up to unitary transformation) of f in number of queries that depends on s and k. Of
course, one cannot hope to output the relevant directions w1, . . . , wk explicitly as even describing
these directions will require ω(n) bits of information and thus, at least those many queries. We
note that the number of functions in k dimensions with O(1) surface area (even up to a unitary
rotation) is exp(exp(k)) and thus even our output has to be exp(k) bits. Thus, it is not possible to
significantly improve on our exp(k log k) query complexity in finding the linear-invariant structure.

TESTABILITY OF LINEAR INVARIANT FAMILIES OF LINEAR k-JUNTAS

Our ability to find the linear-invariant structure of linear k-juntas additionally allows us to test
subclasses of linear k-juntas which are closed under rotation.

Definition 6 Let C be any collection of functions mapping Rk to {−1, 1}. For any n ∈ N let:

Ind(C)n = {f : ∃g ∈ C and orthonormal vectors w1, . . . , wk such that f(x) = g(〈w1, x〉, . . . , 〈wk, x〉).}

Define Ind(C) = ∪∞n=kInd(C)n and call it the induced class of C.

The two key properties of Ind(C) are (i) each function f ∈ Ind(C) is a linear k-junta, (ii) the class
Ind(C) is closed under unitary transformations. The definition is a continuous analogue of the so-
called “induced subclass of k-dimensional functions” from Gopalan et al. (2009) (that paper was
about testing functions over GFn[2]). The following theorem shows that for any C, Ind(C) is testable
without any dependence on the ambient dimension.

Theorem Let C be a collection of functions mapping Rk to {−1, 1} such that for every f ∈ Ind(C),
surf(f) ≤ s. Then, there is an algorithm Test-structure-C which has the following guarantee:
Given oracle access to f : Rn → {−1, 1} and an error parameter ε > 0, the algorithm makes
(s · k/ε)O(k) queries and distinguishes between the cases (i) f ∈ Ind(C) and (ii) f is ε-far from
every function g ∈ Ind(C).

A particularly important instantiation of the above theorem is the following: Let CB be any
collection of functions mapping {−1, 1}k → {−1, 1} and let C be defined as

C = {g : x 7→ h(〈w1, x〉 − θ1, . . . , 〈wk, x〉 − θk)| w1, . . . , wk ∈ Rk, θ1, . . . , θk ∈ R, h ∈ CB}.

Note that C defined above is the set of functions obtained by composing a function from CB with
k-dimensional halfspaces. Consequently, Ind(C) is the of all functions which can be obtained by
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composing a function from CB with halfspaces. As an example, if CB consists of the AND function
on k or fewer bits, then Ind(C) is the class of “intersections of k-halfspaces”. Since the surface area
of any Boolean function of k-halfspaces is bounded by O(k) it follows that the this class is testable
with (k/ε)O(k) queries.

We now give a high-level description of the algorithm Test-structure-C.

1. Run the routine Test-linear-junta with rank parameter k, surface area parameter s and error
parameter δ > 0 (where δ ≈ (ε/(s · k))O(k)). If the test passes, go to Step 2.

2. Run the routine Find-invariant-structure with surface area parameter 2s, rank parameter k
and error parameter ε > 0. Let g : R` → {−1, 1} be the output of this routine.

3. If the function g : R` → {−1, 1} is ε-close to a class C, then accept. Else, reject.

First, observe that if the target function f passes Step 1, we are guaranteed that it is (very close to)
a linear k-junta with surface area s. In Step 2, we run Find-invariant-structure. If the output of
this step is g, then in Step 3, we check whether g is close to some function in Ind(C)k and accept
accordingly. Cruicially, the last step, i.e., checking whether g is close to a function in Ind(C)k makes
no queries to f .

1.1. Related Work

Testing Boolean juntas As we have already mentioned, the problem of testing juntas on {−1, 1}n
has already been well-studied. For example, it is known Blais (2009); Chen et al. (2017b) that
Θ̃(k3/2) queries are necessary and sufficient for non-adaptively testing k-juntas with respect to the
uniform distribution, while Θ̃(k) queries are necessary and sufficient in the adaptive setting Blais
et al. (2012). It even turns out to be possible to test k-juntas with respect to an unknown dis-
tribution Chen et al. (2018), although in that setting the non-adaptive query complexity becomes
exponential in k. We emphasize that while the problem of junta testing inspires the problems con-
sidered in this paper, junta testing algorithms have no bearing on the problem of testing linear juntas
– e.g., unlike Chen et al. (2018), there is no reason to believe that distribution-free testing of linear
juntas on Rn is even possible, given that the space of probability measures on Rn is much richer
than the space of probability measures on {−1, 1}n.

Learning juntas of half-spaces. There has been extensive work on learning intersections and
other functions of k half-spaces Blum and Kannan (1997); Vempala (2010b); Vempala and Xiao
(2013); Klivans et al. (2008) . Note that these algorithms (necessarily) require time polynomial in n
(whereas this work’s raison d’etre is to obtain a query complexity independent of n). In particular,
Blum and Kannan (1997) provided conditions under which intersections of halfspaces can be learnt
under the uniform distribution on the ball. Vempala Vempala (2010b) extended their result to arbi-
trary log-concave distributions. In terms of the expressivity of the function class, Vempala and Xiao
(2013) explicitly considered the problem of learning linear k-juntas (they called it subspace juntas)
and showed that a linear k-junta of the form g(〈w1, x〉, . . . , 〈wk, x〉) is learnable in polynomial time
if the function g is identified by low moments and robust to small rotations in Rn. Along a related
but different axis, Klivans et al. (2008) showed that functions of bounded surface area in the Gaus-
sian space are learnable in polynomial time. Finally, we remark that there also has been work in
learning intersections and other functions of halfspaces over the Boolean hypercube as well Klivans
et al. (2002); Gopalan et al. (2012).

5



IS YOUR FUNCTION LOW-DIMENSIONAL?

Linearly Invariant Testing over Finite Fields We note that the set of linear-juntas is linearly
invariant. If f is a linear k-junta and B is any n×n matrix then x 7→ f(Bx) is also a linear k-junta.
Over finite fields, Kaufman and Sudan (2008) studied general criteria for when a linearly invariant
property is testable, see also Bhattacharyya et al. (2013). In particular, Gopalan et al. (2009), gave
a 2O(k) query complexity algorithm to test linear juntas over finite fields. Moreover, they also show
that an exponential lower bound on k is necessary. This should be contrasted with our result which
shows that linear juntas over the Gaussian space can be tested with poly(k) queries.

Testing (functions) of halfspaces The question of testing halfspaces was first considered in Mat-
ulef et al. (2010) who showed that in the Gaussian space (as well as the Boolean space), halfspaces
are testable with O(1) queries. Subsequently, Mossel and Neeman (2015) gave a different test-
ing algorithm for a single halfspace in the Gaussian space. In fact, Harms (2019) recently showed
that halfspaces over any rotationally invariant distribution can be tested with sublinear number of
queries. However, as far as we are aware, prior to our work, no non-trivial bounds were known
for even testing the intersection of two halfspaces. As remarked earlier, from our work, it fol-
lows that for any arbitrary k, intersection of k-halfspaces can be tested in the Gaussian space with
exp(k log k) queries.

1.2. Techniques

The linear partW1(f) of the Hermite expansion of f is approximately given by e−t(Ptf − E[f ])
for large t. Here Ptf is the Ornstein-Uhlenbeck operator. Both the quantities, E[f ] and Ptf can be
approximated by sampling a small number of points from the Gaussian distribution and evaluating
f at those points. Moreover, if f(x) = g(〈u1, x〉, . . . , 〈uk, x〉) is a linear junta, then the linear part
of its Hermite expansion,W1(f), lies in the span of u1, . . . , uk.

We would like to obtain “many more directions” that lie in the span of u1, . . . , uk. We do so
by considering functions of the form ft,y(x) = f(e−ty +

√
1− e−2tx), for randomly chosen y and

an appropriate value of t (the experts will recognize ft,y as part of the definition of the Ornstein-
Uhlenbeck operator). Note that ft,y is also a linear junta defined by the same direction u1, . . . , uk
and therefore the linear part of the Hermite expansion of ft,y, is also in the span of u1, . . . , uk.

It is now natural to propose the following algorithm to test if a function is a linear k-junta:
choose points yi at random and “compute”W1(ft,yi) at these points. Then if the rank of the matrix
spanned by (W1(ft,yi))i is at most k, then output YES; otherwise, output NO.

Of course, actually computingW1(ft,y) requires poly(n)� poly(k) samples. Instead we will
approximately compute the Gram matrix

Ai,j = 〈W1(ft,yi),W1(ft,yj )〉.

and test if it is close or far from a matrix of rank k. One advantage of using the Gram matrix, is that
we can evaluate the entries Ai,j by sampling random inputs to evaluate the expected values

E[W1(ft,yi)(x)W1(ft,yj )(x)].

How do we know that W1(ft,yi)(x) are not very close to 0? If f has a bounded surface area
then f is close to the noise stable function Ptf . For such noise stable functions, we prove that
with good probability at a random point x, W1(ft,yi)(x) will be of non-negligible size. In fact,
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we prove much more – we show that if f is ε far from any linear-k-junta then for any subspace
W with co-dimension at most k, it holds that for a random y with probability at least poly(ε), the
projection of W1(ft,yi)(x) into W will have norm at least poly(ε). This result is later combined
with a perturbation argument to establish to show that if f is ε-far from a linear k-junta then indeed
the Gram matrix will have k+1 large eigenvalues. Since our analysis relies on the function f having
surface area at most s, the first stage of the algorithm uses the algorithm by Neeman (2014) to test
if the function of interest is of bounded surface area.

The algorithm to identify the linear invariant structure of f builds up on the ideas in the algo-
rithm to test linear k-juntas. More precisely, we can show that if f is a linear k-junta with surface
area s:

1. We can find directions y1, . . . , y` such that f is close to a function on the space spanned by
the directionsW1(ft,y1), . . . ,W1(ft,y`) (for some ` ≤ k).

2. While we cannot find W1(ft,yj ) explicitly for any j, we can evaluate 〈W1(ft,yj ), x〉 at any
point x up to good accuracy.

3. With the above observation, the high level idea is to try out all smooth functions on the
subspace spanned by {〈W1(ft,y1), x〉, . . . , 〈W1(ft,y`), x〉}. Perform hypothesis testing for
each such function against f and output the most accurate one.

The crucial part in the above argument is that even if we haveW1(ft,y1), . . . ,W1(ft,y`) implicitly,
the space of “all smooth functions” on span(〈W1(ft,y1), x〉, . . . , 〈W1(ft,y`), x〉) has a cover whose
size is independent of n. This lets us identify the linear invariant function defining f with query
complexity just dependent on k and s.

In order to prove lower bounds in terms of surface area, we construct a distribution over linear
1-juntas with large surface area by splitting R2 into many very thin parallel strips (oriented in a
random direction) and assign our function a random ±1 value on each strip. (Note that the surface
area of such a function is proportional to the number of strips.) The intuition is that no algorithm
that makes non-adaptive queries can tell that such a random function is a 1-junta, because in order
to “see” one of these strips, the algorithm would need to have queried multiple far-away points
in a single strip. But if the number of queries is small relative to the number of strips then this
is impossible – with high probability every pair of far-away query points will end up in different
strips. In order to make this intuition rigorous, we also introduce a distribution on linear 2-juntas
by randomly “cutting” the thin strips once in the orthogonal direction. We show that for any non-
adaptive set of queries, the two distributions induce almost identical query distributions, and Yao’s
minimax lemma implies that no algorithm can distinguish between our random 1-juntas and our
random 2-juntas.

2. Preliminaries

In this paper, unless explicitly mentioned otherwise, the domain Rn is always endowed with the
measure γn, the standard n-dimensional Gaussian measure. Likewise, we will only consider func-
tions f ∈ L2(γn). For such a function, and t > 0, we recall that the so-called Ornstein-Uhlenbeck
operator Pt is defined as follows:

Ptf(x) =

∫
y
f(e−tx+

√
1− e−2tz)γn(z)dz
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We will also need to recall some very basic facts about Hermite expansion for functions f ∈
L2(γn). In particular, recall that for all q ≥ 0, we can define the Hermite polynomial Hq : R → R
as

H0(x) = 1; Hq(x) =
(−1)q√
q!
· ex2/2 · d

q

dxq
e−x

2/2.

Further, for the ambient space Rn, let us define the spaceWq to be the linear subspace of L2(γn)
spanned by {Hq(〈v, x〉) : v ∈ Sn}. Here Sn denotes the unit sphere in n-dimensions. For a function
g ∈ L2(γn), we let ĝq : Rn → R denote the projection of g to the subspaceWq. Note that for any g,
ĝq will be a degree-q polynomial lying in the subspaceWq.We now recall some standard facts from
Hermite analysis which can be found in any standard text on the subject (see the book by O’Donnell
(2014).

Proposition 7

1. For q 6= q′, the subspaces Wq and Wq′ are orthogonal. In other words, if r ∈ Wq and
s ∈ Wq′ , then Ex∼γn [r(x) · s(x)] = 0.

2. Every function g ∈ L2(γn) can be expressed as g(x) =
∑

q≥0 ĝq(x) where ĝq is the projection
of g toWq.

3. For any t > 0, (Ptg)(x) =
∑

q≥0 e
−t·q · ĝq(x).

2.0.1. ORACLE COMPUTATION

We now list several useful claims which all fit the same motif: Given oracle access to f : Rn → R,
what interesting quantities can be computed? The proofs can all be found in the full version.

Lemma 8 Given oracle access to f : Rn → [−1, 1], error parameter η > 0, there is a function
f∂,η : Rn → R such that the following holds for every λ ≥ 1,

Pr
x∼γn

[∣∣f∂,η(x)− f̂1(x)
∣∣ > λ · η

]
≤ λ−2.

Further, for any x ∈ Rn, we can compute f∂,η(x) to additive error ±ε with confidence 1 − δ by
making poly(1/η, 1/ε, log(1/δ)) queries to the oracle for f .

Lemma 9 Given oracle access to functions f, g : Rn → [−1, 1], error parameter ε > 0 and
confidence parameter δ > 0, there is an algorithm which makes poly(1/ε, log(1/δ)) queries to f, g
and computes 〈f̂1, ĝ1〉 up to error ε with confidence 1− δ.

Definition 10 A function f : Rn → R is said to be a linear k-junta if there are at most k orthonor-
mal vectors u1, . . . , uk ∈ Rn and a function g : Rk → R such that

f(x) = g(〈u1, x〉, . . . , 〈uk, x〉).

Further, if u1, . . . , uk ∈W (a linear subspace of Rn), then f is said to be a W -junta.
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2.1. Derivatives of functions

We will use D to denote the derivative operator. In case, there are two sets of variables involved,
we will explicitly indicate the variable with respect to which we are taking the derivative.

Definition 11 For f : Rn → R (f ∈ C∞) and t ≥ 0, define the function ft : Rn × Rn → R,

ft(y, x) = f(e−ty +
√

1− e−2tx).

Further, in the same setting as above, we let ft,y : Rn → R,

ft,y(x) = f(e−ty +
√

1− e−2tx).

LetDx denote the derivative operator with respect to x and letDy denote the derivative operator
with respect to y. Then, it is easy to observe that√

e2t − 1 ·Dyft(y, x) = Dxft(y, x). (1)

Next, for a function g : Rn → R, defineW1(g) ∈ Rn as the degree-1 Hermite coefficients of g. In
other words, the ith coordinate ofW1(g)

W1(g)[i] = E[g(x) · xi],

where x ∼ γn, the standard n-dimensional Gaussian measure. With respect to our earlier definition
of ĝ1, observe that we have: ĝ1(x) = 〈W1(g), x〉. The following important lemma connects the
gradient of Ptf at y withW1(ft,y).

Lemma 12
W1(ft,y) =

√
e2t − 1 ·D(Ptf)(y).

Lemma 13 Given oracle access to f , noise parameter t > 0, error parameter ε > 0, confidence
parameter δ > 0 and y1, y2 ∈ Rn, there is an algorithm which makes poly(1/ε, 1/δ, 1/t) queries to
f and computes 〈D(Ptf)(y1), D(Ptf)(y2)〉 up to error ε with confidence 1− δ.

Proof By Lemma 12, we have

〈D(Ptf)(y1), D(Ptf)(y2)〉 =
1

e2t − 1
· 〈W1(ft,y1),W1(ft,y2)〉.

We can now apply Lemma 9 to finish the proof.

Proposition 14 For any f : Rn → [−1, 1], ‖D(Ptf)(y)‖2 ≤ (e2t − 1)−
1
2 .

Proof By Lemma 12, we have ‖W1(ft,y)‖2 =
√
e2t − 1 · ‖D(Ptf)(y)‖2. Now, observe that the

range of ft,y is [−1, 1] and thus, ‖W1(ft,y)‖2 ≤ 1, implying the stated upper bound.

9
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Lemma 15 Given oracle access to f : Rn → [−1, 1], y ∈ Rn, noise parameter t > 0, error
parameter η > 0, there is a function f∂,η,t,y : Rn → R such that the following holds for every
λ ≥ 1,

Prx∼γn [|f∂,η,t,y(x)− 〈D(Ptf)(y), x〉| > λ · η] ≤ λ−2.

Further, for an error parameter ε > 0, confidence parameter δ > 0, we can compute f∂,t,η,y to
additive error ±ε with confidence 1− δ using poly(1/t, 1/η, 1/ε, log(1/δ)) queries to f .

Proof We first use Lemma 12 and obtain that

DPtf(y) =
1√

e2t − 1
· W1(ft,y).

Consequently, we have that

〈DPtf(y), x〉 =
1√

e2t − 1
· f̂t,y1(x).

The claim now follows from Lemma 8.

3. Algorithm to test k-juntas

In this section, we prove Theorem 3.

Remark 16 A convention that we shall adopt (to avoid proliferation of parameters) is to sometimes
ignore the confidence parameter of the testing algorithm. Typically, whenever we can estimate a
parameter within ±ε with T queries with confidence 2/3, we can do the usual “median trick” and
get the same accuracy with confidence 1−δ with a multiplicativeO(log(1/δ)) overhead in the query
complexity. Since we only need to succeed with probability 0.9 in the final algorithm, it is sufficient
for each of the individual subroutines to succeed with probability sufficiently close to 1. So, unless
it is crucial, at some places,we shall ignore the confidence parameter in the theorem statements and
many of the calculations. It will be implicit that the confidence parameter is sufficiently close to 1.

The algorithm Test-linear-junta is described in Figure 1. The algorithm invokes two different
subroutines, Test-surface-area and Test-rank whose guarantees we state now. To do this, we first
define the notion of (ε, s) smooth function.

Definition 17 A function f : Rn → {−1, 1} is said to be (ε, s)-smooth if there is a function
g : Rn → {−1, 1} such that E[|f − g|] ≤ ε and surf(g) ≤ s(1 + ε).

In other words, a function f is (ε, s) smooth if f is ε-close to some other function g (in `1 distance)
and g has surface area which is essentially bounded by s. With this definition, we can now state the
guarantee of the routine Test-surface-area (due to Neeman (2014)).

Theorem 18 There is an algorithm Test-surface-area which given oracle access to a function
f : Rn → {−1, 1} and error parameter ε > 0 makes Ttest = poly(s/ε) queries and has the
following guarantee:

1. If f is a function with surface area at most s, then the algorithm outputs yes with probability
at least 1− ε.

10
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Inputs

s := surface area parameter
ε := error parameter
k := rank parameter

Testing algorithm

1. Run algorithm Test-surface-area with surface area parameter s and error parameter (ε/30)4.

2. If Test-surface-area outputs yes, then run the algorithm Test-rank with rank parameter k,
surface area parameter s and error parameter ε.

3. If Test-rank outputs yes, then output yes. If Test-rank outputs no, output no.

Figure 1: Description of the algorithm Test-linear-junta

2. Any function f which passes the test with probability 0.1 is (ε, s)-smooth.

Next, we state the guarantee of the routine Test-rank.

Lemma 19 The routine Test-rank has a query complexity of poly(k, s, ε−1). Further, we have

1. If the function f is a linear-k-junta, then the algorithm Test-rank outputs yes with probability
1− ε.

2. If f : Rn → {−1, 1} is a ((ε/30)2, s)-smooth function which is ε-far from a linear k-junta,
then the algorithm Test-rank outputs no with probability 1− ε.

In order to prove Theorem 3, we will need the following claim which shows that property of close-
ness to a linear k-junta and closeness to a smooth function can be certified using a single function.

Lemma 20 For a function f : Rn → {−1, 1}, suppose that there is a linear k-junta g : Rn →
{−1, 1} and a function h : Rn → {−1, 1} of surface area at most s such that both g and h are
ε-close to f . Then there is a function h̃ : Rn → {−1, 1} that is a linear k-junta and has surface
area at most s(1 +

√
ε), and which is O(

√
ε)-close to f .

Proof of Theorem ??: If f is a linear k-junta with surface area at most s, then it passes both the
tests Test-surface-area as well as Test-rank with probability 1− ε. Thus, any linear k-junta with
surface area at most s passes with probability at least 1−2ε (so as long as ε ≤ 0.05, the test succeeds
with probability 0.9).

On the other hand, suppose f passes Test-linear-junta with probability 0.9. Then, applying
Theorem 18 is ((ε/30)4, s) smooth. In other words, there is a function h such that surf(h) ≤
(1 + (ε/30)4) · s which is O(ε4)-close to f . Further, since f passes Test-rank with probability
0.9, Lemma 19 implies that f is ε2-close to some linear k-junta g. We now apply Lemma 20 to
obtain that f is O(ε)-close to some function h̃ : Rn → {−1, 1} which is a linear k-junta and
surf(h) ≤ (1 +O(ε))s. This concludes the proof.

�
We now turn to describing the routine Test-rank and prove Lemma 19.
Proof of Lemma 19: The bound on the query complexity of Lemma 19 is immediate from the
settings of our parameters and query complexity of Lemma 13.

11



IS YOUR FUNCTION LOW-DIMENSIONAL?

Input

k := rank parameter
s := surface area parameter
ε := error parameter

Parameters

t := ε4

900s2

r := k·s2
ε7

κ : ε2

40r

Testing algorithm

1. Sample directions y1, . . . , yr ∼ γn.

2. Let Ai,j = 〈DPtf(yi), DPtf(yj)〉.

3. For all 1 ≤ i, j ≤ r, compute Ai,j up to error κ using Lemma 13. Call the estimates Bi,j .

4. For the matrix B ∈ Rr×r, compute the top k + 1 singular values of B.

5. Output yes if and only if the (k + 1)st singular value is at most ε
2

16 .

Figure 2: Description of the Test-rank algorithm

The first item (i.e., the completeness of Test-rank) follows from the fact that if f is a linear
k-junta, Ptf is also a linear k-junta. Consequently, A is a rank-k matrix. Then, A has at most k
non-zero singular values. Thus, if σ1 ≥ σ2 ≥ . . . are the singular values of A (in order), then
σk+1 = 0. By invoking Weyl’s inequality, the (k + 1)th singular value of B is at most ε2/10. This
finishes the proof of the first item.

The proof of the second item (i.e., the soundness of Test-rank) is more involved. In particular,
we can restate the second item as proving the following lemma. The proof of this lemma is highly
non-trivial and appears in the full version.

Lemma 21 Let f : Rn → {−1, 1} be a ((ε/30)2, s)-smooth function which is ε-far from a linear
k-junta, then the algorithm Test-rank outputs no with probability 1− ε.

�
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