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Cristóbal Guzmán CRGUZMANP@MAT.UC.CL

Millennium Nucleus Center for the Discovery of Structures in Complex Data
Pontificia Universidad Católica de Chile
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Abstract
We study the question of whether parallelization in the exploration of the feasible set can be used
to speed up convex optimization, in the local oracle model of computation. We show that the
answer is negative for both deterministic and randomized algorithms applied to essentially any
of the interesting geometries and nonsmooth, weakly-smooth, or smooth objective functions. In
particular, we show that it is not possible to obtain a polylogarithmic (in the sequential complexity
of the problem) number of parallel rounds with a polynomial (in the dimension) number of queries
per round. In the majority of these settings and when the dimension of the space is polynomial
in the inverse target accuracy, our lower bounds match the oracle complexity of sequential convex
optimization, up to at most a logarithmic factor in the dimension, which makes them (nearly) tight.
Prior to our work, lower bounds for parallel convex optimization algorithms were only known in
a small fraction of the settings considered in this paper, mainly applying to Euclidean (`2) and `∞
spaces. Our work provides a more general and streamlined approach for proving lower bounds in
the setting of parallel convex optimization.
Keywords: Lower bounds, convex optimization, parallel algorithms, randomized algorithms

1. Introduction

Given the scale of modern datasets resulting in extremely large problem instances, an attractive
approach to reducing the time required for performing computational tasks is via parallelization.
Indeed, many classical problems in computer science are well-known to be solvable in polylogarith-
mic number of rounds of parallel computation, with polynomially-bounded number of processors.

When it comes to convex optimization, parallelization is in general highly beneficial in com-
puting local function information (at a single point from the feasible set), such as its gradient or
Hessian, and can generally be exploited to improve the performance of optimization algorithms.
However, a natural barrier for further speedups is parallelizing the exploration of the feasible set.
This leads to the following question:

Is it possible to improve the oracle complexity of convex optimization via parallelization?

Here, oracle complexity is defined as the number of adaptive rounds an algorithm needs to query
an arbitrary oracle providing local information about the function, such as, e.g., its value, gradi-
ent, Hessian, or a Taylor approximation at the queried point from the feasible set, before reaching
a solution with a specified accuracy. Most of the commonly used optimization methods, such as,
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e.g., gradient descent, mirror descent, Newton’s method, the ellipsoid method, Frank-Wolfe, and
Nesterov’s accelerated method, all work in this local oracle model.

The study of parallel oracle complexity of convex optimization was initiated by Nemirovski
(1994). In this work, it was shown that for deterministic nonsmooth Lipschitz-continuous optimiza-
tion over the `∞ ball, it is not possible to attain polylogarithmic parallel round complexity with
polynomially many processors. Since the work of Nemirovski (1994) and until very recently, there
has been no further progress in obtaining lower bounds for other settings, such as, e.g., the setting of
randomized algorithms and weakly/strongly smooth optimization over more general feasible sets.

Very recently, motivated by the applications in online learning, local differential privacy, and
adaptive data analysis, lower bounds for parallel convex optimization over the Euclidean space
have been obtained in Smith et al. (2017); Balkanski and Singer (2018); Woodworth et al. (2018);
Duchi et al. (2018). Our main result shows that it is not possible to improve the oracle complexity of
convex optimization via parallelization, for deterministic or randomized algorithms, different levels
of smoothness, and essentially all interesting geometries – general `p spaces for p ∈ [1,∞], together
with their matrix spectral analogues, known as Schatten spaces, Schp. The resulting lower bounds
are robust to enlargements of the feasible set, and thus apply in the unconstrained case as well. This
is a much more general setting than previously addressed in the literature. The general `p settings
considered in this paper are of fundamental interest. For example, `1-setups naturally appear in
sparsity-oriented learning applications; Sch1 (a.k.a. nuclear norm) appears in matrix completion
problems Nesterov and Nemirovski (2013); finally, smooth `∞-setups have been used in the design
of fast algorithms for network flow problems Lee et al. (2013); Kelner et al. (2014).

1.1. Our Results

Our results rule out the possibility of improvements by parallelization, showing that, in high dimen-
sions, sequential methods are already optimal for any amount of parallelization that is polynomial
in the dimension.1 Our approach is to provide a generic lower bound for parallel oracle algorithms
and use reductions between different classes of optimization problems. Below, ε > 0 is the target
accuracy, K is the number of parallel queries per round, and d is the dimension.

Main Theorem (Informal) Unless K is exponentially large in the dimension d, any (possibly ran-
domized) algorithm working in the local oracle model and querying up toK points per round, when
applied to the following classes of convex optimization problems over `p balls and Schp balls:

• Nonsmooth (Lipschitz-continuous) minimization for 1 < p <∞ and d = Ω(poly( 1
εp+p/(p−1) ));

• Smooth (Lipschitz-continuous gradient) minimization for 2 ≤ p ≤ ∞ and d = Ω(poly(1
ε ));

• Weakly-smooth (Hölder-continuous gradient) minimization for 2 ≤ p ≤ ∞ and d = Ω(poly(1
ε ))

takes asymptotically at least as many rounds to reach an ε-approximate solution as it would take
without any parallelization, up to, at most, a 1/ln(d) factor.

As mentioned before, our result easily extends to unconstrained optimization over `p normed spaces.
The small subset of the possible cases not included in the theorem are off by small factors and are

1. Ruling out parallelization via an exponential number of queries is unlikely, since such a high number of queries
would, in general, allow an algorithm to construct an ε-net of the feasible set and choose the best point from it.
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Function
class p = 1 1 < p < 2 2 ≤ p <∞ p =∞

Nonsmooth
(κ = 0)

Ω
(

1
ε2/3

)
Ω
(

1
ε2

)
Ω
(

1
εp

)
Ω
((

ε2d
ln(dK/γ)

)1/3)
(∗)

Smooth
(κ = 1) Ω

(
1

ln(d)ε2/5

)
Ω
(

1
ln(d)ε2/5

)
Ω
(

1
min{p,ln(d)}εp/(p+2)

)
Ω
(

1
ln(d)ε

)
Table 1: High probability lower bounds for parallel convex optimization, in the `dp and Schdp setups. Here, d

is the dimension, ε is the accuracy, K is the number of parallel queries per round, and 1− γ is the
confidence. Except for (∗), the high dimensional regime requires d = Ω(poly(1/ε, ln(K/γ))).

still very informative: they rule out the possibility of any significant improvement in the round
complexity via parallelization (see Table 1 and the discussions in Sections 1.2 and 3).

To present the results in a unified manner, we use the definition of weakly-smooth functions, i.e.,
functions with κ-Hölder-continuous gradient, which interpolates between the classes of nonsmooth
(κ = 0) and smooth functions (κ = 1) (see Section 1.4 for a precise definition). These two special
cases are summarized in Table 1. For the precise statements encompassing the weakly-smooth cases
(κ ∈ (0, 1)) as well as the specific high-dimensional regime for d, see Section 3.

The largest gap obtained by our results is in the nonsmooth `1-setup. Here, the Ω(1/ε2/3) bound
comes from a reduction from the `∞ case, which explains the discontinuity in the first row of the
table. We also consider a non-standard setting of `p-Lipschitz nonsmooth optimization for p ∈ [1, 2)
over an `2 ball inscribed in the unit `p ball. Even in this smaller domain the complexity is Ω(1/ε2),
which provides a strong evidence of higher complexity for the `1-setting.

1.2. Overview of the Techniques

Most of the lower bounds for large-scale convex optimization in the literature (e.g., Nemirovsky
and Yudin (1983); Guzmán and Nemirovski (2015); Woodworth et al. (2018); Balkanski and Singer
(2018)) are based on the construction of a hard problem instance defined as the maximum of affine
functions. Each affine function fi is defined by its direction vector zi and offset δi. Examples of
the direction vectors that are typically used in these works include signed orthant vectors, signed
Hadamard bases, uniform vectors from the unit sphere and scaled Rademacher sequences. At an
intuitive level, a careful choice of these affine functions prevents any algorithm from learning more
than one direction vector zi per adaptive round. At the same time, an appropriately chosen set of
affine functions ensures that the algorithm needs to learn all of the vectors zi before being able to
construct an ε-approximate solution. We take the same approach in this paper.

Most relevant to our work are the recent lower bounds for parallel convex optimization over
Euclidean (`2) spaces Balkanski and Singer (2018); Woodworth et al. (2018), which are tight in the
large-scale regime. In these works, the argument about learning one vector zi at a time is derived
by an appropriate concentration inequality, while the upper bound on the optimal objective value is
obtained from a good candidate solution, built as a combination of the random vectors. However,
there is no obvious way of generalizing the lower bounds for the Euclidean setting to the more
general `p geometries. For example, in the `p-setup for p > 2, these arguments only lead to a lower
bound of Ω(1/ε2), which is far from the sequential complexity Θ(1/εp). On the other hand, the
use of relationships between the `p norms leads to uninformative lower bounds. In particular, for
p ∈ [1, 2), the appropriate application of inequalities relating `p norms needs to be done for both
feasible sets (relating ‖ · ‖p and ‖ · ‖2) and the Lipschitz (or smoothness) constants (relating ‖ · ‖p∗
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and ‖ · ‖2, where p∗ = p
p−1 ). Unless p ≈ 2, this approach leads to a degradation in the lower bound

by a polynomial factor in d. For example, if `2 case is used to infer a lower bound for the `1 setup,
the resulting lower bound would be of the order 1/(dε2) and 1/(d

√
ε), for nonsmooth and smooth

cases, respectively. Such quantities are are far from the sequential lower bounds Ω(ln(d)/ε2) and
Ω(1/

√
ε) applying to the nonsmooth and smooth settings, respectively.

Our lower bounds are based on families of random vectors z1, . . . , zM which: (i) satisfy con-
centration along their marginals, so the “learning one vector per round” argument applies; and (ii)
lead to a large negative optimal value via a minimax duality argument. Each particular regime will
require different constructions of the random vectors, that we describe in Section 3. However, all
lower bounds will be obtained from a general result (Theorem 2) that shows that (i) and (ii) suffice
to get a lower bound for parallel convex optimization and completely streamlines the analysis.

1.3. Related Work

As mentioned earlier, until very recently, the literature on black-box parallel convex optimization
was extremely scarce. Here we summarize the main lines of work.
Worst-case Lower Bounds for Sequential Convex Optimization. Classical theory of (sequen-
tial) oracle complexity in optimization was developed by Nemirovsky and Yudin (1983). This work
provides sharp worst-case lower bounds for nonsmooth optimization, and a suboptimal (and rather
technical) lower bound for randomized algorithms, for `p settings, where 1 ≤ p ≤ ∞. Smooth
convex optimization in this work is addressed by lower bounding the oracle complexity of convex
quadratic optimization, which only applies to deterministic algorithms and the `2 setup. Nearly-
tight lower bounds for deterministic non-Euclidean smooth convex optimization were obtained only
recently Guzmán and Nemirovski (2015), mostly by the use of a smoothing of hard nonsmooth fam-
ilies. It is worth mentioning that none of these lower bounds are robust to parallelization. Further,
prior to our work, there were no known lower bounds against sequential (K = 1) randomized algo-
rithms in the general setting of weakly and strongly smooth minimization over `p spaces. The only
exception is the lower bound for (strongly) smooth minimization over the Euclidean (`2) spaces,
due to Woodworth and Srebro (2016).
Parallel Convex Optimization. The study of parallel oracle complexity in convex optimization was
initiated in Nemirovski (1994), proving a worst-case lower bound Ω

(
( d

ln(2Kd))1/3 ln(1/ε)
)

on the
complexity in the `∞-setup. The argument from Nemirovski (1994) is based on a sequential use of
the probabilistic method to generate the subgradients of a hard instance and applies to an arbitrary
dimension beyond a fixed constant. The author conjectured that this lower bound is suboptimal,
which still remains an open problem.

More recently, several lower bounds have been obtained for various settings of parallel convex
optimization, but all applying only to either box (`∞-ball) or `2-ball constrained Euclidean spaces.
In particular, Smith et al. (2017) showed that poly-log in 1/ε oracle complexity is not possible with
polynomially-many in d parallel queries for nonsmooth Lipschitz-continuous minimization. This
bound was further improved by Duchi et al. (2018), in the context of stochastic minimization with
either Lipschitz-continuous or smooth and strongly convex objectives.

Tight lower bounds in the Euclidean setup have been obtained in Woodworth et al. (2018) and
Balkanski and Singer (2018). Both of these works provide a tight lower bound Ω(1/ε2) for ran-
domized algorithms and nonsmooth Lipschitz objectives, when the dimension is sufficiently high
(polynomial in 1/ε, which is similar to our setting). The work in Balkanski and Singer (2018)
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further considers strongly convex Lipschitz objectives. While this setting is not considered in our
work, we note that it is possible to incorporate it in our framework using the ideas from Srebro and
Sridharan (2012). To obtain lower bounds that apply against randomized algorithms, Balkanski and
Singer (2018) uses an intricate adaptivity argument. Our lower bound is based on a more direct
application of the probabilistic method, and is arguably simpler.

The work in Woodworth et al. (2018) further considers an extension to stochastic and smooth
objectives. However, the “statistical term” in Woodworth et al. (2018) comes from a typical mini-
max estimation bound, and its accuracy can, in fact, be reduced by parallelization at a rate 1/

√
N ,

where N is the total number of queries. Their construction of subgradients for the hard function is
based on random vectors from the unit sphere; our use of Rademacher sequences makes the analy-
sis simpler and more broadly applicable. On the other hand, Woodworth et al. (2018) also provides
lower bounds for (non-local) prox oracles, which are not considered in this paper.

1.4. Notation and Preliminaries

Vector Spaces and Classes of Functions. Let (E, ‖ · ‖) be a d-dimensional normed vector space,
where d < ∞. We denote vectors in this space by bold letters, e.g., x,y, etc., and by (E∗, ‖ · ‖∗)
its dual space. We use the bracket notation 〈z,x〉 to denote the evaluation of the linear functional
z ∈ E∗ at a point x ∈ E; in particular, ‖z‖∗ = sup‖x‖≤1 〈z,x〉. We denote the ball of E centered
at x and of radius r by B‖·‖(x, r), and the unit ball by B‖·‖ := B‖·‖(0, 1). Our most important case
of study is the space `dp = (Rd, ‖ · ‖p), where 1 ≤ p ≤ ∞. For simplicity, in this case we use the
notation Bdp(x, r) := B‖·‖p(x, r). The dual space of `dp is isometrically isomorphic to `dp∗ , where
p∗ = p/(p − 1); in this case, the bracket is just the standard inner product in Rd. Other important
example is the case of Schatten spaces: Schdp = (Rd×d, ‖ · ‖Sch,p). Here, for any X ∈ Rd×d,
‖X‖Sch,p = (

∑d
i=1 σi(X)p)1/p, where σ1(X), . . . , σd(X) are the singular values ofX .

Given κ ≥ 0, we use Fκ(E,‖·‖)(µ) to denote the class of convex functions f : E→ R such that∥∥Dbκ+1cf(y)−Dbκ+1c(x)
∥∥

op
≤ µ‖y − x‖κ+1−bκ+1c (∀x, y ∈ E), (1)

where Dt is the tth derivative operator and ‖A‖op := sup‖h‖≤1 |A[h; . . . ;h]| is the induced opera-
tor norm on symmetric multilinear forms w.r.t. ‖ · ‖.

To clarify this definition, let us provide some useful examples: (i) κ = 0 corresponds to bounded
variation of subgradients, ‖∇f(x) − ∇f(y)‖∗ ≤ µ. This class contains all µ/2-Lipschitz convex
functions, but is also invariant under affine perturbations;2 (ii) κ ∈ (0, 1) corresponds to Hölder
continuous gradients, ‖∇f(y) − ∇f(x)‖∗ ≤ µ‖y − x‖κ; (iii) κ = 1 corresponds to Lipschitz-
continuity of the gradient, ‖∇f(y) − ∇f(x)‖∗ ≤ µ‖y − x‖; and (iv) κ = 2 corresponds to
Lipschitz-continuous Hessian, ‖Hf(y)−Hf(x)‖op ≤ µ‖y − x‖.

Optimization Problems, Algorithms, and Oracles. We consider convex programs of the form

min{f(x) : x ∈ X},

where f : E→ R is a convex function from a given class of objectivesF (such as the ones described
above), and X ⊆ E is convex and closed. We denote by f∗ the optimal value of the problem. Our
goal is, given an accuracy ε > 0, to find an ε-solution; i.e., an x ∈ X such that f(x)− f∗ ≤ ε.

2. Our lower bounds for nonsmooth optimization are in fact given by classes of Lipschitz convex functions, but to keep
the notation unified we use (1) instead.
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We study complexity of convex optimization in the oracle model of computation. In this model,
the algorithm queries points from the feasible set X , and it obtains partial information about the
objective via a local oracle O. Given objective f ∈ F , and a query x ∈ X , we denote the oracle
answer by Of (x) (when f is clear from the context we omit it from the notation). We say that an
oracle O is local if given two functions f, g : E→ R such that f ≡ g in the neighborhood of some
point x ∈ X , it must be that Of (x) = Og(x). Notable examples of local oracles are the gradient
over the class Fκ‖·‖(µ), with κ > 0;3 and a κth-order Taylor expansion over the class Fκ‖·‖(µ), with
κ being a non-negative integer.

In the K-parallel setting of convex optimization Nemirovski (1994), an algorithm works in
rounds. At every round, it performs a batch of queries Xt = {xt1, . . . ,xtK}, for xtk ∈ X (∀k ∈
[K]), where we have used the shorthand notation k ∈ [K] to denote k ∈ {1, . . . ,K}. Given the
queries, the local oracle O replies with a batch of answers: Of (Xt) := (Of (xt1), . . . ,Of (xtK)).

The algorithm may work adaptively over rounds: every batch of queries may depend on queries
and answers from previous rounds:

Xt+1 = U t+1(X1,Of (X1), . . . , Xt,Of (Xt)) (∀t ≥ 1), (2)

where the first round of queries X1 = U1(∅) is instance-independent (the algorithm has no specific
information about f at the beginning). Functions (U t)t≥1, may be deterministic or randomized, and
this would characterize the deterministic or randomized nature of the algorithm. We are interested
in the effect of parallelization on the complexity of convex optimization in the described oracle
model. Notice that K = 1 corresponds to the traditional notion of (sequential) oracle complexity.

Notion of Complexity. Let O be a local oracle for a class of functions F , and let AK(O) be
the class of K-parallel deterministic algorithms interacting with oracle O. Given ε > 0, f ∈ F ,
and A ∈ AK(O), define the running time T (A, f, ε) as the minimum number of rounds before
algorithm A finds an ε-solution. The notion of complexity used in this work is known as the high
probability complexity, defined as:

ComplγHP(F ,X ,K, ε) = sup
F∈∆(F)

inf
A∈AK(O)

inf{τ : Pf∼F [T (A, f, ε) ≤ τ ] ≥ γ},

where γ ∈ (0, 1) is a confidence parameter and ∆(F) is the set of probability distributions over
the class of functions F . The high probability complexity subsumes other well-known notions of
complexity, including distributional, randomized, and worst-case, in the local oracle model. More
details about the relationship between these different notions of complexity are provided in Ap-
pendix A.1 and can also be found in Braun et al. (2017).

Additional Background. Additional background and statements of several useful definitions and
facts that are important for our analysis are provided in Appendix A.

1.5. Organization of the Paper

Next section provides a general lower bound that is the technical backbone of all the results in this
paper. Section 3 then overviews the applications of this result in the general `p setups. Omitted
proofs from Sections 2 and 3 are provided in Appendices B and C, respectively. We conclude in
Section 4 with a discussion of obtained results and directions for future work.

3. When κ = 0, not every subgradient oracle is local. However, this is a reasonable assumption for black-box algorithms
(e.g, when we cannot access a dual formulation, or a smoothing of the objective).
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2. General Complexity Bound

To prove the claimed complexity results from the introduction, we will work with a suitably chosen
class of random nonsmooth Lipschitz-continuous problem instances. The results for the classes of
problems with higher order of smoothness will be established (mostly) through the use of smoothing
maps. In particular, we will make use of the following definition of locally smoothable spaces:

Definition 1 A space (E, ‖ · ‖) is (κ, η, r, µ)-locally smoothable if there exists a mapping

S : F0
(E,‖·‖)(1) → Fκ(E,‖·‖)(µ)

f 7→ Sf
,

referred to as the local smoothing, such that: (i) ‖f − Sf‖∞ ≤ η; and (ii) if f, g ∈ F0
‖·‖(1) and

x ∈ E are such that f |B‖·‖(x,2r) ≡ g|B‖·‖(x,2r) then Sf |B‖·‖(x,r) ≡ Sg|B‖·‖(x,r).

Namely, a space is (κ, η, r, µ)-locally smoothable if there exists a mapping S that maps all nons-
mooth functions to functions in Fκ‖·‖(µ), such that a function f and its map Sf do not differ by
more than η when evaluated at any point from the space, and the map preserves the equivalence
of functions over sufficiently small neighborhoods of points from the space. This last property is
crucial to argue about the behavior of a local oracle.

The following theorem is the backbone of all the results from this paper: all complexity bounds
will be obtained as its applications.

Theorem 2 Let (E, ‖ · ‖) be a normed space and X ⊇ B‖·‖ be a closed and convex subset of
E. Suppose there exist a positive integer M , independent random vectors z1, . . . , zM supported on

B‖·‖∗ , ε > 0, α > 0, and 0 < γ < 1/2, such that, if we define δ̄ = 16

√
ln(MK/γ)

α , we have:

(a) (E, ‖ · ‖) is (κ, η, r, µ)-locally smoothable, with µ > 0, 0 < r ≤ δ̄/8, and η ≤ εµ/4;

(b) P
[

infλ∈∆M

∥∥∑
i∈[M ] λiz

i
∥∥
∗ ≤ 4µε

]
≤ γ;

(c) For any i ∈ [M ], x ∈ B‖·‖, and δ > 0

P[
〈
zi,x

〉
≥ δ] ≤ exp{−αδ2} and P[〈zi,x〉 ≤ −δ] ≤ exp{−αδ2};

(d) δ̄ ≤ µε/M .

Then, the high probability complexity of class Fκ(E,‖·‖)(1) on X satisfies

Compl2γHP(Fκ(E,‖·‖)(1),X ,K, ε) ≥M.

Remark 3 Theorem 2 is stated for domains containing the unit ball and function class Fκ(E,‖·‖)(1).
Handling arbitrary radius R > 0 and regularity constant µ can be achieved by a simple rescaling
and change of variables, which we omit for space considerations. The result is that if the lower
bound forR = µ = 1 isM(ε), then the lower bound for arbitraryR,µ > 0 would beM(ε/(µRκ+1)).

Remark 4 Even though Theorem 2 is stated for the standard setting, in which X contains the unit
ball w.r.t. the norm of the space, ‖ · ‖, it is possible to extend it in a generic way to non-standard
settings in which these two norms do not agree. For an example of such a setting, see Theorem 9.
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To prove Theorem 2, we need to build a distribution over Fκ(E,‖·‖)(1) such that any K-parallel
deterministic algorithm interacting with a local oracle on X needs M rounds to reach an ε solution,
with probability 1− 2γ. We propose a family of objectives as follows. Given z1, . . . , zM as in the
theorem, consider the problem (P) min{F (x) : x ∈ X}, where:

F (x) :=
1

µ
S
(

max
{1

2
max
i∈[M ]

[ 〈
zi, ·
〉
− iδ̄

]
, ‖ · ‖ − 1

2
(3(1 + r) +Mδ̄)

})
(x), (3)

By construction, F ∈ Fκ‖·‖(1) surely. Observe that, since ‖zi‖∗ ≤ 1, for all i:

(O1) When ‖x‖ ≤ 1 + 2r, it must be 1/2 maxi∈[M ]

[ 〈
zi,x

〉
− iδ̄

]
≥ ‖x‖− 1/2(3(1 + r) +Mδ̄);

i.e., within the unit ball, F is only determined by its left term (and not the norm term).

(O2) When ‖x‖ ≥ 3(1+r)+(M−1)δ̄, it must be 1/2 maxi∈[M ]

[ 〈
zi,x

〉
−iδ̄

]
≤ ‖x‖−1/2(3(1+

r)−Mδ̄); i.e., outside the ball of radius 3(1 + r) + (M − 1)δ̄ ≤ 4,4 F is only determined by
the norm term (and not by z1, . . . , zM ).

We claim that any K-parallel deterministic algorithm that works in M rounds, with probability
1− 2γ, will fail to query a point with optimality gap less than ε. This suffices to prove the theorem.
The proof consists of three main parts: (i) establishing an upper bound on the minimum value F ∗

of (3), which holds with probability 1 − γ, (ii) establishing a lower bound on the value of the
algorithm’s output min{F (x) : x ∈

⋃
t∈[M ]X

t}, which holds with probability 1 − γ, and (iii)
combining the first two parts to show that the optimality gap min{F (x)−F ∗ : x ∈

⋃
t∈[M ]X

t} of
the best solution found by the algorithm after M rounds is higher than ε, with probability 1 − 2γ.
The full proof is provided in Appendix B.

3. Lower Bounds for Parallel Convex Optimization over `p Balls

In this section, we show how the general complexity bound from Theorem 2 can be applied to obtain
several lower bounds for parallel convex optimization. Our main case of study will be `dp spaces.

Remark 5 In what follows, we will prove several lower bounds for `p-setups. Interestingly, we
can obtain analog lower bounds for Schatten spaces. This can be obtained by simply noting that
the restriction of the Schatten norm to diagonal matrices coincides with ‖ · ‖p, and therefore we
can embed Bdp , as well as Fκ

`dp
(1) through this restriction (for more details, we refer the reader to

Guzmán and Nemirovski (2015)). This embedding has a quadratic cost in the large-scale regime;
in particular, it remains polynomial in 1/ε and ln(K/γ).

3.1. Nonsmooth Optimization

To apply Theorem 2 in the nonsmooth case, we do not need to apply any smoothing at all. This
is formally stated as “any normed space is (0, 0, 0, 1)-locally smoothable,” and its consequence is
that Property (a) of the theorem is automatically satisfied. Thus, it suffices to construct a probability
distribution over zi’s that under suitable constraints on α and the number of rounds M satisfies
Assumptions (b) and (c) from the theorem. Assumption (d) simply constrains M by M ≤ ε

δ̄
.

4. From (b) we may assume that 4µε ≤ 1, and then using the bounds on r and δ̄ from (a) and (d), we get the bound.

8



LOWER BOUNDS FOR PARALLEL AND RANDOMIZED CONVEX OPTIMIZATION

Let ri denote an independent (over i) d-dimensional vector of independent Rademacher entries
(i.e., a vector whose entries take values ±1 w.p. 1/2, independently of each other). Let IiL denote
the d × d diagonal matrix, whose L ≤ d diagonal entries take value 1, while the remaining entries
are zero. The positions of the non-zero entries on the diagonal of IiL will, in general, depend on i,
and will be specified later. Given p ≥ 1, vectors zi ∈ Bdp∗ are then defined as:

zi =
1

L1/p∗
IiLr

i. (4)

3.1.1. BOUNDS FOR 1 ≤ p ≤ 2

When p ∈ [1, 2], it suffices to choose L = d, so that zi = d−1/p∗ri. We start by proving a
lower bound that applies in the regime when d = Ω(poly(log(K/γ), 1/εp

∗
)). Hence the bound

deteriorates as p tends to one, and, in particular, does not apply to the case when p = 1. However,
we will also show that it is possible to derive a lower bound for a restricted feasible set: the lower
bound will apply to Lipschitz-continuous nonsmooth minimization over an `2 ball inscribed in the
unit `p ball and it will apply in the regime of d = Ω(poly(log(K/γ), 1/ε)). This provides a strong
indication that obtaining speedups from parallelizing convex optimization is not any easier when
p is close to 1 than in other regimes of p. The following lemma gives a sufficient condition for
assumption (b) from Theorem 2 to hold. Its proof is provided in Appendix C.

Lemma 6 Let 1 < p ≤ 2 and let z1, . . . , zM be chosen according to Eq. (4), where

M ≤ min
{ 1

200ε2
,
d/12− ln(1/γ)

ln(3/ε)

}
,

then for all γ ∈ (1/poly(d), 1) : P[minλ∈∆M
‖
∑

i∈[M ] λiz
i‖p∗ ≤ 4ε] ≤ γ.

To obtain the claimed lower bound for the nonsmooth case, we only need to establish the con-
centration of inner products within the feasible domain. When p > 1, this is obtained as a simple
application of Hoeffding’s Inequality. These two facts provide the claimed lower bound.

Theorem 7 Let 1 < p ≤ 2 and X ⊇ Bdp . Let ε ∈ (0, 1/2) and γ ∈ (1/poly(d), 1). Then:

ComplγHP(F0
`dp

(1),X ,K, ε) ≥M := min
{ 1

200ε2
,

εd1/p∗

32
√

ln(MK/γ)

}
.

Proof We verify the conditions of Theorem 2. Recall that in the nonsmooth case condition (a) is
automatically satisfied. For (b), by a direct application of Hoeffding’s Inequality, for all x ∈ Bdp

P[〈zi,x〉 > δ] = P[〈ri,x〉 > d1/p∗δ] ≤ exp{−d2/p∗δ2}.

In particular, we have that α = d2/p∗ suffices to satisfy (b). Property (c) is obtained from Lemma 6,
which requires bounding M according to the lemma. Assumption (d) holds as long as M ≤ ε/δ̄.

As δ̄ = 16

√
ln(MK/γ)

α , it is sufficient to require: M ≤ εd1/p
∗

32
1√

ln(MK/γ)
.

9
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Remark 8 Even though M is implicitly defined in Theorem 7, an explicit definition for M can
be obtained by using a looser bound ln(dK/γ) instead of ln(MK/γ). We keep this definition to
highlight the large scale regime for d. In particular, the high-dimensional regime is determined by
solving for d the inequality εd1/p

∗

32
√

ln(MK/γ)
≥M, where M = 1

200ε2
.

We can conclude from Theorem 7 that as long as d is “sufficiently large” (namely, as long as
d = Ω(

(√
ln(K/(εγ))/ε3

)p∗
)), any ε-approximate K-parallel algorithm takes Ω(1/ε2) iterations,

which is asymptotically optimal – this bound is tight in the sequential case (when K = 1) and is
thus unimprovable Nemirovsky and Yudin (1983). Unfortunately, this lower bound becomes unin-
formative when p∗ = Ω(ln d); in particular, when p = 1.

A Lower Bound for a Nonstandard Setting. As we mention above, none of the techniques of
this paper is able to provide a Ω(1/ε2) lower bound for the nonsmooth `1-Lipschitz optimization
over a unit `1 ball. However, we can show a slightly weaker result: Namely, that `1-Lipschitz convex
optimization over a subset of the Bd1-ball has parallel complexity Ω(1/ε2). In fact, this result holds
more generally for `p-Lipschitz convex optimization, where p ∈ [1, 2],5 over an `2 ball inscribed in
the unit `p ball. The proof is provided in Appendix C.

Theorem 9 Let ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1), and p ∈ [1, 2]. Then:

ComplγHP(F0
`dp

(1),Bd2(1/d1/p−1/2),K, ε) ≥M := min
{ 1

200ε2
,

εd1/2

32
√

ln(MK/γ)

}
.

3.1.2. BOUNDS FOR p ≥ 2

It is possible to extend Lemma 6 to the case of p ≥ 2. However, due to the upper bound on M from
Lemma 6, the best dimension-independent lower bound on the number of queries we could obtain
in this setting would be of the order 1/ε2. Given that in the sequential setting the best dimension-
independent lower bound is Ω(1/εp), we need a stronger result than what we obtained in Lemma 6.

This is achieved through a different construction of zi’s, where these vectors are no longer
supported on all d coordinates, but only on L < d of them; moreover, we will choose their supports
to be disjoint. The construction is as follows. Let {Ji}Mi=1 be a collection of subsets of {1, . . . , d}
such that |Ji| = L and Ji ∩ Ji′ = ∅, ∀i 6= i′ (here, we assume that d ≥ ML). Set IiL = diag(1Ji),
i.e., the (j, j) element of the diagonal matrix IiL is 1 if j ∈ Ji and 0 otherwise. As before (see (4)),
zi is defined as zi = 1

L1/p∗ I
i
Lr

i, where (rij)i∈[M ],j∈[d] is an independent Rademacher sequence.
Our next result addresses the nonsmooth p ≥ 2 case, by a direct application of Theorem 2 to

our construction above. More details are provided in Appendix C.

Theorem 10 Let p ≥ 2, X ⊇ Bdp , and ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M := min
{ 1

(4ε)p
,
ε2/3

8

( d

ln(MK/γ)

)1/3}
.

In particular we have that the required number of queries to reach an ε-approximate solution
is Ω( 1

εp ), as long as d = Ω( ln(K/γ)+p ln(1/ε)
ε3p+2 ). When p → ∞, the right term in the definition of

M dominates, and we have M = Ω
(
ε2/3

(
d

ln(dK/γ)

)1/3)
, which, for constant ε, matches the best

known bound for deterministic algorithms in this setting, due to Nemirovski (1994).

5. When p = 2, the inscribed `2 ball is exactly the unit `p ball.

10
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3.2. Smooth and Weakly Smooth Optimization

To apply Theorem 2 and obtain lower bounds for (weakly) smooth classes of functions, we need to
design an appropriate local smoothing. This is indeed possible for p ≥ 2, as we show below.

Remark 11 Here we list some known local smoothings from the literature.

1. Let 2 ≤ p ≤ ∞, d ∈ N, and 0 ≤ κ ≤ 1. Then, for any η > 0, the space `dp = (Rd, ‖ · ‖p)
is (κ, η, η, µ)-locally smoothable when µ = 21−κ(min{p, ln d}/η)κ. We prove this in the
Appendix A, following Guzmán and Nemirovski (2015).

2. Let d, κ ∈ N and η > 0. Then `d2 is (κ, κη, κη, (d/η)κ)-locally smoothable. This is achieved
by a sequential integral convolution w.r.t. the uniform kernel on the ball of radius η Agarwal
and Hazan (2018). They also show that for 1 ≤ L ≤ d, the restriction of S to the set:{

f : Rd → R : f ∈ F0
`d2

(1), (∃Γ subspace of dim. L) (∀y ∈ Γ⊥) f(x) = f(x+ y)
}
,

satisfies an improved (κ, κη, κη, (L/η)κ) local smoothing property.

Our next result addresses the smooth `dp-setup when p ≥ 2. Its proof is provided in Appendix C.

Theorem 12 Let p ≥ 2, X ⊇ Bdp , and ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M := min

{( 1

23+4κ ε (min{p, ln(d)})κ
) p

1+κ(1+p)
,

d

29 ln(MK/γ)

(
2

1+3p+2κ(1+p)
1+p min{p, ln(d)}κε

) 2(1+p)
1+κ(1+p)

}
.

The bound from Theorem 12 may be difficult to read, so let us point out a few notable special cases:

• When κ = 0, p → ∞, the bound is uninformative, and one should instead use Theorem 10.
This is a consequence of the particular choice of L in the proof, and its dependence on κ.

• When κ ∈ (0, 1], p→∞, if d = Ω
(

(ln(Kγ ) + 1
κ ln(1

ε ))(1
ε )

3
κ

)
, then M = 1

ln(d)( 1
23+4κε

)1/κ,

which is tight up to a factor 1
ln(d) and achieved forK = 1 by Frank and Wolfe (1956) method.

• When κ = 0, p <∞, and d = Ω
(
(ln(K/γ) + p ln(1/ε))(1

ε )3p+2
)
, then M = ( 1

8ε)
p, which

is achieved for K = 1 by the Mirror-Descent method Nemirovsky and Yudin (1983).

• When κ = 1, p < ∞, and d = Ω
(
max{(ln(K/γ) + ln(1/ε))(1

ε )3, exp(p)}
)
, then M =

( 1
128pε)

p
p+2 . These bounds are unimprovable and are achieved for K = 1 by the Nemirovski-

Nesterov accelerated method Nemirovskii and Nesterov (1985); d’Aspremont et al. (2018).

Remark 13 The proof strategy of Theorem 12 for p = 2 can also be used to obtain lower bounds
for higher-order smooth convex optimization, following Agarwal and Hazan (2018). Namely, using
the sequential integral convolution smoothing from Remark 11, we can obtain analog lower bounds
as in Agarwal and Hazan (2018), that also apply to parallel algorithms. We defer the details of this
simple corollary to the full version of the paper.
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Unfortunately, the smoothing approach is not immediately applicable when 1 ≤ p < 2, due to
the fact that there are no known regularizers for an infimal convolution smoothing. This is related
to the fact that these spaces are not 2-uniformly smooth (see, e.g., Ball et al. (1994)) which leads to
a natural barrier for the approach. However, this difficulty has been circumvented by Guzmán and
Nemirovski (2015), where lower bounds in this regime are shown by a reduction from the p = ∞
case, specifically through a linear embedding of problem classes. We follow the same approach,
and for the sake of brevity, we only provide a proof sketch in Appendix C.

Theorem 14 Let 1 ≤ p < 2, 0 < κ ≤ 1, X ⊇ Bdp , ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then, there

exist constants ν, c(κ) > 0, such that if d ≥ 1
ν

⌈
2(ln(νdK/γ))

2κ
3+2κ

(
1
ε

) 6
3+2κ

⌉
, then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M :=
cκ

ln(1/ε) + κ ln ln(dK/γ)

(1

ε

) 2
3+2κ

.

Let us consider some special cases of the bound from Theorem 14. Suppose that d is sufficiently
high-dimensional so that the theorem applies (note that d = Ω(ln(dK/γ)ε−2) suffices). When κ =
1, then M = Ω( 1

ln(1/ε)+ln ln(dK/γ)(1
ε )2/5). This bound does not match the sequential complexity

Θ(1/
√
ε) of this problem – apart from the logarithmic factors, the exponent in 1/ε is off by 1/10.

This is a direct consequence of the right term in Theorem 12 not being large enough for p→∞, as
the bound in Theorem 14 is obtained from this case. Further improvements of this term would also
improve the bound for the nonsmooth `∞ case of Nemirovski (1994) for, at least, some regimes of ε.
Similarly, when κ = 0, the exponent in 1/ε is 2/3, which is off by additive 4/3 from the sequential
complexity of this setting. This is aligned with the intuition that smooth lower bounds have a milder
high-dimensional regime than nonsmooth ones (which holds in the sequential case). This way, the
embedding approach is stronger on higher levels of smoothness.

The main difficulty in obtaining tighter bounds in these regimes (`∞ and its implications on
smooth and weakly-smooth p ∈ [1, 2) settings) is in relaxing Assumption (d) from Theorem 2. It
seems unlikely that this would be possible without completely changing the hard instance used in its
proof (as Assumption (d) is crucially used in bounding below the optimality gap), and would likely
require a fundamentally different approach from the one used here, as well as in the related work.

4. Conclusion

This paper rules out the possibility of significantly improving the complexity of convex optimization
via parallelization in the exploration of the feasible set with polynomially-bounded in the dimension
number of queries per round, for essentially all interesting geometries and classes of functions with
different levels of smoothness. Most of the obtained lower bounds match the sequential complexity
of these problems, up to, at most, a logarithmic factor in the dimension, and are, thus, (nearly) tight.

However, our bounds only apply to the high-dimensional setting, where d = Ω(1/poly(ε)). In
the low-dimensional setting, the only bound we are aware of is in terms of worst-case complex-
ity (for deterministic algorithms) for nonsmooth optimization over the `∞ ball, due to Nemirovski
(1994). The bound is Ω(( d

ln(dK))1/3 ln(1/ε)). It was conjectured in Nemirovski (1994) that the cor-

rect bound for nonsmooth optimization over the `∞ ball should be Ω( d
ln(K) ln(1/ε)). Our analysis

recovers a bound similar to Nemirovski’s result in the stronger high probability complexity model,
but only for constant ε. We conjecture that in the low-dimensional setting of both (weakly-)smooth
and nonsmooth optimization the correct answer should be Ω( d

ln(K/γ) ln(1/ε)).
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Gábor Braun, Cristobal Guzman, and Sebastian Pokutta. Lower bounds on the oracle complexity
of nonsmooth convex optimization via information theory. IEEE Trans. Information Theory, 63
(7):4709–4724, 2017.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points I. arXiv preprint arXiv:1710.11606, 2017.

A. d’Aspremont, C. Guzmán, and M. Jaggi. Optimal affine-invariant smooth minimization algo-
rithms. SIAM Journal on Optimization, 28(3):2384–2405, 2018.

John Duchi, Feng Ruan, and Chulhee Yun. Minimax bounds on stochastic batched convex opti-
mization. In Proc. COLT’18, 2018.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quar-
terly, 3:95–110, 1956.
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Appendix A. Additional Background

For completeness, this section provides additional background and statements of some known facts
that are used in the proofs of our lower bounds.

A.1. Notions of Complexity in the Local Oracle Model

The worst-case oracle complexity is defined as:

ComplWC(F ,X ,K, ε) = inf
A∈AK(O)

sup
f∈F

T (A, f, ε).
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For the case of randomized algorithms, it can be shown Nemirovsky and Yudin (1983) that their
complexity is equivalent to the one obtained from the expected running time over mixtures of deter-
ministic algorithms. That means that we can define the randomized oracle complexity as:

ComplR(F ,X ,K, ε) = inf
R∈∆(AK(O))

sup
f∈F

EA∼R[T (A, f, ε)],

where ∆(B) is the set of probability distributions on the set B.
We may consider an even weaker notion of distributional oracle complexity, defined as

ComplD(F ,X ,K, ε) = sup
F∈∆(F)

inf
A∈AK(O)

Ef∼F [T (A, f, ε)].

In this case, it is important to note that lower bounds cannot be obtained from adversarial choices
of f , as the probability distribution on instances F must be set before the algorithm is chosen. It is
easily seen that:

ComplD(F ,X ,K, ε) ≤ ComplR(F ,X ,K, ε) ≤ ComplWC(F ,X ,K, ε).

Finally, given a confidence parameter 0 < γ < 1, high probability complexity is defined as:

ComplγHP(F ,X ,K, ε) = sup
F∈∆(F)

inf
A∈AK(O)

inf{τ : Pf∼F [T (A, f, ε) ≤ τ ] ≥ γ}.

Notice that a lower bound on the high probability complexity with confidence parameter γ gives a
lower bound on the distributional complexity, by the law of total probability

ComplD(F ,X ,K, ε) ≥ (1− γ)ComplγHP(F ,X ,K, ε).

All lower bounds in this work are for high probability complexity, with γ = 1/poly(d).

A.2. Geometry of `p Spaces

In the proof of Theorem 14, we make use Dvoretzky’s Theorem, on the existence of nearly Eu-
clidean sections of the ‖ · ‖p ball. Its full description and proof may be found in (Pisier, 1989,
Theorem 4.15). Here we state a concise version with what is needed for our results.

Theorem 15 (Dvoretzky) There exists a universal constant 0 < α < 1 such that for any d > 1,
there exists a subspace F ⊆ Rd of dimension at most αd and an ellipsoid E ⊆ F such that

1

2
E ⊆ Bdp ∩ F ⊆ E .

A.3. Smoothings

Claim 16 Let 2 ≤ p ≤ ∞, d ∈ N, and 0 ≤ κ ≤ 1. Then, for any η > 0, the space `dp = (Rd, ‖ ·‖p)
is (κ, η, η, µ)-locally smoothable when µ = 21−κ(min{p, ln d}/η)κ.

15



LOWER BOUNDS FOR PARALLEL AND RANDOMIZED CONVEX OPTIMIZATION

Proof First, we use the fact from (Guzmán and Nemirovski, 2015, Proposition 1) that `dp is (1, η, η, µ)-
locally smoothable with parameter µ̃ = min{p, ln d}/η. This can be achieved by infimal convolu-
tion smoothing

Sf(x) = inf
h∈Bp(0,η)

[f(x+ h) + φ(h)] (∀x ∈ Rd),

where φ(x) = 2‖x‖2r with r = min{p, 3 ln d} as a regularizer. Furthermore, in this reference it is
proved that if f is a 1-Lipschitz function, then not only Sf ∈ F1

`dp
(µ) but also Sf is 1-Lipschitz as

well; therefore, the following two inequalities hold for any x,y ∈ Rd

‖∇f(x)−∇f(y)‖1−κ∗ ≤ 21−κ

‖∇f(x)−∇f(y)‖κ∗ ≤ µ̃κ,

and multiplying these inequalities, we obtain ‖∇f(x)−∇f(y)‖∗ ≤ 21−κµ̃κ = µ.

A.4. Deviation Bounds

Here we state some specific probabilistic deviation bounds that we need for our results. The first
one is the left-sided Bernstein inequality, which may be found in (Wainwright, 2019, Chapter 2).

Theorem 17 (Left-Sided Bernstein Inequality) Let Y1, . . . , Yn be nonnegative independent ran-
dom variables, with finite second moment. Then, for any δ > 0,

P
[ n∑
k=1

(Yk − E[Yk]) ≤ −nδ
]
≤ exp

{
− nδ2

2
n

∑n
k=1 E[Y 2

k ]

}
.

We also remind the reader of the Khintchine inequality, which provides bounds for Lp moments
of Rademacher sequences (see, e.g., Haagerup (1981)).

Theorem 18 (Khintchine) Let 0 < p < ∞. There exist constants cp, c′p > 0 such that for any
x1, . . . , xL ∈ R, and r1, . . . , rL a Rademacher sequence

cp‖x‖2 ≤
(
E
∣∣∣ L∑
i=1

rixi

∣∣∣p)1/p
≤ c′p‖x‖2.

A.5. Packings and Cardinality of ε-Nets

To show that it is possible to satisfy the assumption of Lemma 20 in the proof of Theorem 2, we
will frequently rely on the following simple lemma, which follows by constructing an (ε/M)-net
w.r.t. `M∞ of the simplex, ∆M .

Lemma 19 If, ∀λ ∈ ∆M , P
[∥∥∑M

i=1 λiz
i
∥∥
∗ ≤ (c + 1)ε

]
≤ γ′ for ε ∈ (0, 1), c > 0, and

γ′ ∈ (0, 1), then:

P
[

min
λ∈∆M

∥∥ M∑
i=1

λiz
i
∥∥
∗ ≤ cε

]
≤
(3

ε

)M
γ′.
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Proof The proof follows by constructing an (ε/M)-net Γ w.r.t. the `∞ norm. In particular, let Γ be
a discrete set of points from ∆M . To apply the argument, we need to establish that:∣∣∣∣∣ inf

λ∈∆M

∥∥∥ M∑
i=1

λiz
i
∥∥∥
∗
− inf
λ′∈Γ

∥∥∥ M∑
i=1

λ′iz
i
∥∥∥
∗

∣∣∣∣∣ ≤ ε. (5)

For (5) to hold, it suffices to show that for every λ ∈ ∆M , there exists λ′ ∈ Γ such that

∥∥∥ M∑
i=1

λ′iz
i
∥∥∥
∗
≤
∥∥∥ M∑
i=1

λiz
i
∥∥∥
∗

+ ε.

By the triangle inequality,

∥∥ M∑
i=1

λ′iz
i
∥∥
∗ −

∥∥ M∑
i=1

λiz
i
∥∥
∗ ≤

∥∥ M∑
i=1

(λ′i − λi)zi
∥∥
∗

≤M‖λ− λ′‖∞ max
i∈[M ]

‖zi‖∗

≤M‖λ− λ′‖∞,

as zi ∈ B‖·‖∗ . Hence, it suffices to have ‖λ− λ′‖∞ ≤ ε/M.
Define the discrete set ((ε/M)-net) Γ to be the set of vectors λ′ such that ∀j ∈ {1, ...,M} :

λ′j = nj
⌈
M
ε

⌉−1
, where nj ≥ 0, ∀M, and

∑M
j=1 nj =

⌈
M
ε

⌉
. Clearly, for any λ ∈ ∆M , we can

choose λ′ ∈ Γ such that ‖λ− λ′‖∞ ≤ ε/M. Applying the union bound over λ′ ∈ Γ and using the
lemma assumption:

P
[

inf
λ′∈Γ

∥∥∥ M∑
i=1

λ′iz
i
∥∥∥
∗
≤ (c+ 1)ε

]
≤ |Γ|γ′.

The size of the ε-net Γ can be bounded by |Γ| =
(dMε e+M

M

)
≤
(

3
ε

)M using the standard stars and
bars combinatorial argument. To complete the proof, it remains to apply the bound from Eq. (5).

Appendix B. Proof of Theorem 2

B.1. Upper Bound on the Optimum.

The upper bound on F ∗ is obtained based on the assumptions from Part (b) of Theorem 2, as follows.

Lemma 20 If P
[

infλ∈∆M

∥∥∥∑i∈M λiz
i
∥∥∥
∗
≤ 4µε

]
≤ γ, then

P[F ∗ ≤ −2ε+ (η − δ̄/2)/µ] ≥ 1− γ,

where F ∗ = minx∈X F (x) for F (x) defined in (3), and S is a smoothing map that satisfies the
assumptions from Theorem 2.
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Proof Observe first that:

F ∗ ≤ 1

µ
min
x∈X
S
(

max
{1

2
max
i∈[M ]

[ 〈
zi, ·
〉
− iδ̄

]
, ‖ · ‖ − 1

2
(3(1 + r) +Mδ̄)

})
(x)

≤ 1

µ

(
min
x∈B‖·‖

(
max

{1

2
max
i∈[M ]

[ 〈
zi,x

〉
− iδ̄

]
, ‖x‖ − 1

2
(3(1 + r) +Mδ̄)

}
+ η
)

≤ 1

2µ

(
min
x∈B‖·‖

max
i∈[M ]

〈
zi,x

〉 )
+
η − δ̄/2

µ
,

where we have used Property (i) from the definition of local smoothing, and property (O1) (to assert
that the maximum is achieved by the left term).

The rest of the proof is a simple corollary of minimax duality. In particular, as

max
i∈[M ]

〈
zi,x

〉
= max
λ∈∆M

∑
i∈[M ]

λi
〈
zi,x

〉
,

we have that: minx∈B‖·‖ maxi∈[M ]

〈
zi,x

〉
= maxλ∈∆M

minx∈B‖·‖
∑

i∈[M ] λi
〈
zi,x

〉
. Finally:

min
x∈B‖·‖

∑
i∈[M ]

λi
〈
zi,x

〉
= − max

x∈B‖·‖

∑
i∈[M ]

λi
〈
zi,x

〉
= −

∥∥∥ m∑
i=1

λiz
i
∥∥∥
∗
,

by the (standard) definition of the dual norm ‖ · ‖∗. Hence:

F ∗ ≤ − 1

2µ

(
min
λ∈∆M

∥∥∥ m∑
i=1

λiz
i
∥∥∥
∗

)
+

2η − δ̄
2µ

,

and it remains to apply the assumption from the statement of the lemma.

B.2. Lower Bound on the Algorithm’s Output.

Lower bound on the algorithm’s output requires more technical work and is based on showing that,
at every round t, w.h.p., the algorithm can only learn z1, . . . , zt and (aside from implicit bounds) has
no information about zt+1, . . . zM . Then, due to Part (c) of Theorem 2, w.h.p., none of the queried
points up to round M can align well with vector zM , which will allow us to show that for all the
queried points x up to round M , F (x) is Ω(ε)-far from the optimum F ∗.

In the following, we denote the history of the algorithm-oracle interaction until round t − 1 as
Π<t := (Xs,OF (Xs))s<t. We also define the following events

E t(x) :=
{〈

zt,x
〉
> − δ̄

4

}
∩
{〈

zi,x
〉
<
δ̄

4
(∀i > t)

}
, and Et :=

⋂
x∈Xt

E t(x),

where δ̄ is defined as in Theorem 2. Furthermore, we define the “good history” events by:

E<t :=
⋂
{Es : s < t}.
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To avoid making vacuous statements, we take E<1 to be the entire probability space, so that
P
[
E<1

]
= 1. We remind the reader that, based on Property (O2), when we prove our claim, it

suffices to focus on vectors within the ball of radius 4. For this reason, given a batch of queries
Xt = {xt1, . . . ,xtK}, we define its relevant queries as Xt

= Xt ∩ B‖·‖(0, 4).

We first prove that, conditionally on event E<t, Xt is a deterministic function of {zi}i<t.

Proposition 21 Let t ∈ [M − 1] and suppose event Et holds. Then, ∀x ∈ Xt
+ B‖·‖(0, r) :

F (x) =
1

µ
S
(

max
{1

2
max
i∈[t]

[ 〈
zi, ·
〉
− iδ̄

]
, ‖ · ‖ − 1

2
(3(1 + r) +Mδ̄)

})
(x).

Moreover, conditionally on E<t, Xt is a deterministic function of {zi}i<t.

Proof Let f(x) = maxi∈[M ]

[ 〈
zi,x

〉
− iδ̄

]
. We will show that for any xtk ∈ X

t and x such that
‖x − xtk‖ ≤ 2r, we have f(x) = g(x), where g(x) = maxi∈[t]

[ 〈
zi,x

〉
− iδ̄

]
(notice that g only

includes zi for i ∈ [t]). The first part of the proposition is then obtained from Part (ii) of Definition 1.
To prove the claim, notice that since ‖zi‖∗ ≤ 1, we have:〈

zi,x
〉
≤
〈
zi,xtk

〉
+ ‖x− xtk‖ · ‖zi‖∗ ≤

〈
zi,xtk

〉
+ 2r.

Similarly,
〈
zi,xtk

〉
≤
〈
zi,x

〉
+ ‖x− xtk‖ · ‖zi‖∗ ≤

〈
zi,x

〉
+ 2r.

Further, by the definition of Et, and since 2r ≤ δ̄/4 (by Theorem 2, Assumption (a)),

〈
zi,x

〉
− iδ̄ ≤

〈
zi,xtk

〉
+ 2r − (t+ 1)δ̄ <

δ̄

2
− (t+ 1)δ̄

<
〈
zt,xtk

〉
− 2r − tδ ≤

〈
zt,x

〉
− tδ̄.

For the second part of the proposition, first observe that Xt = U t(Π<t), where U t is a deter-
ministic function; thus it suffices to prove that, conditionally on E<t, Π<t is a deterministic function
of {zi}i<t. We prove the last claim by induction on t. For the base case, Π<1 is empty, thus the
property trivially holds. For the inductive step, suppose that conditionally on E<t, Π<t is a deter-
ministic function of {zi}i<t. Now notice that Xt = U t(Π<t), thus it is a deterministic function of
{zi}i<t. On the other hand, the first part of the proposition guarantees that under Et, F |

X
t
+B‖·‖(0,r)

is a deterministic function of {zi}i≤t; this proves that (Xt,OF (Xt)) is a deterministic function of
{zi}i≤t. Finally, combining this with the induction hypothesis, Π<t+1 = (Π<t, (Xt,OF (Xt))) is
a deterministic function of {zi}i<t+1, proving the inductive step, and thus the result.

The last result shows that, under E<t, Xt is predictable w.r.t. {zi}i<t. This means that condi-
tionally on the history and event E<t, Xt is fixed. This is key to leverage the randomness of {zi}i≥t
for the t-th batch of queries. However, there is still a problem: Conditionally on E<t, the distribution
of {zi}i≥t is different than when there is no conditioning (recall that E<t itself depends on {zi}i≥t).
In the next lemma we show that, similar as in Carmon et al. (2017); Woodworth et al. (2018), even
after sequential conditioning, the distribution of {zi}i≥t remains sufficiently well-concentrated to
carry out the lower bound strategy.
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Lemma 22 Under Assumptions (a) and (c) from Theorem 2, we have:

P
[ ⋂
t∈[M ]

Et
]
≥ 1− γ.

Proof First observe that, for any 1 ≤ t ≤M , by the law of total probability:

P[(Et)c|E<t] =

∫
ξ
P[(Et)c|E<t, {zi}i<t = ξ] dP

[
{zi}i<t = ξ|E<t

]
On the other hand, by the previous proposition, Xt is a deterministic function of {zi}i<t, con-

ditionally on E<t. Recall that:

(Et)c =
{
∃x ∈ Xt

:
〈
zt,x

〉
< −δ̄/4 or (∃i > t)

〈
zi,x

〉
> δ̄/4

}
.

To simplify the notation, denote:

(Et)c
{Xt→X}

=
{
∃x ∈ X :

〈
zt,x

〉
< −δ̄/4 or (∃i > t)

〈
zi,x

〉
> δ̄/4

}
.

Therefore, we further have:

P[(Et)c|E<t] ≤
∫
ξ

sup
X⊆B‖·‖(0,4),

|X|≤K

P
[
(Et)c

{Xt→X}

∣∣∣E<t, {zi}i<t = ξ
]
dP
[
{zi}i<t = ξ|E<t

]
,

where we have used that Xt is conditionally deterministic. Now that X is fixed, we can use the
union bound as follows:

P[(Et)c|E<t]

≤K
∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4

∣∣∣E<t, {zi}i<t = ξ
]
dP[{zi}i<t = ξ|E<t]

+ (M − 1)K

∫
ξ

sup
x∈B‖·‖(0,4)

max
j>t

P
[ 〈

zj ,x
〉
> δ̄/4

∣∣∣E<t, {zi}i<t = ξ
]
dP[{zi}i<t = ξ|E<t].

Observe for the first integral in the last expression that we can write:∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4

∣∣∣E<t, {zi}i<t = ξ
]
dP[{zi}i<t = ξ|E<t]

=

∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4,E<t|{zi}i<t = ξ

]
P
[
E<t|{zi}i<t = ξ

] dP
[
{zi}i<t = ξ|E<t

]
=

∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4,E<t|{zi}i<t = ξ

]
P
[
E<t

] dP
[
{zi}i<t = ξ

]
≤
∫
ξ

sup
x∈B‖·‖(0,4)

P
[ 〈

zt,x
〉
< −δ̄/4|{zi}i<t = ξ

]
P
[
E<t

] dP
[
{zi}i<t = ξ

]
=

supx∈B‖·‖(0,4) P
[ 〈

zt,x
〉
< −δ̄/4

]
P
[
E<t

] ,
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where we have used the Bayes rule in the second equality. Applying the same arguments to the
second integral, we finally have:

P
[
(Et)c|E<t

]
≤

MK supx∈B‖·‖(0,4) max
{
P
[ 〈

zt,x
〉
< −δ̄/4

]
, maxj>t P

[ 〈
zj ,x

〉
> δ̄/4

]}
P[E<t]

≤ MK exp{−αδ̄2/256}
P[E<t]

≤ γ

P[E<t]
.

Inductively, each E<t happens with non-zero probability, as P
[
E<1

]
= 1 and γ < 1.

We conclude the proof by conditioning:

P
[ ⋂
t∈[M ]

Et
]

=
P
[⋂

t∈[M ] E
t
]

P
[⋂

t<M Et
] P[ ⋂

t<M

Et
]

= P
[
EM
∣∣∣E<M]P[E<M] ≥ 1− γ.

Finally, Lemma 22 and Proposition 21 imply the following lower bound on the algorithm’s
output:

P
[

min
t∈[M ], k∈[K]

F (xtk) ≥ −
δ̄

2µ

(1

4
+M +

2η

δ̄

)]
≥ 1− γ, (6)

as, when all events {Et : t ∈ [M ]} hold simultaneously (and, in particular, when event EM holds),
we have, by the definitions of these events and the random problem instance (3), that:

min
t∈[M ], k∈[K]

F (xtk) ≥
1

2µ
min

{〈
zM ,x

〉
−Mδ̄ : x ∈ ∪t∈[M ]X

t
}
− η

µ
≥ − δ̄

8µ
−M δ̄

2µ
− η

µ
.

B.3. Bounding the Optimality Gap.

To complete the proof of Theorem 2, it remains to combine the results from the previous two sub-
sections and argue that, w.p. 1 − γ, the optimality gap of any solution output by the algorithm is
higher than ε.
Remaining Proof of Theorem 2 Applying Lemma 20, with probability 1 − γ, F ∗ ≤ −2ε + (η −
δ̄/2)/µ. From Eq. (6), w.p. 1 − γ, mint∈[M ], k∈[K] F (xtk) ≥ −

δ̄
2µ

(
1
4 + M + 2η

δ̄

)
. Hence, with

probability 1− 2γ,

min
t∈[M ], k∈[K]

F (xtk)− F ∗ ≥ 2ε− δ̄

2µ

(
M − 3

4

)
− 2η

µ
> ε,

as, by the theorem assumptions, δ̄ ≤ εµ/M and η ≤ εµ/4.
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Appendix C. Omitted Proofs from Section 3

C.1. Nonsmooth Optimization for 1 ≤ p ≤ 2

Lemma 6 Let 1 < p ≤ 2 and let z1, . . . , zM be chosen according to Eq. (4), where

M ≤ min
{ 1

200ε2
,
d/12− ln(1/γ)

ln(3/ε)

}
,

then for all γ ∈ (1/poly(d), 1) : P[minλ∈∆M
‖
∑

i∈[M ] λiz
i‖p∗ ≤ 4ε] ≤ γ.

Proof By the choice of zi’s, ‖
∑

i∈[M ] λiz
i‖p
∗

p∗ = 1
d

∑
j∈[d]

∣∣∣∑i∈[M ] λir
i
j

∣∣∣p∗ .Hence, using Lemma 19,
it suffices to show that:

P
[1

d

∑
j∈[d]

∣∣∣ ∑
i∈[M ]

λir
i
j

∣∣∣p∗ ≤ (ε′)p
∗
]
≤ γ′,

for ε′ = 5ε and sufficiently small γ′ (namely, for γ′ ≤ ( ε3)Mγ).

Let Yj :=
∣∣∣∑i∈[M ] λir

i
j

∣∣∣p∗ , for j ∈ [d], and notice that Yj’s are nonnegative and i.i.d. Moreover,

by Khintchine’s Inequality, there exist constants c, c′ such that:

E[Y1] = E
∣∣∣ ∑
i∈[M ]

λir
i
j

∣∣∣p∗ ≥ c( ∑
i∈[M ]

λ2
i

)p∗/2
= c‖λ‖p

∗

2

E[Y 2
1 ] = E

∣∣∣ ∑
i∈[M ]

λir
i
j

∣∣∣2p∗ ≤ c′( ∑
i∈[M ]

λ2
i

)2p∗/2
= c′‖λ‖2p

∗

2 .

In particular, when 1 ≤ p ≤ 2, c′ = 1 and c ≥ 1/
√

2 Haagerup (1981). Therefore, by the left-sided
Bernstein’s Inequality (Theorem 17) for any 0 < η < c :

P
[1

d

∑
j∈[d]

Yj ≤ (c− η)‖λ‖p
∗

2

]
≤ exp

(
−dη

2‖λ‖2p
∗

2

2c′‖λ‖2p
∗

2

)
= exp

(
−dη

2

2c′

)
.

As λ ∈ ∆M , it must be ‖λ‖2 ≥ 1/
√
M . Choosing η = c/2, we have (c − η)‖λ‖2 ≥ 1

2
√

2M
≥

5ε = ε′, and it follows that:

P
[1

d

∑
j∈[d]

∣∣∣ ∑
i∈[M ]

λir
i
j

∣∣∣p∗ ≤ (ε′)p
∗
]
≤ exp

(
− dc2

8c′

)
≤ exp

(
− d

8
√

2

)
.

To complete the proof, it suffices to have d ≥ 8
√

2 (ln(1/γ) +M ln(3/ε)) . This is clearly satisfied
for M ≤ d/12−ln(1/γ)

ln(3/ε) from the lemma’s assumptions.

Theorem 9 Let ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1), and p ∈ [1, 2]. Then:

ComplγHP(F0
`dp

(1),Bd2(1/d1/p−1/2),K, ε) ≥M := min
{ 1

200ε2
,

εd1/2

32
√

ln(MK/γ)

}
.
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Proof As before, we will prove this result as an application of Theorem 2. Let ri be an independent
standard Rademacher sequence in Rd and zi = 1

d1/p
∗ ri. Assumption (a) is automatically satisfied

since κ = 0. On the other hand, and since we are working on a feasible set X 6= Bdp , we need to
adapt the upper bound on the optimum provided in Assumption (b). By standard duality arguments:

min
x∈B2(1/d1/p−1/2)

max
i∈[M ]

{
〈
zi,x

〉
− iδ} ≤ 1

d1/p−1/2
min

x∈B2(1)
max
λ∈∆M

〈 ∑
i∈[M ]

λiz
i,x
〉
− δ

= − 1

d1/p−1/2
min
λ∈∆M

∥∥∥ ∑
i∈[M ]

λiz
i
∥∥∥

2
− δ.

Therefore, we replace Property (b) by the following probabilistic guarantee

P
[

min
λ∈∆M

∥∥∥ ∑
i∈[M ]

λi
zi

d1/p−1/2

∥∥∥
2
≤ 4ε

]
= P

[
min
λ∈∆M

∥∥∥ ∑
i∈[M ]

λi
ri√
d

∥∥∥
2
≤ 4ε

]
≤ γ

for any M ≤ min
{

1
200ε2

, d/12−ln(1/γ)
ln(3/ε)

}
, which holds by Lemma 6. On the other hand, the concen-

tration required in Assumption (c) is satisfied for any x ∈ Bd2(1/d1/p−1/2) by Hoeffding

P[〈zi,x〉 > δ] ≤ exp{−δ2d2/p∗/‖x‖2} ≤ exp{−dδ2}.

In particular, we can chooseα = d. Finally, Assumption (d) is satisfied forM ≤ ε
δ = ε

16

√
d

ln(MK/γ) ,
completing the proof.

C.2. Smooth, Weakly Smooth, and Nonsmooth Optimization for p ≥ 2

We start by showing that, under suitable constraints on M and L, Assumptions (b) and (c) from
Theorem 2 are satisfied. This will suffice to apply Theorem 2 in the case of nonsmooth optimization
(i.e., for S being a (0, 0, 0, 1)-local smoothing). To obtain results in the smooth and weakly smooth
settings, we will then show how to satisfy the remaining assumptions for a suitable local smoothing.

In terms of Assumption (b), we can in fact obtain a much stronger result than needed in Theo-
rem 2:

Lemma 23 Let p ≥ 2, ε ∈ (0, 1), µ > 0, zi’s chosen as described in Section 3.1.2 and:

M ≤
( 1

4µε

)p
then:

P
[

min
λ∈∆M

∥∥∥ ∑
i∈[M ]

λiz
i
∥∥∥
p∗
≤ 4µε

]
= 0.

Proof Let λ ∈ ∆M be fixed. Observe that, since zi’s have disjoint support (each zi is supported on
Ji such that |Ji| = L and Ji ∩ Ji′ = ∅ for all i 6= i′), vector

∑
i∈[M ] λiz

i is such that its coordinates
indexed by j ∈ Ji (L of them) are equal to λizij , ∀i ∈ [M ]. Therefore, using the definition of zi

(Equation 4): ∥∥∥ ∑
i∈[M ]

λiz
i
∥∥∥p∗
p∗

=
∑
i∈[M ]

(
L ·
(
λi

1

L1/p∗

)p∗)
= ‖λ‖p

∗

p∗ .

23



LOWER BOUNDS FOR PARALLEL AND RANDOMIZED CONVEX OPTIMIZATION

By the relationship between `p norms and the definition ofλ,we have that 1 = ‖λ‖1 ≤M1/p‖λ‖p∗ .
Hence: ∥∥∥ ∑

i∈[M ]

λiz
i
∥∥∥
p∗

= ‖λ‖p∗ ≥M−1/p ≥ 4µε.

Since this holds for all λ ∈ ∆M surely, the proof is complete.

For Assumption (c), we have the following (simple) lemma:

Lemma 24 Let p ≥ 2 and zi’s chosen as described in Section 3.1.2, then:

P[
〈
zi,x

〉
≥ δ] = P[

〈
zi,x

〉
≤ −δ] ≤ exp

(
− Lδ2

2

)
(∀x ∈ Bdp).

Proof By the definition of zi and Hoeffding’s Inequality, ∀x ∈ X :

P[
〈
zi,x

〉
> δ] = P[

〈
zi,x

〉
< −δ] = P

[∑
j∈Ji

rijxj > δL1/p∗
]

≤ exp
(
− L2/p∗δ2

2
∑

j∈Ji xj
2

)
.

As |Ji| = L, by the relations between `p norms, (
∑

j∈Ji xj
2)1/2 ≤ L1/2−1/p(

∑
j∈Ji xj

p)1/p ≤
L1/2−1/p. Thus, it follows that:

P[
〈
zi,x

〉
> δ] = P[

〈
zi,x

〉
< −δ] ≤

(
− L2/p∗δ2

2L1−2/p

)
= exp

(
− Lδ2

2

)
,

as claimed.

To obtain the result for the nonsmooth case, we can take µ = 1 and apply Theorem 2, as follows.

Theorem 10 Let p ≥ 2, X ⊇ Bdp , and ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M := min
{ 1

(4ε)p
,
ε2/3

8

( d

ln(MK/γ)

)1/3}
.

Proof For Lemma 23 to apply, it suffices to have M ≤ 1
(4ε)p , as in the nonsmooth case µ = 1.

Lemma 24 implies that it suffices to set α = L/2 = d/(2M). As δ̄ = 16

√
ln(MK/γ)

α , to satisfy
Assumption (d) from Theorem 2 (which requires δ̄ ≤ ε/M ), it suffices to have:

M ≤ ε

16

√
d

2M ln(MK/γ)
,

or, equivalently: M ≤ ε2/3

8

(
d

ln(MK/γ)

)1/3
, as claimed.

To obtain lower bounds for the κ-weakly smooth case (where κ ∈ [0, 1]; κ = 0 is the nonsmooth
case from the above and κ = 1 is the standard notion of smoothness), we need to, in addition to using
Lemmas 23 and 24, choose an appropriate local smoothing that satisfies the remaining conditions
from Theorem 2. By doing so, we can obtain the following result.
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Theorem 12 Let p ≥ 2, X ⊇ Bdp , and ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M := min

{( 1

23+4κ ε (min{p, ln(d)})κ
) p

1+κ(1+p)
,

d

29 ln(MK/γ)

(
2

1+3p+2κ(1+p)
1+p min{p, ln(d)}κε

) 2(1+p)
1+κ(1+p)

}
.

Proof From Remark 11 we have that `dp is (κ, η, η, µ)-locally smoothable (observe here that r = η)
for any 0 ≤ κ ≤ 1, as long as µ = 21−κ(min{p, ln(d)}/η)κ.

Let η = δ̄/8. Denote µ̄ = 21−κ(8 min{p, ln(d)})κ, so that µ = µ̄
δ̄κ
. To satisfy Assumptions (a)

and (d), we need to have δ̄ ≤ min{2εµ, εµ/M}, and it suffices to enforce M ≤ µε
δ̄

= εµ̄
δ̄1+κ

. To
satisfy Assumption (c), by Lemma 24 we can choose α = L

2 , which leads to the following bound
on M :

M ≤ εµ̄

24(1+κ)

( L

2 ln(MK/γ)

) 1+κ
2
. (7)

To satisfy the remaining assumption from Theorem 2 (Assumption (b), using Lemma 23), we need
to impose the following constraint on M :

M ≤
(

1

4µε

)p
=

(
δ̄κ

4εµ̄

)p
=
(22(2κ−1)

εµ̄

)p( L

2 ln(MK/γ)

)− pκ
2 (8)

The right-hand sides of the inequalities in Equations (7) and (8) are equal when

L = 29 ln(MK/γ) ·
(

4

(4µ̄ε)p+1

)2/[1+κ(p+1)]

and, thus, we make this choice for L. As d ≥ ML, we also need to satisfy M ≤ d/L, finally
leading to the claimed bound:

M ≤ min

{(
1

41+κµ̄ε

) p
1+κ(1+p)

,
d

29 ln(MK/γ)

(
4

p
1+p µ̄ε

) 2(1+p)
1+κ(1+p)

}

The rest of the proof follows by plugging µ̄ = 21+2κ(min{p, ln(d)})κ in the last equation.

C.3. Smooth and Weakly Smooth Optimization for 1 ≤ p < 2

Theorem 14 Let 1 ≤ p < 2, 0 < κ ≤ 1, X ⊇ Bdp , ε ∈ (0, 1/2), γ ∈ (1/poly(d), 1). Then, there

exist constants ν, c(κ) > 0, such that if d ≥ 1
ν

⌈
2(ln(νdK/γ))

2κ
3+2κ

(
1
ε

) 6
3+2κ

⌉
, then:

ComplγHP(Fκ`dp(1),X ,K, ε) ≥M :=
cκ

ln(1/ε) + κ ln ln(dK/γ)

(1

ε

) 2
3+2κ

.

Proof Sketch By Dvoretzky’s Theorem (see Appendix A), there exists a universal constant ν > 0
such that for any T ≤ νd there exists a subspace F ⊆ Rd of dimension T , and a centered ellipsoid
E ⊆ F , such that

1

2
E ⊆ F ∩ Bdp ⊆ E . (9)
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By an application of the Hahn-Banach theorem, we can certify that there exist vectors g1, . . . , gT ∈
Bdp∗ , such that E = {x ∈ F :

∑
i∈[T ]

〈
gi,x

〉2 ≤ 1}.
Consider now linear mappingG : (Rd, ‖·‖p) 7→ (RT , ‖·‖∞) such thatGx := (

〈
g1,x

〉
, . . . ,

〈
gT ,x

〉
),

and notice that by the previous paragraph the operator norm ofG is upper bounded by 1. We observe
that:

• For any f ∈ Fκ
`T∞

(µ), function f̃ := f ◦ G belongs to Fκ
`dp

(µ). In other words, the whole

function class Fκ
`T∞

(µ) can be obtained from Fκ
`dp

(µ) through the linear embedding G.

• We claim that any local oracle for the class {f̃ : f ∈ Fκ
`T∞

(µ)} can be obtained from a local
oracle for the class Fκ

`dp
(µ) (for a proof of this claim, see (Guzmán and Nemirovski, 2015,

Appendix C)).

• From (9), the set Y = GBdp is such that 1
2
√
T
BT∞ ⊆ 1

2B
T
2 ⊆ Y ⊆ BT2 .

From these facts, we can conclude that the oracle complexity over X with function class Fκ
`dp

(1)

is at least the one obtained in the embedded space Y with the respective embedded function class
Fκ
`T∞

(1), thus

ComplγHP(Fκ`dp(1),X ,K, ε) ≥ ComplγHP(Fκ`T∞(1),Y,K, ε)

≥ ComplγHP(Fκ`T∞(1),BT∞(0, 1/[2
√
T ]),K, ε)

Denote ε′ = 2ε
√
T . By Theorem 12 applied to p = ∞, together with Remark 3, we get that it is

sufficient to require, as long as T ≤ νd, that:

M = min

{
1

ln(T )

( 1

23+4κε′

)1/κ
,

T ln2(T )

29 ln(νdK/γ)

(
23+2κε′

)2/κ}
= min

{
1

ln(T )

( 1

24(1+κ)ε
√
T

)1/κ
,

T ln2(T )

29 ln(νdK/γ)

(
22(2+κ)ε

√
T
)2/κ}

.

In the last expression, the left term in the minimum is lower whenever:

T ln2 T ≥ (29 ln(dK/γ))
2κ

3+2κ

(1

2

) 8(2+3κ)
3+2κ

(1

ε

) 6
3+2κ

,

and it suffices to choose:

T =

⌈
2(ln(νdK/γ))

2κ
3+2κ

(1

ε

) 6
3+2κ

⌉
.

Under this choice, as long as d ≥ T/ν, the oracle complexity is lower bounded by:

M =
cκ

ln(1/ε) + κ ln ln(dK/γ)

(1

ε

) 2
3+2κ

,

where cκ is an absolute constant that only depends on κ, as claimed.
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