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1 Abstract
We study the logistic bandit, in which rewards are binary with success probability exp(βa>θ)/(1+
exp(βa>θ)) and actions a and coefficients θ are within the d-dimensional unit ball. While prior
regret bounds for algorithms that address the logistic bandit exhibit exponential dependence on the
slope parameter β, we establish a regret bound for Thompson sampling that is independent of β.
Specifically, we establish that, when the set of feasible actions is identical to the set of possible
coefficient vectors, the Bayesian regret of Thompson sampling is Õ(d

√
T ). We also establish a

Õ(
√
dηT/λ) bound that applies more broadly, where λ is the worst-case optimal log-odds2 and

η is the “fragility dimension,” a new statistic we define to capture the degree to which an optimal
action for one model fails to satisfice for others. We demonstrate that the fragility dimension plays
an essential role by showing that, for any ε > 0, no algorithm can achieve poly(d, 1/λ) · T 1−ε

regret.
Keywords: bandits, Thompson sampling, logistic regression, regret bounds.

1. Introduction

In the logistic bandit an agent observes a binary reward after each action, with outcome probabilities
governed by a logistic function:

P
(

reward = 1
∣∣∣action = a

)
=

eβa
>θ

1 + eβa>θ
.

Each action a and parameter vector θ is a vector within the d-dimensional unit ball. The agent
initially knows the scale parameter β but is uncertain about the coefficient vector θ. The problem
of learning to improve action selection over repeated interactions is sometimes referred to as the
logistic bandit problem or online logistic regression.

The logistic bandit serves as a model for a wide range of applications. One example is the
problem of personalized recommendation, in which a service provider successively recommends
content, receiving only binary responses from users, indicating “like” or “dislike.” A growing lit-
erature treats the design and analysis of action selection algorithms for the logistic bandit. Upper-
confidence-bound (UCB) algorithms have been analyzed in Filippi et al. (2010); Li et al. (2017);
Russo and Van Roy (2013), while Thompson sampling (Thompson (1933)) was treated in Russo

1Extended abstract. Full version is available on arXiv.
2In defining “log-odds,” we use base eβ rather than e. As a result, the term “log-odds” throughout this article refers

to a>θ instead of βa>θ.
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Algorithm Regret Upper Bound Notes
GLM-UCB

(Filippi et al. (2010))
O
(
eβ · d · T 1/2 log3/2 T

)
Frequentist bound.

A variation of GLM-UCB
(Russo and Van Roy (2013))

O
(
eβ log β · d · T 1/2

)
Bayesian bound.

SupCB-GLM
(Li et al. (2017))

O
(
eβ · (d logK)1/2 · T 1/2 log T

) Frequentist bound,
K is the number of actions.

Thompson Sampling
(Russo and Van Roy (2014b))

O
(
eβ · d · T 1/2 log3/2 T

)
Bayesian bound.

Thompson Sampling
(Abeille and Lazaric (2017))

O
(
eβ · d3/2 log1/2 d · T 1/2 log3/2 T

)
Frequentist bound.

Thompson Sampling
(this work) O

(
λ−1 ·

(
d(η ∨ d)

)1/2 · T 1/2 log1/2 T
) Bayesian bound,

λ and η are independent of β.

Table 1: Comparison of various results on logistic bandits. The upper bound in this work depends
on β-independent parameters λ and η. Readers are referred to the full version of this paper
for detailed definitions of the parameters. We use the notation a ∨ b = max{a, b}.

and Van Roy (2014b) and Abeille and Lazaric (2017). Each of these algorithms has been shown to
converge on the optimal action with time dependence Õ(1/

√
T ), where Õ ignores poly-logarithmic

factors. However, previous analyses leave open the possibility that the convergence time increases
exponentially with the parameter β, which seems counterintuitive. In particular, as β increases,
distinctions between good and bad actions become more definitive, which should make them easier
to learn.

To shed light on this issue, we build on an information-theoretic line of analysis, which was first
proposed in Russo and Van Roy (2016) and further developed in Bubeck and Eldan (2016) and Dong
and Van Roy (2018). A critical device here is the information ratio, which quantifies the one-stage
trade-off between exploration and exploitation. The information ratio has also motivated the design
of efficient bandit algorithms, as in Russo and Van Roy (2014a), Russo and Van Roy (2018) and
Liu et al. (2018). While prior bounds on the information ratio pertain only to independent or linear
bandits, in this work we develop a new technique for bounding the information ratio of a logistic
bandit. This leads to a stronger regret bound and insight into the role of β.

Our Contributions. Let A and Θ be the set of feasible actions and the support of θ, respectively.
Under an assumption that A = Θ, we establish a Õ(d

√
T ) bound on Bayesian regret. This bound

scales with the dimension d, but notably exhibits no dependence on β or the number of feasible ac-
tions. We then generalize this bound, relaxing the assumption thatA = Θ while introducing depen-
dence on two statistics of the these sets: the worst-case optimal log-odds λ = minθ∈Θ maxa∈A α

>θ
and the fragility dimension η, which is the number of possible models such that the optimal action
for each yields success probability no greater than 50% for any other. Assuming λ > 0, we establish
a Õ(
√
dηT/λ) bound on Bayesian regret. We also demonstrate that the fragility dimension plays an

essential role, as for any function f , polynomial p, and ε > 0, any algorithm for the logistic bandit
cannot achieve Bayesian regret uniformly bounded by f(λ)p(d)T 1−ε. We believe that, although η
can grow exponentially with d, in most relevant contexts η should scale at most linearly with d.
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The assumption that the worst-case optimal log-odds are positive may be restrictive. This is
equivalent to assuming that the for each possible model, the optimal action yields more than 50%
probability of success. However, this assumption is essential, since it ensures that the fragility di-
mension is well-defined. When the worst-case optimal log-odds are negative, the geometry of action
and parameter sets plays a less significant role than parameter β, therefore we conjecture that the
exponential dependence on β is inevitable. This could be an interesting direction for future research.
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