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Abstract
We study tensor completion in the agnostic setting. In the classical tensor completion problem, we
receive n entries of an unknown rank-r tensor and wish to exactly complete the remaining entries. In
agnostic tensor completion, we make no assumption on the rank of the unknown tensor, but attempt
to predict unknown entries as well as the best rank-r tensor.

For agnostic learning of third-order tensors with the square loss, we give the first polynomial
time algorithm that obtains a “fast” (i.e., O(1/n)-type) rate improving over the rate obtained by
reduction to matrix completion. Our prediction error rate to compete with the best d × d × d tensor
of rank-r is Õ(r2d3/2/n). We also obtain an exact oracle inequality that trades off estimation and
approximation error.

Our algorithm is based on the degree-six sum-of-squares relaxation of the tensor nuclear norm.
The key feature of our analysis is to show that a certain characterization for the subgradient of the
tensor nuclear norm can be encoded in the sum-of-squares proof system. This unlocks the standard
toolbox for localization of empirical processes under the square loss, and allows us to establish
restricted eigenvalue-type guarantees for various tensor regression models, with tensor completion
as a special case. The new analysis of the relaxation complements Barak and Moitra (2016), who
gave slow rates for agnostic tensor completion, and Potechin and Steurer (2017), who gave exact
recovery guarantees for the noiseless setting. Our techniques are user-friendly, and we anticipate
that they will find use elsewhere.
Keywords: tensor completion, sum-of-squares, statistical learning, agnostic learning, localization

1. Introduction

Recovering structured mathematical objects from partial measurements is a fundamental task in
machine learning and statistical inference. One important example, which has been a mainstay of
modern research in machine learning and high-dimensional statistics, is matrix completion. Here, we
receive n entries from an unknown d × d matrix, and the goal is to complete the remaining entries
when n is as small is possible. The key structural assumption that enables recovery when n≪ d2 is
that the underlying matrix is low-rank. A celebrated line of research on matrix completion (Srebro
and Shraibman, 2005; Candès and Recht, 2009; Candès and Tao, 2010; Keshavan et al., 2010; Gross,
2011; Recht, 2011) has culminated in the following guarantee: to exactly recover an incoherent
rank-r matrix, n = Õ(rd) uniformly sampled entries suffice.

While low-rank matrix completion has seen successful application across many problem domains
(most famously in the context of the Netflix Problem), for many tasks it is natural to consider not
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just pairwise interactions but higher-order interactions, leading to the problem of tensor completion.
Tensor completion poses significant computational hurdles compared to the matrix case, but in an
impressive recent work, Potechin and Steurer (2017) provide an efficient algorithm based on the
sum-of-squares hierarchy that exactly recovers a d × d × d tensor of rank-r with incoherent and
orthogonal components from Õ(rd3/2) measurements. While this undershoots the optimal statistical
rate of Õ(rd), there is evidence that this is optimal amongst polynomial time algorithms under
certain average-case hardness assumptions (Barak and Moitra, 2016).

In real-world applications, the assumption that the underlying tensor is truly low-rank may be
too strong, and model misspecification is unavoidable. This is the main thrust of agnostic learning
(Haussler, 1992; Kearns et al., 1994) which, rather than attempting to recover an unknown model
in some class, attempts to predict as well as the best model. The aim of this paper is to develop
guarantees for agnostic tensor completion: predicting as well as the best low rank tensor, even when
exact recovery is impossible.

We work in the following agnostic tensor regression model, which captures tensor completion as
a special case: we receive examples (X1, Y1, ), . . . , (Xn, Yn) i.i.d. from an unknown distribution D,
where each instance Xt is a d × d × d tensor and Yt is a real-valued response. Letting ⟨⋅, ⋅⟩ denote the
usual inner product, we measure predictive performance of a given d × d × d tensor T via its square
loss risk LD(T ) = E(X,Y )∼D(⟨T,X⟩ − Y )2. Our goal is to use the samples to produce a predictor
T̂n that enjoy low excess risk:

LD(T̂n) − inf
T ∶ rank-r

LD(T ) ≤ ε(n, r, d), (1)

where the bound ε(n, r, d) converges to zero as n → ∞. When the observations X are uniformly
distributed indicators (i.e. X = ei ⊗ ej ⊗ ek, where (i, j, k) is uniform) this recovers the usual
measurement model for tensor completion. If the model is well-specified in the sense that Y =
⟨X,T ⋆⟩+ξ, where T ⋆ is a low-rank tensor and E[ξ ∣X] = 0, then low excess risk implies approximate
recovery of T ⋆. In general, the guarantee (1) is interesting because it implies non-trivial predictive
performance even in the presence of severe model misspecification.

In the matrix case, agnostic excess risk guarantees of the type in (1) were characterized by
Koltchinskii et al. (2011). There it was shown that to compete with the best rank-r matrix with
bounded entries, empirical risk minimization with nuclear norm penalization obtains a fast rate of the
form ε(n, r, d) = O(rd log d/n), and also showed that this is optimal.1 The nomenclature fast rate is
intended to contrast the 1/n dependency on n with slow rates, which have a 1/√n dependency on n,
and which are typically much simpler to obtain (see Gaiffas and Lecué (2011) for slow rates in the
matrix setting).

The results of Koltchinskii et al. (2011) leverage strong understanding of the (matrix) nuclear
norm, namely matrix concentration and decomposability/subgradient properties. In this paper, we
tackle the following questions:

• Can we give similar guarantees for agnostic tensor completion?

• Can we obtain fast rates while at the same time relaxing the strong statistical assumptions (low
rank observations, incoherence) needed for exact recovery?

• What are the best rates we can obtain subject to employing a polynomial-time algorithm?
1. Interestingly, their results also show that incoherence—usually taken as necessary in matrix completion for positive

results—is not necessary to obtain prediction error bounds; boundedness suffices.
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1.1. Our contributions

Our main result is to give the first polynomial time algorithm with a fastO(1/n)-type rate for agnostic
completion of third order tensors that improves over the rate obtained by the natural reduction to
matrix completion. Our main theorem gives excess risk bounds relative to low-rank orthogonal
tensors, i.e. tensors of the form

T =
r

∑
i=1

λi ⋅ ui ⊗ vi ⊗wi, (2)

where ∥ui∥2 = ∥vi∥2 = ∥wi∥2 = 1 and {ui} are orthogonal, as are {vi} and {wi}. The result is as
follows.

Theorem 1 (informal) There is a convex set of d × d × d tensors T derived from a sum-of-squares
hierarchy relaxation of the tensor nuclear norm, for which the empirical risk minimizer T̂n ∶=
arg minT ∈T

1
n ∑

n
t=1(⟨T,Xt⟩ − Yt)2 can be computed in polynomial time, and guarantees that with

probability at least 1 − o(1),

LD(T̂n) − inf
T ∶ rank-r, orthogonal

LD(T ) ≤ Õ(r
2d3/2

n
). (3)

The guarantee applies to both random indicator measurements (tensor completion) and gaussian
measurements (tensor compressed sensing).

The full version of the theorem is stated in Section 3. The result be thought of as a generalization of
the agnostic matrix completion results of Koltchinskii et al. (2011) to higher-order tensors. We also
achieve a more general exact oracle inequality that trades off approximation and estimation error.
This takes the form

LD(T̂n) ≤ inf
T ∶ orthogonal

{LD(T ) + Õ(r
2(T )d3/2

n
)},

where r(T ) denotes the rank of T .2

Algorithm. Our algorithm is based on the sum-of-squares (SoS) hierarchy of convex relaxations
(Shor, 1987; Parrilo, 2000; Lasserre, 2001), applied to the tensor nuclear norm. For k ∈ N, the sum-
of-squares hierarchy defines a sequence of outer convex relaxations ∥⋅∥ñuck that give an increasingly
tight approximation to the (hard to approximate (Hillar and Lim, 2013)) tensor nuclear norm ∥⋅∥nuc
as k is increased. The SoS nuclear norm was previously used in the work of Barak and Moitra (2016),
who gave O(1/√n) rates for tensor completion in the agnostic model with absolute loss. Their main
contribution was to show how certain spectral bounds arising in 3-SAT refutation (Coja-Oghlan
et al., 2004) bound the Rademacher complexity for the unit ball of the degree-six SoS nuclear norm,
thereby controlling the usual empirical process via uniform convergence. Our guarantees are based on
empirical risk minimization over the (scaled) ball in this norm, specifically the degree-six relaxation
∥⋅∥ñuc6 , and our analysis builds on their Rademacher complexity bounds.

2. Here the word “exact” refers to the fact that the leading constant in front of the loss on the right-hand-side is 1; such
guarantees generally do not easily follow from the usual machinery used to analyze well-specified models.
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Restricted eigenvalue and subgradient lemmas. While the O(1/√n)-type rates provided in
Barak and Moitra (2016) are optimal (in terms of n dependence) for generic Lipschitz losses, it
is not immediately obvious whether their result can be used to provide O(1/n)-type fast rates for
strongly convex losses like the square loss. It has long been recognized that to obtain fast rates for
prediction with strongly convex losses, more refined control of the empirical process is necessary. In
particular, it is well-known that local Rademacher complexities and related fixed point complexities
characterize the rates for empirical risk minimization in a data-dependent fashion. To bound such
localized complexities under convex relaxations, the typical approach is to establish a restricted
eigenvalue property for the empirical design matrix (Negahban et al., 2012; Bartlett et al., 2012;
Lecué and Mendelson, 2017, 2018). Establishing such guarantees for regularizers such as the `1
norm, nuclear norm, and so on is usually done by appealing to properties of the subgradient of the
norm and proving that the norm (approximately) decomposes across certain subspaces (Negahban
et al., 2012). The main tool we establish here, which allows us to unlock the full power of localized
complexities and establish rates fast rates, is a new guarantee of this type for the SoS nuclear norm.
Informally, we show:

Theorem 2 (informal) Let T ⋆ be a fixed orthogonal tensor, and let T = {T ∶ ∥T ∥ñuc6 ≤ ∥T ⋆∥ñuc6}.
Then:

∥T − T ⋆∥ñuc4 ≤ O(r(T ⋆)) ⋅ ∥T − T ⋆∥F ∀T ∈ T .

This theorem is a consequence of a more general result we prove in Section 2, which gives a
characterization of the subgradient of ∥⋅∥ñuc4 at any orthogonal tensor. The basic idea is to show that
a characterization for the subgradient of the tensor nuclear norm given in Yuan and Zhang (2016) can
be captured in the sum-of-squares proof system. The final result (Theorem 5) is fairly user-friendly,
and packages the complexity of SoS into a self-contained statement about geometric properties of
the norm ∥⋅∥ñuc4 . We hope that this will find use in other applications. As one concrete example,
in Section 3 we show how the subgradient characterization can also be used to give agnostic fast
rates for the problem of low-rank tensor sensing with gaussian measurements. Here we also obtain
Õ(r2d3/2/n)-type fast rates.

Lower bounds. Lastly, we prove that our results can’t be strengthened significantly while still
obtaining computationally efficient algorithms. It is straightforward to show that there is an inefficient
predictor that obtains O(rd/n) excess risk, whereas the dimension scaling in Theorem 1 is O(d3/2).
This scaling is shared by the other results based on the SoS nuclear norm (Barak and Moitra, 2016;
Potechin and Steurer, 2017), and Barak and Moitra (2016) show that finding relaxations for which the
Rademacher complexity grows as o(d3/2) is at least as hard as refuting random instances of 3-XOR.
In Section 4 we give a computational lower bound for agnostic learning that shows that obtaining
square loss excess risk scaling as o(d3/2) is at least as hard as a certain distinguishing problem for
random 3-XOR, sometimes called learning sparse parities with noise.

1.2. Related work

Early algorithms for computationally efficient tensor completion relied on unfolding: reshaping the
tensor into a matrix and applying a matrix completion algorithm (Tomioka et al., 2011; Tomioka and
Suzuki, 2013; Romera-Paredes and Pontil, 2013; Mu et al., 2014; Jain and Oh, 2014). This approach
yields suboptimal results for third-order tensors and other odd-order tensors. For example, for a
third-order tensor in (Rd)⊗3, the most “balanced” unfolding of the tensor is a d × d2 matrix, and so
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directly reducing to an algorithm for agnostic matrix completion (e.g. Koltchinskii et al. (2011))
would yield suboptimal O(d2)-type sample complexity.

Recent results of Montanari and Sun (2016), Potechin and Steurer (2017), and Xia et al. (2017) all
give sub-O(d2) type rates, but apply only to noiseless or well-specified models, and do not obviously
extend to the agnostic setting. Potechin and Steurer (2017) give exact completion in the noiseless
case after Õ(rd3/2) entries are observed. Montanari and Sun (2016) show that a refined spectral
approach based on unfolding can obtain sub-O(d2) rates for prediction error in the noiseless setting,
but they obtain a rate of O(1/n2/3) that falls short of the O(1/n)-type rate we provide. Finally, Xia
et al. (2017) recently showed that an algorithm based on power iteration provides O(d/n)-type rates
once n = Ω(d3/2), but their result only applies to well-specified models, and it seems unlikely that
this algorithmic approach succeeds in the fully agnostic setting.

Our results build on the seminal work of Barak and Moitra (2016) and Potechin and Steurer
(2017), both of which use sum-of-squares to give O(d3/2)-type guarantees that improve on unfolding.
The former was the first paper to study the agnostic setting, and gave slow excess risk guarantees
for the absolute loss (i.e., rates growing as 1√

n
). Technically, our results build on their Rademacher

complexity bounds for the SoS norms (Barak and Moitra, 2016), as well as spectral bounds from
Hopkins et al. (2015). Obtaining fast rates, however, requires developing new technical tools and
necessitates that we control the subgradient of the SoS norms. Our analysis here builds on ideas used
to construct dual certificates for tensor completion in Potechin and Steurer (2017).

Lastly, we mention that various recent works have begun to explore that power of SoS in other
agnostic learning settings. Notably, Klivans et al. (2018) provide square loss risk bounds for SoS
algorithms for robust regression. To the best of our knowledge our work is the first to provide fast
rates for SoS algorithms in any agnostic setting.

1.3. Preliminaries

We let ∥⋅∥p denote the `p norm, i.e. if x ∈ Rd is a vector then ∥x∥p = (∑di=1∣xi∣
p)1/p

. For a matrix A
we let ∥A∥op denote the operator norm/spectral norm and let ∥A∥nuc denote the nuclear norm. For
matrices or tensors we let ∥⋅∥F denote the element-wise `2 norm. For any norm ∥⋅∥ we let ∥⋅∥⋆ denote
the dual. We use Õ to suppress factors logarithmic in d, r, and 1/δ, where δ is the failure probability.

Tensor notation. The outer product between two vectors u ∈ Rd1 and v ∈ Rd2 is denoted u⊗v, and
belongs to the space Rd1⊗Rd2 . For a given vector u, we write u⊗k = u⊗⋯⊗u (k times), and likewise
define (Rd)⊗k = Rd⊗⋯⊗Rd. This paper develops algorithms for completion of 3-tensors in (Rd)⊗3,
which we frequently identify with elements of Rd ×Rd ×Rd. In more detail, for a tensor T ∈ (Rd)⊗3,
we let Ti,j,k be such that T = ∑i,j,k Ti,j,k ⋅ei⊗ej⊗ek. For a pair of matricesA,B, we letA⊗B denote
the Kronecker product, which obeys the relation (A⊗B)(C ⊗D) = (AC)⊗ (BD). Given matrices
A1,A2,A3 and tensor T = ∑i ui⊗vi⊗wi, we define (A1⊗A2⊗A3)T = ∑i(A1ui)⊗(A2vi)⊗(A3wi).
Whenever T is an orthogonal tensor of the form (2), we let r(T ) denote the rank.

2. Subgradient of the sum-of-squares nuclear norm

2.1. Tensor nuclear norm and sum-of-squares relaxation

In the classical results on matrix completion (Candès and Recht, 2009; Candès and Tao, 2010; Recht,
2011; Koltchinskii et al., 2011), a central object is the nuclear norm, which arises as a convex
relaxation of the rank. A natural candidate to develop efficient algorithms for tensor completion is
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the tensor nuclear norm (e.g. Hillar and Lim (2013); Friedland and Lim (2018)), which may be
defined via

∥T ∥nuc = inf{
r

∑
i=1

∣λi∣ ∶W =
r

∑
i=1

λiui ⊗ vi ⊗wi, ∥ui∥2 = ∥vi∥2 = ∥wi∥2 = 1, r ∈ N}, (4)

and whose dual is the injective tensor norm ∥X∥inj = sup∥x∥2=∥y∥2=∥z∥2=1⟨X,x⊗ y ⊗ z⟩. Unfortu-
nately, the optimization problem here—maximizing a degree-three polynomial over the sphere—is
intractable in general.

The approach we take, following Barak and Moitra (2016) and Potechin and Steurer (2017), is
to employ the sum-of-squares hierarchy of convex relaxations (Shor, 1987; Parrilo, 2000; Lasserre,
2001) which provides an increasingly tight sequence of relaxations of the optimization problem in
(4). To describe the relaxations, we require the notion of a pseudodistribution.

Definition 3 (Pseudodistribution (Barak and Steurer (2016))) Let µ ∶ Rd → R be a finitely sup-
ported function and let Ẽµf = ∑x∈supp(µ) µ(x)f(x). µ is said to be a degree-k pseudodistribution if
Ẽµ1 = 1 and Ẽµf2 ≥ 0 for all polynomials f of degree at most k/2.

Given a degree-s pseudodistribution µ and sytem of polynomial inequalitiesA = {f1 ≥ 0, . . . , fm ≥ 0}∪
{g1 = 0, . . . , gm′ = 0}, we write µ ⊧ A if for all S ⊆ [m] and all sum-of-squares polynomials h such
that degh +∑i∈S deg fi ≤ s,

Ẽµ[h∏
i∈S

fi] ≥ 0, (5)

and Ẽµ[giq] = 0 for all i ∈ [m′] and all polynomials q such that deg(giq) ≤ `. With the pseudodistri-
bution formalism, we define the degree-k SoS injective norm as follows:3

∥X∥ ̃injk
= sup

µ degree-k
Ẽµ∥x∥22=Ẽµ∥y∥

2
2=Ẽµ∥z∥

2
2=1

⟨X, Ẽµ[x⊗ y ⊗ z]⟩. (6)

The degree-k SoS nuclear norm is simply defined as the dual: ∥T ∥ñuck ∶= supX ∶∥X∥ĩnjk
≤1⟨X,T ⟩. It

can equivalently be expressed by defining4

Kk = {T ∈ Rd×d×d ∣ ∃µdegree-k ∶ Ẽµ[x⊗ y ⊗ z] = T, Ẽµ∥x∥2
2 = Ẽµ∥y∥2

2 = Ẽµ∥z∥2
2 = 1}, (7)

and then
∥T ∥ñuck = inf{α ∣ T ∈ Kk/α}. (8)

The SoS nuclear norm and injective norm can be evaluated in dO(k) time (Grötschel et al., 1981;
Barak and Steurer, 2016). Moreover, the norms obey the ordering ∥T ∥nuc ≥ . . . ≥ ∥T ∥ñuck ≥ . . . ≥
∥T ∥ñuc2 ≥ ∥T ∥F , and likewise ∥X∥inj ≤ . . . ≤ ∥X∥ ̃injk

≤ . . . ≤ ∥X∥ ̃inj2
≤ ∥X∥F .

3. There are minor technical differences (e.g., scaling) between the SoS injective/nuclear norm definitions we use and
those of Barak and Moitra (2016); Potechin and Steurer (2017).

4. This equivalence is proven in Appendix A for completeness.
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2.2. Subgradient and norm compatibility

Our algorithms are based on empirical risk minimization with SoS nuclear norm constraints, i.e.,
algorithms that minimize the empirical loss over the set T = {T ∈ (Rd)⊗3 ∣ ∥T ∥ñuck ≤ τ} for appro-
priate choice of τ and k. The technical challenge to analyzing this type of relaxation is that even if
measurements are realized by a rank-r tensor, there is nothing that guarantees a-priori that the tensor
T̂n output by the algorithm is itself low rank. Letting T be a rank-r orthogonal tensor, our main
technical result here shows that if τ = ∥T ∥ñuck , then for all elements of T ′ ∈ T , the error ∆ = T ′ − T
is “approximately low rank” in a sense that suffices to guarantee good generalization performance.

Theorem 4 (Formal version of Theorem 2) Let k ≥ 4. Let T ∈ (Rd)⊗3 be an orthogonal rank-r
tensor, and let T ′ ∈ (Rd)⊗3 be an arbitrary tensor with ∆ ∶= T ′ − T . If ∥T ′∥ñuck+2 ≤ ∥T ∥ñuck+2 , then

∥∆∥ñuck ≤ 68r ⋅ ∥∆∥F . (9)

In the analysis of nuclear norm regularization for matrix completion—and more broadly, throughout
high-dimensional statistics—the key tool used to establish guarantees along the lines of (9) is a
characterization for the subgradient for the nuclear norm, and the related notion of decomposability
(Negahban et al., 2012; Negahban and Wainwright, 2012). It is known clasically (Watson, 1992) that
for any matrix W with singular value decomposition W = UΣV ⊺,

∂∥W ∥nuc = {UV ⊺ +X ∣ U⊺X =XV = 0, ∥X∥op ≤ 1}. (10)

Our approach in the remainder of this section is to establish a similar result for the subgradient of the
SoS nuclear norm ∥⋅∥ñuck at any orthogonal tensor T . From here Theorem 4 will quickly follow. As
a first step, we need to define certain subspaces and projection operators associated with T .

Subspaces For the remainder of the section we let T be a rank-r orthogonal tensor as in (2). Define
U = span{ui}, V = span{vi}, and W = span{wi}, and note that each subspace has dimension
at most r. Let PU ∶ Rd → Rd and PV ∶ Rd → Rd and PW ∶ Rd → Rd be orthogonal projections
onto these subspaces and PU⊥ , PV⊥ and PW⊥ be the projections onto the respective orthogonal
complements. We define projection operators from (Rd)⊗3 to (Rd)⊗3 for all 23 combinations of
subspaces:5

Q0
T ∥ = PU ⊗PV ⊗PW, Q0

T ⊥ = PU⊥ ⊗PV⊥ ⊗PW⊥ ,
Q1
T ∥ = PU⊥ ⊗PV ⊗PW, Q

1
T ⊥ = PU ⊗PV⊥ ⊗PW⊥ ,

Q2
T ∥ = PU ⊗PV⊥ ⊗PW, Q

2
T ⊥ = PU⊥ ⊗PV ⊗PW⊥ ,

Q3
T ∥ = PU ⊗PV ⊗PW⊥ , Q

3
T ⊥ = PU⊥ ⊗PV⊥ ⊗PW.

(11)

Lastly, we define two subspaces that play a central role in our analysis:

QT ∥ = Q0
T ∥ +Q

1
T ∥ +Q

2
T ∥ +Q

3
T ∥ , and QT ⊥ = Q0

T ⊥ +Q1
T ⊥ +Q2

T ⊥ +Q3
T ⊥ . (12)

One can verify via multilinearity that X = QT∥(X) +QT ⊥(X) for all X ∈ (Rd)⊗3, and that any
tensor in the range of QT ∥ spans at most r dimensions along at least two modes. We can now state
our main theorem for the subgradient.

5. Following the convention in Section 1.3, if X = ∑i ai⊗bi⊗ci, then (PU⊗PV⊗PW)X = ∑i(PUai)⊗(PVbi)⊗(PWci).
It is also useful to note that for any x, y, z we have ⟨(PU ⊗PV ⊗PW), x⊗ y ⊗ z⟩ = ⟨X, (PUx)⊗ (PVy)⊗ (PWz)⟩.
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Theorem 5 (Subgradient of SoS nuclear norm) Let k ≥ 4, and let T = ∑ri=1 λi ⋅ ui ⊗ vi ⊗ wi
be an orthogonal rank-r tensor. Define X⋆ = ∑ri=1 ui ⊗ vi ⊗ wi. Then for all X ∈ (Rd)⊗3 with
∥X∥ ̃injk

≤ 1/64, and for all T ′ ∈ (Rd)⊗3, it holds that

∥T ′∥
ñuck+2

≥ ∥T ∥ñuck+2 + ⟨X⋆ +QT ⊥(X), T ′ − T ⟩. (13)

In other words, Theorem 5 states that

{X⋆ +QT ⊥(X) ∣ ∥X∥ ̃injk
≤ 1/64} ⊂ ∂∥T ∥ñuck+2 ,

which we may view as a generalization of the matrix subgradient characterization (10). Yuan and
Zhang (2016) proved a similar result for the (exact) tensor nuclear norm. Our proof of Theorem 5
shows that the essence of their proof can be captured by a low-degree sum-of-squares proof. It builds
on the approach introduced in Potechin and Steurer (2017) to provide dual certificates for exact
tensor completion.

With the subgradient lemma in hand, the path to the “approximately low rank” result of Theorem 4
is clear. Suppose that ∥T ′∥ñuck+2 ≤ ∥T ∥ñuck+2 , and let ∆ = T ′ − T . By appropriately choosing the
dual tensor X in (13), we can show that

∥QT ⊥(∆)∥ñuck ≤ 64 ⋅ ∥Q0
T ∥(∆)∥

ñuck
. (14)

which implies that ∥∆∥ñuck ≤ 65∥QT ∥(∆)∥ñuck The final result follows because ∥QT ∥(∆)∥ñuck ≲
r∥∆∥F , which is a consequence of the earlier remark that all the projections used to define QT ∥ in
(12) project into r dimensions along at least two modes. This full argument is in Appendix B.

3. Agnostic tensor completion

We now state our main learning results, which use the SoS nuclear norm to give efficient algorithms
with fast rates for agnostic tensor completion and tensor sensing. For both results we receive
observations (X1, Y1), . . . , (Xn, Yn) i.i.d. according to an unknown distributionD, where (Xt, Yt) ∈
(Rd)⊗3 ×R, and the goal is to obtain low square loss excess risk in the sense of equation (1). We let
Ên denote the empirical expectation, which is uniform over the examples {(Xt, Yt)}nt=1.

3.1. Tensor completion

In the tensor completion model we take observations Xt to be of the form Xt = eit ⊗ ejt ⊗ ekt , where
(it, jt, kt) ∈ [d]3 is selected uniformly at random.6 In the noiseless or well-specified setting, this
corresponds to observing a single entry of an unknown tensor, but we make no assumption on the
responses Yt other than boundedness. The main theorem is as follows.

Theorem 6 (Formal version of Theorem 1) Let τ > 0 be fixed. Suppose that ∣Y ∣ ≤ R almost surely,
and let T̂n be the empirical risk minimizer over the class T = {T ∈ (Rd)⊗3 ∣ ∥T ∥ñuc6 ≤ τ, ∥T ∥∞ ≤ R}.
Then for all n ≤ d3, with probability at least 1 − δ,

LD(T̂n) −LD(T ⋆) ≤ O(R
2r2(T ⋆)d3/2 log6 d

n
+ R

2 log(1/δ)
n

) (15)

for all orthogonal tensors T ⋆ ∈ (Rd)⊗3 with ∥T ⋆∥ñuc6 = τ and ∥T ⋆∥∞ ≤ R.

6. Note that we sample entries with replacement, whereas related works use without-replacement sampling (Barak and
Moitra, 2016; Potechin and Steurer, 2017).
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Let us spend a moment interpreting the theorem. First, let T ⋆ = arg minT ∶rank-r LD(T ). Then, by
setting τ = ∥T ⋆∥ñuc6 , we are guaranteed that with probability at least 1 − δ,

LD(T̂n) − inf
T ∶rank-r

LD(T ) ≤ O(R
2r2d3/2 log6 d

n
+ R

2 log(1/δ)
n

). (16)

More generally, (15) implies an exact oracle inequality (Koltchinskii et al., 2011; Gaiffas and Lecué,
2011): With probability at least 1 − δ, we have

LD(T̂n) ≤ inf
T ∶∥T ∥ñuc6

=τ
{LD(T ) +O(R

2r2(T )d3/2 log6 d

n
+ R

2 log(1/δ)
n

)}.

Let us compare the result in detail with Barak and Moitra (2016), which is the only other
polynomial time agnostic tensor completion result with sub-O(d2) sample complexity. For general

noise distributions, their analysis gives an excess risk bound that scales as Õ(
√

r2d3/2

n ). The bound

in (15) matches this dependence on all the parameters, but is squared, and is thus always tighter. The
result has excess risk against arbitrary tensors, however, while our bound requires orthogonality of
the benchmark. We do not know whether this restriction can be removed.

Interestingly, while Barak and Moitra (2016) give excess risk bounds against incoherent tensors,
we do not require incoherence. This is because we control the complexity of the benchmark through
the `∞ norm of the entries rather than through the Frobenius norm; this parallels the situation in the
matrix setting (Koltchinskii et al., 2011; Gaiffas and Lecué, 2011). Applying the spectral bounds of
Barak and Moitra (2016) without incoherence requires slightly tightening the analysis.

Lastly, we remark that the guarantee (16) requires setting the parameter τ based on the norm of
the unknown benchmark T ⋆. It is likely that this can be relaxed by appealing to penalized empirical
risk minimization rather than empirical risk minimization as in Koltchinskii et al. (2011), but we
leave this for future work.

3.2. Tensor sensing

In this setting we give agnostic learning guarantees for a setting we call tensor sensing, which
generalizes the matrix compressed sensing setup studied in Negahban and Wainwright (2011). We
assume that observations X ∈ (Rd)⊗3 have independent entries from N (0 ; 1) and—as in the tensor
completion setting—allow Y ∈ R to be arbitrary. For each tensor T , define R(T ) to be the smallest
almost-sure bound on ∣⟨T,X⟩ − Y ∣. As in the tensor completion setup, the main result is a fast rate
with Õ( r2d3/2n )-type scaling.

Theorem 7 Let τ > 0 be fixed, and let T̂n be the empirical risk minimizer over the tensor class
T = {T ∈ (Rd)⊗3 ∣ ∥T ∥ñuc6 ≤ τ}. Then with probability at least 1 − δ,

LD(T̂n) −LD(T ⋆) ≤ O(R
2(T ⋆)r2(T ⋆)d3/2 log3(d/δ)

n
). (17)

for all orthogonal tensors T ⋆ ∈ (Rd)⊗3 for which n = Ω(r2(T ⋆)d3/2 log1/2 d + log(1/δ)) and
∥T ⋆∥ñuc6 = τ .

9
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Overview of analysis We now sketch how the subgradient theorem can be combined with empirical
process arguments to prove Theorem 6 and Theorem 7. We follow a generic recipe given in
Appendix C.1—specifically, Theorem 20—which shows that to control the generalization error of
empirical risk minimization, it suffices to bound a certain “offset” or “shifted” empirical process. For
any fixed benchmark T ⋆, the excess risk relative to T ⋆ is bounded as

LD(T̂n) −LD(T ⋆) ≤ sup
∆∈T −T ⋆

{(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] +E⟨∆,X⟩2 − 2Ên⟨∆,X⟩2}.
(18)

The offset process on the right-hand side was used to obtain high-probability fast rates for
misspecified models by Liang et al. (2015), and its analysis is closely related to that of Lecué and
Mendelson (2013); Mendelson (2014). To bound the process, it suffices to establish a type of lower
isometry/restricted eigenvalue property, which we state here for the case of tensor regression: let Xn ∶
(Rd)⊗3 → Rn be the data operator, which maps any tensor T to the sequence ⟨T,X1⟩, . . . , ⟨T,Xn⟩,
and let Σ = EX[XX⊺] ∈ Rd3×d3 be the covariance matrix for the vectorized measurements. Then it
suffices to show that with high probability, the following restricted eigenvalue bound holds:

1√
n
∥Xn(∆)∥2 ≥ c∥Σ1/2∆∥F ∀∆ ∈ T − T ⋆,

where c > 1/
√

2 is a sufficiently large constant.
Our starting point to establish the guarantee is to borrow a bound from Hopkins et al. (2015),

which states that E∥X∥ ̃inj4
= O(d3/4 log1/4 d) under gaussian measurements, and suffices to bound

the Rademacher complexity of our tensor class. Using this bound in conjunction with standard
gaussian concentration arguments and the “peeling” method (e.g. (Negahban and Wainwright, 2011)),
we prove Theorem 25, which states that with high probability,

1√
n
∥Xn(∆)∥2 ≥ 0.79 ⋅ ∥∆∥F −

Cd3/4 log1/4 d√
n

⋅ ∥∆∥ñuc4 ∀∆ ∈ (Rd)⊗3.

Combined with Theorem 4, which asserts that all ∆ ∈ T − T ⋆ have ∥∆∥ñuc4 ≤ O(r(T ⋆)) ⋅ ∥∆∥2, we
have the following consequence: once n = Ω(r2(T ⋆)d3/2 log1/2 d), with high probability,

1√
n
∥Xn(∆)∥2 ≥ (0.79 − o(1)) ⋅ ∥∆∥F ∀∆ ∈ T − T ⋆.

To establish the analogous bound in the tensor completion model we use the SoS Rademacher
bound from Barak and Moitra (2016), but utilize somewhat different concentration arguments. Indeed,
due to the sparse nature of the measurement distribution one cannot hope to exactly establish the
restricted eigenvalue property for Xn, and must instead show that it holds up to a small additive error.

4. Computational lower bounds

In the rank-one case, the excess risk bound of Theorem 6 scales as Õ(d3/2/n), while the excess
risk attained by the natural inefficient algorithm scales as Õ(d/n). It is natural to ask whether
this O(d1/2) gap can be improved or whether it poses a fundamental barrier. In the slow rate
regime, Barak and Moitra (2016) gave a computational lower bound showing that finding efficiently
computable classes of tensors for which the Rademacher complexity grows as o(

√
d3/2/n) is at least

10
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as hard as refuting random instances of 3-XOR with o(d3/2) clauses. In this section we show that
this computational hardness is also present in the fast rate regime: Under plausible average-case
hardness assumptions, no polynomial time algorithm can obtain a fast rate for square loss scaling as
O(d3/2−ε/n) for any ε > 0.

Our improper learning lower bound applies to any algorithm that obtains low excess risk in the
sense of (15), and states that under conjectured hardness of a certain distinguishing problem for
3-XOR it is not possible to improve the O(d3/2) dependence on dimension.

We reduce from the 3-XOR problem over variables x ∈ {±1}d. A 3-XOR instance consists of a
sequence of m clauses of the form

xi ⋅ xj ⋅ xk = zijk,
where zijk ∈ {±1} is a target. We consider two families of instances:

• Planted. Fix an arbitrary assignment a ∈ {±1}d. Select m triples (i, j, k) uniformly at random
with replacement.7 For each such triple (i, j, k), include a clause

xi ⋅ xj ⋅ xk = zijk ∶= { ai ⋅ aj ⋅ ak, with probability 1 − η
−ai ⋅ aj ⋅ ak, with probability η.

Note, we sample the value zi,j,k for a triple (i, j, k) only once: if the triple is sampled multiple
times, the value zijk will be the same.

• Random. Select m triples (i, j, k) uniformly at random with replacement, and take each clause
to be xi ⋅xj ⋅xk = zijk, where zijk is drawn from {±1} uniformly at random. Again, we sample
the value zi,j,k for a triple (i, j, k) only once.

An algorithm for the distinguishing problem takes m clauses as input and outputs either “Planted”
or “Random”. The algorithm is said to succeed if it outputs “Planted” for planted instances and
“Random” for random instances with probability at least 1− o(1) over the draw of the instance. Note
that the problem becomes easier as η gets smaller, and in particular when η = 0 the problem can be
solved in polynomial time using Gaussian elimination.

Conjecture 8 There is some constant η < 1/4 such that no algorithm that succeeds for the 3-XOR
distinguishing problem with m = o(d3/2) runs in polynomial time.

All known polynomial time algorithms for distinguishing require m = Ω(d3/2) clauses, and con-
jectured hardness of the closely related problem of strong refutation for random 3-XOR for with
o(d3/2) clauses has been used as a basis to establish hardness of other learning problems (Daniely,
2016; Raghavendra et al., 2017; Kothari et al., 2017; Feldman et al., 2018).

Theorem 9 Let ε > 0 be fixed. Assuming the 3-XOR distinguishing conjecture, there is no polyno-
mial time algorithm for agnostic tensor completion that guarantees that for any distribution D, with
probability at least 1 − o(1),

LD(T̂n) − inf
T ⋆∶ rank-1

LD(T ⋆) = O(d
3/2−ε

n
). (19)

7. We work in the slightly non-standard with-replacement model to simplify the mapping onto the with-replacement
tensor completion model in Theorem 6.

11
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5. Conclusion

Our results demonstrate the power of the sum-of-squares hierarchy for agnostic statistical learning,
and show for the first time that sum-of-squares algorithms can obtain fast rates for prediction. We
hope our work will serve as a starting point for applying sum-of-squares to obtain polynomial time
algorithms with fast rates in statistical learning for broader classes of models.

A few immediate technical questions emerge. Can the dependence on rank in our results
be improved? Can the subgradient results be extended to the general undercomplete or even
overcomplete case? Can similar agnostic learning results be obtained with a more practical algorithm
that does not rely on solving the full sum-of-squares SDP?

Acknowledgements We thank Sasha Rakhlin and Ankur Moitra for helpful discussions and thank
Matthew J. Telgarsky for being a constant source of inspiration.
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Appendix A. Preliminaries

A.1. Sum-of-squares proof system

Let A = {f1 ≥ 0, . . . , fm ≥ 0} ∪ {g1 = 0, . . . , gm′ = 0} be a system of polynomial constraints. A
degree-` sum-of-squares proof that A implies a constraint {h ≥ 0} is a set of polynomials (qi)i∈[m′]

and sum-of-squares polynomials (pS)S⊆[m] such that

h = ∑
S⊆[m]

pS∏
i∈S

fi + ∑
i∈[m′]

qigi,

and where and deg(pS∏i∈S fi) ≤ ` for all S and deg(qigi) ≤ ` for all i.8 We write A ⊢` {h ≥ 0}
whenever such a proof exists. Our proofs going forward utilize the well-known duality of SoS proofs
and pseudodistributions. See O’Donnell and Zhou (2013) and Barak and Steurer (2016) for further
discussion, as well as inference rules for the SoS proof system.

We note the following well-known, but useful lemma:

8. We use the convention∏i∈∅ fi = 1, so that if ⊢` h then h itself is a degree-` sum of squares.
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Lemma 10 (Pseudo Cauchy-Schwarz) Let f and g be polynomials and let ` = 2 max{deg f,deg g}.
Then for any η > 0,

⊢` {fg ≤
η

2
f2 + 1

2η
g2}. (20)

As a consequence, if µ is a degree-s pseudodistribution with s ≥ `, then

Ẽµ[fg] ≤
√

Ẽµ[f2] ⋅ Ẽµ[g2]. (21)

A.2. Basic technical results

A.2.1. SUM-OF-SQUARES NORMS

We state a few lemmas capturing useful properties of the sum-of-squares norms.

Proposition 11 The SoS nuclear norm and SoS injective norm are dual: ∥⋅∥ ̃inj
⋆

r
= ∥⋅∥ñucr and

∥⋅∥ñuc⋆r = ∥⋅∥ ̃injr
.

Proof of Proposition 11 It is immediate from the norm definitions that

∥X∥ñuc⋆r = sup
W ∈Kr

⟨W,X⟩ = sup
µ degree-r

Ẽµ∥x∥22=Ẽµ∥y∥
2
2=Ẽµ∥z∥

2
2=1

W=Ẽµ[x⊗y⊗z]

⟨W,X⟩ = ∥X∥ ̃injr
.

The other direction is a consequence of the standard duality theory for finite-dimensional Banach
spaces. See, e.g., Theorem 15.4 in Rockafellar (1970).

Lemma 12 Let T = ∑ri=1 λi ⋅ ui ⊗ vi ⊗wi be an orthogonal rank-r tensor. Then for all k ≥ 4.

∥T ∥ñuck = ∥T ∥nuc =
r

∑
i=1

∣λi∣, and ∥T ∥ ̃injk
= ∥T ∥inj = max

i≤r
∣λi∣. (22)

Lemma 12 states that the SoS relaxations of the nuclear norm and injective norm are essentially
“integral” for orthogonal tensors. Note, this should not be a huge surprise since it is well-known
that polynomial time methods such as power iteration succeed at decomposing orthogonal tensors
(Kolda and Bader, 2009). We should mention it doesn’t seem possible to directly apply such results
to give agnostic learning guarantees along the lines of our main theorem. While our benchmark is an
orthogonal tensor, the data itself may have no orthogonal structure, and thus there is no clear object
to which one might apply such a decomposition.
Proof of Lemma 12 We may assume λi ≥ 0 without loss of generality. We first prove equality
for the injective norms. Let i⋆ = arg maxi≤r λi. As a starting point, for any k we have ∥T ∥ ̃injk

≥
∥T ∥inj ≥ λi⋆ by exhibiting ui⋆ ⊗ vi⋆ ⊗ wi⋆ as a feasible solution to the supremum in ∥T ∥inj =
sup∥x∥2=∥y∥2=∥z∥2=1⟨T,x⊗ y ⊗ z⟩.

For the upper bound, let x, y, z be indeterminates and—exploiting orthogonality—let us change
coordinates such that ui = vi = wi = ei. Then we have

⟨T,x⊗ y ⊗ z⟩ =
r

∑
i=1

λixiyizi
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From equation (20), we have

⊢4 xiyizi ≤
1

2
x2
i +

1

2
y2
i z

2
i .

We also have ⊢4 ∑ri=1 y
2
i z

2
i ≤ (∑ri=1 y

2
i )(∑ri=1 z

2
i ). By the additivity of SoS proofs, and since we

have assumed λi ≥ 0, this implies

⊢4 ⟨T,x⊗ y ⊗ z⟩ ≤ max
i≤r

λi ⋅ (
1

2
∥x∥2

2 +
1

2
∥y∥2

2∥z∥
2
2).

Now let A = {∥x∥2
2 = 1, ∥y∥2

2 = 1, ∥z∥2
2 = 1}. We claim A ⊢4 ∥y∥2

2∥z∥
2
2 = 1. To see this, write

1−∥y∥2
2∥z∥

2
2 = (1−∥y∥2

2)(1+∥z∥
2
2)+(1−∥z∥

2
2)+(∥y∥

2
2−1) and use that deg((1−∥y∥2

2)(1+∥z∥
2
2)) = 4.

Putting everything together, we see that A ⊢4 ⟨T,x⊗ y ⊗ z⟩ ≤ maxi≤r λi. Thus, since the `2
norm is preserved under change of basis, it follows that if µ is any feasible degree-4 pseudodistribution
for the maximization problem (6), we must have Ẽµ⟨T,x⊗ y ⊗ z⟩ ≤ maxi λi, and so ∥T ∥ ̃injk

≤
maxi λi.

We now establish equality for the nuclear norms. We trivially have ∥T ∥ñuck ≤ ∥T ∥nuc ≤ ∑ri=1 λi
by exhibiting the decomposition T = ∑ri=1 λi ⋅ ui ⊗ vi ⊗wi as a feasible solution to the minimization
problem in (4). For the other direction, define X⋆ = ∑ri=1 ui ⊗ vi ⊗wi, and observe that the equality
we just established for the injective norm implies ∥X⋆∥ ̃injk

≤ 1. Thus, using the duality of the SoS
nuclear norm and injective norm from Proposition 11, we have

∥T ∥ñuck = sup
X∈(Rd)⊗3∶∥X∥ĩnjk

≤1

⟨X,T ⟩ ≥ ⟨X⋆, T ⟩ =
r

∑
i=1

λi,

where the last equality uses that {ui}, {vi}, and {wi} are all orthogonal.

Proposition 13 Let k ≥ 4. For any degree-k pseudodistribution µ,

⟨T, Ẽµ[x⊗ y ⊗ z]⟩ ≤ ∥T ∥ ̃injk
⋅
√

Ẽµ∥x∥2
2 ⋅ Ẽµ∥y∥

2
2 ⋅ Ẽµ∥z∥

2
2. (23)

Furthermore, the following statements hold:

{∥z∥2
2 ≤ 1} ⊢k ⟨T,x⊗ y ⊗ z⟩ ≤ ∥T ∥ ̃injk

⋅ (1

2
∥x∥2

2 +
1

2
∥y∥2

2),

{∥y∥2
2 ≤ 1} ⊢k ⟨T,x⊗ y ⊗ z⟩ ≤ ∥T ∥ ̃injk

⋅ (1

2
∥x∥2

2 +
1

2
∥z∥2

2),

{∥x∥2
2 ≤ 1} ⊢k ⟨T,x⊗ y ⊗ z⟩ ≤ ∥T ∥ ̃injk

⋅ (1

2
∥y∥2

2 +
1

2
∥z∥2

2).

(24)

Proof of Proposition 13 Equation (23) follows by rescaling a given pseudodistribution µ with

x′ = x/
√

Ẽµ∥x∥2
2 and so forth so that the pseudodistribution is feasible for the maximization problem

(6).
For (24), let µ be a degree-k pseudodistribution with µ ⊧ {∥z∥2

2 ≤ 1}. Then, using (23) and

the AM-GM inequality we get ⟨T, Ẽµ[x⊗ y ⊗ z]⟩ ≤
∥T ∥ĩnjk

2
(Ẽµ∥x∥2

2 + Ẽµ∥y∥2
2). Using linearity of

the pseudoexpectation operator we have Ẽµ[
∥T ∥ĩnjk

2
(∥x∥2

2 + ∥y∥2
2) − ⟨T,x⊗ y ⊗ z⟩] ≥ 0, and so (24)

follows from the duality of pseudoexpectations and sum-of-squares proofs. The remaining statements
follow by symmetry.

17
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A.2.2. PROJECTIONS

Here we state some basic results regarding the projection operators defined in Section 2.2.

Proposition 14 Let x, y, z ∈ Rd be given. If at least two of the follow conditions hold:

1) x ∈ U, 2) y ∈ V, 3) z ∈W,

then QT ⊥(x⊗ y ⊗ z) = 0.

Proof of Proposition 14 Suppose that x ∈ U and y ∈ V. Then PU⊥(x) = 0, and soQ0
T ⊥(x⊗y⊗ z) =

Q2
T ⊥(x⊗ y ⊗ z) = Q3

T ⊥(x⊗ y ⊗ z) = 0. We also have PV⊥(y) = 0, and so Q1
T ⊥(x⊗ y ⊗ z) = 0. The

remaining cases follow by symmetry.

Lemma 15 Let k ≥ 4. For any tensor X ∈ (Rd)⊗3, and any subspaces U,V,W we have

∥(PU ⊗PV ⊗PW)X∥ ̃injk
≤ ∥X∥ ̃injk

,

and in particular ∥QT ∥(X)∥ ̃injk
≤ 4∥X∥ ̃injk

and ∥QT ⊥(X)∥ ̃injk
≤ 4∥X∥ ̃injk

.

Proof of Lemma 15 For any degree-4 pseudodistribution µ over indeterminates x, y, z we have

Ẽµ⟨(PU ⊗PV ⊗PW)X,x⊗ y ⊗ z⟩ = Ẽµ⟨X, (PUx)⊗ (PVy)⊗ (PWz)⟩

≤
√

Ẽµ∥PUx∥2
2 ⋅ Ẽµ∥PVy∥

2
2 ⋅ Ẽµ∥PWz∥

2
2

≤
√

Ẽµ∥x∥2
2 ⋅ Ẽµ∥y∥

2
2 ⋅ Ẽµ∥z∥

2
2,

where the first inequality uses Proposition 13 and the second uses that ⊢2 ∥PXx∥2
2 ≤ ∥x∥2

2 for
any subspace X. This establishes the first result. Now observe from (11) that ∥QT ∥(T )∥ ̃injk

≤
∑4
i=1∥QiT ∥(T )∥ ̃injk

and ∥QT ⊥(T )∥ ̃injk
≤ ∑4

i=1∥QiT ⊥(T )∥ ̃injk
. We thus obtain the second result by

applying the first to each of the summands.

A.2.3. FLATTENINGS

The multilinear rank of a tensor T ∈ (Rd)⊗3 is the triple (r1, r2, r3), where

r1(T ) = dim span{T⋅,j,k ∣ j, k ∈ [d]}, (25)

is the dimension of the space spanned by the mode-1 fibers and r2(T ) and r3(T ) are defined likewise
for the second and third mode.

We define the ith flattening map ♭i ∶ (Rd)⊗3 → Rd×d2 via

♭1(T )i,(j,k) = ♭2(T )j,(i,k) = ♭3(T )k,(i,j) = Ti,j,k. (26)

A standard result is that rank(♭i(T )) = ri(T ) (Friedland and Lim, 2018). We also have the following
comparison between the nuclear norm of the tensor and its flattenings.

Lemma 16 (Friedland and Lim (2018), Theorem 9.4) For any tensor T ∈ (Rd)⊗3,

∥T ∥nuc ≤ min{
√

min{r2, r3}∥♭1(T )∥nuc,
√

min{r1, r3}∥♭2(T )∥nuc,
√

min{r1, r2}∥♭3(T )∥nuc}.

18
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A.2.4. CONCENTRATION

Lemma 17 (Talagrand-type concentration for supremum of empirical process) LetF be a class
of functions of the form f ∶ Z → R. Let z1, . . . , zn be sampled i.i.d. from a distribution D over Z
that satisfies E[f(z)] = 0 and has ∣f(z)∣ ≤ c almost surely. Let σ2 = supf∈F E f2(z). Then for any
δ > 0, with probability at least 1 − 2δ over the i.i.d. draw of z1, . . . , zn,

sup
f∈F

∣ 1

n

n

∑
t=1

f(zt)∣ ≤ 4Ez1∶n Eε sup
f∈F

1

n

n

∑
t=1

εtf(zt) +
√

2σ2 log(1/δ)
n

+ 2c log(1/δ)
n

.

Proof of Lemma 17 Follows from Theorem A.1 of Bartlett et al. (2005) applied to the classes
F and −F separately, along with the standard in-expectation symmetrization lemma for uniform
convergence.

Appendix B. Proofs from Section 2

The main result in this section is to prove Theorem 5, then use this result to prove Theorem 4. Before
proceeding to the main proofs we state an intermediate result.

Lemma 18 (Potechin and Steurer (2017)) Let x, y, z ∈ Rd be indeterminates. LetA = {∥y∥2
2 = 1}.

Then for any r ∈ [d],

A ⊢6

r

∑
i=1

xiyizi ≤
1

2
∥x∥2

2 +
1

2
∥z∥2

2 −
1

4

d

∑
i=r+1

x2
i + z2

i −
1

8

d

∑
i=1
∑
j≠i

y2
i (x2

j + z2
j + y2

j (∥x∥
2
2 + ∥z∥2

2)).

Corollary 19 Let A = {∥x∥2
2 = 1, ∥z∥2

2 = 1}. Then for any r ∈ [d],

A ⊢6

r

∑
i=1

xiyizi ≤ 1 − 1

4

d

∑
i=r+1

x2
i + z2

i −
1

8

d

∑
i=1
∑
j≠i

y2
i (x2

j + y2
j + z2

j ).

Proof of Corollary 19 We will show that A ⊢6 −∑di=1∑j≠i y2
i y

2
j ∥x∥

2
2 = −∑di=1∑j≠i y2

i y
2
j ; the

term involving ∥z∥2
2 follows from the same reasoning. The desired inequality is equivalent to

∑di=1∑j≠i y2
i y

2
j (∥x∥

2
2 −1) = 0, which is clearly the product of a degree-4 polynomial and the equality

constraint {∥x∥2
2 − 1 = 0}.

Proof of Theorem 5 Preliminaries. We first claim that the following equalities hold:

• Q0
T ∥

(X⋆) =X⋆.

• ∥X⋆∥ ̃injk
= ∥X⋆∥ ̃injk+2

= ∥X⋆∥inj = 1.

• ⟨X⋆, T ⟩ = ∥T ∥ñuck = ∥T ∥ñuck+2 = ∥T ∥nuc.

Indeed, it is immediate from the definition ofX⋆ thatQ0
T ∥

(X⋆) =X⋆, and it follows from Lemma 12
that ∥X⋆∥ ̃injk

= 1 and ⟨X⋆, T ⟩ = ∥T ∥ñuck for all k ≥ 4.
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Bounding dual norm is sufficient. To establish the inequality (13), we reduce to a simpler problem.
The claim is as follows: Fix a constant α > 0. If for all X ∈ (Rd)⊗3 with ∥X∥ ̃injk

≤ α, we have

∥X⋆ +QT ⊥(X)∥ ̃injk+2
≤ 1, (27)

then (13) holds for all X with ∥X∥ ̃injk
≤ α. To see that this is the case, observe that for any T ′ and

all such X we have

⟨X⋆ +QT ⊥(X), T ′ − T ⟩ ≤ ∥X⋆ +QT ⊥(X)∥ ̃injk+2
∥T ′∥

ñuck+2
− ⟨X⋆ +QT ⊥(X), T ⟩

≤ ∥T ′∥
ñuck+2

− ⟨X⋆ +QT ⊥(X), T ⟩

= ∥T ′∥
ñuck+2

− ∥T ∥ñuck+2 ,

where the first inequality uses Proposition 11, the second inequality uses (27), and the final equality
uses the definition of X⋆ and that ⟨QT ⊥(X), T ⟩ = ⟨X,QT ⊥(T )⟩ = 0. Rearranging the inequality
yields (13).
Bounding the dual norm. The remainder of the proof establishes that (27) holds for α = 1/64.

Let x, y, z ∈ Rd be indeterminates. We will provide a degree-(k + 2) SoS upper bound on the
polynomial ⟨X⋆ +QT ⊥(X), x⊗ y ⊗ z⟩, which will suffice to establish (27).

Let {ui}ri=1, {vi}ri=1, {wi}ri=1 be as in (2). Then, let U = span({ui}ri=1),V = span({vi}ri=1),W =
span({wi}ri=1), so that {ui}ri=1 is a basis for U, and likewise for the other modes. Let {ui}di=r+1 be
an arbitrary orthonormal basis for U⊥ and likewise with {vi}di=r+1 for V⊥, and {wi}di=r+1 for W⊥.

We perform a change of basis and let ui = vi = wi = ei, where ei is the ith standard basis vector.
Then with x, y, z expressed in the new basis we can write

⟨X⋆ +QT ⊥(X), x⊗ y ⊗ z⟩ =
r

∑
i=1

xiyizi + ⟨QT ⊥(X), x⊗ y ⊗ z⟩. (28)

Let A = {∥x∥2
2 = 1, ∥y∥2

2 = 1, ∥z∥2
2 = 1}. From Corollary 19, we have

A ⊢6

r

∑
i=1

xiyizi ≤
1

2
∥x∥2

2 +
1

2
∥z∥2

2 −
1

4

d

∑
i=r+1

x2
i + z2

i −
1

8

d

∑
i=1
∑
j≠i

y2
i (x2

j + z2
j + y2

j ).

We now handle the second term in (28). We will establish that

A ⊢k+2 ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ +O(α) ⋅
d

∑
i=r+1

x2
i + z2

i +O(α) ⋅
d

∑
i=1
∑
j≠i

y2
i (x2

j + z2
j + y2

j ). (29)

under the assumption that ∥X∥ ̃injk
≤ α. To do this it suffices show that for each i individually,

A ⊢6 y
2
i ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ O(α) ⋅ y2

i ∑
j≠i

(x2
j + z2

j + y2
j ),

with an extra additive factor of O(α) ⋅ y2
i (x2

i + z2
i ) when i > r. Let 1 ≤ i ≤ d be fixed and let

x′ = x − xiei, y′ = y − yiei, and z′ = z − ziei. We write

⟨QT ⊥(X), x⊗ y ⊗ z⟩ = ⟨X,QT ⊥((xiei + x′)⊗ (yiei + y′)⊗ (ziei + z′))⟩. (30)
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Case: i ≤ r. Observe that with our change of basis we have ei ∈ U along the first mode, ei ∈ V along
the second mode, and ei ∈W along the third mode. In view of Proposition 14, this means we have

0 = QT ⊥((xiei)⊗ (yiei)⊗ (ziei))
= QT ⊥((xiei)⊗ (yiei)⊗ z′)
= QT ⊥(x′ ⊗ (yiei)⊗ (ziei))
= QT ⊥((xiei)⊗ y′ ⊗ (ziei)).

Consequently, using multilinearity we can write

⟨QT ⊥(X), x⊗ y ⊗ z⟩ = ⟨QT ⊥(X), x′ ⊗ y′ ⊗ z′⟩ + ⟨QT ⊥(X), x′ ⊗ y′ ⊗ (ziei)⟩
+ ⟨QT ⊥(X), (xiei)⊗ y′ ⊗ z′⟩ + ⟨QT ⊥(X), x′ ⊗ (yiei)⊗ z′⟩.

(31)

In what follows we will repeatedly invoke that A ⊢2 ∥xiei∥2
2 ≤ ∥x∥2

2 ≤ 1, A ⊢2 ∥x′∥2
2 ≤ ∥x∥2

2 ≤ 1,
and so forth. We will also use that if ∥X∥ ̃injk

≤ α then—via Proposition 13 and Lemma 15—for any
indeterminates a, b, c,

{∥a∥2
2 ≤ 1} ⊢k ⟨QT ⊥(X), a⊗ b⊗ c⟩ ≤ 2α(∥b∥2

2 + ∥c∥2
2),

{∥b∥2
2 ≤ 1} ⊢k ⟨QT ⊥(X), a⊗ b⊗ c⟩ ≤ 2α(∥a∥2

2 + ∥c∥2
2),

{∥c∥2
2 ≤ 1} ⊢k ⟨QT ⊥(X), a⊗ b⊗ c⟩ ≤ 2α(∥b∥2

2 + ∥b∥2
2).

These inequalities allow us to bound the terms in (31) as follows:

{∥y∥2
2 ≤ 1} ⊢k ⟨QT ⊥(X), x′ ⊗ y′ ⊗ z′⟩ ≤ 2α(∥x′∥2

2
+ ∥z′∥2

2
).

{∥z∥2
2 ≤ 1} ⊢k ⟨QT ⊥(X), x′ ⊗ y′ ⊗ (ziei)⟩ ≤ 2α(∥x′∥2

2
+ ∥y′∥2

2
).

{∥x∥2
2 ≤ 1} ⊢k ⟨QT ⊥(X), (xiei)⊗ y′ ⊗ z′⟩ ≤ 2α(∥y′∥2

2
+ ∥z′∥2

2
).

{∥y∥2
2 ≤ 1} ⊢k ⟨QT ⊥(X), x′ ⊗ (yiei)⊗ z′⟩ ≤ 2α(∥x′∥2

2
+ ∥z′∥2

2
).

Adding these inequalities, we get

A ⊢k ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ 6α∑
j≠i

(x2
j + y2

j + z2
j ),

and by the multiplication rule for SoS proofs,

A ⊢k+2 y
2
i ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ 6α∑

j≠i

y2
i (x2

j + y2
j + z2

j ).

Case: i > r. As in the previous case, we split the expression in (30) using multilinearity, however we
can no longer argue that four of the eight terms vanish. As a starting point, for the four terms that
appeared in the i ≤ r case we can adopt the same upper bound to get

A ⊢k ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ QT ⊥((xiei)⊗ (yiei)⊗ (ziei)) +QT ⊥((xiei)⊗ y′ ⊗ (ziei))
+QT ⊥((xiei)⊗ (yiei)⊗ z′) +QT ⊥(x′ ⊗ (yiei)⊗ (ziei))
+ 6α∑

j≠i

(x2
j + y2

j + z2
j ).
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We bound the four remaining terms as follows:

{∥y∥2
2 ≤ 1} ⊢k QT ⊥((xiei)⊗ (yiei)⊗ (ziei)) ≤ 2α(x2

i + z2
i ),

{∥y∥2
2 ≤ 1} ⊢k QT ⊥((xiei)⊗ (yiei)⊗ z′) ≤ 2α(x2

i + ∥z′∥2

2
),

{∥y∥2
2 ≤ 1} ⊢k QT ⊥(x′ ⊗ (yiei)⊗ (ziei)) ≤ 2α(∥x′∥2

2
+ z2

i ),
{∥y∥2

2 ≤ 1} ⊢k QT ⊥((xiei)⊗ y′ ⊗ (ziei)) ≤ 2α(x2
i + z2

i ).

Adding together all of these inequalities, we get

A ⊢k ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ 6α(x2
i + z2

i ) + 8α∑
j≠i

(x2
j + y2

j + z2
j ),

and
A ⊢k+2 y

2
i ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ 6αy2

i (x2
i + z2

i ) + 8α∑
j≠i

y2
i (x2

j + y2
j + z2

j ).

Putting everything together. Taking the inequalities we proved for the individual coordinates i and
summing them up, we have

A ⊢k+2 ∥y∥2
2 ⋅ ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ 6α

d

∑
i=r+1

y2
i (x2

i + z2
i ) + 8α

d

∑
i=1
∑
j≠i

y2
i (x2

j + y2
j + z2

j ).

Since {∥y∥2
2 = 1} ⊂ A, we get

A ⊢k+2 ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ 6α
d

∑
i=r+1

(x2
i + z2

i ) + 8α
d

∑
i=1
∑
j≠i

y2
i (x2

j + y2
j + z2

j ).

Returning to (28), this inequality plus the earlier bound from Corollary 19 imply

A ⊢k+2 ⟨X⋆ +QT ⊥(X), x⊗ y ⊗ z⟩

≤ 1 + (6α − 1/4)
d

∑
i=r+1

(x2
i + z2

i ) + (8α − 1/8)
d

∑
i=1
∑
j≠i

y2
i (x2

j + z2
j + y2

j ).

≤ 1, for α ≤ 1/64.

By the duality of SoS proofs and pseudodistributions, we have ∥X⋆ +QT ⊥(X)∥ ̃injk+2
≤ 1 as desired.

Proof of Theorem 4 We first establish equation (14). We combine the assumption that ∥T ′∥ñuck+2 ≤
∥T ∥ñuck with equation (13) to get

∥T ∥ñuck+2 ≥ ∥T ′∥
ñuck+2

≥ ∥T ∥ñuck+2 + ⟨X⋆ +QT ⊥(X),∆⟩.

for all X with ∥X∥ ̃injk
≤ 1/64 and X⋆ as in Theorem 5. Rearranging, this yields

⟨X,QT ⊥(∆)⟩ = ⟨QT ⊥(X),∆⟩ ≤ − ⟨X⋆,∆⟩ = −⟨X⋆,Q0
T ∥(∆)⟩.
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We now use that ∥X⋆∥ ̃injk
≤ 1 (from Theorem 5) and choose X to be a point obtaining the supremum

in ∥QT ⊥(∆)∥ñuck = sup∥X∥ĩnjk
≤1⟨X,QT ⊥(∆)⟩, scaled by 1/64. Then the inequality above implies

⟨X,QT ⊥(∆)⟩ = 1

64
⋅ ∥QT ⊥(∆)∥ñuck ≤ ∥Q0

T ∥(∆)∥
ñuck

.

We now establish equation (9). Observe that we can write

∥∆∥ñuck = ∥QT ∥(∆) +QT ⊥(∆)∥ñuck ≤ ∥QT ∥(∆)∥ñuck + ∥QT ⊥(∆)∥ñuck .

Combining this with (14), we get

∥∆∥ñuck ≤ ∥QT ∥(∆)∥ñuck + 64∥Q0
T ∥(∆)∥

ñuck

Using the triangle inequality, we upper bound the first term as

∥QT ∥(∆)∥ñuck ≤
4

∑
i=1

∥QiT ∥(∆)∥
ñuck

≤
4

∑
i=1

∥QiT ∥(∆)∥
nuc
.

To proceed, we flatten each tensor in the summation above into a matrix and use Lemma 16 to show
that the nuclear norm of the flattening leads to an upper bound. Let r1 = dimU, r2 = dimV, and
r3 = dimW. Then the following inequalities hold

∥Q1
T ∥(∆)∥

nuc
≤ √

r2∥♭3(Q1
T ∥(∆))∥

nuc
≤ √

r2r3∥Q1
T ∥(∆)∥

F
.

∥Q2
T ∥(∆)∥

nuc
≤ √

r3∥♭1(Q2
T ∥(∆))∥

nuc
≤ √

r1r3∥Q2
T ∥(∆)∥

F
.

∥Q3
T ∥(∆)∥

nuc
≤ √

r1∥♭2(Q3
T ∥(∆))∥

nuc
≤ √

r1r2∥Q3
T ∥(∆)∥

F
.

The first inequality in each line above follows from Lemma 16 and the definitions in (11). The
second follows from the fact that ∥A∥nuc ≤

√
rank(A)∥A∥F for any matrix A, along with the fact

that rank(♭i(T )) = ri(T ) for any tensor, and that flattening does not change the entrywise `2 norm.
We have ∥Q0

T ∥
(∆)∥

nuc
≤ √

r2r3∥Q0
T ∥

(∆)∥
F

as well by the same argument, though the choice of
r1/r2/r3 in this case is arbitrary.

To combine all the bounds, we use that r1, r2, r3 ≤ r and that orthogonal projection decreases the
`2 norm, which yields

∥∆∥ñuck ≤ 68r∥∆∥F .

Appendix C. Proofs from Section 3

This section of the appendix is structured as follows. First, in Appendix C.1, we provide we provide
a generalization bound for general classes of tensors and measurement models, from which all
of our main statistical results will follow as special cases. This bound assumes that a restricted
eigenvalue-type property holds for the tensor class and measurement model under consideration. In
Appendix C.2 and Appendix C.3 we establish that this restricted eigenvalue property holds for the
measurement models in Section 3. In Appendix C.4 we combine these results to prove the main
results of that section.
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C.1. Agnostic generalization bounds for tensor classes

In this section we given generalization guarantees for empirical risk minimization in a general
learning setup. We receive a set of examples S ∶= (X1, Y1), . . . , (Xn, Yn) i.i.d. from a distribution
D over (Rd)⊗3 ×R. We assume that a convex class of tensors eT ⊆ (Rd)⊗3 is given, and that our
goal is to achieve excess risk against an unknown benchmark T ⋆ ∈ T . We analyze the performance
of empirical risk minimization over T :

T̂n = arg min
T ∈T

L̂n(T ),

where L̂n is the empirical square loss. The main result from this section is Theorem 20, which
bounds the performance of ERM under various assumptions on the data distribution, the class T ,
and the benchmark T ⋆. To state the result, recall from Section 3 that Σ is the population correlation
matrix and Xn is the empirical design operator.

Theorem 20 Let a benchmark T ⋆ ∈ T be fixed, and let ξt = (Yt − ⟨T ⋆,Xt⟩). Suppose there exist a
pair of dual norms ∥⋅∥ and ∥⋅∥⋆ for which the following conditions hold:

1. There are constants 0 ≤ c < 2, γn > 0, and δ0 ≥ 0 such that with probability at least 1 − δ0,

∥Σ1/2∆∥
F

2
≤ c

n
∥Xn(∆)∥2

F + γn ∀∆ ∈ T − T ⋆ (Property 1).

2. There are constants M ≥ 0 and δ1 ≥ 0 such that with probability at least 1 − δ1,

∥
n

∑
t=1

ξtXt −E[ξX]∥ ≤M ⋅
√
n (Property 2).

3. There is a constant κ ≥ 0 such that

∥∆∥2
⋆ ≤ κ2 ⋅ ∥Σ1/2∆∥

2

F
∀∆ ∈ T − T ⋆ (Property 3).

Then with probability at least 1 − (δ0 + δ1),

LD(T̂n) −LD(T ⋆) ≤
2κ2M2

c′n
+ 2γn. (32)

Proof of Theorem 20 Since T is convex, and since T̂n minimizes the (strongly convex) empirical
risk, we have

L̂n(T ⋆) − L̂n(T̂n) ≥ ⟨∇L̂n(T̂n), T ⋆ − T̂n⟩ + Ên⟨T̂n − T ⋆,X⟩2 ≥ Ên⟨T̂n − T ⋆,X⟩2
.

By rearranging and expanding the definition of L̂n, this implies

Ên(⟨T ⋆,X⟩ − Y )2 − Ên(⟨T̂n,X⟩ − Y )2 − Ên⟨T̂n − T ⋆,X⟩2 ≥ 0.
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Since the left-hand side is non-negative, we can add it to the population excess risk, which implies

E(⟨T̂n,X⟩ − Y )2 −E(⟨T ⋆,X⟩ − Y )2

≤ E(⟨T̂n,X⟩ − Y )2 −E(⟨T ⋆,X⟩ − Y )2

+ Ên(⟨T ⋆,X⟩ − Y )2 − Ên(⟨T̂n,X⟩ − Y )2 − Ên⟨T̂n − T ⋆,X⟩2
.

Rearranging, this is equal to

= (E−Ên)[2⟨T̂n − T ⋆,X⟩(⟨T ⋆,X⟩ − Y )] +E⟨T̂n − T ⋆,X⟩2 − 2Ên⟨T̂n − T ⋆,X⟩2
.

Since T̂n − T ⋆ is an element of T − T ⋆, we move to an upper bound by taking a supremum over
elements of this set.

≤ sup
∆∈T −T ⋆

{(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] +E⟨∆,X⟩2 − 2Ên⟨∆,X⟩2}.

This establishes inequality (18). It remains to use the assumptions in the theorem statement to bound
the process. Property 1 states that with probability at least 1 − δ0, E⟨∆,X⟩2 ≤ c ⋅ Ên⟨∆,X⟩2 + γn
for all ∆ ∈ T − T ⋆. Define c′ = 2 − c > 0, so that conditioned on this event we have

sup
∆∈T −T ⋆

{(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] +E⟨∆,X⟩2 − 2Ên⟨∆,X⟩2}

≤ sup
∆∈T −T ⋆

{(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] − c′ ⋅ Ên⟨∆,X⟩2} + γn.

We expand the first term in the supremum as

(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] = −2
1

n

n

∑
t=1

ξt⟨∆,Xt⟩ −E[ξ⟨∆,X⟩]

= −2⟨ 1

n

n

∑
t=1

ξtXt −E[ξX],∆⟩.

It follows from Hölder’s inequality that this expression is bounded as

2∥ 1

n

n

∑
t=1

ξtXt −E[ξX]∥ ⋅ ∥∆∥⋆.

Defining ψn = ∥ 1
n ∑

n
t=1 ξtXt −E[ξX]∥, the development so far states that with probability at least

1 − δ0,

E(⟨T̂n,X⟩ − Y )2 −E(⟨T ⋆,X⟩ − Y )2 ≤ sup
∆∈T −T ⋆

{2ψn ⋅ ∥∆∥⋆ − c′ ⋅
1

n
∥Xn(∆)∥2

2} + γn.

Using Property 3 we upper bound the leading term by

sup
∆∈T −T ⋆

{2κψn ⋅ ∥Σ1/2∆∥
F
− c′ ⋅ 1

n
∥Xn(∆)∥2

2},
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and the event we already conditioned on implies that this is at most

sup
∆∈T −T ⋆

⎧⎪⎪⎨⎪⎪⎩
4κψn

√
1

n
∥Xn(∆)∥2

2 − c′ ⋅
1

n
∥Xn(∆)∥2

2

⎫⎪⎪⎬⎪⎪⎭
+ 2κψn

√
γn

≤ κ
2ψ2

n

c′
+ 2κψn

√
γn,

where the second inequality follows from AM-GM. Finally, by Property 2 we have that with
probability at least 1 − δ1, ψn ≤M/√n, which leads to the final bound of

κ2M2

c′n
+ 2κM

√
γn
n
+ γn ≤

2κ2M2

c′n
+ 2γn.

C.2. Restricted eigenvalue for tensor completion

The main result in this section is Theorem 21, which relates the empirical covariance and population
covariance for all tensors with bounded entries and bounded SoS nuclear norm under sampling model
for tensor completion. This result is then used in the proof of Theorem 6 to establish a restricted
eigenvalue guarantee.

Theorem 21 Let d3/2 ≤ n ≤ d3, and let ε ∈ (0,1/2). Suppose observed entries are drawn with
replacement. Then for any δ > 0, with probability at least 1 − δ, all T ∈ (Rd)⊗3 with ∥T ∥∞ ≤ R
satisfy

∥Σ1/2T∥
2

F
≤ (1 + 2ε)

n
∥Xn(T )∥2

2 +O
⎛
⎝
R∥T ∥ñuc4

√
log6 d

nd3/2
+ R

2 log(log2(d3/2√n)/δ)
εn

⎞
⎠
.

The proofs in this section pass back and forth between the with-replacement sampling model for
tensor completion used in the main body of the paper and a without-replacement model, in which
each entry is only observed a single time for tensor completion. To distinguish between the models,
we use S ∼ Dnwr to refer to the draw of the dataset under the with-replacement sampling model and
S ∼ Dnw/o to refer to the draw under the without-replacement model. Ω ⊆ [d]3 will denote the support
of the set of observed entries.

Before proving Theorem 21, we state and prove a number of auxiliary lemmas, from which the
main result will follow.

Proposition 22 Let Nj,k = ∣{t ∈ [n] ∣ jt = j, kt = k}∣. Then

PS∼Dn
w/o

(Nj,k ≥
2n

d2
+ 10 log(1/δ)

3
) ≤ δ.

Proof of Proposition 22 This is an immediate consequence of Bernstein’s inequality for without-
replacement sampling. See Bardenet et al. (2015), Proposition 1.4.
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Lemma 23 The Rademacher complexity of ∥⋅∥ ̃inj4
under without-replacement sampling is bounded

as

ES∼Dn
w/o

Eε∥
n

∑
t=1

εtXt∥
̃inj4

≤ O
⎛
⎝

√
n log4 d

d3/2
+
√

log d
⎞
⎠
. (33)

Additionally, if n ≤ d3, then the Rademacher complexity under with-replacement sampling is bounded
as

ES∼Dnwr
Eε∥

n

∑
t=1

εtXt∥
̃inj4

≤ O
⎛
⎝

√
n log6 d

d3/2
+
√

log 3d
⎞
⎠
. (34)

Proof of Lemma 23 We first bound the Rademacher complexity in the without-replacement sampling
case, then handle the with-replacement case by reduction. This analysis follows Barak and Moitra
(2016), except that we handle certain “diagonal” terms that arise in the analysis slightly more
carefully so as to get the right scaling for our setup, which differs from theirs in that it does not
assume incoherence.

Consider a fixed draw of ε1∶n and X1∶n, and let Z = ∑nt=1 εtXt. Leting x, y, z be indeterminates,
we will give a degree-four SoS upper bound on the polynomial ⟨Z,x⊗ y ⊗ z⟩. This will imply
that the pseudoexpectation of ⟨Z,x⊗ y ⊗ z⟩ is bounded for any feasible pseudodistribution in the
maximization problem defining ∥⋅∥ ̃inj4

.
To begin, for any fixed constant η > 0, Lemma 10 implies that

⊢4 ⟨Z,x⊗ y ⊗ z⟩ = ∑
i,j,k

Zi,j,kxiyjzk ≤
1

2η

d

∑
i=1

x2
i +

η

2
∑
i

⎛
⎝∑j,k

Zi,j,kyjzk
⎞
⎠

2

,

and so

{∥x∥2
2 = 1} ⊢4 ⟨Z,x⊗ y ⊗ z⟩ ≤ 1

2η
+ η

2
∑
i

⎛
⎝∑j,k

Zi,j,kyjzk
⎞
⎠

2

.

Define a matrix A ∈ Rd2×d2 via Aj,k′,j′,k = ∑di=1Zi,j,kZi,j′,k′ . Define additional matrices D,B ∈
Rd2×d2 via

Dj,k,j′,k′ =
⎧⎪⎪⎨⎪⎪⎩

Aj,k,j,k, if (j, k) = (j′, k′),
0, otherwise,

and B = A −D. Then we have

∑
i

⎛
⎝∑j,k

Zi,j,kyjzk
⎞
⎠

2

= ⟨A, (y ⊗ z)(y ⊗ z)⊺⟩ = ⟨B, (y ⊗ z)(y ⊗ z)⊺⟩ + ⟨D, (y ⊗ z)(y ⊗ z)⊺⟩.

We bound the first term by the operator norm of B via

{∥y∥2
2 = 1, ∥z∥2

2 = 1} ⊢4 ⟨B, (y ⊗ z)(y ⊗ z)⊺⟩ ≤ ∥B∥op∥y ⊗ z∥
2
F = ∥B∥op∥y∥

2
2∥z∥

2
2 ≤ ∥B∥op.

For the second term, define another matrix R ∈ Rd×d via Rj,k = ∑di=1Z
2
i,j,k. Then we can write

{∥y∥2
2 = 1, ∥z∥2

2 = 1} ⊢4 ⟨D, (y ⊗ z)(y ⊗ z)⊺⟩ =∑
j,k

Rj,ky
2
j z

2
k ≤ ∥R∥∞∑

j,k

y2
j z

2
k = ∥R∥∞∥y∥2

2∥z∥
2
2.
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and so
{∥y∥2

2 = 1, ∥z∥2
2 = 1} ⊢4 ⟨D, (y ⊗ z)(y ⊗ z)⊺⟩ ≤ ∥R∥∞.

By the duality of sum-of-squares proofs and pseudodistributions, this implies that any degree-four
pseudodistribution µ with µ ⊧ {∥x∥2

2 = 1, ∥y∥2
2 = 1, ∥z∥2

2 = 1} has Ẽ⟨Z,x⊗ y ⊗ z⟩ ≤ η
2(∥B∥op +

∥R∥∞) + 1
2η . Optimizing over η, we conclude that

∥Z∥ ̃inj4
≤
√

∥B∥op + ∥R∥∞.

The bound for the matrix B is taken care of Theorem 4.4 of Barak and Moitra (2016), which

implies that
√

ES∼Dn
w/o

Eε∥B∥2
op ≤ O(n log4 d

d3/2
). For the matrix R, observe that under the without-

replacement sampling model, for any j, k we have

Rj,k =
d

∑
i=1

Z2
i,j,k =

d

∑
i=1

1{(i, j, k) ∈ Ω} = ∣{t ∈ [n] ∶ jt = j, kt = k}∣.

Proposition 22 thus implies that for any fixed j, k, with probability at least 1 − δ,

Rj,k ≤ O(n/d2 + log(1/δ)),

and so, by taking a union bound and integrating out the tail, we have
√

ES∼Dn
w/o

∥R∥2
∞ ≤ O(n/d2 + log d).

Combining the bounds on B and R and using Jensen’s inequality yields

ES∼Dn
w/o

Eε∥Z∥ ̃inj4
≤
√

ES∼Dn
w/o

Eε∥Z∥2
̃inj4

≤ O
⎛
⎝

√
n log4 d

d3/2
+
√

log d
⎞
⎠
. (35)

This completes the bound for the without-replacement case. For the with-replacement case we
reduce to the bound on the second moment above. Condition on the draw of S, and let Ti,j,k =
{t ∈ [n] ∶ it = i, jt = j, kt = k}. Then we have

Eε∥
n

∑
t=1

εtXt∥
̃inj4

= Eε
XXXXXXXXXXXX
∑

(i,j,k)∈Ω

⎛
⎝ ∑t∈Ti,j,k

εt
⎞
⎠
ei ⊗ ej ⊗ ek

XXXXXXXXXXXX ̃inj4

.

Introduce a new sequence of Rademacher random variables σ ∈ {±1}d
3

. Then the right-hand side
above is equal to

EεEσ
XXXXXXXXXXXX
∑

(i,j,k)∈Ω

⎛
⎝ ∑t∈Ti,j,k

εt
⎞
⎠
σi,j,k ⋅ ei ⊗ ej ⊗ ek

XXXXXXXXXXXX ̃inj4

≤ Eεmax
i,j,k

RRRRRRRRRRRR
∑

t∈Ti,j,k

εt

RRRRRRRRRRRR
⋅Eσ

XXXXXXXXXXXX
∑

(i,j,k)∈Ω

σi,j,k ⋅ ei ⊗ ej ⊗ ek
XXXXXXXXXXXX ̃inj4

,
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where the inequality follows from the standard Lipschitz contraction lemma for Rademacher com-
plexity (Ledoux and Talagrand, 1991). By the Hoeffding bound, we have that for any fixed index
(i, j, k) with probability at least 1 − δ,

RRRRRRRRRRRR
∑

t∈Ti,j,k

εt

RRRRRRRRRRRR
≤ O(max

i,j,k

√
∣Ti,j,k∣ log (1/δ)).

Taking a union bound and integrating out the tail, we have

Eεmax
i,j,k

RRRRRRRRRRRR
∑

t∈Ti,j,k

εt

RRRRRRRRRRRR
≤ O(max

i,j,k

√
∣Ti,j,k∣ log d).

We now move to the final bound by taking the expectation over S. Using Cauchy-Schwarz, the
development above implies

ES∼Dnwr
Eε∥

n

∑
t=1

εtXt∥
̃inj4

≤
√

ES∼Dnwr
∣Ti,j,k∣ log d ⋅

¿
ÁÁÁÁÀES∼Dnwr

Eσ
XXXXXXXXXXXX
∑

(i,j,k)∈Ω

σi,j,k ⋅ ei ⊗ ej ⊗ ek
XXXXXXXXXXXX

2

̃inj4

.

Bernstein’s inequality and the union bound imply that
√

ES∼Dnwr
∣Ti,j,k∣ log d ≤ O(

√
log d(n/d3 + log d)) ≤ O(log d),

where the second inequality uses that n ≤ d3. For the second term, we have

ES∼Dnwr
Eσ

XXXXXXXXXXXX
∑

(i,j,k)∈Ω

σi,j,k ⋅ ei ⊗ ej ⊗ ek
XXXXXXXXXXXX

2

̃inj4

=
n

∑
m=1

PS∼Dnwr
(∣Ω∣ =m) ⋅ES∼Dnwr

⎡⎢⎢⎢⎢⎢⎣
Eσ

XXXXXXXXXXXX
∑

(i,j,k)∈Ω

σi,j,k ⋅ ei ⊗ ej ⊗ ek
XXXXXXXXXXXX

2

̃inj4

∣ ∣Ω∣ =m
⎤⎥⎥⎥⎥⎥⎦

=
n

∑
m=1

PS∼Dnwr
(∣Ω∣ =m) ⋅ES∼Dm

w/o
Eσ

XXXXXXXXXXXX
∑

(i,j,k)∈Ω

σi,j,k ⋅ ei ⊗ ej ⊗ ek
XXXXXXXXXXXX

2

̃inj4

≤
n

∑
m=1

PS∼Dnwr
(∣Ω∣ =m) ⋅O(m log4 d

d3/2
+ log d).

≤ O(n log4 d

d3/2
+ log d),

where the second inequality uses the bound we proved for the without-replacement setting and the
second inequality uses m ≤ n and that the probabilities sum to one. Combining these two bounds
completes the proof.
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Lemma 24 Define T = {T ∈ (Rd)⊗3 ∣ ∥T ∥ñuc4 ≤ τ, ∥Σ1/2T ∥
F
≤ β, ∥T ∥∞ ≤ R}. Under the with-

replacement sampling model, when d3/2 ≤ n ≤ d3, we have that for any δ > 0, with probability at
least 1 − δ,

∣ 1
n
∥Xn(T )∥2

F − ∥Σ1/2T∥
2

F
∣ ≤ O

⎛
⎝
Rτ

√
log6 d

nd3/2
+
√

2R2β2 log(1/δ)
n

+ 2R2 log(1/δ)
n

⎞
⎠

∀T ∈ T .

Proof of Lemma 24 To begin, we write

∣ 1
n
∥Xn(T )∥2

2 − ∥Σ1/2T∥
2

F
∣ = ∣Ên⟨T,X⟩2 −E⟨T,X⟩2∣.

Using this representation, since entries are drawn i.i.d. with replacement, we can apply Lemma 17
with the function classF = {X ↦ ⟨T,X⟩2 −E⟨T,X⟩2 ∣ T ∈ T }. In particular, note that for all T ∈ T
we have ∣⟨T,Xt⟩∣ = ∣Tit,jt,kt ∣ ≤ R, and furthermore

sup
T ∈T

E(⟨T,X⟩2 −E⟨T,X⟩2)2 ≤ sup
T ∈T

E⟨T,X⟩4 ≤ R2 sup
T ∈T

E⟨T,X⟩2 = R2 sup
T ∈T

∥Σ1/2T∥
2

F
≤ R2β2.

Consequently, Lemma 17 implies that with probability at least 1 − δ, for all T ∈ T ,

∣ 1
n
∥Xn(T )∥2

2 − ∥Σ1/2T∥
2

F
∣

≤ 4ES Eε sup
T ∈T

1

n

n

∑
t=1

εt(⟨T,Xt⟩2 −E⟨T,X⟩2) +
√

2R2β2 log(1/δ)
n

+ 2R2 log(1/δ)
n

.

Using Jensen’s inequality and splitting the supremum, we have

ES Eε sup
T ∈T

1

n

n

∑
t=1

εt(⟨T,Xt⟩2 −E⟨T,X⟩2) ≤ 2ES Eε sup
T ∈T

1

n

n

∑
t=1

εt⟨T,Xt⟩2.

Using the Lipschitz contraction lemma for Rademacher complexity, we remove the square

ES Eε sup
T ∈T

[ 1

n

n

∑
t=1

εt⟨T,Xt⟩2] ≤ 2RES Eε sup
T ∈T

[ 1

n

n

∑
t=1

εt⟨T,Xt⟩] ≤
2Rτ

n
ES Eε∥

1

n

n

∑
t=1

εtXt∥
̃inj4

.

Finally, using Lemma 23, we have

ES Eε∥
1

n

n

∑
t=1

εtXt∥
̃inj4

≤ O
⎛
⎝

√
log6 d

nd3/2
+ log 3/2d

n

⎞
⎠
≤ O

⎛
⎝

√
log6 d

nd3/2
+ log 3/2d

n

⎞
⎠
.

The final bound follows by using n ≥ d3/2 to simplify this expression.

Proof of Theorem 21 Let T = {T ∈ (Rd)⊗3 ∣ ∥T ∥∞ ≤ R}. Recall that for tensor completion, the
population correlation matrix Σ under with-replacement sampling is equal to 1

d3
I .
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Let τmax = Rd3, βmax = Rd3/2, τmin = Rd3/2/√n, βmin = R/√n, and letN = ⌈log(τmax/τmin)⌉+
1 and M = ⌈log(βmax/βmin)⌉ + 1. For each i ∈ [N] and j ∈ [M] define τi = τmaxe

1−i and
βj = βmaxe

1−j . Define

Ti,j = {T ∈ T ∣ τi+1 ≤ ∥T ∥ñuc4 ≤ τi, βj+1 ≤ ∥Σ1/2T∥
F
≤ βj}.

Using Lemma 24 and a union bound, we get that with probability at least 1 − δ, for all i, j simultane-
ously, for all T ∈ Ti,j ,

∥Σ1/2T∥
2

F
≤ 1

n
∥Xn(T )∥2

2 +O
⎛
⎜
⎝
Rτi

√
log6 d

nd3/2
+

¿
ÁÁÀR2β2

j log(MN/δ)
n

+ R
2 log(MN/δ)

n

⎞
⎟
⎠
.

Now consider a fixed tensor T ∈ T . There are two cases. First, if ∥T ∥ñuc4 ≥ τmin and ∥Σ1/2T ∥
F
≥

βmin, then there must be indices i and j for which τi+1 ≤ ∥T ∥nuc ≤ τi, βj+1 ≤ ∥Σ1/2T ∥
F
≤ βj .

Consequently, the uniform bound above implies

∥Σ1/2T∥
2

F

≤ 1

n
∥Xn(T )∥2

2 +O
⎛
⎝
R∥T ∥ñuc4

√
log6 d

nd3/2
+ ∥Σ1/2T∥

F

√
R2 log(MN/δ)

n
+ R

2 log(MN/δ)
n

⎞
⎠
.

On the other hand, if either ∥T ∥nuc ≤ τmin or ∥Σ1/2T ∥
F
≤ βmin, we trivially have

∥Σ1/2T∥
2

F
≤ R

2

n
≤ 1

n
∥Xn(T )∥2

2 +
R2

n
.

Combining these cases, and using the values for N and M , we get that with probability at least 1 − δ,
for all T ∈ T ,

∥Σ1/2T∥
2

F
≤ 1

n
∥Xn(T )∥2

2 +O
⎛
⎝
R∥T ∥ñuc4

√
log6 d

nd3/2
+ ∥Σ1/2T∥

F

√
R2 log(log2(d3/2

√
n)/δ)

n

⎞
⎠

+O(R
2 log(log2(d3/2√n)/δ)

n
).

Using the AM-GM inequality on the second-to-last term and rearranging, we have that for any ε > 0,

(1 − ε)∥Σ1/2T∥
2

F
≤ 1

n
∥Xn(T )∥2

2 +O
⎛
⎝
R∥T ∥ñuc4

√
log6 d

nd3/2
+ R

2 log(log2(d3/2√n)/δ)
εn

⎞
⎠
.

When ε ∈ (0,1/2), this implies

∥Σ1/2T∥
2

F
≤ (1 + 2ε)

n
∥Xn(T )∥2

2 +O
⎛
⎝
R∥T ∥ñuc4

√
log6 d

nd3/2
+ R

2 log(log2(d3/2√n)/δ)
εn

⎞
⎠
.
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C.3. Restricted eigenvalue for tensor sensing

In this section we prove the main technical result used to establish restricted eigenvalue guarantees
for tensor sensing, which is as follows.

Theorem 25 Suppose X ∼ N (0 ; I). There is some universal constant C > 0 such that for any

ε <
√

2/π, with probability at least 1 − 2e−
n
32 /(1 − e−nε

2

8 ),

1√
n
∥Xn(∆)∥2 ≥ (

√
2/π − ε)∥∆∥F −

Cd3/4 log1/4 d√
n

⋅ ∥∆∥ñuc4 ∀∆ ∈ (Rd)⊗3. (36)

To prove Theorem 25 we require two key technical lemmas.

Lemma 26 Let ∥⋅∥ be any norm, let ∥⋅∥⋆ be the dual. Suppose that the rows of Xn are formed by
drawing X1, . . . ,Xn i.i.d. from N (0 ; Ip×p), and let EX∼N (0;Ip×p)∥X∥ ≤ ψ. Then for any ε <

√
2/π,

with probability at least 1 − 2e−
n
32 /(1 − e−nε

2

8 ),

1√
n
∥Xn(∆)∥2 ≥ (

√
2/π − ε)∥∆∥F −

4ψ√
n
∥∆∥⋆ ∀∆ ∈ Rp. (37)

Lemma 27 (Corollary of Hopkins et al. (2015), Theorem 3.3) LetX ∈ (Rd)⊗3 have entries drawn
i.i.d. from N (0 ; 1). Then

E∥X∥ ̃inj4
≤ O(d3/4 log1/4 d). (38)

Proof of Theorem 25 This is an immediate consequence of Lemma 26 and Lemma 27, along with
the duality of ∥⋅∥ ̃inj4

and ∥⋅∥ñuc4 .

In the remainder of the section we prove Lemma 26. The result follows from fairly standard
techniques (e.g. Wainwright (2019)), but we include the proof for completeness. We first restate
some basic results on gaussian concentration.

Lemma 28 (Concentration for Lipschitz functions (Milman and Schechtman, 1986)) Let Z ∈
Rn have entries drawn i.i.d. from N (0 ; 1), and let f ∶ Rn → R be L-Lipschitz with respect to the `2
norm. Then for all t ≥ 0,

P(∣f(Z) −E f(Z)∣ ≥ t) ≤ 2e−
t2

2L2 .

Lemma 29 (Gordon’s Inequality (Davidson and Szarek, 2001)) Let {Za,b} and {Ya,b} be zero-
mean gaussian processes indexed by A ×B. Suppose that

E(Za,b −Za′,b′)
2 ≤ E(Ya,b − Ya′,b′)

2
for all (a, b), (a′, b′) ∈ A ×B

and
E(Za,b −Za,b′)

2 = E(Ya,b − Ya,b′)
2

for all a ∈ A, b, b′ ∈ B.

Then
E sup
a∈A

inf
b∈B

Za,b ≤ E sup
a∈A

inf
b∈B

Ya,b.
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Proof of Lemma 26
Part 1: Bound at a single scale. Define B(τ) = {∆ ∈ Rp ∣ ∥∆∥F = 1, ∥∆∥⋆ ≤ τ}. We will prove that

with probability at least 1 − 2e−
nt2

2 ,

1√
n
∥Xn(∆)∥2 ≥

√
2

π
− ψτ√

n
− t, ∀∆ ∈ B(τ). (39)

We will prove a lower bound on the random variable min∆∈B(τ)
1√
n
∥Xn(∆)∥2, which is equivalent

to providing an upper bound on the random variable

Sn(τ) = − inf
∆∈B(τ)

1√
n
∥Xn(∆)∥2 = − inf

∆∈B(τ)
sup

∥u∥2=1

1√
n
⟨u,Xn(∆)⟩ = sup

∆∈B(τ)
inf

∥u∥2=1

1√
n
⟨u,Xn(∆)⟩.

As a starting point, we show how to upper bound the expectation E[Sn(τ)]. Define Z∆,u =
1√
n
⟨u,Xn(∆)⟩, so that Sn(τ) = sup∆∈B(τ) inf∥u∥2=1Z∆,u. Note that Z∆,u is a gaussian process

with variance n−1, since ∥∆∥F = 1. We now define a new gaussian process that will serve as an upper
bound through Gordon’s inequality. Let g ∈ Rp and h ∈ Rn be standard gaussian random variables,
and define

Y∆,u =
1√
n
⟨g,∆⟩ + 1√

n
⟨h,u⟩.

Note that for any (∆, u) and (∆′, u′) we have

E(Y∆,u − Y∆′,u′)2 = 1

n
∥∆ −∆′∥2

F
+ 1

n
∥u − u′∥2

2
.

Interpreting ∆ and ∆′ as vectors in Rd3 , we also have

E(Z∆,u −Z∆′,u′)2 = 1

n
∥u∆⊺ − u′∆′⊺∥2

F

= 1

n
∥∆ −∆′∥2

F
+ 1

n
∥u − u′∥2

2
+ 1

n
⟨(u − u′)∆⊺, u′(∆ −∆′)⊺⟩

= 1

n
∥∆ −∆′∥2

F
+ 1

n
∥u − u′∥2

2
+ 1

n
(⟨u,u′⟩ − 1)(1 − ⟨∆,∆′⟩)

≤ 1

n
∥∆ −∆′∥2

F
+ 1

n
∥u − u′∥2

2
,

where we have used that ∥u∥2 = ∥u′∥2 = ∥∆∥F = ∥∆′∥F = 1. It is also easily seen from the
representation above that for any triple (∆, u, u′) we have equality: E(Z∆,u −Z∆,u′)2 = E(Y∆,u −
Y∆,u′)2. This means that the preconditions of Lemma 29 are satisfied, and so

E[Sn(τ)] ≤ E sup
∆∈B(τ)

inf
∥u∥2=1

Y∆,u

= 1√
n
Eg sup

∆∈B(τ)
⟨g,∆⟩ +Eh

1√
n

min
∥u∥2=1

⟨h,u⟩

= τ√
n
⋅ Eg∥g∥ −

1√
n
Eh∥h∥2

≤ ψτ√
n
−
√

2

π
.
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The provides the desired upper bound in expectation. To establish the high probability result we
appeal to gaussian concentration for Lipschitz functions. Let X ∈ Rn×d3 denote the sequence of
measurements X1, . . . ,Xn, interpreted as a matrix with vectorized measurements as rows. Define
f ∶ Rn×d3 → R via f(X) = min∆∈B(τ)

1√
n
∥X∆∥2. Observe that we have

∣f(X) − f(X′)∣ ≤ sup
∆∈B(τ)

1√
n
∥(X −X′)∆∥

2
≤ 1√

n
∥X −X′∥

op
≤ 1√

n
∥X −X′∥

F
,

and so f is n−
1
2 -Lipschitz with respect to `2. Lemma 28 therefore implies that

P(∣Sn(τ) −ESn(τ)∣ ≥ t) ≤ 2e−
nt2

2 .

In other words, (39) holds.
Part 2: Bound at all scales. We will show that for any ε <

√
2/π, with probability at least

1 − 2e−
n
32 /(1 − e−nε

2

8 ),

1√
n
∥Xn(∆)∥2 ≥

√
2

π
− ε − 4ψ√

n
∥∆∥⋆, ∀∆ ∶ ∥∆∥F = 1. (40)

Define B(τ`, τu) = {∆ ∈ Rp ∣ ∥∆∥F = 1, τ` ≤ ψ
√
n
∥∆∥ ≤ τu}. Set µ = ε/2 and consider the classes

B(0, µ) and B(2i−1µ,2iµ) for i ∈ N. Note that if equation (40) fails to hold and ∆ ∈ B(0, µ) then

1√
n
∥Xn(∆)∥2 ≤

√
2

π
− ε − 4ψ√

n
∥∆∥⋆ ≤

√
2

π
− ε =

√
2

π
− 2µ.

Furthermore, if equation (40) fails to hold and ∆ ∈ B(2i−1µ,2iµ), then

1√
n
∥Xn(∆)∥2 ≤

√
2

π
− ε − 4ψ√

n
∥∆∥⋆ ≤

√
2

π
− 2 ⋅ 2iµ.

Our development in part 1 of the proof implies that for any fixed τ` ≤ τu, with probability at least

1 − 2e−
n
32 e−

τ2u
2 ,

1√
n
∥Xn(∆)∥2 ≥

√
2

π
− 2τu, ∀∆ ∈ B(τ`, τu). (41)

Thus, by a union bound, we get that with probability at least 1−2e−
n
32 ∑∞i=0 e

− 22inε2

8 , or conservatively

at least 1 − 2e−
n
32 /(1 − e−nε

2

8 ),

1√
n
∥Xn(∆)∥2 ≥

√
2

π
− 2 ⋅ 2iµ, ∀∆ ∈ B(2i−1µ,2iµ), ∀i ∈ N,

and
1√
n
∥Xn(∆)∥2 ≥

√
2

π
− 2µ, ∀∆ ∈ B(0, µ),

or in other words, equation (40) holds.
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We extend the guarantee in equation (40) to arbitrary ∆ ∈ Rp by rescaling so that ∥∆∥F = 1 and
then exploiting homogeneity to get

1√
n
∥Xn(∆)∥2 ≥

⎛
⎝

√
2

π
− ε

⎞
⎠
∥∆∥F −

4ψ√
n
∥∆∥⋆, ∀∆ ∈ Rp.

C.4. Proofs of main results

Proof of Theorem 6 We prove the theorem by appealing to the generic result of Theorem 20
using norms ∥⋅∥ = ∥⋅∥ ̃inj4

and ∥⋅∥⋆ = ∥⋅∥ñuc4 . Let T ⋆ be an arbitrary rank-r orthogonal tensor with
∥T ⋆∥ñuc6 = τ and ∥T ⋆∥∞ ≤ R. First, observe that all elements T ∈ T have ∥T ∥ñuc6 ≤ ∥T ⋆∥ñuc6 .
Consequently, Theorem 4 implies that all ∆ ∈ T − T ⋆ satisfy

∥∆∥ñuc4 ≤ 68r ⋅ ∥∆∥F , (42)

which establishes Property 3 with κ = O(r ⋅ d3/2). To establish Property 2 we appeal to Theorem 21,
which implies that for any ε < 1/2, with probability at least 1 − δ, all ∆ ∈ T − T ⋆ satisfy

∥Σ1/2∆∥
2

F
≤ (1 + 2ε)

n
∥Xn(∆)∥2

2 +O
⎛
⎝
R∥∆∥ñuc4

√
log6 d

nd3/2
+ R

2 log(log2(d3/2√n)/δ)
εn

⎞
⎠
.

Using equation (42) this is upper bounded by

∥Σ1/2∆∥
2

F
≤ (1 + 2ε)

n
∥Xn(∆)∥2

2 +O
⎛
⎝
R∥∆∥F

√
r2 log6 d

nd3/2
+ R

2 log(log2(d3/2√n)/δ)
εn

⎞
⎠

= (1 + 2ε)
n

∥Xn(∆)∥2
2 +O

⎛
⎝
R∥Σ1/2∆∥

F

√
r2d3/2 log6 d

n
+ R

2 log(log2(d3/2√n)/δ)
εn

⎞
⎠
.

Using the AM-GM inequality, this is further upper bounded by

∥Σ1/2∆∥
2

F
≤ (1 + 2ε)

n
∥Xn(∆)∥2

2+ε∥Σ1/2∆∥
2

F
+O(R2 r

2d3/2 log6 d

n
+ R

2 log(log2(d3/2√n)/δ)
εn

).

Rearranging, this is equivalent to

(1 − ε)∥Σ1/2∆∥
2

F
≤ (1 + 2ε)

n
∥Xn(∆)∥2

2 +O(R2 r
2d3/2 log6 d

n
+ R

2 log(log2(d3/2√n)/δ)
εn

),

and since ε < 1/2 this implies

∥Σ1/2∆∥
2

F
≤ (1 + 2ε)2

n
∥Xn(∆)∥2

2 +O(R2 r
2d3/2 log6 d

n
+ R

2 log(log2(d3/2√n)/δ)
εn

).
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Making the somewhat arbitrary choice of ε = 1/100, and simplifying the right-hand-side, we get

∥Σ1/2∆∥
2

F
≤ 1.1

n
∥Xn(∆)∥2

2 +O(R2 r
2d3/2 log6 d + log(1/δ)

n
).

So we can take c = 1.1 and γn = O(R2 r
2d3/2 log6 d+log(1/δ)

n ). Finally, we establish Property 1.

Lemma 17 establishes that with probability at least 1 − δ,

∥
n

∑
t=1

ξtXt −E[ξX]∥
̃inj4

≤ 4ES Eε∥
n

∑
t=1

εt(⟨T ⋆,Xt⟩ − Yt)Xt∥
̃inj4

+
√

2σ2n log(1/δ) + 4R log(1/δ),

where σ2 = sup∥T ∥ñuc4
≤1 E[⟨T,X⟩2(⟨T ⋆,Xt⟩ − Yt)2] ≤ sup∥T ∥ñuc4

≤1
4R2

d3
∥T ∥2

F ≤ 4R2

d3
. Using

Lemma 23 with the standard in-expectation Lipschitz contraction lemma (e.g., Ledoux and Ta-
lagrand (1991)), we have

4ES Eε∥
n

∑
t=1

εt(⟨T ⋆,Xt⟩ − Yt)Xt∥
̃inj4

≤ 8RES Eε∥
n

∑
t=1

εtXt∥
̃inj4

≤ O
⎛
⎝
R

√
n log6 d

d3/2
+R

√
log 3d

⎞
⎠
.

Since n = Ω(d3/2), these bounds together imply that we can take M = O(R
√

log6 d+log(1/δ)

d3/2
).

Theorem 20 now implies the claimed result.

Proof of Theorem 7 As in the tensor completion case, we prove the theorem by appealing to
Theorem 20 using norms ∥⋅∥ = ∥⋅∥ ̃inj4

and ∥⋅∥⋆ = ∥⋅∥ñuc4 .
Let T ⋆ be an arbitrary orthogonal tensor with ∥T ⋆∥ñuc6 = τ , R(T ⋆) = R, and r(T ⋆) = r.

Theorem 4 implies that all ∆ ∈ T − T ⋆ satisfy

∥∆∥ñuc4 ≤ 68r ⋅ ∥∆∥F (43)

and thus, since Σ = I , we may take κ = 68r to establish Property 3. To establish Property 2 we appeal

to Theorem 25. This implies that for any ε <
√

2/π, with probability at least 1 − 2e−
n
32 /(1 − e−nε

2

8 ),

1√
n
∥Xn(∆)∥2 ≥ (

√
2/π − ε)∥∆∥F −

Cd3/4 log1/4 d√
n

⋅ ∥∆∥ñuck ,

where C > 0 is some absolute constant. Using equation (43), we have that for all ∆ ∈ T − T ⋆,
conditioned on the event above,

1√
n
∥Xn(∆)∥2 ≥ (

√
2/π − ε)∥∆∥F −

C ′rd3/4 log1/4 d√
n

⋅ ∥∆∥F .

This means that when n = Ω(r2(T ⋆)d3/2 log1/2 d/ε), we have

∥∆∥2
F ≤ 1

(
√

2/π − 2ε)2

1

n
∥Xn(∆)∥2

2.
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It suffices to set ε = 1/40 to get

∥∆∥2
F ≤ 1.8

n
∥Xn(∆)∥2

2.

So, simplifying, Property 2 is satisfied with c = 1.8 and γn = 0 with probability at least 1 − e− n
64

when n = Ω(r2(T ⋆)d3/2 log1/2 d). To establish Property 1 we use Lemma 27, but some care needs
to be taken to establish that this applies with high probability. Pick a constant τ ≥ 0, and observe via
Lemma 28 that

P(∥X∥F ≥ d3/2 + τ) ≤ 2e−
τ2

2 .

Define a truncated sequence X ′
t =Xt1{∥Xt∥F ≤ d3/2 + τ}, and set δ0 = 2ne−

τ2

2 . Observe that with
probability at least 1 − δ0, Xt =X ′

t for all t, and so

∥
n

∑
t=1

ξtXt −E[ξX]∥
̃inj4

≤ ∥
n

∑
t=1

ξtX
′
t −E[ξX ′]∥

̃inj4

.

We apply Lemma 17 to the truncated complexity, which implies that with probability at least
1 − (δ + δ0),

∥
n

∑
t=1

ξtX
′
t −E[ξX ′]∥

̃inj4

≤ 4EX1∶n Eε∥
n

∑
t=1

εt(⟨T ⋆,Xt⟩ − Yt)X ′
t∥

̃inj4

+O(
√
σ2n log(1/δ) +R(d3/2 + τ) ⋅ log(1/δ)),

where σ2 = sup∥T ∥ñuc4
≤1 E[⟨T,X ′⟩2(⟨T ⋆,Xt⟩ − Yt)2] ≤ sup∥T ∥ñuc4

≤1∥T ∥2
F ⋅ 4R2 ≤ 4R2. We now

apply Lipschitz contraction to bound the in-expectation Rademacher complexity as

4EX1∶n Eε∥
n

∑
t=1

εt(⟨T ⋆,Xt⟩ − Yt)X ′
t∥

̃inj4

≤ 8REX′

1∶n
Eε∥

n

∑
t=1

εtX
′
t∥

̃inj4

.

Integrating out the tail, we can bound the error due to truncation as

EX1∶n Eε∥
n

∑
t=1

εtX
′
t∥

̃inj4

≤ EX1∶n Eε∥
n

∑
t=1

εtXt∥
̃inj4

+ n ⋅ ∫
∞

d3/2+τ
P(∥X∥F > t)dt

We have

n ⋅ ∫
∞

d3/2+τ
P(∥X∥F > t)dt = n ⋅ ∫

∞

d3/2+τ
e−

t2

2 dt ≤ n ⋅ exp(−C(d3 + τ2)),

for some absolute constant C. We pick τ = (
√

(d3/2n + log(1/δ))/C), so that the quantity above is
o(1) and δ0 ≤ δ. Lastly, since X1∶n are gaussian, Lemma 27 implies

EX1∶n Eε∥
n

∑
t=1

εtXt∥
̃inj4

=
√
n ⋅ EX∥X∥ ̃inj4

≤ O(d3/4 log1/4 d
√
n).

37



FAST RATES FOR AGNOSTIC TENSOR COMPLETION

When n ≥ d3/2, we have d3/2 ≤ d3/4√n, and so we conclude that with probability at least 1 − δ,

∥
n

∑
t=1

ξtXt −E[ξX]∥
̃inj4

≤ O(Rd3/4 log3/2(d/δ)
√
n),

so M = O(Rd3/4 log3/2(d/δ)).

Appendix D. Proofs from Section 4

Proof of Theorem 9 Let ε > 0 be fixed and let m = d3/2−ε/2.
We will generate an instance of tensor completion from the 3-XOR instance by treating the indices

(i, j, k) in each clause as an observed entry. Precisely, for each clause, we set the corresponding
X = ei⊗ej⊗ek, and the corresponding Y = zijk. The induced risk for each tensor T in this setting is
simply LDZ(T ) ∶= 1

d3 ∑i,j,k(Ti,j,k −Zi,j,k)
2, where the tensor Z ∈ ({±1}d)⊗3 is defined as follows:

in the random case, the entries of Z are selected uniformly at random from {±1}; in the planted case
with planted assignment a ∈ {±1}d, we start off with the tensor a⊗3, then get Z by flipping each
coordinate independently with probability η.

If we set n = Ω(m), then we are guaranteed to receive Ω̃(m) unique clauses under with-
replacement sampling, since there are at most logarithmically many repeats with inverse polynomial
probability for m = o(d3/2). With this observation, it is clear that any algorithm that takes as input
the examples S and outputs “Planted” with probability at least 1 − o(1) when Z comes from the
planted distribution and “Random” with probability at least 1 − o(1) when Z is from the random
distribution is a successful distinguisher for the planted 3-XOR problem with Θ̃(m) clauses. Going
forward we assume n = Ω(d), since this is the interesting regime for distinguishing and refutation.

Now, suppose we have an algorithm that enjoys the excess risk bound (19) for any n, and let
T̂S denote its output given input dataset S. Since Z ∈ ({±1}d)⊗3 we can take ∥T̂S∥∞ ≤ 1 without
loss of generality. We will turn T̂S into a successful distinguishing algorithm for the planted 3-XOR
problem as follows: Define γ = 1 − 4η, and note the assumption that η < 1/4 implies that γ > 0.
Split the sample set S into halves S1 and S2, and let L̂S1 and L̂S2 denote the empirical risk on the
respective halves. Let T̂S1 be the output of the assumed algorithm on S1. If L̂S2(T̂S1) ≥ 1 − γ4/2
return “Random”, else return “Planted”.

We will show that the algorithm succeeds in both the planted and random case by analyzing the
value of L̂S2(T̂S1) in each case.
Random case. Let S′2 be the result of removing all entries that appear in S1 from S2. The number of
repeats is at most O(n2/d3 + log(1/δ)) with probability at least 1− δ. It follows that with probability
at least, say, 1 −O(d−1),

∣S′2∣
∣S2∣

≥ 1 − o(1), and L̂S2(T̂S1) ≥ L̂S′2(T̂S1) − o(1).

Observe that for every remaining example X = ei ⊗ ej ⊗ ek in S′2, the value of T̂S1 is statistically
independent of the value of Zi,j,k. Abbreviating T̂S1 to T̂ , this means that we have

EZ[L̂S′2(T̂S1)] =
1

∣S′2∣
∑

X=ei⊗ej⊗ek∈S
′

2

EZi,j,k∈{±1}(T̂i,j,k −Zi,j,k)
2 = 1

∣S′2∣
∑

X=ei⊗ej⊗ek∈S
′

2

(T̂i,j,k)2+1 ≥ 1.
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Condition on S′2. Since T̂S1 and Z have bounded entries, it follows from Hoeffding’s inequality that
with probability at least 1 − δ over the choice of Z,

L̂S′2(T̂S1) ≥ EZ[L̂S′2(T̂S1)] − c
¿
ÁÁÀ log(1/δ)

∣S′2∣
,

for absolute constant c > 0. Since ∣S′2∣ = Ω̃(m), we can use the AM-GM inequality to conclude with
probability at least 1 −O(d−1),

L̂S2(T̂S1) ≥ L̂S′2(T̂S1) − o(1).

It follows by union bound that

L̂S2(T̂S1) ≥ 1 − o(1) ≥ 1 − γ4/100 − o(1).

This proves that our strategy will indeed return “Random” for random instances.
Planted case. For any Z, the assumed excess risk bound implies that for any rank-1 tensor T ⋆ with
bounded entries, we have

LDZ(T̂S1) −LDZ(T ⋆) ≤ o(1),

when n = ω(d3/2−ε). We choose T ⋆ = a⊗3, where a ∈ {±1}d is the planted assignment. Taking
expectation over the flips in Z, we have

EZ[LDZ(a⊗3)] = EZ
⎡⎢⎢⎢⎢⎣

4

d3 ∑
i,j,k

1{Zijk flipped}
⎤⎥⎥⎥⎥⎦
= 4η.

Applying Bernstein’s inequality, we have that with probability at least 1 −O(d−1) over the choice of
Z,

LDZ(a⊗3) ≤ 4(1 + γ)η + o(1) = 1 − γ2 + o(1).

Finally, we use Bernstein once more to show that the empirical loss for S2 converges to the population
loss, leveraging that S2 is an independent hold-out set for T̂S1 . We have that for any choice of S1,
with probability at least 1 − δ over the draw of S2,

L̂S2(T̂S1) ≤ LDZ(T̂S1) + c1

√
LDZ(T̂S1) log(1/δ)

n
+ c2

log(1/δ)
n

,

where c1 and c2 are absolute constants. Applying AM-GM, this implies that L̂S2(T̂S1) ≤ (1 +
γ2)LDZ(T̂S1) + o(1) with probability at least 1 −O(d−1), and so by combining this with the excess
risk bound and the bound on LDZ(a⊗3), we have

L̂S2(T̂S1) ≤ 1 − γ4 + o(1).
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