Near Optimal Methods for Minimizing Convex Functions with Lipschitz *p*-th Derivatives

Alexander Gasnikov Moscow Institute of Physics and Technology, Institute for search University Higher School of Economics	GASNIKOV@YANDEX.RU or Information Transmission Problems, National Re-
Pavel Dvurechensky Weierstrass Institute for Applied Analysis and Stochastic	PAVEL.DVURECHENSKY@GMAIL.COM cs, Institute for Information Transmission Problems
Eduard Gorbunov Moscow Institute of Physics and Technology	EDUARD.GORBUNOV@PHYSTECH.EDU
Evgeniya Vorontsova Grenoble Alpes University & Far Eastern Federal Unive	VORONTSOVAEA@GMAIL.COM ersity, Russia
Daniil Selikhanovych Moscow Institute of Physics and Technology, Institute fo	SELIHANOVICH.DO@PHYSTECH.EDU or Information Transmission Problems
César A. Uribe Massachusetts Institute of Technology	CAURIBE@MIT.EDU
Bo Jiang Shanghai University of Finance and Economics	ISYEBOJIANG@GMAIL.COM
Haoyue Wang Fudan University	HAOYUEWANG14@FUDAN.EDU.CN
Shuzhong Zhang University of Minnesota & The Chinese University of He	ZHANGS@UMN.EDU ong Kong, Shenzhen
Sébastien Bubeck Microsoft Research	SEBUBECK@MICROSOFT.COM
Qijia Jiang Stanford University	QJIANG2@STANFORD.EDU
Yin Tat Lee University of Washington & Microsoft Research	YINTAT@UW.EDU
Yuanzhi Li Stanford University	YUANZHIL@STANFORD.EDU
Aaron Sidford	SIDFORD@STANFORD.EDU

Editors: Alina Beygelzimer and Daniel Hsu

Stanford University

Abstract

In this merged paper, we consider the problem of minimizing a convex function with Lipschitzcontinuous *p*-th order derivatives. Given an oracle which when queried at a point returns the first *p*-derivatives of the function at that point we provide some methods which compute an ε approximate minimizer in $O\left(\varepsilon^{-\frac{2}{3p+1}}\right)$ iterations. These methods match known lower bounds up to polylogarithmic factors for constant *p*.

1. Results

See Gasnikov et al. (2018); Jiang et al. (2018); Bubeck et al. (2018) for details.

Acknowledgments

The authors are grateful to Yurii Nesterov for fruitful discussions. The work of A. Gasnikov was supported by RFBR 18-29-03071 mk and was prepared within the framework of the HSE University Basic Research Program and funded by the Russian Academic Excellence Project '5-100'. The work of P. Dvurechensky and E. Vorontsova was supported by RFBR 18-31-20005 mol-a-ved. The work of E. Gorbunov was supported by the grant of Russian's President MD-1320.2018.1. The work of Bo Jiang was supported by NSFC grant 11771269. The work of Yin Tat Lee was supported by NSF Awards CCF-1740551, CCF-1749609, and DMS-1839116. The work of Aaron Sidford was supported by NSF CAREER Award CCF-1844855.

References

- Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. Near-optimal method for highly smooth convex optimization. *arXiv:1812.08026*, 2018.
- Alexander Gasnikov, Pavel Dvurechensky, Eduard Gorbunov, Evgeniya Vorontsova, Daniil Selikhanovych, and César A. Uribe. Optimal tensor methods in smooth convex and uniformly convex optimization. arXiv:1809.00382, 2018.
- Bo Jiang, Haoyue Wang, and Shuzhong Zhang. An optimal high-order tensor method for convex optimization. *arXiv:1812.06557v2*, 2018.