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Abstract
Consider the problem of minimizing functions that are Lipschitz and strongly convex, but not nec-
essarily differentiable. We prove that after T steps of stochastic gradient descent, the error of the
final iterate is O(log(T )/T ) with high probability. We also construct a function from this class for
which the error of the final iterate of deterministic gradient descent is Ω(log(T )/T ). This shows
that the upper bound is tight and that, in this setting, the last iterate of stochastic gradient descent has
the same general error rate (with high probability) as deterministic gradient descent. This resolves
both open questions posed by Shamir (2012).

An intermediate step of our analysis proves that the suffix averaging method achieves error
O(1/T ) with high probability, which is optimal (for any first-order optimization method). This
improves results of Rakhlin et al. (2012) and Hazan and Kale (2014), both of which achieved error
O(1/T ), but only in expectation, and achieved a high probability error bound of O(log log(T )/T ),
which is suboptimal.
Keywords: Gradient Descent, Lipschitz Functions, Strong Convexity, Martingales, High Probabil-
ity Analysis, Lower Bounds.

1. Introduction
Stochastic gradient descent (SGD) is a popular first order method which dates back to 1951 (Robbins
and Monro, 1951). It is a very simple and widely used iterative method for minimizing convex
loss functions. In a nutshell, the method works by querying an oracle for a noisy estimate of a
subgradient, then taking a small step in the opposite direction. The simplicity and effectiveness of
this algorithm has established it as an essential tool for applied machine learning (Schmidt et al.,
2017; Johnson and Zhang, 2013). See (Bubeck, 2015) or (Hazan, 2015) for more details about SGD.

The efficiency of SGD is usually measured by the rate of decrease of the error — the differ-
ence in value between the algorithm’s output and the true minimum. The optimal error rate is known
under various assumptions on f , the function to be minimized. In addition to convexity, common as-
sumptions are that f is smooth (gradient is Lipschitz) or strongly convex (locally lower-bounded by
a quadratic). Strongly convex functions often arise due to regularization, whereas smooth functions
can sometimes be obtained by smoothening approximations (e.g., convolution). Existing analy-
ses (Nemirovski et al., 2009) show that, after T steps of SGD, the expected error of the final iterate
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is O(1/
√
T ) for smooth functions, and O(1/T ) for functions that are both smooth and strongly

convex; furthermore, both of these error rates are optimal without further assumptions.
The non-smooth setting is the focus of this paper. One example of this setting is with `1 reg-

ularized learning problems. As another example, the objective for `22 regularized support vector
machines (Shalev-Shwartz et al., 2011) is strongly convex but not smooth.

A trouble with the non-smooth setting is that the error of (even deterministic) gradient descent
need not decrease monotonically with T , so it is not obvious how to analyze the error of the final
iterate. A workaround, known as early as Nemirovsky and Yudin (1983), is to output the average of
the iterates. Existing analyses of SGD show that the expected error of the average is Θ(1/

√
T ) for

Lipschitz functions (Nemirovsky and Yudin, 1983), which is optimal, whereas for functions that are
also strongly convex (Hazan et al., 2007; Rakhlin et al., 2012) the average has error Θ(log(T )/T )
with high probability, which is not the optimal rate. An alternative algorithm, more complicated
than SGD, was discovered by Hazan and Kale (2014); it achieves the optimal expected error rate
of O(1/T ). Suffix averaging, a simpler approach in which the last half of the SGD iterates are
averaged, was also shown to achieve expected error O(1/T ) (Rakhlin et al., 2012), although im-
plementations can be tricky or memory intensive if the number of iterations T is unknown a priori.
Non-uniform averaging schemes with optimal expected error rate and simple implementations are
also known (Lacoste-Julien et al., 2012; Shamir and Zhang, 2013).

Shamir (2012) asked the very natural question of whether the final iterate of SGD achieves
the optimal rate in the non-smooth scenario, as it does in the smooth scenario. If true, this would
yield a very simple, implementable and interpretable form of SGD. Substantial progress on this
question was made by Shamir and Zhang (2013), who showed that the final iterate has expected
error O(log(T )/

√
T ) for Lipschitz f , and O(log(T )/T ) for strongly convex f . Both of these

bounds are a log(T ) factor worse than the optimal rate, so Shamir and Zhang (2013) write

An important open question is whether the O(log(T )/T ) [expected] rate we obtained
on [the last iterate], for strongly-convex problems, is tight. This question is important,
because running SGD for T iterations, and returning the last iterate, is a very common
heuristic. In fact, even for the simpler case of (non-stochastic) gradient descent, we do
not know whether the behavior of the last iterate... is tight.

Nesterov and Shikhman (2015) take an alternative approach and study a similar question (only in
the non strongly-convex case, however). They develop a different first-order algorithm for which
the individual iterates converge in value at the optimal rate to the true minimum. Their result makes
the question of Shamir (2012) even more interesting; we now know that such algorithms actually
exist and it was conceivable that SGD is one of them. Earlier, Tang and Monteleoni (2013) gave
positive results on Shamir’s question for restricted classes of functions.

Our work shows that the log(T ) factor is necessary for the standard step sizes, both for Lipschitz
functions and for strongly convex functions, even for non-stochastic gradient descent. So both of the
expected upper bounds due to Shamir and Zhang are actually tight. This resolves the first question
of Shamir (2012). In fact, we show a much stronger statement: any convex combination of the last
k iterates must incur a log(T/k) factor. Thus, suffix averaging must average a constant fraction of
the iterates to achieve the optimal rate.

Recently, Jain et al. (2019) consider the setting where the time horizon, T , is fixed ahead of time.
They show that in both the strongly-convex case and the Lipschitz case, a suitable choice of step
size gives the final iterate the optimal convergence rates ofO(1/T ) andO(1/

√
T ), respectively. On
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the other hand, for the strongly-convex and stochastic case, when T is unknown, they show that no
choice of step size gives the individual iterates of SGD the O(1/T ) rate for every T .

High probability bounds on SGD are somewhat scarce; most of the literature proves bounds
in expectation, which is of course easier. The inefficiency1 of selecting the best of many indepen-
dent trials of SGD makes the existence of high probability bounds for a single execution of SGD
more interesting and useful. Some known high-probability bounds for the strongly convex setting
include (Kakade and Tewari, 2008), for uniform averaging, and (Hazan and Kale, 2014; Rakhlin
et al., 2012), which give a suboptimal bound of O(log log(T )/T ) for suffix averaging (and a variant
thereof). In this work, we give two high probability bounds on the error of SGD: O(1/T ) for suffix
averaging and O(log(T )/T ) for the final iterate. Both of these are tight. (Interestingly, the former
is used as an ingredient for the latter.) The former answers a question of Rakhlin et al. (2012, §6),
and the latter resolves the second question of Shamir (2012).

2. Preliminaries
Let X be a closed, convex subset of Rn, f : X → R be a convex function, and ∂f(x) the subd-
ifferential of f at x. Our goal is to solve the convex program minx∈X f(x). We assume that f is
not explicitly represented. Instead, the algorithm is allowed to query f via a stochastic gradient
oracle, i.e., if the oracle is queried at x then it returns ĝ = g − ẑ where g ∈ ∂f(x) and E [ ẑ ] = 0
conditioned on all past calls to the oracle. The set X is represented by a projection oracle, which
returns the point in X closest in Euclidean norm to a given point x. We say that f is α-strongly
convex if

f(y) ≥ f(x) + 〈 g, y − x 〉+
α

2
‖y − x‖2 ∀y, x ∈ X , g ∈ ∂f(x). (1)

Throughout this paper, ‖·‖ denotes the Euclidean norm in Rn and [T ] denotes the set {1, . . . , T}.
We say that f is L-Lipschitz if ‖g‖ ≤ L for all x ∈ X and g ∈ ∂f(x). For the remainder

of this paper, unless otherwise stated, we make the assumption that α = 1 and L = 1; this is
only a normalization assumption and is without loss of generality (see Appendix F). For the sake of
simplicity, we also assume that ‖ẑ‖ ≤ 1 a.s. although our arguments generalize to the setting when
ẑ are sub-Gaussian (see Appendix F or Harvey et al. (2018)).

Let ΠX denote the projection operator on X . The (projected) stochastic gradient algorithm is
given in Algorithm 1. Notice that there the algorithm maintains a sequence of points and there
are several strategies to output a single point. The simplest strategy is to simply output xT+1.
However, one can also consider averaging all the iterates (Polyak and Juditsky, 1992; Ruppert, 1988)
or averaging only a fraction of the final iterates (Rakhlin et al., 2012). Notice that the algorithm also
requires the user to specify a sequence of step sizes. The optimal choice of step size is known to be
ηt = Θ(1/t) for strongly convex functions (Nemirovski et al., 2009; Rakhlin et al., 2012). For our
analyses, we will use a step size of ηt = 1/t.

1. It is usually the case that selecting the best of many independent trials is very inefficient. Such a scenario, which is
very common in uses of SGD, arises if f is defined as

∑m
i=1 fi or Eω [ fω ]. In such scenarios, evaluating f exactly

could be inefficient, and even estimating it to within error 1/T requires Θ(T 2) samples via a Hoeffding bound,
whereas SGD uses only O(T ) samples.
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Algorithm 1 Projected stochastic gradient descent for minimizing a non-smooth, convex function.
1: procedure STOCHASTICGRADIENTDESCENT(X ⊆ Rn, x1 ∈ X , step sizes η1, η2, . . .)
2: for t← 1, . . . , T do
3: Query stochastic gradient oracle at xt for ĝt such that E [ ĝt | ĝ1, . . . , ĝt−1 ] ∈ ∂f(xt)
4: yt+1 ← xt − ηtĝt (take a step in the opposite direction of the subgradient)
5: xt+1 ← ΠX (yt+1) (project yt+1 onto the set X )

6: return either


xT+1 (final iterate)
1

T+1

∑T+1
t=1 xt (uniform averaging)

1
T/2+1

∑T+1
t=T/2+1 xt (suffix averaging)

3. Our Contributions
Our main results are bounds on the error of the final iterate of SGD: an Ω(log(T )/T ) lower bound
(even in the non-stochastic case) and a O(log(T ) log(1/δ)/T ) upper bound with probability 1− δ.
These results resolve both open questions of Shamir (2012).

Theorem 3.1 Suppose f is 1-strongly convex and 1-Lipschitz. Suppose that ẑt (i.e., E [ ĝt ] − ĝt,
the noise of the stochastic gradient oracle) has norm at most 1 almost surely. Consider running
Algorithm 1 for T iterations with step size ηt = 1/t. Let x∗ = argminx∈X f(x). Then, with
probability at least 1− δ,

f(xT+1)− f(x∗) ≤ O

(
log(T ) log(1/δ)

T

)
.

The assumptions on the strong convexity parameter, Lipschitz parameter, and diameter are with-
out loss of generality; see Appendix F. The bounded noise assumption for the stochastic gradi-
ent oracle is made only for simplicity; our analysis can be made to go through if one relaxes the
a.s. bounded condition to a sub-Gaussian condition (Harvey et al., 2018). We also remark that a
linear dependence on log(1/δ) is necessary for strongly convex functions; see Appendix G.

Our main probabilistic tool to prove Theorem 3.1 is a new extension of the classic Freedman
inequality (Freedman, 1975) to a setting in which the martingale exhibits a curious phenomenon.
Ordinarily a martingale is roughly bounded by the square root of its total conditional variance (this is
the content of Freedman’s inequality). We consider a setting in which the total conditional variance2

is itself bounded by (a linear transformation of) the martingale. We refer to this as a “chicken and
egg” phenomenon.

Theorem 3.2 (Generalized Freedman) Let {di,Fi}ni=1 be a martingale difference sequence.
Suppose vi−1 ≥ 0, i ∈ [n] areFi−1-measurable random variables such that E [ exp(λdi) | Fi−1 ] ≤
exp

(
λ2

2 vi−1

)
for all i ∈ [n], λ > 0. Let St =

∑t
i=1 di and Vt =

∑t
i=1 vi−1. Let αi ≥ 0 and set

2. As stated, Theorem 3.2 assumes a conditional sub-Gaussian bound on the martingale difference sequence, whereas
Freedman assumes both a conditional variance bound and an almost-sure bound. These assumptions are easily
interchangeable in both our proof and Freedman’s proof. For example, Freedman’s inequality with the sub-Gaussian
assumption appears in (Fan et al., 2015, Theorem 2.6).

4



TIGHT ANALYSES FOR NON-SMOOTH STOCHASTIC GRADIENT DESCENT

α = maxi∈[n] αi. Then

Pr

 n⋃
t=1

St ≥ x and Vt ≤
t∑
i=1

αidi + β


 ≤ exp

(
− x

4α + 8β/x

)
∀x, β > 0.

The proof of Theorem 3.2 appears in Appendix C. Freedman’s Inequality (Freedman, 1975) (as
formulated in (Fan et al., 2015, Theorem 2.6), up to constants) simply omits the terms highlighted
in yellow, i.e., it sets α = 0.

Next we give a matching lower bound on the last iterate’s error in deterministic gradient descent.

Theorem 3.3 For any T and any constant c > 0, there exists a convex function fT : X → R, where
X is the unit Euclidean ball in RT , such that fT is (3/c)-Lipschitz and (1/c)-strongly convex, and
satisfies the following. Suppose that Algorithm 1 is executed from the initial point x1 = 0 with step
sizes ηt = c/t. Let x∗ = argminx∈X fT (x). Then

fT (xT )− fT (x∗) ≥ log T

4c · T
. (2)

More generally, any weighted average x̄ of the last k iterates has

fT (x̄)− fT (x∗) ≥ ln(T )− ln(k)

4c · T
. (3)

So suffix averaging must average a constant fraction of iterates to achieve the optimalO(1/T ) error.

Remark 3.4 In order to incur a log T factor in the error of the T -th iterate, Theorem 3.3 constructs
a function fT parameterized by T . It is also possible to create a single function f , independent of
T , which incurs the log T factor for infinitely many T . This is described in Remark B.2. The details
can be found in the full version of the paper (see Harvey et al. (2018)).

Interestingly, our proof of Theorem 3.1 requires understanding the suffix average. (In fact this
connection is implicit in Shamir and Zhang (2013)). Hence, en route, we prove the following high
probability bound on the error of the average of the last half of the iterates of SGD.

Theorem 3.5 Suppose f is 1-strongly convex and 1-Lipschitz. Consider running Algorithm 1 for
T iterations with step size ηt = 1/t. Let x∗ = argminx∈X f(x). With probability at least 1− δ,

f

(
1

T/2 + 1

T∑
t=T/2

xt

)
− f(x∗) ≤ O

(
log(1/δ)

T

)
.

Remark 3.6 This upper bound is optimal. Indeed, Appendix G shows that the error is Ω(log(1/δ)/T )
even for the one-dimensional function f(x) = x2/2.

Theorem 3.5 is improves the O
(

log(log(T )/δ)/T
)

bounds independently proven by Rakhlin
et al. (2012) (for suffix averaging) and Hazan and Kale (2014) (for EpochGD). Once again, we defer
the statement of the theorem for general strongly-convex and Lipschitz parameters to Appendix F.

Remark 3.7 (The Lipschitz case) Theorem 3.1 and Theorem 3.3 also have analogues in case of
functions that are Lipschitz but not strongly convex: f(xT+1)− f(x∗) = O(log(T ) log(1/δ)/

√
T )
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with probability at least 1− δ, and there exists fT with fT (xT+1)−fT (x∗) = Ω(log(T )/
√
T ). The

formal statement and the proof appear in the full version of the paper (Harvey et al., 2018). Note
that suffix averaging is less interesting in the Lipschitz setting because uniform averaging is already
optimal. Furthermore, the high probability bound for uniform averaging follows via a standard
application of Azuma’s inequality.

4. Techniques
Final iterate. When analyzing gradient descent, it simplifies matters greatly to consider the ex-
pected error. This is because the effect of a gradient step is usually bounded by the subgradient
inequality; so by linearity of expectation, one can plug in the expected subgradient, thus eliminating
the noise (Bubeck, 2015, §6.1).

High probability bounds are more difficult. (Indeed, it is not a priori obvious that the error of
the final iterate is tightly concentrated.) A high probability analysis must somehow control the total
noise that accumulates from each noisy subgradient step. Fortunately, the accumulated noise forms
a zero-mean martingale but unfortunately, the martingale depends on previous iterates in a highly
nontrivial manner. Indeed, suppose (Xt) is the martingale of the accumulated noise and let Vt−1 =
E
[

(Xt −Xt−1)
2 | X1, . . . , Xt−1

]
be the conditional variance at time t. A significant technical

step of our analysis (Lemma 6.4) shows that the total conditional variance (TCV) of the accumulated
noise exhibits the “chicken and egg” phenomenon alluded to in the discussion of Theorem 3.2.
Roughly speaking, we have

∑T
t=1 Vt−1 ≤ αXT−1+β whereα, β > 0 are scalars. Since Freedman’s

inequality shows that XT .
√∑T

t=1 VT , an inductive argument gives that XT .
√
αXT−1 + β .√

α
√
αXT−2 + β + β . · · · . This naive analysis involves invoking Freedman’s inequality T

times, so a union bound incurs an extra factor log T in the bound on XT . This can be improved
via a trick (Bartlett et al., 2008): by upper-bounding the TCV by a power-of-two (and by T ), it
suffices to invoke Freedman’s inequality log T times, which only incurs an extra factor log log T in
the bound on XT .

Notice that this analysis actually shows that Xt .
√∑t

i=1 Vi for all t ≤ T , whereas the
original goal was only to control XT . Any analysis that simultaneously controls all Xt, t ≤ T ,
must necessarily incur an extra factor log log T . This is a consequence of the Law of the Iterated
Logarithm3. Previous work employs exactly such an analysis (Hazan and Kale, 2014; Kakade and
Tewari, 2008; Rakhlin et al., 2012) and incurs the log log T factor. Rakhlin et al. (2012) explicitly
raise the question of whether this log log T factor is necessary.

Our work circumvents this issue by developing a generalization of Freedman’s Inequality (Theo-
rem 3.2) to handle martingales of the above form, which ultimately yields optimal high-probability
bounds. We are no longer hindered by the Law of the Iterated Logarithm because our variant of
Freedman’s Inequality does not require fine grained control over the martingale over all times.

Another important tool that we employ is a new bound on the Euclidean distance between the
iterates computed by SGD (Lemma 6.3). This is useful because, by the subgradient inequality,
the change in the error at different iterations can be bounded using the distance between iterates.
Various naive approaches yield a bound of the form ‖xa − xb‖2 ≤ (b−a)2

min{a2,b2} . We derive a much

3. Let Xt ∈ {−1,+1} be uniform and i.i.d. and ST =
∑T

t=1 Xt. The Law of the Iterated Logarithm states that
lim supT

ST√
2T log log T

= 1 a.s.
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stronger bound, comparable to ‖xa − xb‖2 ≤ |b−a|
min{a2,b2} . Naturally, in the stochastic case, there are

additional noise terms that contribute to the technical challenge of our analysis. Nevertheless, this
new distance bound could be useful in further understanding non-smooth gradient descent (even in
the non-stochastic setting).

As in previous work on the strongly convex case (Shamir and Zhang, 2013), the error of the
suffix average plays a critical role in bounding the error of the final iterate. Therefore, we also need
a tight high probability bound on the error of the suffix average.

Suffix averaging. To complete the optimal high probability analysis on the final iterate, we need a
high probability bound on the suffix average that avoids the log log T factor. As in the final iterate
setting, the accumulated noise for the suffix average forms a zero-mean martingale, (Xt)

T
T/2, but

now the conditional variance at step t satisfies Vt ≤ αtVt−1 +βtŵt
√
Vt−1 +γt, where ŵt is a mean-

zero random variable and αt, βt and γt are constants. In Rakhlin et al. (2012), using Freedman’s
Inequality combined with the trick from Bartlett et al. (2008), they obtain a bound on a similar
martingale but do so over all time steps and incur a log log T factor. However, our goal is only

to bound XT and according to Freedman’s Inequality XT .
√∑T

t=T/2 Vt. So, we aim to bound∑T
t=T/2 Vt. To do so, we develop a probabilistic tool to bound the T -th iterate of a stochastic process

that satisfies a recursive dependence on the (t− 1)-th iterate similar to the one exhibited by Vt.

Theorem 4.1 Let (Xt)
T
t=1 be a stochastic process and let (Ft)Tt=1 be a filtration such that Xt is

Ft measurable and Xt is non-negative almost surely. Assume that E [ exp(λX1) ] ≤ exp(λK) with
probability 1, for λ ∈ (0, 1/K]. Let αt ∈ [0, 1) and βt, γt ≥ 0 for every t. Let ŵt be a mean-zero
random variable conditioned on Ft such that |ŵt| ≤ 1 almost surely for every t. Suppose that
Xt+1 ≤ αtXt + βtŵt

√
Xt + γt for every t. Then, the following hold.

• For every t, Pr [Xt ≥ K log(1/δ) ] ≤ eδ.

• More generally, if σ1, . . . , σT ≥ 0, then Pr
[∑T

t=1 σtXt ≥ K log(1/δ)
∑T

t=1 σt

]
≤ eδ,

where K = max1≤t≤T

(
2γt
1−αt

,
2β2

t
1−αt

)
.

The recursion Xt+1 ≤ αt + βtŵt
√
Xt + γt presents two challenges that make it difficult to

analyze. Firstly, the fact that it is a non-linear recurrence makes it unclear how one should unwind
Xt+1. Furthermore, unraveling the recurrence introduces many ŵt terms in a non-trivial way. Inter-
estingly, if we instead consider the moment generating function (MGF) of Xt+1, then we can derive
an analogous recursive MGF relationship which removes this non-linear dependence and removes
the ŵt term. This greatly simplifies the recursion and leads to a surprisingly clean analysis. The
proof of Theorem 4.1 can be found in Appendix D. (The recursive MGF bound which removes the
non-linear dependence is by Claim D.1.)

Deterministic lower bound. As mentioned above, a challenge with non-smooth gradient descent
is that the error of the T -th iterate may not monotonically decrease with T , even in the determin-
istic setting. The full extent of this non-decreasing behavior seems not to have been previously
understood. We develop a technique that forces the error to be monotonically increasing for Ω(T )
consecutive iterations. The idea is as follows. If GD takes a step in a certain direction, a non-
differentiable point can allow the function to suddenly increase in that direction. If the function were
one-dimensional, the next iteration of GD would then be guaranteed to step in the opposite direction,

7
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thereby decreasing the function. However, in higher dimensions, the second gradient step could be
nearly orthogonal to the first step, and the function could have yet another non-differentiable point
in this second direction. In sufficiently high dimensions, this behavior can be repeated for many
iterations. The tricky aspect is designing the function to have this behavior while also being con-
vex. We show that this is possible, leading to the unexpectedly large Ω(log(T )/T ) error in the T -th
iteration. We believe that this example illuminates some non-obvious behavior of gradient descent.

5. Lower bound on error of final iterate
In this section we prove that the final iterate of SGD has error that is suboptimal by a factor Ω(log T ),
even in the non-stochastic case. Specifically, we define a function f = fT , depending on T , for
which the final iterate produced by Algorithm 1 has f(xT ) = Ω(log(T )/T ), thereby proving (2).
We give the proof of Theorem 3.3 in the case where c = 1. Theorem 3.3 can be obtained in full
generality from the analysis in this section by replacing f with 1

cf and using the step-sizes ηt = c
t .

Let X be the Euclidean unit ball in RT . lDefine f : X → R and hi ∈ RT for i ∈ [T + 1] by

f(x) = max
i∈[T+1]

Hi(x) where Hi(x) = hT
i x+

1

2
‖x‖2

hi,j =


aj (if 1 ≤ j < i)
−1 (if i = j ≤ T )
0 (if i < j ≤ T )

and aj =
1

2(T + 1− j)
(for j ∈ [T ]).

It is easy to see that f is 1-strongly convex due to the 1
2 ‖x‖

2 term. Furthermore f is 3-Lipschitz
over X because ‖∇Hi(x)‖ ≤ ‖hi‖ + 1 and ‖hi‖2 ≤ 1 + 1

4

∑T
j=1

1
(T−j)2 < 1 + 1

2 . Finally, the
minimum value of f over X is non-positive because f(0) = 0.

Subgradient oracle. In order to execute Algorithm 1 on f we must specify a subgradient oracle.
First, we require the following claim, which follows from standard facts in convex analysis (Hiriart-
Urruty and Lemaréchal, 1996, Theorem 4.4.2).

Claim 5.1 ∂f(x) is the convex hull of { hi + x : i ∈ I(x) }, where I(x) = { i : Hi(x) = f(x) }.

Our subgradient oracle is non-stochastic: given x, it simply returns hi′ + x where i′ = min I(x).

Explicit description of iterates. Next we will explicitly describe the iterates produced by executing
Algorithm 1 on f . Define the points zt ∈ RT for t ∈ [T + 1] by z1 = 0 and

zt,j =


1− (t− j − 1)aj

t− 1
(if 1 ≤ j < t)

0 (if t ≤ j ≤ T ).
(for t > 1).

We will show inductively that these are precisely the first T iterates produced by Algorithm 1 when
using the subgradient oracle defined above. The next claim follows easily from the definition of zt.

Claim 5.2
• zt,j ≥ 1

2(t−1) for j < t and zt,j = 0 for j ≥ t.

• ‖z1‖ = 0 and ‖zt‖2 ≤ 1
t−1 for t > 1. Thus zt ∈ X for all t ∈ [T + 1].

The “triangular shape” of the hi vectors allows us to determine the value and subdifferential at zt.

8
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Claim 5.3 f(zt) = Ht(zt) for all t ∈ [T + 1]. The subgradient oracle for f at zt returns ht + zt.

Proof We claim that hT
t zt = hT

i zt for all i > t. By definition, zt is supported on its first t − 1
coordinates. However, ht and hi agree on the first t− 1 coordinates (for i > t). This proves the first
part of the claim.

Next we claim that zT
t ht > zT

t hi for all 1 ≤ i < t. By the definition of zt and hi:

zT
t (ht − hi) =

t−1∑
j=1

zt,j(ht,j − hi,j) =

t−1∑
j=i

zt,j(ht,j − hi,j) = zt,i(ai + 1) +

t−1∑
j=i+1

zt,jaj > 0.

These two claims imply that Ht(zt) ≥ Hi(zt) for all i ∈ [T + 1], and therefore f(zt) =
Ht(zt). Moreover I(zt) = { i : Hi(zt) = f(zt) } = {t, . . . , T + 1}. Thus, when evaluating the
subgradient oracle at the vector zt, it returns the vector ht + zt.

Since the subgradient returned at zt is determined by Claim 5.3, and the next iterate of SGD
arises from a step in the opposite direction, a straightforward induction proof allows us to show the
following lemma. A detailed proof is in Appendix B.

Lemma 5.4 The vector xt in Algorithm 1 equals zt, for every t ∈ [T + 1].

The value of the final iterate is easy to determine from Lemma 5.4 and Claim 5.3:

f(xT+1) = f(zT+1) = HT+1(zT+1) ≥
T∑
j=1

hT+1,j ·zT+1,j ≥
T∑
j=1

1

2(T + 1− j)
· 1

2T
>

log T

4T
.

(Here the second inequality uses Claim 5.2.) This proves (2). A small modification of the last
calculation proves (3); details may be found in Claim B.1. This completes the proof of Theorem 3.3.

6. Upper bound on error of final iterate
We now turn to the proof of the upper bound on the error of the final iterate of SGD, in the case
where f is 1-strongly convex and 1-Lipschitz (Theorem 3.1). Recall that the step size used by
Algorithm 1 in this case is ηt = 1/t. We will write ĝt = gt − ẑt, where ĝt is the vector returned by
the oracle at the point xt, gt ∈ ∂f(xt), and ẑt is the noise. Let Ft = σ(ẑ1, . . . , ẑt) be the σ-algebra
generated by the first t steps of SGD. Finally, recall that ‖ẑt‖ ≤ 1 and E [ ẑt | Ft−1 ] = 0.

We begin with the following lemma which can be inferred from the proof of Theorem 1 in
Shamir and Zhang (2013). For completeness, we provide a proof in Appendix E.

Lemma 6.1 Let f be 1-strongly convex and 1-Lipschitz. Suppose that we run SGD (Algorithm 1)
with step sizes ηt = 1/t. Then

f(xT ) ≤ 1

T/2 + 1

T∑
t=T/2

f(xt)︸ ︷︷ ︸
suffix average

+

T/2∑
k=1

1

k(k + 1)

T∑
t=T−k

〈 ẑt, xt − xT−k 〉︸ ︷︷ ︸
ZT , the noise term

+ O

(
log T

T

)
.

Lemma 6.1 asserts that the error of the last iterate is upper bounded by the sum of the error of the
suffix average and some noise terms (up to the additiveO(log T/T ) term). Thus, it remains to show
that the error due to the suffix average is small with high probability (Theorem 3.5) and the noise

9
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terms are small. We defer the proof of Theorem 3.5 to Subsection E.1. By changing the order of
summation, we can write ZT =

∑T
t=T/2〈 ẑt, wt 〉 where

wt =
t∑

j=T/2

αj(xt − xj) and αj =
1

(T − j)(T − j + 1)
.

The main technical difficulty is to show that ZT is small with high probability. Formally, we
prove the following lemma, whose proof is outlined in Subsection 6.1.

Lemma 6.2 ZT ≤ O
(
log(T ) log(1/δ)

T

)
with probability at least 1− δ.

Given Theorem 3.5 and Lemma 6.2, the proof of Theorem 3.1 is immediate.

6.1. Bounding the noise
The main technical difficulty in the proof is to understand the noise term, which is denoted ZT .
Notice that ZT is a sum of a martingale difference sequence. The natural starting point is to better
understand the TCV of ZT , which is at most

∑T
t=T/2 ‖wt‖

2. We we will see that this expression is
bounded by a linear transformation of ZT . This “chicken and egg” relationship inspires a new prob-
abilistic tool (generalized Freedman’s Inequality) which disentangles the TCV from the martingale.

The main challenge in analyzing ‖wt‖ is precisely analyzing the distance ‖xt − xj‖ between

SGD iterates. A loose bound of ‖xt − xj‖2 . (t − j)
∑t

i=j
‖ĝi‖2
i2

follows easily from Jensen’s
inequality. In Appendix E, we prove the following tighter bound, potentially of independent interest.

Lemma 6.3 Suppose f is 1-Lipschitz and 1-strongly convex. Suppose we run Algorithm 1 for T
iterations with step sizes ηt = 1/t. Let a < b. Then,

‖xa − xb‖2 ≤
b−1∑
i=a

‖ĝi‖2

i2
+ 2

b−1∑
i=a

(
f(xa)− f(xi)

)
i

+ 2

b−1∑
i=a

〈 ẑi, xi − xa 〉
i

.

Using Lemma 6.3 and some delicate calculations we obtain the following upper bound on∑T
t=T/2 ‖wt‖

2, revealing the surprisingly intricate relationship between ZT (the martingale) and∑T
t=T/2 ‖wt‖

2 (its TCV). This is the main technical step that inspired our probabilistic tool (the
generalized Freedman’s Inequality).

Lemma 6.4 (Main Technical Lemma) There exists positive values R1 = O
(
log2 T
T 2

)
, R2 =

O
(
log T
T

)
, and Ct = O(log T ), At = O

(
log T
T 2

)
for all t such that

T∑
t=T/2

‖wt‖2 ≤ R1 +R2

∥∥xT/2 − x∗∥∥2 +

T−1∑
t=T/2

Ct
t
〈 ẑt, wt 〉︸ ︷︷ ︸

≈O(log T/T )ZT

+

T−1∑
t=T/2

〈 ẑt, At(xt − x∗) 〉. (4)

This bound is mysterious in that the left-hand side is an upper bound on the total conditional
variance of ZT , whereas the right-hand side essentially contains a scaled version of ZT itself. This
is the “chicken and egg phenomenon” alluded to in Section 4, and it poses another one of the main
challenges of bounding ZT . This bound inspires our main probabilistic tool, Theorem 3.2.

10
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Theorem 3.2 (Generalized Freedman). Let {di,Fi}ni=1 be a martingale difference sequence. Sup-
pose vi−1 ≥ 0, i ∈ [n] are Fi−1-measurable random variables such that E [ exp(λdi) | Fi−1 ] ≤
exp

(
λ2

2 vi−1

)
for all i ∈ [n], λ > 0. Let St =

∑t
i=1 di and Vt =

∑t
i=1 vi−1. Let αi ≥ 0 and set

α = maxi∈[n] αi. Then

Pr

[
n⋃
t=1

{
St ≥ x and Vt ≤

t∑
i=1

αidi + β

} ]
≤ exp

(
− x

4α+ 8β/x

)
∀x, β > 0.

In order to apply Theorem 3.2, we need to refine Lemma 6.4 to replace the terms
∥∥xT/2 − x∗∥∥2

and
∑T−1

t=T/2〈 ẑt, At(xt − x∗) 〉 with sufficient high probability upper bounds. In Rakhlin et al.

(2012), they showed that ‖xt − x∗‖2 ≤ O(log log(T )/T ) for all T2 ≤ t ≤ T simultaneously, with
high probability, so using that would give a slightly suboptimal result. In contrast, our analysis
only needs a high probability bound on

∥∥xT/2 − x∗∥∥2 and
∑T

t=T/2At ‖xt − x∗‖
2; this allows us to

avoid a log log T factor here. Indeed, we have

Theorem 6.5 Both of the following hold:

• For all t ≥ 2, ‖xt − x∗‖2 ≤ O (log(1/δ)/t) with probability 1− δ, and

•
∑T

t=2 σt ‖xt − x∗‖
2 = O

(∑T
t=2

σt
t log(1/δ)

)
w.p. 1− δ, for all σt ≥ 0.

The proof of Theorem 6.5 (Subsection 6.2) uses our tool for bounding recursive stochastic
processes (Theorem 4.1). So, we need to expose a recursive relationship between ‖xt+1 − x∗‖2
and ‖xt − x∗‖2 that satisfies the conditions of Theorem 4.1. Interestingly, Theorem 6.5 is also the
main ingredient in the suffix averaging analysis (Subsection E.1). We now have enough to give our
refined version of Lemma 6.4, which is now in a format usable by Freedman’s Inequality.

Lemma 6.6 For every δ > 0 there exists positive values R = O
(
log2 T log(1/δ)

T 2

)
, Ct = O (log T )

such that
∑T

t=T/2 ‖wt‖
2 ≤ R+

∑T−1
t=T/2

Ct
t 〈 ẑt, wt 〉, with probability at least 1− δ.

Proof The lemma essentially follows from combining our bounds in Theorem 6.5 with an easy
corollary of Freedman’s Inequality (Corollary C.4) which states that a high probability bound of M
on the TCV of a martingale implies a high probability bound of

√
M on the martingale.

Let R1, R2, Ct, and At be as in Lemma 6.4, and consider the resulting upper bound on∑T
t=T/2 ‖wt‖

2. The first claim in Theorem 6.5 gives R2

∥∥xT/2 − x∗∥∥2 = O
(
log2 T log(1/δ)

T 2

)
be-

cause R2 = O (log T/T ).
By the second claim in Theorem 6.5, we have

∑T−1
t=T/2A

2
t ‖xt − x∗‖

2 = O
(
log2 T
T 4 log(1/δ)

)
with probability at least 1 − δ because each At = O

(
log T
T 2

)
. Hence, we have derived a high

probability bound on the total conditional variance of
∑T

t=T/2〈 ẑt, At(xt − x∗) 〉. Therefore, we
turn this into a high probability bound on the martingale itself by applying Corollary C.4 and obtain∑T−1

t=T/2〈 ẑt, At(xt − x
∗) 〉 = O

(
log2 T log(1/δ)

T 2

)
with probability at least 1− δ.

Now that we have derived an upper bound on the total conditional variance of ZT in the form
required by our Generalized Freedman Inequality (Theorem 3.2), we are finally ready to prove
Lemma 6.2 (our high probability upper bound on the noise, ZT ).

11
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Proof (of Lemma 6.2). We have demonstrated thatZT satisfies the “Chicken and Egg” phenomenon
with high probability. Translating this into a high probability upper bound on the martingale ZT
itself is a corollary of Theorem 3.2.

Indeed, consider a filtration {Ft}Tt=T/2. Let dt = 〈 at, bt 〉 define a martingale difference
sequence where ‖at‖ ≤ 1 and E [ at | Ft−1 ] = 0. Suppose there are positive values, R, αt, such
that maxTt=T/2{αt} = O

(√
R
)

and
∑T

t=T/2 ‖bt‖
2 ≤

∑T
t=T/2 αtdt + R log(1/δ) with probability

at least 1− δ. Corollary C.5 bounds the martingale at step T by
√
R log(1/δ) with high probability.

To conclude, Lemma 6.6 allows us to apply Corollary C.5 with at = ẑt, bt = wt, αt = (Ct/t)
for t = T/2, . . . , T − 1, αT = 0, maxTt=T/2{αt} = O (log T/T ), and R = O

(
log2 T/T 2

)
.

6.2. High Probability Bounds on Squared Distances to x∗

We prove Theorem 6.5. The following claim can be extracted from (Rakhlin et al., 2012).

Claim 6.7 (Proof of Lemma 6 in Rakhlin et al. (2012)) Suppose f is 1-strongly-convex and 1-
Lipschitz. Define Yt = t ‖xt+1 − x∗‖2 and Ut = 〈 ẑt+1, xt+1 − x∗ 〉/ ‖xt+1 − x∗‖2. Then

Yt+1 ≤
(
t−1
t

)
Yt + 2 · Ut

√
Yt
t + 4

t+1 .

This claim exposes a recursive relationship between ‖xt+1 − x∗‖2 and ‖xt − x∗‖2 and inspires our
probabilistic tool for recursive stochastic processes (Theorem 4.1), used to prove Theorem 6.5:
Proof (of Theorem 6.5). Consider the stochastic process (Yt)

T−1
t=1 where Yt is as defined by Claim 6.7.

Note that Yt satisfies the conditions of Theorem 4.1 with Xt = Yt, ŵt = Ut, αt = t−1
t = 1 − 1/t,

βt = 2/
√
t, and γt = 4/(t + 1). Observe that Ut is a Ft+1 measurable random variable which is

mean zero conditioned onFt Furthermore, note that |Ut| ≤ 1 with probability 1 because ‖ẑt+1‖ ≤ 1

with probability 1. It is easy to check that max1≤t≤T

(
2γt
1−αt

, 2β2

1−αt

)
= 8 with the above setup. We

claim that ‖x2 − x∗‖2 ≤ 8 with probability 1. Indeed by 1-strong-convexity and 1-Lipschitzness of
f , we have ‖xt − x∗‖ ≥ 〈 gt, xt − x∗ 〉 ≥ 1

2 ‖xt − x
∗‖2. Apply Theorem 4.1 to obtain:

• For every t = 1, . . . T − 1, Pr [Yt ≥ 8 log(1/δ) ] ≤ eδ.

• Let σ′t ≥ 0 for t = 1, . . . , T − 1. Then, Pr
[∑T−1

t=1 σ
′
tYt ≥ 8

∑T−1
t=1 σ

′
t

]
≤ eδ.

Recalling that Yt = t ‖xt+1 − x∗‖2 and setting σ′t = σt/t proves Theorem 6.5.

7. Open questions
There remain some interesting open questions. The first is whether or not there exists a sequence of
step sizes for which the individual iterates obtain, for all t, error o(log(t)/t) in the strongly-convex
cases and o(log(t)/

√
t) in the Lipschitz case. Note that in the strongly convex case, (Jain et al.,

2019) showed that for a fixed T , one can obtain a rate of O(1/T ) for the last iterate and that in the
stochastic setting, no choice of step sizes yields expected error O(1/t) for all t > 0.

Another question is to determine the exact dependence on δ of our high probability upper bound
on the error of the final iterate. In the strongly-convex case, our best lower bound has an additive
log(1/δ), factor whereas our upper bound has a multiplicative factor of log(1/δ). In contrast, for the
final iterate in the Lipschitz case, we do not know a log(1/δ) lower bound on the error; conceivably
the upper bound could be improved to O

(
(log(T ) +

√
log(1/δ))/

√
T
)
.

12



TIGHT ANALYSES FOR NON-SMOOTH STOCHASTIC GRADIENT DESCENT

References
Peter L. Bartlett, Varsha Dani, Thomas Hayes, Sham Kakade, Alexander Rakhlin, and Ambuj

Tewari. High-probability regret bounds for bandit online linear optimization. In 21th Annual
Conference on Learning Theory (COLT 2008), July 2008.

Sebastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in
Machine Learning, 8(3–4), 2015.

Xiequan Fan, Ion Grama, and Quansheng Liu. Exponential inequalities for martingales with appli-
cations. Electronic Journal of Probability, 20, 2015.

David A. Freedman. On tail probabilities for martingales. Annals of Probability, 3(1):100–118,
1975.

Nicholas J. A. Harvey, Christopher Liaw, Yaniv Plan, and Sikander Randhawa. Tight analyses for
non-smooth stochastic gradient descent. CoRR, abs/1812.05217, 2018. URL http://arxiv.
org/abs/1812.05217.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization,
2(3–4), 2015.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for
stochastic strongly-convex optimization. The Journal of Machine Learning Research, 15(1):
2489–2512, 2014.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex Analysis and Minimization Algo-
rithms I. Springer-Verlag, 1996.

Prateek Jain, Dheeraj Nagaraj, and Praneeth Netrapalli. Making the last iterate of SGD information
theoretically optimal. arXiv preprint arXiv:1904.12443, 2019.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in neural information processing systems, pages 315–323, 2013.

Sham M. Kakade and Ambuj Tewari. On the generalization ability of online strongly convex pro-
gramming algorithms. In NIPS, pages 801–808, 2008.

Philip Klein and Neal E Young. On the number of iterations for Dantzig–Wolfe optimization and
packing-covering approximation algorithms. SIAM Journal on Computing, 44(4):1154–1172,
2015.

Simon Lacoste-Julien, Mark W. Schmidt, and Francis R. Bach. A simpler approach to obtaining
an O(1/t) convergence rate for the projected stochastic subgradient method, December 2012.
arXiv:1212.2002.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009.

13

http://arxiv.org/abs/1812.05217
http://arxiv.org/abs/1812.05217


TIGHT ANALYSES FOR NON-SMOOTH STOCHASTIC GRADIENT DESCENT

A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
Wiley, 1983.

Yu. Nesterov and V. Shikhman. Quasi-monotone subgradient methods for nonsmooth convex min-
imization. Journal of Optimization Theory and Applications, 165(3):917–940, Jun 2015.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization. In Proceedings of ICML, 2012.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22(3):400–407, September 1951.

David Ruppert. Efficient estimations from a slowly convergent Robbins-Monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: primal estimated
sub-gradient solver for SVM. Mathematical Programming, 127(1):3–30, 2011.

Ohad Shamir. Open problem: Is averaging needed for strongly convex stochastic gradient descent?
Proceedings of the 25th Annual Conference on Learning Theory, PMLR, 23:47.1–47.3, 2012.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. Proceedings of the 30th International Conference
on Machine Learning, PMLR, 28(1):71–79, 2013.

Cheng Tang and Claire Monteleoni. Convergence analysis of stochastic gradient descent on strongly
convex objective functions. In Proceedings of ROKS, pages 111–112, 2013.

Roman Vershynin. High-dimensional probability: An introduction with applications in data sci-
ence. Cambridge University Press, 2018.

14



TIGHT ANALYSES FOR NON-SMOOTH STOCHASTIC GRADIENT DESCENT

Appendix A. Standard results
Lemma A.1 (Exponentiated Markov) LetX be a random variable and λ > 0. Then Pr [X > t ] ≤
exp(−λt) E [ exp(λX) ].

Theorem A.2 (Cauchy-Schwarz) LetX and Y be random variables. Then |E [XY ]|2 ≤ E
[
X2
]

E
[
Y 2
]
.

Theorem A.3 (Hölder’s Inequality) Let X1, . . . , Xn be random variables and p1, . . . , pn > 0 be
such that

∑
i 1/pi = 1. Then E [

∏n
i=1|Xi| ] ≤

∏n
i=1 (E [ |Xi|pi ])1/pi

Lemma A.4 LetX1, . . . , Xn be random variables andK1, . . . ,Kn > 0 be such that E [ exp(λXi) ] ≤
exp(λKi) for all λ ≤ 1/Ki. Then E [ exp(λ

∑n
i=1Xi) ] ≤ exp(λ

∑n
i=1Ki) for all λ ≤ 1/

∑n
i=1Ki.

Proof Let pi =
∑n

j=1Kj/Ki and observe that piKi =
∑n

j=1Kj . By assumption, if λpi ≤ 1/Ki

(i.e. λ ≤ 1/
∑n

j=1Kj) then E [ exp(λpiXi) ] ≤ exp(λpiKi). Applying Theorem A.3, we conclude
that

E

[
exp(λ

n∑
i=1

Xi)

]
≤

n∏
i=1

E [ exp(λpiXi) ]1/pi ≤
n∏
i=1

exp(λpiKi)
1/pi = exp(λ

n∑
i=1

Ki).

Lemma A.5 (Hoeffding’s Lemma) Let X be any real valued random variable with expected
value E [X ] = 0 and such that a ≤ X ≤ b almost surely. Then, for all λ ∈ R, E [ exp (λX) ] ≤
exp

(
λ2(b− a)2/8

)
.

Claim A.6 ((Vershynin, 2018, Proposition 2.5.2)) Suppose there is c > 0 such that for all 0 <
λ ≤ 1

c , E
[

exp
(
λ2X2

) ]
≤ exp

(
λ2c2

)
for some constant c. Then, if X is mean zero it holds that

E
[

exp
(
λX
) ]
≤ exp

(
λ2c2

)
,

for all λ ∈ R.

Proof Without loss of generality, assume c = 1; otherwise replace X with X/c. Using the numeric
inequality ex ≤ x + ex

2
which is valid for all x ∈ R, if |λ| ≤ 1 then E [ exp(λX) ] ≤ E [λX ] +

E
[

exp(λ2X2)
]
≤ exp(λ2). On the other hand, if |λ| ≥ 1, we may use the numeric inequality4

ab ≤ a2/2 + b2/2, valid for all a, b ∈ R, to obtain

E [ exp(λX) ] ≤ E
[

exp(λ2/2 +X2/2)
]
≤ exp(λ2/2) exp(λ2/2) = exp(λ2).

Claim A.7 Suppose X is a random variable such that there exists constants c and C such that
E [ exp (λX) ] ≤ c exp (λC) for all λ ≤ 1/C. Then, Pr [X ≥ C log(1/δ) ] ≤ ceδ.

Proof Apply Lemma A.1 to Pr [X ≥ t ] to get Pr [X ≥ t ] ≤ c exp (−λt+ λC). Set λ = 1/C
and t = C log(1/δ) to complete the proof.

Claim A.8 ((Hiriart-Urruty and Lemaréchal, 1996, Eq. (3.1.6))) Let X be a convex set and x ∈
X ⊆ Rn. Then ‖ΠX (y)− x‖ ≤ ‖y − x‖ for all y ∈ Rn.

4. Young’s Inequality
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A.1. Useful Scalar Inequalities
Claim A.9 For 1 ≤ a ≤ b,

∑b
k=a

1√
k
≤ 2 b−a+1√

b
.

Proof
b∑

k=a

1√
k
≤
∫ b

a−1

1√
x
dx = 2(

√
b−
√
a− 1) = 2

b− a+ 1√
b+
√
a− 1

.

Claim A.10 For any 1 ≤ j ≤ t ≤ T , we have t−j
(T−j+1)

√
t
≤ 1√

T
.

Proof The function g(x) = x−j√
x

has derivative

g′(x) =
1√
x

(
1− x− j

2x

)
=

1√
x

(1

2
+

j

2x

)
.

This is positive for all x > 0 and j ≥ 0, and so
t− j√
t
≤ T − j√

T
,

for all 0 < t ≤ T . This implies the claim.

Claim A.11
m∑

`=k+1

1

`2
≤ 1

k
− 1

m
.

Proof The sum may be upper-bounded by an integral as follows:
m∑

`=k+1

1

`2
≤
∫ m

k

1

x2
dx =

1

k
− 1

m
.

Claim A.12 Let αj = 1
(T−j)(T−j+1) . Let a, b be such that a < b ≤ T . Then,

b∑
j=a

αj =
1

T − b
− 1

T − a+ 1
≤ 1

T − b
.

Proof
b∑

j=a

αj =
b∑

j=a

1

(T − j)(T − j + 1)
=

b∑
j=a

(
1

T − j
− 1

T − (j − 1)

)
,

which is a telescoping sum.

Claim A.13 Suppose a < b. Then, log(b/a) ≤ (b− a)/a.

Claim A.14 Let b ≥ a > 1. Then,
∑b

i=a
1
i ≤ log

(
b/(a− 1)

)
.
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Appendix B. Omitted proofs from Section 5
Proof (of Lemma 5.4). By definition, z1 = x1 = 0. By Claim 5.3, the subgradient returned at
x1 is h1 + x1 = h1, so Algorithm 1 sets y2 = x1 − η1h1 = e1, the first standard basis vector.
Then Algorithm 1 projects onto the feasible region, obtaining x2 = ΠX (y2), which equals e1 since
y2 ∈ X . Since z2 also equals e1, the base case is proven.

So assume zt = xt for 2 ≤ t < T ; we will prove that zt+1 = xt+1. By Claim 5.3, the
subgradient returned at xt is ĝt = ht + zt. Then Algorithm 1 sets yt+1 = xt − ηtĝt. Since xt = zt
and ηt = 1/t, we obtain

yt+1,j = zt,j −
1

t
(ht,j + zt,j)

=
t− 1

t
zt,j −

1

t
ht,j

=
t− 1

t

{
1−(t−j−1)aj

t−1 (for j < t)
0 (for j ≥ t)

}
− 1

t


aj (for j < t)
−1 (for j = t)
0 (for j > t)


=

1

t

{
1− (t− j − 1)aj (for j < t)
0 (for j ≥ t)

}
− 1

t


aj (for j < t)
−1 (for j = t)
0 (for j > t)


=

1

t


1− (t− j)aj (for j < t)
1 (for j = t)
0 (for j ≥ t+ 1)


So yt+1 = zt+1. Since xt+1 = ΠX (yt+1) is defined to be the projection onto X , and yt+1 ∈ X by
Claim 5.2, we have xt+1 = yt+1 = zt+1.

Claim B.1 For any k ∈ [T ], let x̄ =
∑T+1

t=T−k+2 λtxt be any convex combination of the last k
iterates. Then

f(x̄) ≥ ln(T )− ln(k)

4T
.

Proof By Lemma 5.4, xt = zt ∀t ∈ [T + 1]. By Claim 5.2, every zt ≥ 0 so x̄ ≥ 0. Moreover,
zt,j ≥ 1/2T for all T − k + 2 ≤ t ≤ T + 1 and 1 ≤ j ≤ T − k + 1. Consequently, x̄j ≥ 1/2T for

17
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all 1 ≤ j ≤ T − k + 1. Thus,

f(x̄) ≥ hT
T+1x̄ (by definition of f )

=
T−k+1∑
j=1

hT+1,j x̄j︸︷︷︸
≥1/2T

+
T∑

j=T−k+2

hT+1,j x̄j︸ ︷︷ ︸
≥0

≥
T−k+1∑
j=1

aj ·
1

2T

=
1

2T

T−k+1∑
j=1

1

2(T + 1− j)

≥ 1

4T

T−k+1∑
j=1

1

T + 1− j

≥ 1

4T

∫ T−k+1

1

1

T + 1− x
dx

=
log(T )− log(k)

4T

Remark B.2 In order to achieve large error for the T -th iterate, Theorem 3.3 constructs a function
parameterized by T . It is not possible for a single function to achieve error ω(1/T ) for the T -th
iterate simultaneously for all T , because that would contradict the fact that suffix averaging achieves
error O(1/T ). Nevertheless, it is possible to construct a single function achieving error g(T ),
for infinitely many T , for any function g(T ) = o(log(T )/T ), e.g., g(T ) = log(T )/(T log∗(T ))
where log∗(T ) is the iterated logarithm. Formally, we can construct a function f ∈ `2 such that
infx f(x) = 0 but lim supT

f(xT )
g(T ) = +∞. The main idea is to define a sequence T1 � T2 �

T3 � . . . and consider the “concatenation” of c1fT1 , c2fT2 , . . . into a single function f (here, ci
are appropriate constants chosen to ensure that f remains Lipschitz). Essentially, one can imagine
running multiple instances of gradient descent in parallel where each instance corresponds to a bad
instance given by Theorem 3.3, albeit at different scales. However, this construction has a slight loss
(i.e., the log∗(T )) to ensure that f remains Lipschitz. The details are discussed in the full version
of this paper (Harvey et al., 2018).

Appendix C. Proof of Theorem 3.2 and Corollaries
In this section we prove Theorem 3.2 and derive some corollaries. We restate Theorem 3.2 here for
convenience.

Theorem 3.2. Let {di,Fi}ni=1 be a martingale difference sequence. Suppose vi−1 ≥ 0, i ∈ [n]

are Fi−1-measurable random variables such that E [ exp(λdi) | Fi−1 ] ≤ exp
(
λ2

2 vi−1

)
for all

i ∈ [n], λ > 0. Let St =
∑t

i=1 di and Vt =
∑t

i=1 vi−1. Let αi ≥ 0 and set α = maxi∈[n] αi. Then

Pr

[
n⋃
t=1

{
St ≥ x and Vt ≤

t∑
i=1

αidi + β

} ]
≤ exp

(
− x

4α+ 8β/x

)
∀x, β > 0.

18
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Proof (of Theorem 3.2). Fix λ < 1/(2α) and define c = c(λ, α) as in Claim C.2. Let λ̃ = λ+cλ2α.
Define U0 := 1 and for t ∈ [n], define

Ut(λ) := exp

(
t∑
i=1

(λ+ cλ2αi)di −
t∑
i=1

λ̃2

2
vi−1

)
.

Claim C.1 Ut(λ) is a supermartingale w.r.t. Ft.

Proof For all t ∈ [n]:

E [Ut(λ) | Ft−1 ] = Ut−1(λ) exp

(
− λ̃

2

2
vt−1

)
E
[

exp
(
(λ+ cλ2αt)dt

)
| Ft−1

]
≤ Ut−1(λ) exp

(
− λ̃

2

2
vt−1

)
exp

(
(λ+ cλ2αi)

2

2
vt−1

)

≤ Ut−1(λ) exp

(
− λ̃

2

2
vt−1

)
exp

(
λ̃2

2
vt−1

)
= Ut−1(λ),

where the second line follows from the assumption that E [ exp(λdt) | Ft−1 ] ≤ exp
(
λ2

2 vt−1

)
for

all λ > 0 and the third line is because λ+ cλ2αi ≤ λ̃ (since c ≥ 0 and αi ≤ α). We conclude that
Ut(λ) is a martingale w.r.t. Ft.

Define the stopping time T = min
{
t : St ≥ x and Vt ≤

∑t
i=1 αidi + β

}
with the convention

that min ∅ =∞. Since Ut is a supermartingale w.r.t. Ft, UT∧t is a supermartingale w.r.t. Ft. Hence,

Pr

[
n⋃
t=1

{
St ≥ x and Vt ≤

t∑
i=1

αidi + β

}]

= Pr

[
ST∧n ≥ x and VT∧n ≤

T∧n∑
i=1

αidi + β

]

= Pr

[
λST∧n ≥ λx and cλ2VT∧n ≤ cλ2

T∧n∑
i=1

αidi + cλ2β

]

≤ Pr

[
T∧n∑
i=1

(λ+ αiλ
2)di − cλ2VT∧n ≥ λx− cλ2β

]

≤ E

[
exp

(
T∧n∑
i=1

(λ+ αiλ
2)di − cλ2VT∧n

)]
· exp(−λx+ cλ2β).
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Recall that c was chosen (via Claim C.2) so that cλ2 = λ̃2

2 . Hence,

E

[
exp

(
T∧n∑
i=1

(λ+ αiλ
2)di − cλ2VT∧n

)]
= E

[
exp

(
T∧n∑
i=1

(λ+ αiλ
2)di −

λ̃2

2
VT∧n

)]
= E [UT∧n(λ) ] ≤ 1.

Since λ < 1/(2α) was arbitrary, we conclude that

Pr

[
n⋃
t=1

{
St ≥ x and Vt ≤

t∑
i=1

αidi + β

}]
≤ exp(−λx+ cλ2β)

≤ exp(−λx+ 2λ2β),

where the inequality is because c ≤ 2. Now, we can pick λ = 1
2α+4β/x <

1
2α to conclude that

Pr

[
n⋃
t=1

{
St ≥ x and Vt ≤

t∑
i=1

αidi + β

}]
≤ exp(−λ(x− 2λβ))

≤ exp

(
−λ
(
x− 2β

2α+ 4β/x

))
≤ exp

(
−λ
(
x− 2β

4β/x

))
= exp

(
−λx

2

)
= exp

(
− x

4α+ 8β/x

)
.

Claim C.2 Let α ≥ 0 and λ ∈ [0, 1/2α). Then there exists c = c(λ, α) ∈ [0, 2] such that
2cλ2 = (λ+ cλ2α)2.

Proof If λ = 0 or α = 0 then the claim is trivial (just take c = 0). So assume α, λ > 0.
The equality 2cλ2 = (λ + cλ2α)2 holds if and only if p(c) := α2λ2c2 + (2λα − 2)c + 1 = 0.

The discriminant of p is (2λα− 2)2 − 4α2λ2 = 4− 8λα. Since λα ≤ 1/2, the discriminant of p is
non-negative so the roots of p are real. The smallest root of p is located at

c =
2− 2αλ−

√
(2αλ− 2)2 − 4λ2α2

2λ2α2

=
1− αλ−

√
1− 2αλ

α2λ2
.

Set γ = αλ. Using the numeric inequality
√

1− x ≥ 1− x/2− x2/2 valid for all x ≤ 1, we have

c ≤ 1− γ − (1− γ − 2γ2)

γ2
= 2.

On the other hand, using the numeric inequality
√

1− x ≤ 1−x/2−x2/8 valid for all 0 ≤ x ≤ 1,
we have

c ≥ 1− γ − (1− γ − γ2/2)

γ2
=

1

2
≥ 0.
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C.1. Corollaries of Theorem 3.2
In this paper, we often deal with martingales, Mn, where the total conditional variance of the mar-
tingale is bounded by a linear transformation of the martingale, with high probability (which is what
we often refer to as the “chicken and egg” phenomenon — the bound on the total conditional vari-
ance of Mn involves Mn itself). Transforming these entangled high probability bounds on the total
conditional variance into high probability bounds on the martingale itself are easy consequences of
our Generalized Freedman inequality (Theorem 3.2).

Lemma C.3 Let {di,Fi}ni=1 be a martingale difference sequence. Let vi−1 be a Fi−1 measurable

random variable such that E [ exp (λdi) | Fi−1 ] ≤ exp
(
λ2

2 vi−1

)
for all λ > 0 and for all i ∈ [n].

Define Sn =
∑n

i=1 di and define Vn =
∑n

i=1 vi−1. Let δ ∈ (0, 1) and suppose there are positive
valuesR(δ) > 0, and non-negative values {αi}ni=1 such that Pr [Vn ≤

∑n
i=1 αidi +R(δ) ] ≥ 1−δ.

Then,

Pr [Sn ≥ x ] ≤ δ + exp

(
− x2

4 (maxni=1{αi})x+ 8R(δ)

)
.

Proof Fix δ ∈ (0, 1). Define the following events: E(x) = {Sn ≥ x}, G = {Vn ≤
∑n

i=1 αidi +
R(δ)}.

Pr [Sn ≥ x ] = Pr [ E(x) ∧ G ] + Pr [ E(x) ∧ Gc ]

≤ Pr [ E(x) ∧ G ] + Pr [Gc ]︸ ︷︷ ︸
≤δ

≤ δ + exp

(
− x2

4 (maxni=1{αi})x+ 8R(δ)

)
,

where the final inequality is due to applying Theorem 3.2 to Pr [ E(x) ∧ G ].

In this paper, we use Lemma C.3 in the following ways:

Corollary C.4 Let {Ft}Tt=1 be a filtration and suppose that at are Ft-measurable random vari-
ables and bt are Ft−1-measurable random variables. Further, suppose that

1. ‖at‖ ≤ 1 almost surely and E [ at | Ft−1 ] = 0; and

2.
∑T

t=1 ‖bt‖
2 ≤ R log(1/δ) with probability at least 1−O(δ).

Define dt = 〈 at, bt 〉. Then
∑T

t=1 dt ≤ O
(√
R log(1/δ)

)
with probability at least 1−O(δ).

Proof Since ‖at‖ ≤ 1, by Cauchy-Schwarz we have that |dt| ≤ ‖bt‖. Therefore, E
[

exp
(
λdt
)
| Ft−1

]
≤

exp
(
λ2

2 ‖bt‖
2 ) for all λ by Lemma A.5. Next, applying Lemma C.3 with dt = 〈 at, bt 〉 and

vt−1 = ‖bt‖2, αi = 0 for all i, and R(δ) = R log(1/δ) yields

Pr

[
T∑
t=1

dt ≥ x

]
≤ δ + exp

(
− x2

8R log(1/δ)

)
.
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The last term is at most δ by taking x =
√

8R log(1/δ).

Corollary C.5 Let {Ft}Tt=1 be a filtration and suppose that at are Ft-measurable random vari-
ables and bt are Ft−1-measurable random variables. Define dt = 〈 at, bt 〉. Assume that ‖at‖ ≤ 1
almost surely and E [ at | Ft−1 ] = 0. Furthermore, suppose that there exists R > 0 and non-
negative values {αt}T−1i=1 where max{αt}T−1t=1 = O

(√
R
)

, such that exactly one of the following
holds for every δ ∈ (0, 1)

1.
∑T

t=1 ‖bt‖
2 ≤

∑T−1
t=1 αtdt +R log(1/δ) with probability at least 1−O(δ).

2.
∑T

t=1 ‖bt‖
2 ≤

∑T−1
t=1 αtdt +R

√
log(1/δ) with probability at least 1−O(δ).

Then
∑T

t=1 dt ≤ O
(√
R log(1/δ)

)
with probability at least 1− δ.

Proof We prove only the first case, the second case can be proved by bounding
√

log(1/δ) by
log(1/δ) and using the proof of the first case.

Since ‖at‖ ≤ 1, by Cauchy-Schwarz we have that |dt| ≤ ‖bt‖. Therefore, E
[

exp
(
λdt
)
| Ft−1

]
≤

exp
(
λ2

2 ‖bt‖
2 ) for all λ by Lemma A.5. Next, applying Lemma C.3 with dt = 〈 at, bt 〉 and

vt−1 = ‖bt‖2, with αT = 0 , and R(δ) = R log(1/δ) yields

Pr

[
T∑
t=1

dt ≥ x

]
≤ δ + exp

− x2

4
(

maxT−1t=1 {αt}
)
x+ 8R log(1/δ)

 .

The last term is at most δ by taking x = Θ
(√

R log(1/δ)
)

because maxT−1t=1 {αt} = O
(√

R
)

.

Appendix D. Proof of Theorem 4.1

Theorem 4.1. Let (Xt)
T
t=1 be a stochastic process and let (Ft)Tt=1 be a filtration such that Xt is

Ft measurable and Xt is non-negative almost surely. Assume that E [ exp(λX1) ] ≤ exp(λK) with
probability 1, for λ ∈ (0, 1/K]. Let αt ∈ [0, 1) and βt, γt ≥ 0 for every t. Let ŵt be a mean-
zero random variable conditioned on Ft such that |ŵt| ≤ 1 almost surely for every t. Suppose that
Xt+1 ≤ αtXt + βtŵt

√
Xt + γt for every t. Then, the following hold.

• For every t, Pr [Xt ≥ K log(1/δ) ] ≤ eδ.

• More generally, if σ1, . . . , σT ≥ 0, then Pr
[∑T

t=1 σtXt ≥ K log(1/δ)
∑T

t=1 σt

]
≤ eδ,

where K = max1≤t≤T

(
2γt
1−αt

,
2β2

t
1−αt

)
.

Proof (of Theorem 4.1).
We begin by deriving a recursive MGF bound on Xt.

Claim D.1 Suppose 0 ≤ λ ≤ min1≤t≤T

(
1−αt

2β2
t

)
. Then for every t,

E [ exp (λXt+1) ] ≤ exp (λγt) E

[
exp

(
λXt

(
1 + αt

2

))]
.
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Proof
Observe that β2t ŵ

2
t

√
Xt

2 ≤ β2tXt because |ŵt| ≤ 1 almost surely. Since β2tXt isFt-measurable,
we have E

[
exp

(
λ2β2t ŵ

2
t

√
Xt

2
)
| Ft

]
≤ exp

(
λ2β2tXt

)
for all λ. Hence, we may apply Claim A.6

to obtain
E
[

exp
(
λβtŵt

√
Xt

)
| Ft

]
≤ exp

(
λ2β2tXt

)
. (5)

Hence,

E [ exp (λXt+1) ] ≤ E
[

exp
(
λαtXt + λβtŵt

√
Xt + λγt

) ]
(by assumption)

= E
[

exp (λαtXt + λγt) E
[

exp
(
λβtŵt

√
Xt

)
| Ft

] ]
≤ E

[
exp

(
λαtXt + λ2β2tXt + λγt

) ]
(by Eq. (5))

= E
[

exp
(
λXt

(
αt + λβ2t

)
+ λγt

) ]
≤ E

[
exp

(
λγt + λXt

(
1 + αt

2

))]
(because λ ≤ 1− αt

2β2t
).

Next, we prove an MGF bound on Xt.

Claim D.2 For every t and for all 0 ≤ λ ≤ 1/K, E [ exp (λXt) ] ≤ exp (λK).

Proof Let λ ≤ 1/K. We proceed by induction over t. The base case holds by assumption. Assume
that E [ exp (λXt) ] ≤ exp (λK). Now, consider the MGF of Xt+1:

E [ exp (λXt+1) ] ≤ E

[
exp

(
λγt + λXt

(
1 + αt

2

))]
(by Claim D.1)

≤ exp

(
λγt + λK

(
1 + αt

2

))
,

where the first inequality is valid because λ ≤ 1/K ≤ min1≤t≤T

(
1−αt

2β2
t

)
and the second inequality

follows because (1 + αt)/2 < 1 and so we can use the induction hypothesis since λ(1 + αt)/2 <
λ ≤ 1/K. Furthermore, because K ≥ 2γt/ (1− αt) we have

K ≥ 2γt
1− αt

=
γt

1−
(
1+αt
2

) ,
which shows that γt +K

(
1+αt
2

)
≤ K. Hence,

E [ exp (λXt+1) ] ≤ exp (λK) ,

as desired.

Now we are ready to complete the proof of both claims in Theorem 4.1.The first claim from
Theorem 4.1 follows by observing our MGF bound on Xt and then applying the transition from
MGF bounds to tail bounds given by Claim A.7.

Next, we prove the second claim from Theorem 4.1. Claim D.2 gives that for every t and for
all λ ≤ 1/(σtK), we have E [ exp (λσtXt) ] ≤ exp (λσtK). Hence, we can combine these MGF
bounds using Lemma A.4 to obtain E

[
exp

(
λ
∑T

t=1 σtXt

) ]
≤ exp

(
λK

∑T
t=1 σt

)
for all λ ≤
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(
K
∑T

t=1 σt

)−1
. With this MGF bound in hand, we may apply the transition from MGF bounds to

tail bounds given by Claim A.7 to complete the proof of the second claim from Theorem 4.1.

Appendix E. Omitted proofs from Section 6
The following lemma is standard.

Lemma E.1 Let f be an 1-strongly convex and 1-Lipschitz function. Consider running Algorithm 1
for T iterations. Then, for every w ∈ X and every k ∈ [T ],

T∑
t=k

[
f(xt)− f(w)

]
≤ 1

2

T∑
t=k

ηt‖ĝt‖2 +
1

2ηk
‖xk − w‖2 +

T∑
t=k

〈 ẑt, xt − w 〉.

Proof

f(xt)− f(w) ≤ 〈 gt, xt − w 〉 −
1

2
‖xt − w‖2 (by strong-convexity)

= 〈 ĝt, xt − w 〉 −
1

2
‖xt − w‖2 + 〈 ẑt, xt − w 〉 (ĝt = gt − ẑt)

=
1

ηt
〈 xt − yt+1, xt − w 〉 −

1

2
‖xt − w‖2 + 〈 ẑt, xt − w 〉 (yt+1 = xt − ηtĝt)

=
1

2ηt

(
‖xt − yt+1‖2 + ‖xt − w‖2 − ‖yt+1 − w‖2

)
− 1

2
‖xt − w‖2 + 〈 ẑt, xt − w 〉

≤ 1

2ηt

(
‖ηtĝt‖2 + ‖xt − w‖2 − ‖xt+1 − w‖2

)
− 1

2
‖xt − w‖2 + 〈 ẑt, xt − w 〉.

Now, summing t from k to T ,
T∑
t=k

[
f(xt)− f(w)

]

≤ 1

2

T∑
t=k

ηt ‖ĝt‖2 +
1

2

T∑
t=k+1

(
1

ηt
− 1

ηt−1
− 1

)
︸ ︷︷ ︸

=0

‖xt − w‖2 +

(
1

2ηk
− 1

2

)
‖xk − w‖2 +

T∑
t=k

〈 ẑt, xt − w 〉

≤ 1

2

T∑
t=k

ηt ‖ĝt‖2 +
1

2ηk
‖xk − w‖2 +

T∑
t=k

〈 ẑt, xt − w 〉 (ηt = 1/t),

as desired.

Proof (of Lemma 6.1). Let k ∈ [T − 1]. Apply Lemma E.1, replacing k with T − k and w = xT−k
to obtain:

T∑
t=T−k

[
f(xt)− f(xT−k)

]
≤ 1

2

T∑
t=T−k

ηt ‖ĝt‖2 +

T∑
t=T−k

〈 ẑt, xt − xT−k 〉.
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Now, divide this by k + 1 and define Sk = 1
k+1

∑T
t=T−k f(xt) to obtain

Sk − f(xT−k) ≤
1

2(k + 1)

T∑
t=T−k

ηt ‖ĝt‖2 +
1

k + 1

T∑
t=T−k

〈 ẑt, xt − xT−k 〉

Observe that kSk−1 = (k + 1)Sk − f(xT−k). Combining this with the previous inequality yields

kSk−1 = kSk+
(
Sk−f(xT−k)

)
≤ kSk+

1

2(k + 1)

T∑
t=T−k

ηt ‖ĝt‖2+
1

k + 1

T∑
t=T−k

〈ẑt, xt−xT−k〉.

Dividing by k, we obtain:

Sk−1 ≤ Sk +
1

2k(k + 1)

T∑
t=T−k

ηt ‖ĝt‖2 +
1

k(k + 1)

T∑
t=T−k

〈 ẑt, xt − xT−k 〉.

Thus, by induction:

f(xT ) = S0

≤ ST/2 +

T/2∑
k=1

1

2k(k + 1)

T∑
t=T−k

ηt ‖ĝt‖2 +

T/2∑
k=1

1

k(k + 1)

T∑
t=T−k

〈 ẑt, xt − xT−k 〉

=
1

T/2 + 1

T∑
t=T/2

f(xt) +

T/2∑
k=1

1

2k(k + 1)

T∑
t=T−k

ηt ‖ĝt‖2 +

T/2∑
k=1

1

k(k + 1)

T∑
t=T−k

〈 ẑt, xt − xT−k 〉.

Note that ‖ĝt‖2 ≤ 4 and ηt = 1/t. So we can bound the middle term as
T/2∑
k=1

1

2k(k + 1)

T∑
t=T−k

ηt ‖ĝt‖2 ≤ 2

T/2∑
k=1

1

k(k + 1)

T∑
t=T−k

1

t

≤ 2

T/2∑
k=1

1

k(T − k)

≤ 4

T

T/2∑
k=1

1

k

= O

(
log T

T

)
.

This completes the proof.

E.1. Upper Bound on Error of Suffix Averaging
To complete the proof of the final iterate upper bound (Theorem 3.1), it still remains to prove the
suffix averaging upper bound (Theorem 3.5). In this section, we prove this result as a corollary of
the high probability bounds on ‖xt − x∗‖2 that we obtained in the previous subsection.
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Proof (of Theorem 3.5). By Lemma E.1 with w = x∗ we have
T∑

t=T/2

[f(xt)− f(x∗)] ≤ 1

2

T∑
t=T/2

ηt ‖ĝt‖2︸ ︷︷ ︸
(a)

+
1

2ηT/2

∥∥xT/2 − x∗∥∥2︸ ︷︷ ︸
(b)

+
T∑

t=T/2

〈 ẑt, xt − x∗ 〉︸ ︷︷ ︸
(c)

. (6)

It suffices to bound the right hand side of (6) by O(log(1/δ)) with probability at least 1− δ. Indeed,
bounding ‖ĝt‖2 by 4, (a) in (6) is bounded by O(1). Theorem 6.5 bounds (b) by O(log(1/δ)).

Theorem 6.5 implies
∑T

t=T/2 ‖xt − x∗‖
2 = O(log(1/δ)) with probability at least 1 − δ. So,

Corollary C.4 bounds (c) by O(log(1/δ)) with probability at least 1− δ.

E.2. Proof of Lemma 6.4
Proof (of Lemma 6.4). Recall from Section 6 that αj = 1

(T−j)(T−j+1) and wt =
∑t−1

j=T/2 αj(xt −
xj).

Definition E.2 Define BT :=
∑T

t=T/2
1

T−t+1

∑t−1
j=T/2 αj ‖xt − xj‖

2.

Claim E.3
∑T

t=T/2 ‖wt‖
2 ≤ BT .

Proof Let At =
∑t−1

j=T/2 αj . Then

‖wt‖2 = A2

∥∥∥∥∥∥
T−1∑
j=T/2

αj
A

(xt − xj)

∥∥∥∥∥∥
2

≤ A2
T−1∑
j=T/2

αj
A
‖xt − xj‖2

≤ 1

T − t+ 1

t−1∑
j=T/2

αj ‖xt − xj‖2 ,

where the first inequality is due to the convexity of ‖·‖2 and the second inequality is Claim A.12.

Lemma 6.3. Suppose f is 1-Lipschitz and 1-strongly convex. Suppose we run Algorithm 1 for T
iterations with step sizes ηt = 1/t. Let a < b. Then,

‖xa − xb‖2 ≤
b−1∑
i=a

‖ĝi‖2

i2
+ 2

b−1∑
i=a

(
f(xa)− f(xi)

)
i

+ 2

b−1∑
i=a

〈 ẑi, xi − xa 〉
i

.
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Proof (of Lemma 6.3).

‖xa − xb‖2 = ‖xa −ΠX (yb)‖22
≤ ‖xa − yb‖22 (Claim A.8)

= ‖xa − xb−1 + xb−1 − yb‖22
= ‖xa − xb−1‖22 + ‖xb−1 − yb‖22 + 2〈 ηb−1ĝb−1, xa − xb−1 〉
= ‖xa − xb−1‖22 + η2b−1 ‖ĝb−1‖

2
2 + 2〈 ηb−1ĝb−1, xa − xb−1 〉

= ‖xa − xb−1‖22 + η2b−1 ‖ĝb−1‖
2
2 + 2〈 ηb−1gb−1, xa − xb−1 〉+ 2〈 ηb−1ẑb−1, xb−1 − xa 〉

Repeating this argument iteratively on ‖xa − xb−1‖, ‖xa − xb−2‖, . . . , ‖xa − xa+1‖, we obtain:

‖xa − xb‖2 ≤
b−1∑
i=a

‖ĝi‖22
i2

+ 2
b−1∑
i=a

〈 gi, xa − xi 〉
i

+ 2
b−1∑
i=a

〈 ẑi, xi − xa 〉
i

.

Applying the inequality 〈gi, xa−xi 〉 ≤ f(xa)−f(xi) to each term of the second summation gives
the desired result.

Using Lemma 6.3 and the bound ‖ĝt‖2 ≤ 4 for all t, let us write BT ≤ Λ1 + Λ2 + Λ3 where

Λ1 := 4
T∑

t=T/2

1

T − t+ 1

t−1∑
j=T/2

αj

t−1∑
i=j

1

i2
,

Λ2 := 2
T∑

t=T/2

1

T − t+ 1

t−1∑
j=T/2

αj

t−1∑
i=j

(
Fj − Fi

)
i

(where Fa := f(xa)− f(x∗) ),

Λ3 := 2
T∑

t=T/2

1

T − t+ 1

t−1∑
j=T/2

αj

t−1∑
i=j

〈 ẑi, xi − xj 〉
i

.

Let us bound each of the terms separately.

Claim E.4 Λ1 ≤ O
(

log2(T )
T 2

)
.

Proof This follows from some straightforward calculations. Indeed,

Λ1 = 4

T∑
t=T/2

1

T − t+ 1

t−1∑
j=T/2

αj

t−1∑
i=j

1

i2

≤ 4

T∑
t=T/2

1

T − t+ 1

t−1∑
j=T/2

1

(T − j)(T − j + 1)

(T − j)
(T/2)2

≤ 4

(T/2)2

T∑
t=T/2

1

T − t+ 1

t−1∑
j=T/2

1

T − j + 1

≤ O

(
log2(T )

T 2

)
.
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Claim E.5

Λ2 ≤ O

(
log(T )

T 2

)
+O

(
log(T )

T

)∥∥xT/2 − x∗∥∥22 +O

(
log(T )

T 2

) T−1∑
t=T/2

〈 ẑt, xt − x∗ 〉.

We will prove Claim E.5 in the next section.

Claim E.6

Λ3 =

T−1∑
i=T/2

〈 ẑi,
Ci
i
wi 〉,

where Ci :=
∑T

`=i+1
2

T−i+1 = O
(

log(T )
)
.

Proof Rearranging the order of summation in Λ3 we get:

Λ3 =
T∑

t=T/2

2

T − t+ 1

t−1∑
j=T/2

αj

t−1∑
i=j

〈 ẑi, xi − xj 〉
i

=
T∑

t=T/2

2

T − t+ 1

t−1∑
i=T/2

〈 ẑi,
∑i−1

j=T/2 αj(xi − xj) 〉
i

=
T∑

t=T/2

2

T − t+ 1

t−1∑
i=T/2

〈 ẑi, wi 〉
i

=
T−1∑
i=T/2

〈 ẑi,

(∑T
t=i+1

2
T−t+1

)
i

wi 〉

=

T−1∑
i=T/2

〈 ẑi,
Ci
i
wi 〉,

as desired.

The previous three claims and the fact that BT is an upper bound on
∑T

t=T/2 ‖wt‖
2 (Claim E.3)

complete the proof of Lemma 6.4.

E.3. Proof of Claim E.5
Let us rewrite

Λ2 =

T−1∑
a=T/2

γaFa

and determine the coefficients γa.

Claim E.7 For each a ∈ {bT/2c , . . . , T − 1}, γa = O

(
log(T )
T 2

)
.
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Proof In the definition of Λ2, the indices providing a positive coefficient for Fa must satisfy j = a,
i ≤ a, and a ≤ t− 1. Hence, the positive contribution to γa is:

T∑
t=1+a

2

T − t+ 1
αa

t−1∑
i=a

1

i

≤
T∑

t=1+a

(
2

T − t+ 1
αa

)(
log
(
T/(a− 1)

))
(by Claim A.14)

≤
T∑

t=1+a

(
2

T − t+ 1
αa

)(
T − a+ 1

a− 1

)
(by Claim A.13)

=
T∑

t=1+a

(
2

T − t+ 1

)(
1

(T − a)(T − a+ 1)

)(
T − a+ 1

a− 1

)

=
1

T − a

T∑
t=1+a

2

(T − t+ 1)(a− 1)

The terms contributing to the negative portion of γa satisfy, i = a, j ≤ a, and a ≤ t − 1. The
negative contribution can be written as

−
T∑

t=1+a

2

T − t+ 1

a∑
j=T/2

αj
1

a

= −
T∑

t=1+a

(
2

T − t+ 1

)(
1

a

)(
1

T − a
− 1

T/2 + 1

)

= −
T∑

t=1+a

(
2

T − t+ 1

)(
1

a

)(
2a− T + 2

2(T/2 + 1)(T − a)

)

= − 1

(T/2 + 1)(T − a)

T∑
t=1+a

(
2

T − t+ 1

)(
2a− T + 2

2a

)

= − 2

(T + 2)(T − a)

T∑
t=1+a

(
2

T − t+ 1

)(
1− T − 2

2a

)
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where on the last line we used T − 1 ≤ 2 bT/2c ≤ T . Now, combining the positive and negative
contribution we see:

γa ≤
1

T − a

T∑
t=1+a

2

T − t+ 1

(
1

a− 1
− 2

T + 2

(
1− T − 2

2a

))

=
1

T − a

T∑
t=1+a

2

T − t+ 1

(
T + 2− 2

(
a− 1

)(
1− T−2

2a

)
(a− 1)(T + 2)

)

=
1

T − a

T∑
t=1+a

2

T − t+ 1

(
T + 2− 2(a− 1) + 2(T−2)(a−1)

2a

(a− 1)(T + 2)

)

≤ 1

T − a

T∑
t=1+a

2

T − t+ 1

(
2
(
T − a

)
+ 2

(T + 2)(a− 1)

)

≤ 1

T − a

T∑
t=1+a

2

T − t+ 1

(
2
(
T − a

)
+ 2
(
T − a

)
(T + 2)(a− 1)

)
(a ≤ T − 1)

=
1

(T + 2)(a− 1)

T∑
t=1+a

4

T − t+ 1

≤ 2

(T + 2)(T − 2)

T∑
t=1+a

4

T − t+ 1
(a ≥ T/2)

= O

(
log(T )

T 2

)
,

as desired.

Proof (of Claim E.5).

Λ2 =

T−1∑
a=T/2

γaFa

≤ O

(
log(T )

T 2

) T−1∑
a=T/2

f(xa)− f(x∗) (by Claim E.7)

≤ O

(
log(T )

T 2

)(
1

2

T−1∑
t=T/2

ηt ‖ĝt‖22 +
1

2ηT/2

∥∥xT/2 − x∗∥∥22 +

T−1∑
t=T/2

〈 ẑt, xt − x∗ 〉
)

(by Lemma E.1)

≤ O

(
log(T )

T 2

) T−1∑
t=T/2

1

t
+O

(
log(T )

T

)∥∥xT/2 − x∗∥∥22 +O

(
log(T )

T 2

) T−1∑
t=T/2

〈 ẑt, xt − x∗ 〉 (‖ĝt‖2 ≤ 2)

≤ O

(
log(T )

T 2

)
+O

(
log(T )

T

)∥∥xT/2 − x∗∥∥22 +O

(
log(T )

T 2

) T−1∑
t=T/2

〈 ẑt, xt − x∗ 〉,

as desired.
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E.4. Proof of Claim 6.7
Proof (of Claim 6.7). We begin by stating two consequences of strong convexity:

1. 〈gt, xt − x∗〉 ≥ f(xt)− f(x∗) + 1
2 ‖xt − x

∗‖2,

2. f(xt)− f(x∗) ≥ 1
2 ‖xt − x

∗‖2 (since 0 ∈ ∂f(x∗)).

The analysis proceeds as follows:

‖xt+1 − x∗‖2 = ‖ΠX (xt − ηtĝt)− x∗‖2

≤ ‖xt − ηtĝt − x∗‖2 (Claim A.8)

= ‖xt − x∗‖2 − 2ηt〈ĝt, xt − x∗〉+ η2t ‖ĝt‖
2

= ‖xt − x∗‖2 − 2ηt〈gt, xt − x∗〉+ 2ηt〈ẑt, xt − x∗〉+ η2t ‖ĝt‖
2

≤ ‖xt − x∗‖2 − 2ηt

(
f(xt)− f(x∗)

)
− 1

t
‖xt − x∗‖2 + 2ηt〈ẑt, xt − x∗〉+ η2t ‖ĝt‖

2

≤
(

1− 2

t

)
‖xt − x∗‖2 + 2ηt〈ẑt, xt − x∗〉+ η2t ‖ĝt‖

2

=

(
t− 2

t

)
Yt−1
t− 1

+
2

t
Ut−1

√
Yt−1
t− 1

+
‖ĝt‖2

t2
.

Recall that ‖ĝt‖2 ≤ 4 because ẑt ≤ 1 and f is 1-Lipschitz. Multiplying through by t and bounding
‖ĝt‖2 by 4 yields the desired result.

Appendix F. Generalizations
In this section, we discuss generalizations of our results. In Subsection F.1, we explain that the
scaling of the function (e.g., Lipschitzness) can be normalized without loss of generality. In Sub-
section F.2, we explain how the assumption of almost surely bounded noise can be relaxed to sub-
Gaussian noise in our upper bounds (Theorems 3.1 and 3.5).

F.1. Scaling assumptions
For most of this paper we consider only convex functions that have been appropriately normalized,
due to the following facts.

• Strongly convex case. The case of an α-strongly convex and L-Lipschitz function can be
reduced to the case of a 1-strongly convex and 1-Lipschitz function.

• Lipschitz case. The case of an L-Lipschitz function on a domain of diameter R can be
reduced to the case of a 1-Lipschitz function on a domain of diameter 1.

We will discuss only the first of these in detail. The second is proven with similar ideas.
The main results from this section are as follows.

Theorem F.1 Suppose f is α-strongly convex and L-Lipschitz, and that ẑt has norm at most L
almost surely. Consider running Algorithm 1 for T iterations with step size ηt = 1

αt . Let x∗ =
argminx∈X f(x). Then, with probability at least 1− δ,

f(xT+1)− f(x∗) ≤ O

(
L2

α

log(T ) log(1/δ)

T

)
.
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Theorem F.2 Suppose f is α-strongly convex and L-Lipschitz, and that ẑt has norm at most L
almost surely. Consider running Algorithm 1 for T iterations with step size ηt = 1

αt . Let x∗ =
argminx∈X f(x). Then, with probability at least 1− δ,

f

(
1

T/2 + 1

T∑
t=T/2

xt

)
− f(x∗) ≤ O

(
L2

α

log(1/δ)

T

)
.

We prove these theorems by reduction to Theorem 3.1 and Theorem 3.5, respectively. That is,
suppose that f is a function that has strong convexity parameter α and Lipschitz parameter L. We
construct a function g that is 1-Lipschitz and 1-strongly convex (using Claim F.4) and a subgradient
oracle such that running SGD on g with this subgradient oracle is equivalent to running SGD on f .
Formally, we show the following:

Claim F.3 Suppose f is α-strongly convex and L-Lipschitz on a domain X ⊂ Rn. Let the initial
point x1 ∈ X be given. Let g be as defined in Claim F.4. Then, there is a coupling between the
following two processes:

• the execution of Algorithm 1 on input f with initial point x1, step size ηt = 1/(αt) and
convex set X

• the execution of Algorithm 1 on input g with initial point x̃1 := (α/L)x1, step size η̃t = 1/t
and convex set (α/L)X

such that the iterates of the second process correspond to the iterates of the first process scaled by
α/L. That is, if we denote by x̃t the iterates of the execution of SGD using g and xt for the execution
on f , then x̃t = (α/L)xt.

Now, suppose we are given an α-strongly convex and L-Lipschitz function, f , an initial point x1
and a convex set X . We obtain Theorem F.1 and Theorem F.2 by performing the above coupling and
executing SGD on the 1-Lipschitz and 1-strongly convex function. We may apply our high prob-
ability upper bounds to this execution of SGD because it satisfies the assumptions of Theorem 3.1
and Theorem 3.5. Finally, because of Claim F.3, we can reinterpret the iterates of the execution of
SGD on g as a scaled version of the iterates of the execution of SGD on f . This immediately proves
Theorem F.1 and Theorem F.2. Now, let us prove Claim F.3.
Proof (of Claim F.3). The coupling is given by constraining the algorithms to run in parallel and
enforcing the execution of SGD on g to use a scaled version of the outputs of the subgradient oracle
used by the execution of SGD on f . That is, at step t, if ĝt is the output of the subgradient oracle
of the execution of SGD on f , then we set the output of the subgradient oracle of the execution of
SGD on g at step t to be 1

L ĝt.
In order for this coupling to make sense, we have to ensure that this subgradient oracle for g is

valid. That is, we must show that at each step, the subgradient oracle we define for g returns a true
subgradient in expectation, and that the noise of this subgradient oracle is at most 1 with probability
1. We show by induction, that at each step x̃t = (α/L)xt.

By definition, x̃1 = (α/L)x1. Now, assume x̃t = (α/L)xt. Let ĝt be the output of the
subgradient oracle for SGD running on f . The subdifferential for g at x̃t is 1

L∂f(xt) using the chain
rule for subdifferentials. Therefore, the subgradient oracle for g is certainly valid at this step. Now,
yt+1 = xt − 1

αt ĝt. Meanwhile, ỹt+1 = x̃t − 1
t
1
L ĝt = α

L(xt − 1
αt ĝt) = α

Lyt+1. Therefore,

x̃t+1 = Π(α/L)X (ỹt+1) = Π(α/L)X (yt+1(α/L)) = (α/L)ΠX (yt+1) = (α/L)xt+1
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as desired.

Claim F.4 Let f be an α-strongly convex and L-Lipschitz function. Then, g(x) := α
L2 f(Lαx) is

1-Lipschitz and 1-strongly convex.

Proof First we show that g is 1-Lipschitz:

|g(x)− g(y)| =
α

L2

∣∣∣∣f(Lαx
)
− f

(
L

α
y

)∣∣∣∣ ≤ α

L2
L

∥∥∥∥Lα (x− y)

∥∥∥∥ = ‖x− y‖ .

The inequality holds since f is L-Lipschitz.
Now we show that g is 1-strongly convex. A function h is α strongly convex, if and only if the

function x 7→ h(x)− α
2 ‖x‖

2 is convex. Indeed, for g:

g(x)−1

2
‖x‖2 =

α

L2
f

(
L

α
x

)
−1

2
‖x‖2 =

α

L2

(
f

(
L

α
x

)
−L

2

2α
‖x‖2

)
=

α

L2

(
f

(
L

α
x

)
−α

2

∥∥∥∥Lαx
∥∥∥∥2).

The function on the right is convex because f is α-strongly convex. This implies that x 7→ g(x) −
1
2 ‖x‖

2 is convex, meaning that g is 1-strongly convex.

F.2. Sub-Gaussian Noise
In this section, we relax the assumption that ‖ẑt‖ ≤ 1 with probability 1 and instead assume that
for each t, ‖ẑt‖2 is sub-Gaussian conditioned on Ft−1. The proof of the extensions are quite easy,
given the current analyses. See the full version (Harvey et al., 2018) of our paper for statements and
proofs of this extension.

Main ideas. Most of our analyses can remain unchanged. The main task at hand is identifying the
places where we use the upper bound ‖ẑt‖ ≤ 1 outside of the MGF analyses (using this bound
inside an MGF is morally the same using the fact that ‖ẑt‖ is sub-Gaussian). The main culprit is
that we often bound ‖ĝt‖2 by 4. Instead we must carry these terms forward and handle them using
MGFs. The consequences of this are two-fold. Firstly, this introduces new MGFs to bound, but
intuitively these are easy to bound because the terms they were involved in in the original analy-
sis were sufficiently bounded and therefore their MGFs should now also be sufficiently bounded.
Furthermore, removing these constant bounds results in many of our MGF expressions to include
more random terms which we previously ignored and pulled out of our MGF arguments because
they were constant. But again, these terms can be dealt with by first isolating them by applying an
MGF triangle inequality (using Hölder or Cauchy-Schwarz) and then bounding their MGF.

Appendix G. Necessity of log(1/δ)
In this section, we show that the error of the last iterate and suffix average of SGD is Ω(log(1/δ)/T )
with probability at least δ.

Lemma G.1 ((Klein and Young, 2015, Lemma 4)) LetX1, . . . , XT be independent random vari-
ables taking value {−1,+1} uniformly at random and X = 1

T

∑T
t=1Xi. Then for any 0 < c <

O(
√
T ),

Pr

[
X ≥ c√

T

]
≥ exp(−9c2/2).
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Consider the single-variable function f(x) = 1
2x

2 and suppose that the domain is X = [−1, 1].
Then f is 1-strongly convex and 1-Lipschitz on X . Moreover, suppose that the subgradient oracle
returns x− ẑ where ẑ is−1 or +1 with probability 1/2 (independently from all previous calls to the
oracle). Finally, suppose we run Algorithm 1 with step sizes ηt = 1/t with an initial point x1 = 0.

Claim G.2 If T ≥ O(log(1/δ)) then f(xT+1) ≥ Ω(log(1/δ)/T ) with probability at least δ.

Proof We claim that xt+1 = 1
t

∑t
i=1 ẑi for all t ∈ [T ] where ẑi is the random sign returned by the

subgradient oracle at iteration i. Indeed, for t = 1, we have y2 = x1 − η1(x1 − ẑ1) = ẑ1 since
η1 = 1. Moreover, x2 = ΠX (y2) = y2 since |y2| ≤ 1. Now, suppose that xt = 1

t−1
∑t−1

i=1 ẑi. Then
yt+1 = xt − ηt(xt − ẑt) = 1

t

∑t
i=1 ẑi. Since |yt+1| ≤ 1, we have xt+1 = yt+1.

Hence, by Lemma G.1 with c =
√

log(1/δ), we have xT+1 ≥
√

log(1/δ)/
√
T with probability

at least Ω(δ) (provided T ≥ O(log(1/δ))). We conclude that f(xT+1) ≥ log(1/δ)
2T with probability

at least Ω(δ).

We can also show that Theorem 3.5 is tight. To make the calculations simpler, first assume T
is a multiple of 4. We further assume that the noise introduced by the stochastic subgradient oracle
is generated as follows. For 1 ≤ t < T/2 and t > 3T/4, ẑt = 0. For T/2 ≤ t ≤ 3T/4, first
define At =

∑T
i=t

1
i . Then we set ẑt to be ± 1

4At
with probability 1/2. Note that At ≥ 1/4 for

T/2 ≤ t ≤ 3T/4 so we still have |ẑt| ≤ 1 for all t.

Claim G.3 If T ≥ O(log(1/δ)) then f
(

1
T/2+1

∑T+1
t=T/2+1 xt

)
≥ Ω

(
log(1/δ)

T

)
with probability at

least δ.

Proof Proceeding as in the above claim, we have xt+1 = 1
t

∑t
i=1 ẑi. We claim that

1

T/2 + 1

T+1∑
t=T/2+1

xt =
1

T/2 + 1

3T/4∑
t=T/2

Atẑt. (7)

To see this, we have

1

T/2 + 1

T∑
t=T/2

xt+1 =
1

T/2 + 1

T∑
t=T/2

1

t

T∑
i=1

ẑi

=
1

T/2 + 1

T∑
i=1

ẑi

T∑
t=max{i,T/2}

1

t

=
1

T/2 + 1

3T/4∑
t=T/2

Atẑt,

where the last equality uses the assumption that ẑt 6= 0 only if T/2 ≤ t ≤ 3T/4 and changes the
name of the index. Notice that Atẑt is ±1

4 with probability 1/2 so we can write Eq. (7) as

1

4(T/2 + 1)

T/4+1∑
t=1

Xt
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where Xt are random signs. Applying Lemma G.1 with c =
√

log(1/δ), we conclude that Eq. (7)
is at least Ω(

√
log(1/δ)/

√
T ) with probability at least Ω(δ) (provided T ≥ O(log(1/δ))). So we

conclude that f
(

1
T/2+1

∑T+1
t=T/2+1 xt

)
≥ Ω

(
log(1/δ)

T

)
with probability at least Ω(δ).
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