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Abstract
Robust mean estimation is the problem of estimating the mean µ ∈ Rd of a d-dimensional distri-
bution D from a list of independent samples, an ε-fraction of which have been arbitrarily corrupted
by a malicious adversary. Recent algorithmic progress has resulted in the first polynomial-time al-
gorithms which achieve dimension-independent rates of error: for instance, if D has covariance I ,
in polynomial-time one may find µ̂ with ‖µ− µ̂‖ ≤ O(

√
ε). However, error rates achieved by cur-

rent polynomial-time algorithms, while dimension-independent, are sub-optimal in many natural
settings, such as when D is sub-Gaussian, or has bounded 4-th moments.

In this work we give worst-case complexity-theoretic evidence that improving on the error
rates of current polynomial-time algorithms for robust mean estimation may be computationally
intractable in natural settings. We show that several natural approaches to improving error rates of
current polynomial-time robust mean estimation algorithms would imply efficient algorithms for
the small-set expansion problem, refuting Raghavendra and Steurer’s small-set expansion hypoth-
esis (so long as P 6= NP). We also give the first direct reduction to the robust mean estimation
problem, starting from a plausible but nonstandard variant of the small-set expansion problem.
Keywords: robust mean estimation, small-set expansion, complexity of learning, robust statistics,
spectral graph theory

1. Introduction

Robust mean estimation is the following basic statistical problem: given a list of n samplesX1, . . . , Xn

from some unknown probability distribution D on Rd, an unknown ε-fraction of which have been
arbitrarily corrupted by a malicious adversary, find a vector µ̂ such that ‖µ̂− EX∼DX‖ is as small
as possible, where (for this paper) ‖ · ‖ is the Euclidean norm.

Among other natural settings, robust mean estimation models estimation using data sets which
contain outliers – due to random corruptions or malicious data poisoning – and, if D is assumed
to lie in some class C of distributions, estimation when nature only produces data from a distribu-
tion which is ε-close to some distribution in C in statistical distance. It is the most elementary of
many high-dimensional statistical estimation problems which become both statistically and com-
putationally difficult in the presence of a small constant fraction of adversarial corruptions: robust
covariance estimation, robust learning of hidden-variable models, and more.

Statisticians have studied estimation under adversarially-chosen corruptions since the 1960s,
originally with the notion of “breakdown points” Anscombe (1960); Tukey (1960); Huber (1964);
Tukey (1975). However, until recently, statistically-optimal rates of error when an ε-fraction of data
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is corrupted were out of reach for computationally efficient algorithms. For instance, if X1, . . . , Xn

are ε-corrupted samples from N (µ, I), then the estimator which outputs the Tukey median of
X1, . . . , Xn with high probability achieves ‖µ − TukeyMedian(X1, . . . , Xn)‖ ≤ O(ε), when n ≥
d/ε2 Tukey (1975). Unfortunately, the Tukey median is NP-hard to compute in high dimensions, at
least for worst-case X1, . . . , Xn Bernholt (2006).

Naive polynomial-time approaches, such as individually pruning Xi’s at large distance to the
rest of X1, . . . , Xn, suffer much worse rates of error: typically they lead to estimators µ̂ with
‖µ − µ̂‖ ≤ O(

√
εd), even when the uncorrputed samples come from a nice distribution, such as a

Gaussian as above. Notably, the rate of error for such estimators grows with the ambient dimension
d.

Recently, the first dimension-independent error rates for robust mean estimation were achieved
by Diakonikolas et al. (2016). Simultaneously and independently, Lai et al. (2016) achieved error
for robust mean estimation scaling with the dimension as O(log d). These works sparked a great
deal of activity in algorithm design for robust statistics, leading to new algorithms for robust mean
estimation under sparsity assumptions, robust clustering and robust learning of mixture models,
robust linear regression, and more (see Li (2018); Steinhardt (2018b) for surveys of recent work).

In spite of the substantial algorithmic success, current algorithms remain statistically sub-optimal
in many settings, especially with respect to the dependence of the error rate ‖µ − µ̂‖ on ε. In this
paper we are interested in the question:

Do current polynomial-time algorithms for high-dimensional robust mean estimation
achieve optimal error rates among all polynomial-time algorithms?

Contributions Our main contribution is a family of reductions from several variants of the small-
set expansion problem, a close cousin of Khot’s unique games problem, to robust mean estimation
and related problems. These reductions show that (a) current approaches for improving error rates
of existing algorithms for robust mean estimation under natural assumptions onD (such as bounded
4-th moments) would refute Raghavendra and Steurer’s small-set expansion hypothesis, and (b) any
efficient algorithm improving on the error rates of current algorithms for robust mean estimation
under Steinhardt, Charikar, and Valiant’s resilience assumption on D (see below) would refute a
strengthened version of the small-set expansion hypothesis.

Our reductions employ tools from spectral graph theory. We reinterpret and strengthen ideas
from Barak et al’s proof that the 2 → 4 norm of a matrix is hard to approximate to any constant
factor under the small set expansion hypothesis Barak et al. (2012a). Our reinterpretation results in
a simple characterization of small sets of vectors in the spectral embedding of a small-set expander
(see Section 3). This characterization leads to our main results. Along the way we dramatically
simplify (and generalize) Barak et al. (2012a)’s proof of small-set expansion hardness of 2 → q
norms, which may be of independent interest.

Beating
√
ε: the complexity landscape We turn to a more quantitative discussion of our main

question. In order for robust mean estimation to be information-theoretically solvable with non-
trivial error guarantees (that is, solvable by any algorithm, irrespective of running time), some
assumption must be made on the underlying distribution D. A common and mild assumption is
that D has covariance Σ � I . In this case, robust mean estimation is possible both information-
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theoretically and by polynomial-time algorithms with error rate O(
√
ε), and (up to constants) this

is information-theoretically optimal.
Better scaling with ε is possible under stronger assumptions on D. For instance, if D has p-th

moments bounded by a dimension-independent constant, then error rate O(ε1−1/p) is information-
theoretically achievable. Relatedly, Steinhardt, Charikar, and Valiant Steinhardt et al. (2017) in-
troduced a weaker notion: (σ, ε)-resilience. A distribution D is (σ, ε)-resilient if every event of
probability at least (1− ε) has conditional mean µ′ with ‖µ′ − µ‖ ≤ σ, where µ is the mean of D.
They show that ε-robust mean estimation is then possible with error O(σ).

So far, no polynomial-time algorithm is known which achieves error better than O(
√
ε) under

any resilience assumption, nor is a polynomial-time algorithm known which achieves error better
than O(

√
ε) under a bounded p-th moments assumption. Thus, a second question which motivates

this paper is:

What structure in the distributionD of uncorrupted samples can be exploited by polynomial-
time algorithms to perform robust mean estimation with error ε1/2+Ω(1)?

Of course a priori it could be that no polynomial-time algorithm has error better than O(
√
ε), but

this is not the case. If D is Gaussian, then error O(ε log(1/ε)) can be achieved in polynomial time
Diakonikolas et al. (2016). And, ifD has certifiably bounded p-th moments (a strengthening of p-th
moment boundedness introduced independently by Hopkins and Li (2018) and by Kothari et al.
(2018)), then error O(ε1−1/p) is achievable in polynomial time. Furthermore, many natural distri-
butions fall into the latter category: product distributions and strongly log-concave distributions, for
example.

Thus, there is a nontrivial complexity landscape in robust mean estimation. Our results point
to new points of hardness in this landscape. We show that current approaches to robust estimation
under both resilience and moment-boundedness (which in particular also solve certification prob-
lems associated to moments and to resilience) would refute the small-set expansion hypothesis if
they could be improved to error rate ε1/2+Ω(1). And we show that any efficient algorithm achieving
error ε1/2+Ω(1) under a resilience assumption would refute a nonstandard version of the small-set
expansion hypothesis (see Section B).

Complexity of learning under niceness assumptions Typically, results on computational com-
plexity of learning take one of three forms: (1) reduction from an NP-hard problem, (2) reduction
from a problem which is believed to be average-case hard, such as planted clique or learning pari-
ties with noise, or (3) unconditional lower bounds against of a restricted class of algorithms, such
as statistical query (SQ) algorithms or particular hierarchies of convex programs.

Approach (1) is appealing because it can yield lower bounds which apply to all polynomial-time
algorithms based on weak and well-tested assumptions like P 6= NP . Often, however, applications
of approach (1) prove hardness of learning problems under input distributions which do not satisfy
natural niceness conditions – assumptions like such as input data being drawn from a Gaussian
distribution or from a distribution with bounded moments – because they rely on embedding gadgets
in the input distribution. Algorithm designers often avoid such complexity results by assuming
niceness conditions like these.

We follow approach (1) as well (subject to the small set expansion hypothesis), but our reduc-
tions produce nice input distributions, satisfying regularity conditions such as bounded moments or
resilience; we therefore provide evidence from worst-case complexity that robust learning is hard
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even under niceness assumptions. The majority of technical work in this paper is devoted to showing
that our reductions produce such nice distributions.

We note that approach (3), in the form of SQ lower bounds, has been investigated for the robust
mean estimation problem – see Section 1.1.

Open problems This paper only begins the study of hardness of robust estimation problems based
on worst-case complexity assumptions: there is a great deal left to do! We outline several open
problems in Section C.

1.1. Related Work

Robust statistics The study of robust statistics, and specifically robust mean estimation, was ini-
tiated by seminal work of statisticians in the 60’s and 70’s Anscombe (1960); Tukey (1960); Huber
(1964); Tukey (1975). However, it was not until recently that efficient algorithms were discovered
for robust mean estimation in high dimensions which acheive nearly optimal error guarantees Di-
akonikolas et al. (2016); Lai et al. (2016); Diakonikolas et al. (2017b). The field has since expe-
rienced an explosion of algorithmic work. For a survey on more recent algorithmic results, see Li
(2018); Steinhardt (2018b).

PAC learning lower bounds While there is a large literature on lower bounds for distributional
learning problems either from average case assumptions or applying to a restricted classes of algo-
rithms, there are only a handful of results we are aware of which base hardness of such problems on
worst case hardness assumptions Kearns et al. (1994); Guruswami and Raghavendra (2009); Feld-
man et al. (2006); Applebaum et al. (2008); Regev (2009); Feldman and Kanade (2012); Bun and
Zhandry (2016); Bubeck et al. (2018). Moreover, the lower bounds tend to be proved in a PAC
learning sense, where the learning problem is worst-case over distributions. We consider a version
of robust mean estimation which is worst-case over input distributions belonging to a class of nice
distributions, i.e. resilient distributions or those with bounded moments. This amount of worst-
case-ness allows us to base our results on worst-case hardness assumptions, but requires significant
work in our reductions to produce such nice input distributions.

Computational lower bounds in robust statistics In the context of robust estimation, almost
all known lower bounds were either against restricted classes of algorithms, notably statistical
query algorithms Diakonikolas et al. (2017c, 2018, 2019), or against specific estimators Johnson
and Preparata (1978); Bernholt (2006).

In particular, Diakonikolas et al. (2017c) proves an SQ lower bound in the setting of robust
mean estimation for Gaussian distributions suggesting that the O(ε) vs O(ε log 1/ε) gap between
information-theoretically optimal error rates and those of known polynomial-time algorithms is
likely inherent. For at least one of the problems we investigate – complexity of robust mean estima-
tion under bounded moment assumptions – it would not be possible to prove an analogous SQ lower
bound. This is because for every fixed p there is a simple (folklore) SQ algorithm which makes
poly(d) statistical queries (with 1/ poly(d) tolerance) and robustly estimates the mean of a dis-
tribution with bounded p-th moments to (information-theoretically optimal) accuracy O(ε1−1/p).1

1. For simplicity we ignore the dependence of the number of statistical queries and tolerance on ε.
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The only implementations of this algorithm we are aware of require exp(d) additional running time
but the SQ framework only allows for lower bounds on the number and tolerance of queries, not on
the additional running time to process the answers to those queries. We expect similar guarantees
to be unachievable in polynomial time (especially in light of the present work), SQ lower bounds
cannot evidence this. A different approach, such as the reduction-based arguments we pursue here,
is required.

The only other work we are aware of giving a reduction from small-set expansion to prove com-
plexity of a robust learning problem is Hardt and Moitra (2013), which gives lower bounds from
small set expansion for the problem of identifying a low-dimensional subspace which contains a
large fraction of a high-dimensional data set. While both their work and ours show reductions from
the small-set expansion problem, the works otherwise diverge on a technical level – our reductions
employ spectral graph theory, while theirs is largely combinatorial – and the results are incompa-
rable. Furthermore, besides the constraint that the distribution of “good” samples lives on a low
dimensional subspace, they enforce no additional niceness conditions. In particular, the distribution
which results from their reduction is exponentially ill-conditioned. This stands again in contrast to
the relative niceness of the distributions resulting from our reductions.

Klivans and Kothari Klivans and Kothari (2014) show hardness of robustly learning halfspaces
with respect to Gaussian data; however, they start from an average-case hardness assumption (learn-
ing sparse parities with noise) rather than a worst-case one as we do here.

1.2. Results

The fundamental problem of study in this paper is robust mean estimation. At a high level, the
question is as follows: given samples from a distribution D, a small fraction of which have been
corrupted, estimate the mean of D as well as possible. There are several possible corruption models
to consider. In this work, we will show lower bounds against the following (relatively weak) notion
of corruption, which dates back to work of Huber in the 1960s Huber (1964):

Definition 1 (ε-contamination) Let D be a distribution over Rd. We say that that X1, . . . , Xn is
an ε-contaminated set of samples from D if the Xi are drawn i.i.d. from (1− ε)D + εN , where N
is an arbitrary, unknown distribution.

This model is also known as Huber’s contamination model in the robust statistics literature. The
recent efficient algorithms Diakonikolas et al. (2016); Charikar et al. (2017); Steinhardt et al. (2017)
actually work for slightly stronger notions of corruption. All of our lower bounds will be against
learning from ε-contaminated samples, so in particular, they are also lower bounds against learning
from corrupted samples as considered in these papers.

With these definitions, we can now formally state the robust mean estimation problem.

Problem 2 (Robust mean estimation) LetD be a distribution with mean µ. Given δ-contaminated
samples from D, output µ̂ minimizing ‖µ− µ̂‖2 with high probability.

We briefly note, as matter of notation, that in Problem 2 and the remainder of the paper, we will
use δ (rather than ε, as is standard in robust statistics) to denote the fraction of corrupted samples.
This will be helpful to stay notationally consistent with the literature on small-set expansion that we
heavily rely on.
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Without additional assumptions on D, Problem 2 is impossible: there is no way to distinguish
between D and δD + (1− δ)N , and since N can be arbitrary, the means of these two distributions
can be arbitrarily far away. To make this problem statistically tractable, we must impose some
conditions on D. In this paper we will focus on two previously considered conditions, namely,
bounded moments and resilience.

1.2.1. Bounded moments

A canonical assumption in this area is that D has some number of bounded moments. For instance,
arguably the most natural assumption is that D has bounded covariance. In this case, we have
efficient algorithms matching the information theoretic lower bound:

Fact 1 (Diakonikolas et al. (2017a)) Let D be the class of distributions over Rd distribution over
Rd whose covariance have spectral norm at most 1, or equivalently, which have

EX∼D |〈v,X〉 − 〈v,EX∼DX〉|2 ≤ 1 , (1)

for all unit vectors v. There is a polynomial time algorithm, which for all small-enough δ > 0 and
all D ∈ D, given a δ-contaminated set of samples from D of size poly(d, 1/δ), outputs µ̂ which
with probability at least 9/10, satisfies ‖µ̂− EX∼D µ‖ ≤ O(

√
δ). Moreover, no estimator (efficient

or not) can achieve ‖µ̂− EX∼DX‖ ≤ o(
√
δ) with probability greater than 1/10 for all X ∈ D.

Thus in this case, up to constants, there is no gap between the robustness of efficient and inefficient
estimators. An obvious question is whether this can be strengthened by making additional structural
assumptions on the data. For instance, what if we assume p bounded moments, for p > 2? Indeed,
in this setting something stronger is possible, at least with exponential running time:

Fact 2 (folklore) Let p > 2 and let Dp be the class of distributions over Rd whose p-th central
moment is at most 1: that is, D ∈ Dp if and only if

EX∼D |〈v,X〉 − 〈v,EX∼DX〉|p ≤ 1 (2)

for all unit vectors v, There exists an exponential-time algorithm which for all δ > 0 sufficiently
small and all D ∈ Dp, given a δ-contaminated set of samples from D of size poly(d, 1/δ), outputs
µ̂ so that ‖µ̂− EX∼DX‖ ≤ O(δ1−1/p) with probability at least 9/10. Moreover, no estimator
achieves error ‖µ̂− EX∼DX‖ < o(δ1−1/p) with probability at least 1/10 over all of Dp.

In particular, Fact 2 says that for p > 2, it is possible to outperform the guarantees of the algorithm
in Fact 1 asymptotically as δ → 0. However, despite much work in the area, no efficient algorithms
are known which achieve error better than O(δ1/2), i.e. the rate in the p = 2 case, unless even
stronger assumptions are made. This leads to the question:

Question 3 Is there some p > 2 and a polynomial-time algorithm which for all sufficiently-small
δ > 0 and all D ∈ Dp finds µ̂ satisfying ‖µ̂ − EX∼DX‖ < o(

√
δ) with probability at least 9/10

when given a δ-corrupted set of poly(d, 1/δ) samples from D?

Towards answering Question 3, we offer evidence that current techniques to algorithmically
exploit moment boundedness cannot be extended to positively answer Question 3. The algorithms
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which achieve the guarantees in Fact 1 solve, as a subroutine, the problem of maximizing the left-
hand side of (1) over all unit v. The algorithms of Hopkins and Li (2018); Kothari et al. (2018) which
exploit p-th moment boundedness when the p-th moments satisfy additional structural assumptions
analogously require subroutines which certify upper bounds on the left-hand side of (2).

A theorem of Barak et al. on hardness of computing the 2→ q norm of a matrix already shows
that this approach cannot be extended to p ≥ 4 under only the assumptions specified in Question 3
without violating the small-set expansion hypothesis. In the following, D should be thought of as
the uniform distribution over the vectors a1, . . . , an.

Theorem 4 (Barak et al. (2012a)) If for any even q ≥ 2 there is a polynomial-time algorithm
which given a1, . . . , an ∈ Rd outputs a constant-factor approximation to max‖x‖=1

1
n

∑n
i=1〈ai, x〉q,

then there is a polynomial-time algorithm for small set expansion.

In this work we strengthen Barak et al.’s result in several ways. Barak et al.’s result shows that
for c, s with c/s arbitrarily large it is SSE-hard to distinguish a distribution with 4-th moment at
least c from one with 4-th moment at most s. In statistical settings, however, it is natural to assume
niceness of many moments. For instance: is it possible to distinguish a distribution D all of whose
q-th moments for q ≤ 100 have sub-Gaussian-type behavior (i.e. growing like qq/2) from one
whose 4-th moment is very large? An algorithm which could solve this decision problem seems
likely to lead to an algorithm to improve on error o(

√
δ), at least under the assumption that D has

100 sub-Gaussian moments.
We show that this apparently easier decision problem is still SSE hard. This requires modifying

Barak et al.’s reduction so that in one case a distribution with sub-Gaussian moments is obtained;
we do this by composing the reduction of Barak et al. with a smoothing/averaging step which
we analyze via Rosenthal’s moment inequality. The result addresses an open problem of Jacob
Steinhardt Steinhardt (2018a). Additionally, we extend Barak et al.’s result to the case p = 2 + γ
for arbitrarily small γ, and we substantially simplify their proof.

Theorem 5 (Informal, see Theorem 24) For any p > 2 and q ∈ (2, p] and c > s > s0 for some
universal contant s0, a polynomial time algorithm to distinguish the following two cases would
yield a polynomial-time algorithm for the small-set expansion problem. Given a1, . . . , an ∈ Rd,
distinguish between: yes: there is a unit x that 1

n

∑n
i=1 |〈ai, x〉|q > (cq)q/2, and no: for all unit x

and q ≤ p it holds that 1
n

∑n
i=1 |〈ai, x〉|q ≤ (sq)q/2.

1.2.2. Resilience

Another recently introduced assumption is that of resilience:

Definition 6 (Resilience, see Steinhardt (2018b)) Let X be an Rd-valued random variable with
mean EX = µ. X is (σ, δ)-resilient in a norm ‖ · ‖ if for all events A with PrA ≥ 1 − δ, we
have ‖EX |A− µ‖ ≤ σ. Equivalently, X is (σ, δ)-resilient if for all events A with PrA ≤ δ, we
have‖EX |A− µ‖ ≤ σ · 1−PrA

PrA .

In the remainder of the paper we will primarily consider the case where the norm ‖ ·‖ is the `2 norm
in Rd, since that is the setting in which our hardness results will apply. For the proof of equivalence,
see Lemma 3 and Lemma 10 in Steinhardt et al. (2017).
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It is not hard to show (see Corollary 32) that if D has second moments bounded by 1, then D is
(
√
δ, δ)-resilient for all δ ≤ 1/2. Thus it might not be surprising that in this setting, we can achieve

rates for robust mean estimation similar to those in Fact 1, at least inefficiently. However, there is
already some asymptotic gap here between what is information-theoretically achievable and what is
know to be achievable in polynomial time, since (

√
δ, δ) resilience for a fixed δ is somewhat weaker

than second moments bounded by 1.

Fact 3 (Steinhardt et al. (2017)) Let Dδ be the class of distributions over Rd which are (
√
δ, δ)-

resilient. There exists an (exponential time) algorithm, which for all small-enough δ > 0 and all
D ∈ Dδ, given a δ-contaminated set of samples from D of size poly(d, 1/δ), outputs µ̂ which with
probability at least 9/10, satisfies ‖µ̂− EX∼DX‖ ≤ O(

√
δ). Furthermore, there is a polynomial-

time algorithm which achieves ‖µ̂− EX∼DX‖ ≤ O(
√
δ log(1/δ)). Moreover, no estimator achieves

error ‖µ̂− EX∼DX‖ < c
√
δ with probability at least 1/10.

A reasonable strengthening of this considers the condition that D is (σ, δ)-resilient for some
σ �

√
δ. The following basic fact about resilience shows that such assumptions suffice information-

theoretically to achieve improved error rates.

Fact 4 (Steinhardt et al. (2017)) There is an (inefficient) algorithm which given poly(d, 1/δ) δ-
contaminated samples from a (σ, δ)-resilient distribution D outputs µ̂ such that with probability at
least 9/10 it holds that ‖µ̂− EX∼DX‖ ≤ O(σ).

In particular, Fact 4 implies that if σ ≤ o(
√
δ), then it is information-theoretically possible to

outperform even the exponential time algorithm from Fact 3. This leads to the question:

Question 7 Is there a function σ(δ) and a polynomial-time algorithm which for all small-enough
δ > 0 given poly(d, 1/δ) δ-contaminated samples from any (σ, δ)-resilient distribution D can find
µ̂ such that ‖µ̂− EX∼DX‖ ≤ o(

√
δ) with probability at least 9/10?

We prove two theorems suggesting a negative answer to Question 7. The first is in a similar
spirit to Theorem 5. Existing algorithms (both efficient and inefficient) for robust mean estimation
under resilience assumptions solve as a subroutine the problem of determining whether (the uniform
distribution over) a set of samples is (σ, δ)-resilient. Thus, a potential route to design an algorithm
for Question 7 is to improve existing guarantees for algorithms to check if a set of points is resilient.
We show that such improvements would violate the small-set expansion hypothesis.

Theorem 8 (Informal, see Theorem 23) For every sufficiently-small s > 0 there exists δ > 0 such
that an efficient algorithm for the following problem would yield an efficient algorithm for small set
expansion: Given a set of points a1, . . . , an ∈ Rd, distinguish between the cases yes: the uniform
distribution on {a1, . . . , an} is (s

√
δ, δ) resilient, and no: it is not (0.4

√
δ, δ)-resilient.

Our final theorem is the first in the literature to directly attack hardness for robust mean es-
timation via reduction from a worst-case complexity assumption, rather than reducing to related
problems like certifying moment bounds or checking resilience as in Theorem 4, Theorem 5, and
Theorem 8. We are able to show a negative answer to Question 7 under a strengthened small-set
expansion hypothesis. Our strengthened version, which we call the unique small-set expansion
hypothesis is as follows:
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Hypothesis 9 (Unique Small-Set Expansion Hypothesis) For every ε > 0 there exists δ > 0 such
that given a graph G, it is NP-hard to distinguish the following cases: no every set S ⊆ [n] of δn
vertices has expansion ΦG(S) ≥ 1 − ε, or yes: there exists a set S ⊆ [n] of δn vertices in G such
that ΦG(S) ≤ ε, and every other subset T ⊆ [n] of δn vertices with S∩T = ∅ has ΦG(T ) ≥ 1−ε.

Here unique refers to the fact that in the yes case, the set S is the unique small nonexpanding set
in G.2 While we are not aware of this strengthening being considered previously in the literature,
we also do not know any algorithmic techniques which could refute it. Hence we view the following
theorem as at least a barrier to improving existing algorithms for robust mean estimation.

Theorem 10 (Informal, see Theorem 29) If Question 7 has an affirmative answer then the Unique
Small Set Expansion Hypothesis is false (or P = NP ).

It remains an interesting open problem to see if Theorem 10 can be strengthened to yield an
algorithm for the (vanilla) small set expansion problem.

1.2.3. Spectral graph theory: Cheeger-style rounding for analytically sparse vectors

Our reductions involve spectral graph theory for small-set expanders, and one of our technical con-
tributions is to substantially simplify current understanding of a simple structural question in spec-
tral graph theory. This leads to the proofs of our main theorems, and answers an open question of
Barak on simplification of the proof that the 2→ 4 norm is hard to approximate under the small-set
expansion hypothesis (see Exercise 6.2 in Barak (2014)).

We review definitions formally in Section 2, but let us briefly recall some basics. For a regular
n-node graph G and a set S ⊆ [n], the expansion of S, denoted ΦG(S), is the probability that
a random walk initialized uniformly in S leaves it after one step. If we denote also by G the
normalized adjacency matrix, then the expansion is ΦG(S) = 1 − 〈1S , G1S〉/|S|. Of course, this
makes sense only for indicator vectors 1S of sets of vertices.

Cheeger’s inequality extends the relationship between the quadratic form of G and expansion to
other vectors. A consequence of Cheeger’s inequality is the following fact:

Fact 5 (Consequence of Cheeger’s inequality) If v is any unit vector v where 〈v,Gv〉 ≥ 1/2 (and
v is orthogonal to the all-1’s vector), there is a level set S of the vector withwi = |vi|with expansion
ΦG(S) ≤ 0.99.

In the context of small-set expansion, it is important to detect the existence small sets of vertices
– say, δn vertices for small constants δ – with expansion bounded away from 1. A key question is:
what analytical properties of a vector v with 〈v,Gv〉 ≥ 1/2 give rise to a set of δn vertices S with
expansion ΦG(S) ≤ 0.99?

Barak et al. (2012a) showed that it is sufficient for v to be analytically sparse. In particular, they
showed that if ‖v‖44 ≥ 1/δ – that is, the 4-norm of v is similar to that of the (scaled) indicator vector
of a set of size δn, then one may find a set of δn vertices inGwith imperfect expansion. (Recall that
sparse vectors, which are qualitatively similar to indicator vectors, have larger 4-norm than typical
unit vectors.) One catch is that v must be completely contained in the span of eigenvectors of G of
magnitude at least 1/2, which is a stronger requirement than 〈v,Gv〉 ≥ 1/2.

2. This use of “unique” should not be confused with Unique Games!
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Theorem 11 (Consequence of Theorem 2.4 in Barak et al. (2012a)) If there is v in the span of
eigenvectors of G with eigenvalue at least 1/2 such that ‖v‖44 ≥ 1/δn, then G contains a set S of
δn vertices having expansion ΦG(S) ≤ 1− c for a universal c > 0. Furthermore, S may be found
in polynomial time from G and v.

While the vertex set S from this result can be found in polynomial time, Barak et al.’s procedure
to find S from v is complex. In particular, it departs from the elegance of Cheeger’s inequality that
S can be taken to be a level set of v. Our tools give a simple proof of the following theorem, which
we believe is novel – it directly characterizes the small set which can be recovered from v with large
4-norm in terms of level sets of v and the random walk on G.

Theorem 12 If there is v in the span of eigenvectors of G with eigenvalue at least 1/2 such that
‖v‖44 ≥ 1/δn, then there is a level set S of the vector w defined bywi = |vi| which has the following
property. For some t ≤ O(log n) there is level set ofGt1S+Gt+11S of size at mostO(δ log(1/δ)·n)
having expansion ΦG(S) ≤ 1− c for a universal c > 0. Here, 1S is the 0/1 indicator vector for the
set S.

Qualitatively, our theorem says that an analytically-sparse v in the high eigenspaces ofG has a level
set S such that if the random walk onG is initialized to the uniform distribution on S, eventually the
random walk “discovers” a small cut of imperfect expansion. Thus, at the cost of a factor log(1/δ) in
the size of S as compared to the result of Barak et al., we recover some of the elegance of Cheeger’s
rounding procedure for turning v into a cut. We describe the proof of Theorem 12 in Appendix F.

2. Preliminaries

2.1. Spectral graph theory

Let G = (V,E) be an n-node graph. We also denote by G the stochastic n×n random walk matrix
associated to the graph G.

Definition 13 (Isotropic spectral embedding) Let Π1/2 ∈ Rn×n be the projector to the span of
eigenvectors of G with eigenvalues at least 1/2. Let A be a matrix such that AA> = Π1/2. Without
loss of generality, take the first column of A to be 1/

√
n, the (scaled) all-1s vector.

Let a1, . . . , an be the rows of A. We say that (a1, . . . , an) is the spectral embedding of G, and
if bi =

√
nai we say that (b1, . . . , bn) is the isotropic spectral embedding of G.

We will need the following basic facts; the proofs are elementary and omitted.

Fact 6 (Mean of a spectral embedding) Let G be a graph and let Π1/2 be the projector to the
span of eigenvectors of G of eigenvalue at least 1/2. Let a1, . . . , an be the rows of the matrix A
where AA> = Π1/2; without loss of generality assume the first column of A is the vector 1√

n
· 1.

Then 1
n

∑
ai = (1/

√
n, 0, 0, . . . , 0).

Fact 7 Ei∼[n] bib
>
i = I .

10
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For any S ⊆ V , we denote by 1S ∈ {0, 1}n the 0/1 indicator vector of S. For v, w ∈ Rn we
often employ the usual Euclidean inner product 〈v, w〉 =

∑
i≤n viwi.

If S ⊆ V is a subset of vertices in G, its expansion is the probability that a random walk
initialized inside S leaves S in one step: ΦG(S) = 1 − 1

|S| · 〈1S , G1S〉. We define the expansion

profile of a graph S: for every δ > 0, let ΦG(δ) = inf |S|=δn ΦG(S). We also let Φ≤G(δ) =
inf |S|≤δn ΦG(S) be a slightly modified version of expansion profile which takes into account all
sets of size at most δn, rather than exactly δn.

A consequence of Lemma 31 is a local Cheeger inequality concerning the quadratic form
〈f,G2f〉 = ‖Gf‖2 rather than 〈f,Gf〉. The proof is standard – see the appendix.3

Lemma 14 Let G be an n-node regular graph, and let ε, δ, γ be so that 0 < δ ≤ γ and ε > 0. Let
f ∈ Rn have nonnegative coordinates, and suppose that ‖Gf‖2 ≥ ε‖f‖2 and ‖f‖2 ≥ γ‖f‖21

δn . There
is a level set S of the function g = f+Gf with size at most δn and expansion ΦG(S) ≤ 1−Ω(γε4).

We will also require the following slight modification to Lemma 14, which states that in the
special case of f being an indicator function for a subset, then we may additionally assume that the
level set with poor expansion is additionally not too small. We are not aware of a black-box proof
of Lemma 15 from Lemma 31, but our proof is a modification of the proof of Lemma 31 found in
Steurer (2010b). For completeness we prove this lemma in the appendix.

Lemma 15 There exist universal constants 0 < c < C such that the following holds. For every
G an n-node regular graph and every small enough ε, δ, η, if S ⊂ [n] has |S| = δn and f = 1S
has ‖Gf‖2 ≥ ε‖f‖2, then there is a level set T of the function g = (1 − η)f + ηGf with size
|T | ∈

[
cηε2δn,C δn

η2ε2

]
and expansion ΦG(T ) ≤ 1 − Ω(η2ε2). Moreover, if there is R ⊆ [n] with

ΦG(R) ≤ ε/100 and |R| = δn, and if S ∩ R = ∅, then also T exists satisfying the previous
properties and having T ∩R = ∅.

2.2. Small-Set Expansion Hypotheses

Our reductions in this paper are from small-set expansion problems, which are conjectured to be
computationally difficult to solve. At a high level, these assumptions say that it is hard to verify
whether or not there exists a small set in a graph which does not expand well into the rest of the
graph. There are two canonical versions of this Small-Set Expansion Hypothesis (SSEH) which the
literature appears to consider interchangeable. However, for us it will be important to distinguish
between the two. The first (and original) version of SSEH concerns ΦG(δ):

Hypothesis 16 (=-Small-Set Expansion Hypothesis (SSEH=) Raghavendra and Steurer (2010))
For every constant ε > 0 there is a small-enough δ > 0 such that the following problem is NP-hard.
Given a graph G, distinguish between ΦG(δ) ≥ 1− ε and ΦG(δ) ≤ ε.

In particular, this statement is only about sets of size exactly δn. The second version of SSEH is
essentially identical, except using Φ≤G(δ) instead of ΦG(δ).

3. Theorem 2.1 in Steurer (2010a) is identical to Lemma 14 but is stated with the conclusion ΦG(S) ≤ 1 − Ω(ε2)
rather than ΦG(S) ≤ 1−Ω(ε4); however the only proof we are aware of appears to require the extra factor of 1/ε2.
Generally ε is taken to be a tiny constant, so the difference is just one of constant factors.

11
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Hypothesis 17 (≤-Small-Set Expansion Hypothesis (SSEH≤)) For every constant ε > 0 there is
a small-enough δ > 0 such that the following problem is NP-hard. Given a graph G, distinguish
between Φ≤G(δ) ≥ 1− ε and Φ≤G(δ) ≤ ε.

We are not aware of any equivalences or implications between these two (apparently very simi-
lar) problems. However, both versions of the problem have been widely used and called the “Small-
Set Expansion Hypothesis” in the literature, see e.g. Barak et al. (2012a).

We remark that while these two problems are very similar, there do appear to be some subtle
qualitative differences between them. In particular, in the context of this paper, SSEH= (and vari-
ants thereof) implies hardness for problems related to resilience, whereas SSEH≤ implies hardness
for problems related to bounded moments. At a high level, this is because bounded moments is
equivalent to resilience at every scale (see Corollary 32), and thus to control moments, we need to
know what occurs at all sets of size at most δ, not just in a neighborhood around δ.
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Appendix A. Conditional Means of Small Sets in the Spectral Embed-
ding

In this section we prove the following two key lemmas, which characterize the spectral embeddings
of small sets of vertices in small-set expanders. They suggest the following perspective on embed-
dings of small-set expanders, which is at the heart of all our arguments: if G is a (δ, ε)-small-set
expander, small sets of vectors in its spectral embedding cannot have average too far from the origin,
while a small nonexpanding set inG embeds to a set of vectors whose average is far from the origin.

Slightly more formally, for every S ⊆ [n] with |S| ≤ δn, if ΦG(S) ≥ 1− ε, then∥∥∥∥∥ 1
|S|

∑
i∈S

bi

∥∥∥∥∥ ≈ εΩ(1)/
√
δ .

(At least, if S is not too small.) On the other hand, if ΦG(S) ≤ ε, then∥∥∥∥∥ 1
|S|

∑
i∈S

bi

∥∥∥∥∥ ≈ 1/
√
δ � εΩ(1)/

√
δ .

Now we make this formal. The first lemma shows that a small non-expanding set in a graph G
has a spectral embedding far from the origin. It has been observed several times before (see e.g.
Barak et al. (2012a)). We include the proof in the Appendix for completeness.

Lemma 18 Suppose G is an n-node graph. Let b1, . . . , bn be the isotropic spectral embedding of
G. Then, every T ⊆ [n] satisfies∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥
2

≥ n

|T |
·
(

1

2
− ΦG(T )

)
.

The second lemma shows that if G is a small-set expander then every small set of vectors
in its spectral embedding has mean near the origin. By correctly setting parameters, something
qualitatively similar would follow as a corollary of Theorem 2.4 in Barak et al. (2012a), but our
proof is much simpler than that route. We show that for such a set T , if

∥∥∥ 1
|T |
∑

i∈T bi

∥∥∥ were too
large, then eventually the random walk on G, initialized to the uniform distribution on T , would
find a small set with small expansion.

Lemma 19 Let G be an n-node graph. Suppose ε, δ are such that Φ≤G(δ) ≥ 1− ε, and ε < ε0 for
some universal constant ε0 > 0. Let b1, . . . , bn be the isotropic spectral embedding of G. For every
T ⊆ [n] with |T | ≤ δn,∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥ ≤ C ′ exp

(
C · log(δn/|T |)

log(1/ε)

)
· ε

1/10

√
δ
,

where C ′, C > 0 are universal constants.
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Proof Up to scaling,
∥∥∥ 1
|T |
∑

i∈T bi

∥∥∥ is the magnitude of the projection of the uniform probability
distribution 1T /|T | on T into the span of eigenvectors of G with eigenvalue at least 1/2. We first
argue that this magnitude is not affected by too much if we replace 1T /|T | with Gt · 1T /|T |, which
is the probability distribution which results from running the random walk in G for t steps.

To see this, first express 1
|T |
∑

i∈T bi in terms of the indicator vector 1T ∈ {0, 1}n:∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥
2

=
n

|T |2
·
∥∥∥A>1T∥∥∥2

=
n

|T |2
∑

i :λi≥1/2

〈vi,1T 〉2

where the columns of A are the eigenvectors vi of G with eigenvalue λi at least 1/2. For any t ∈ N,
note that∥∥∥A>Gt1T∥∥∥2

=
∑

i :λi≥1/2

〈Gtvi,1T 〉2 =
∑

i :λi≥1/2

λti〈vi,1T 〉2 ≥ 2−t
∥∥∥A>1T∥∥∥2

.

Our aim is to use the local Cheeger inequality to control
∥∥A>Gt1T∥∥2, which will be possible

so long as the collision probability of Gt1T is like that of the uniform distribution on a set of size at
most δn. First, since Π1/2 � I , we have

∥∥A>Gt1T∥∥2 ≤
∥∥Gt1T∥∥2.

By the local Cheeger inequality (Lemma 14) with γ = ε0.1, there is a constant C such that for
every t, either ‖G(Gt1T )‖2 < Cε0.1‖Gt1T ‖2 or ‖Gt1T ‖2 < ε0.2‖Gt1T ‖21/δn = ε0.1|T |2/δn.
(Otherwise the assumption ΦG(δ) ≥ 1− ε is violated.) The last equality follows because ‖1T ‖1 =
|T | and G preserves 1-norms and nonnegativity of nonegative vectors.

Pick t to be the smallest integer such that the second alternative holds; i.e. ‖Gt1T ‖2 <
ε0.2|T |2/δn. (Such tmust exist because for smaller t and small enough ε the norm ‖Gt1T ‖2 strictly
decreases in each step of the random walk.) Then putting together our previous bounds,∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥
2

≤ ε0.2n

|T |2
· 2t · ‖Gt1T ‖2 ≤ 2t · ε

0.2

δ
.

We just need to bound t, the smallest integer such that ‖Gt1T ‖2 < ε0.2|T |2/δn. If ε is
small enough, for every t′ < t we know that ‖Gt′1T ‖ is decreasing; in particular ‖Gt′+11T ‖ <
Cε0.1‖Gt′1T ‖. Since ‖1T ‖2 = |T |, the number t just has to be large enough that ε|T |/δn ≥
(Cε0.1)t, which rearranges to t ≥ log(δn/|T |)

log(C/ε0.1)
. Putting it together, we find∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥
2

≤ exp

(
C1 ·

log(δn/|T |)
log 1/ε

)
· ε

2δ
≤ C2 exp

(
C1 ·

log(δn/|T |)
log 1/ε

)
ε0.2

δ

for some universal C1, C2 ≥ 0.

Proving our main theorems from Lemma 18 and Lemma 19 We briefly describe how all our
main results can be obtained using the preceding two lemmas and related ideas. To prove Theorem 8
on hardness of checking resilience of a set of points in Rd, we take the set of points to be the spectral
embedding of a graph G. Then if G is a small-set expander, one may see that no tail event in the
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uniform distribution over the embedding – that is, no small set of vectors – can deviate far from
the origin, by Lemma 19.4 On the other hand, if G has a small non-expanding set, resilience is
immediately violated by applying Lemma 18.5

To prove Theorem 5, we again take the vectors a1, . . . , an in the theorem statement to be the
embedding of a graph G. Lemma 19 leads to tail bounds for the uniform distribution over these
vectors, which can then be translated into upper bounds on the moments of the distribution by
Fact 9 in the case that G is a small-set expander. On the other hand, if G has a small non-expanding
set then Lemma 18 can be leveraged to prove lower bounds on the p-th moments of the uniform
distribution on a1, . . . , an for p > 2. We then combine this with an averaging argument to gain
better control over even more moments of the distribution when the graph is a small-set expander,
while arguing that this averaging does not decrease the p-th moment in the presence of a small
non-expanding set.

The proof of Theorem 10 is similar, with one key difficulty. To arrive at the end of the reduction
in the setting of robust mean estimation under resilience, there must be a set of adversarially cor-
rupted points, but the remaining points must be resilient. This is where we critically leverage our
strengthened small-set expansion hypothesis. We strengthen the hypothesis in the following way:
we suppose that small-set expansion remains hard if in one case we are promised that G contains
one small set S with ΦG(S) ≤ ε but for all other T with |T | = δn and T ∩ S = ∅ it holds that
ΦG(T ) ≥ 1− ε. The resulting control over deviations of small sets in the embedding of [n] \ S, via
local Cheeger inequalities adapted to account for the presence of the set S, allows us to show that
the embedding of [n] \ S is resilient.

Appendix B. Hardness of Certifying Conditions for Robust Mean Esti-
mation

In this section we show that it is SSE-hard to decide whether a set of points satisfy resilience
or bounded moments beyond the

√
δ barrier. In particular, in this regime improved certification

algorithms would likely lead to improved polynomial-time error rates for robust mean estimation
under bounded moment or resilience assumptions.

Throughout this section, given an instance G of SSE, as in Section 3, we will let Π1/2 be the
projector to the span of eigenvectors of G having eigenvalue at least 1/2, and we let b1, . . . , bn be
the isotropic spectral embedding of G.

B.1. Consequences of SSE

To prove our hardness from SSE, we will actually reduce from the following more quantitative
problems, which are known to be polynomial-time equivalent to SSE.

4. In reality, we must use a version of Lemma 19 which applies to ΦG rather than Φ≤G and takes only one step of the
walk – this lemma is really just the local Cheeger inequality. See Section A.

5. Actually, this is true only if the set has size Ω(δn), rather than perhaps having size, say,
√
n. This is why to prove

hardness of resilience we need to start SSEH=.
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B.1.1. Gap SSE

The first allows us to go from SSEH= to assuming control over all sets of size in some constant
size window around δn. In particular, consider the following variant of SSEH:

Hypothesis 20 (Gap =-Small-Set Expansion Hypothesis (Gap-SSEH=) Raghavendra et al. (2012))
For all small-enough ε > 0 and M ≥ 1, there exists a small-enough δ ≤ 1/M so that the following
problem is NP hard. Given a graph G on n vertices, distinguish between:

yes: There exists a non-expanding set S ⊆ [n] with |S| = δn an ΦG(S) ≤ ε.
no: All sets S ⊆ V with |S| ∈

[
δn
M ,Mδn

]
have ΦG(S) ≥ 1− ε.

Then it is known that this problem is equivalent to SSEH=:

Proposition 21 (Raghavendra et al. (2012)) SSEH= holds if and only if Gap-SSEH= holds.

B.1.2. Quantitative SSE

It has been shown that in SSE, quantitative relationships between the parameters ε, δ may be taken.
Specifically, Raghavendra et al. (2012) shows:

Proposition 22 (Raghavendra et al. (2012), Theorem 3.5) For every sufficiently small δ, ε, γ > 0
the following problem is NP-hard assuming SSEH≤: Given a graph G, distinguish between:

yes: Φ≤G(δ) ≤ ε.
no: For all δ′ ∈ [0, 1] it holds that Φ≤G(δ′) ≥ 1− (δ′)Ω(ε) − γ/δ′.

B.2. Hardness of certifying resilience

In this section, we prove the following theorem.

Theorem 23 Under SSEH=, for all sufficiently small constants s > 0 there exists δ(s) > 0 such
that given S ⊆ Rd it is NP-hard to distinguish between:

yes: the uniform distribution X on S is (s
√
δ, δ)-resilient.

no: there is an event A in the uniform distribution on S such that Pr(A) = δ and
‖EX |A− EX‖ > 0.4 ·

√
δ · 1−PrA

PrA .

Proof [Proof of Theorem 23] Let ε > 0 be sufficiently small. We start with an instance G of
Gap-SSEH= with parameter ε, M ≥ 1 to be set later, and corresponding δ = δ(ε,M). Our
reduction is simple: we let the set S be S = {bi}ni=1. Observe that an event E in the uniform
distribution supported S directly corresponds to a subset T ⊆ S, and moreover PrE = |T |/n.
We verify that an efficient algorithm certifying (s

√
δ, δ)-resilience of S, for some s = s(ε), would

solve SSE. (We will show s = Θ(ε1/8) suffices.)
There are two cases to check. Suppose there exists a set T ⊂ [n] with |T | = δn, so that

ΦG(T ) ≤ ε. Let A be the event associated to that set. Then by Lemma 18, we have

‖EX|A‖2 =

∥∥∥∥∥ 1

T

∑
i∈T

bi

∥∥∥∥∥
2

≥ 1/2− ε
PrA

,
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and so in particular since PrA = δ, we have ‖EX|A‖ ≥
√

1/2− ε ·
√
δ · 1

PrA ≥
√
δ · 1

2 PrA , for ε
sufficiently small. Since EX = e1 and therefore ‖EX‖ = 1 � ‖EX|A‖ for δ small, in this case
the resulting set S is in the no case for resilience.

We now check the other case. Suppose ΦG(S) ≥ 1 − ε for all S with |S| ∈ [δn/M,Mδn].
We wish to verify that in this case the resulting distribution is in the yes case for resilience. First,
observe that for any set T ⊆ [n] with associated event E, we have the bound∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥
2

= n ·
∥∥∥∥A> 1T|T |

∥∥∥∥2 (a)

≤ n

|T |
≤ 1

PrE
,

where (a) follows since A has spectral norm at most 1. (Here A is the matrix such that AA> =

Π1/2.) Let r be a constant to be optimized later. If PrE < rδ, then immediately ‖EX|E‖ ≤
√
rδ

PrE .
On the other hand, if PrE ∈ [rδ, δ], then if T is the associated set, we must have∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥
2

= n

∥∥∥∥A> 1T|T |
∥∥∥∥2

(a)

≤ 4n

∥∥∥∥G1T
|T |

∥∥∥∥2

(b)

≤ 4n
√
ε

r

∥∥∥∥1T|T |
∥∥∥∥2

=
4
√
ε

rPrE
,

where (a) follows since AA> = Π1/2 � 4GG>, and (b) follows since if we let M = O
(

1
r2ε2

)
,

then this follows from Lemma 15 with η = r (as otherwise we would witness a set with size in
[δn/M,Mδn] with ΦG(S) < 1− ε). As a result, we have

‖EX|E‖ ≤ 2ε1/4

r1/2
√

PrE
≤ 2ε1/4

√
δ

r1/2 PrE
.

Thus, if we let r = ε1/4, then in all cases, we have

‖EX|E‖ ≤ 2ε1/8
√
δ

PrE
.

Since again ‖EX‖ = 1, this implies that for δ sufficiently small, S is (s
√
δ, δ)-resilient, for s =

Θ(ε1/8). Thus we are in the yes case for resilience. Our choice of s = Θ(ε1/8) ensures that
SSEH= applies for all small-enough ε and hence for all small-enough s. This completes the proof
of correctness of the reduction.

B.3. Hardness of certifying bounded moments

This section is dedicated to the proof of the following theorem:

19



HOW HARD IS ROBUST MEAN ESTIMATION?

Theorem 24 Under SSEH≤, there exists a constant s > 0 such that for any q > 2, c > s,
t ∈ (2, q], given S ⊆ Rd it is NP-hard to distinguish the cases:

yes: the uniform distribution X on S satisfies

sup
‖v‖=1

|〈v,X − EX〉|r ≤ (sr)r/2 ,

for all 2 < r ≤ q.
no: there exists a unit vector v ∈ Rd so that

sup
‖v‖=1

|〈v,X − EX〉|t > (ct)t/2 .

We first show that the following intermediate problem is NP-hard under SSEH≤:

Lemma 25 There exists a universal constant c ∈ [0, 1] such that for all q > 2 and all small-enough
δ the following problem is NP-hard assuming SSEH≤. Given a set S of n points in Rd so that the
uniform distribution X over S is isotropic, distinguish between:

yes: There exists an event E with probability PrE ≤ δ so that ‖EX|E − EX‖ ≥
0.4√
PrE

. In particular, by Fact 9, this implies E |〈v,X〉|r > 0.4r

δr/2−1 for some unit vector
v, and any r > 2.
no: E |〈v,X〉|r ≤ δcr

δr/2−1 for all unit vectors v and all r ∈ (2, q].

We remark that this lemma (with different terminology) is very similar to the reduction presented
in Barak et al. (2012b), in their proof that SSE implies hardness for certifying 2 → 4 norms of
tensors. We give a proof here which simplifies and generalizes several key steps in their argument,
and which gives us stronger guarantees which will be useful later.

The proof requires some bookkeeping, but the approach is simple. We will take S to be the
isotropic spectral embedding of a graph G. The yes case is easy to establish For the no case, we
first observe (Fact 9) that moment bounds of the type in Lemma 25 are essentially equivalent to
large-deviation tail bounds – i.e. inequalities of the form Pr(〈X, v〉 > t) ≤ p(t) for unit vectors v
and various deviation magnitudes t. We obtain such deviation inequalities from Lemma 19, which
shows that no small set of vectors in the spectral embedding of a small-set expander can deviate far
from the origin.
Proof [Proof of Lemma 25] Fix q > 2. Let G be an instance of the problem given in Proposition 22
on n vertices with δ < 0.05 and ε < 0.05 sufficiently small that Proposition 22 applies, and
γ = δ1+ε. Let bi be the isotropic spectral embedding of G. Let S = {bi}ni=1. We now verify that
this set achieves the desired properties.

First, suppose that there exists a set T ⊆ [n] with |T | ≤ δ so that ΦG(T ) ≤ ε. Then, by
Lemma 18, we have

‖EX|E‖2 ≥ 0.5− ε
PrE

,

and so since ‖EX‖2 = 1 � 0.45
PrE , we have ‖EX|E − EX‖ ≥ 0.4√

PrE
, for δ < 0.05. Thus, in this

case the set S belongs to the yes case of Proposition 22.
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On the other hand, suppose that Φ≤G(δ′) ≥ 1 − (δ′)Ω(ε) − γ/δ′ for all δ′ ∈ [0, 1]. Fix any
r ∈ (2, q]. Our goal will be to use Fact 9, which for any s > r supplies the following bound on
E |〈v,X〉 − E〈v,X〉|r for any unit v (by elementary integration):

E |〈v,X〉 − E〈v,X〉|r ≤ sup
E

(2 PrE)r/s · |E〈X, v〉|E − E〈X, v〉|r · s

s− r
,

where the supremum is over all events E.
By Cauchy-Schwarz, for any unit v and event E,

|E〈v,X〉|E − E〈v,X〉| ≤ ‖EX|E − EX‖ . (3)

So,

E |〈v,X〉 − E〈v,X〉|r ≤ sup
E

(2 PrE)r/s · ‖EX|E − EX‖r · s

s− r
. (4)

We choose s = r · log(1/δ)
log(1/δ)−1 , so that s/(s− r) = log(1/δ).

We will bound the supremum in (4) by separately considering two cases: PrE ≤ δ/2 and
PrE > δ/2. First, let E have PrE ≤ δ/2. By our choice of γ, we know that

ΦG(δ) ≥ 1− δΩ(ε) .

Using this in conjunction with Lemma 19, we know that there exist universal constants C,C ′ > 0
so that

‖EX|E‖ ≤ C ′
(

δ

Pr(E)

)C/ε log(1/δ)

· δ
Ω(ε)

√
δ

and hence by triangle inequality

‖EX|E − EX‖ ≤ C ′
(

δ

Pr(E)

)C/ε log(1/δ)

· δ
Ω(ε)

√
δ

+ 1

because ‖EX‖ = 1. For small-enough δ, we have C ′
(

δ
Pr(E)

)C/ε log(1/δ)
· δΩ(ε)
√
δ
≥ 1 for all E, and

hence

‖EX|E − EX‖ ≤ 2C ′
(

δ

Pr(E)

)C/ε log(1/δ)

· δ
Ω(ε)

√
δ
.

Returning to the expression from (4),

(2 PrE)r/s · ‖EX|E − EX‖r · s

s− r
≤ (2 PrE)r/s ·

(
2C ′δΩ(ε)

√
δ

)r
·
(

δ

Pr(E)

)Cr/ε log(1/δ)

· log
1

δ
.

By elementary algebra, using our choice of s and the bound PrE ≤ δ/2, so long as log(1/δ) >
Cr/ε+ 1, we have

(2 PrE)r/s
(

δ

Pr(E)

)Cr/ε log(1/δ)

≤ δ1−1/ log(1/δ) ≤ O(δ) .
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So all together we got

(2 PrE)r/s · ‖EX|E − EX‖r · s

s− r
≤ C · (2C ′δ)Ω(ε)·r

δr/2−1
· log

1

δ
.

for some (different) universal constant C. For some universal c1, c2 if we choose η = c1δ
c2ε, then

for every small-enough δ,

(2 PrE)r/s · ‖EX|E − EX‖r · s

s− r
≤ δ ·

(η
δ

)r/2
.

We turn to the case of PrE > δ/2. By hypothesis, Φ≤G(PrE) ≥ 1 − (PrE)Ω(ε). So by
Lemma 19 applied with δ′ = Pr(E), we obtain that for some universal C,

‖EX|E − EX‖ ≤ C ·

(
(δ′)Ω(ε)

δ′

)1/2

,

(where we used ‖EX‖ = 1 again).
Using this to bound (4) for events with PrE > δ/2, and recalling our choice of s above, we

have

(PrE)r/s · ‖EX|E − EX‖r · s

s− r
≤ Pr(E)1−1/ log(1/δ) · Cr ·

(
(δ′)Ω(ε)

δ′

)r/2
· log(1/δ)

≤ O(δ)Ω(εr)

δr/2−1

≤ δ ·
(η
δ

)r/2
for small-enough δ and the choice of η above; the second simplification just uses Pr(E) ≥ δ/2.

We conclude by (4) that for all δ < δ0(ε, r) it holds that

E |〈X − EX, v〉|r ≤ ηr/2

δr/2−1
.

Thus picking δ < minr≤q δ0(ε, r), we conclude that the set of vectors S is in the no case.
Finally, the distribution over S is as stated not isotropic, because the first coordinate of every

vector is 1. Indeed, it is a standard fact that the distribution which is simply the uniform distribution
over the vectors in S with the first coordinated removed is mean zero and isotropic. However, it is
easily to check that the proof above goes through for S projected off of the first coordinate. Then the
resulting distribution is indeed isotropic, and satisfies all the desired guarantees as in the Lemma.
This completes the proof.

The second lemma we need to prove Theorem 24 is the following inequality for p-th moments of
sums of independent random variables.

Fact 8 (Rosenthal’s Theorem, see e.g. Johnson et al. (1985)) Let p ≥ 2, and let X1, . . . , Xn be
independent with EXi = 0 and E |Xi|p <∞ for all i = 1, . . . , n. Then

E
∣∣∣∑Xi

∣∣∣p ≤ (C1p)
p ·
(∑

E [|Xi|p]
)

+ (C2p)
p/2 ·

(
n∑
i=1

E
[
X2
i

])p/2
,

for some universal constants C1, C2.
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Proof [Proof of Theorem 24] Let S be an instance of the problem in Lemma 25 with parameters q
and δ. We show how to construct a set S′ over nO(1/δ) points in time nO(1/δ) so that a yes instance of
the problem in Lemma 25 is mapped to a yes instance of the problem in Theorem 24, and similarly
for no instances. Composing this reduction with Lemma 25 immediately yields Theorem 24.

To achieve this, we simply let S′ be the set

S′ =


√
δ

α

∑
i1,...,iα/δ

Xi : i ∈ [|S|]

 ,

or equivalently, the uniform distribution D′ over S′ is the the sum of α/δ i.i.d. samples from the
uniform distribution D over S, scaled by

√
δ/α. Here α ≤ 1 is a parameter depending only on

q and c to be tuned later. Clearly |S′| = nO(1/δ) and can be constructed in time nO(1/δ) given a
construction of S. We now check soundness and completeness.

Suppose S is an yes instance from Lemma 25. Then there exists an eventE ofD with PrE ≤ δ
and a unit vector v so that |E〈v,X〉|E − E〈v,X〉| ≥ 0.4√

PrE
. The event E corresponds to some

T ⊂ S with |S| ≤ δ|S|. Let E′ be the event in D′ that at least one Xi in the sum belongs to S. By
standard estimates, Pr [X ′ ∈ S′] = 1 − (1 − PrE)α/δ = Ω(αPrE/δ) for PrE ≤ δ. Moreover,

since EX∼DX = 0, we have that ‖EX′∼D′ X ′|E′‖ =
√
δ/α · ‖EX∼DX|E‖ ≥ 0.4 ·

√
δ

αPrE .
Hence, using the contribution of the event E to the t-th moments to lower-bound them (Fact 9), for
t ∈ (2, q], there exists some unit vector v so that

E |〈v,X〉|t ≥
(
PrE′

)
· (0.4)t ·

(
δ

αPrE

)t/2
≥ Ω

(
αPrE

δ

)
(0.4)t ·

(
δ

αPrE

)t/2
≥
(

1

α

)Ω(t)( δ

PrE

)t/2−1

≥
(

1

α

)Ω(t)

≥ (ct)t/2 ,

for α chosen such that c = 1
t (1/α)Ω(1). Hence S′ is an instance of the yes case.

Suppose on the other hand that S is a no instance. Let v be an arbitrary unit vector. LetX ′ ∼ D′,
so that X ′ =

√
δ/α

(∑α/δ
i=1Xi

)
where Xi ∼ D are independent. Then, by Rosenthal’s inequality

(Fact 8) applied to the random variables Zi =
√
δ〈v,Xi〉, we see that there are universal constants

C1, C2 such that for any r ∈ (2, q],

E
∣∣〈v,X ′〉∣∣r ≤ (C1r)

r ·
(

(δ/α)r/2−1 EX∼E |〈v,X〉|r
)

+ (C2r)
r/2

≤ (C1r)
r · δΩ(r) · (1/α)r/2−1 + (C2r)

r/2 ,

by Lemma 25. Using our previous choice for α, we see that if δ is small enough as a funcion of c, q
then the second term dominates, and we get

sup
‖v‖=1

E
∣∣〈v,X ′〉∣∣r ≤ (sr)r/2 ,
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for some universal constant s = O(1). Thus in this case we are in the no case. This completes the
proof.

Appendix C. Unique-SSE and Robust Estimation

In this section we prove Theorem 29 on hardness of robust estimation under USSEH.

Definition 26 (Almost-SSE) Suppose G is an n-node graph. We say that G is an almost (ε, δ)
small set expander if:

• there is S ⊆ [n] with |S| = δn and ΦG(S) ≤ ε, and

• every T ⊆ [n] with |T | = δn and T ∩ S = ∅ has ΦG(T ) ≥ 1− ε .

Hypothesis 27 (Unique Small-Set Expansion Hypothesis USSEH) For every ε > 0 there is a
small-enough δ > 0 such that the following problem is NP-hard. Given an n-node graph G,
distinguish between the cases: yes: G is an almost (ε, δ) small set expander, and no: ΦG(δ) ≥ 1−ε.

Problem 28 (α, β-approximate robust mean estimation under resilience) Input: b1, . . . , bn ∈
Rd and δ > 0, such that there exists S ⊆ [n] with |S| = (1 − δ)n which is (α

√
δ, δ)-resilient.

Output: A vector µ̂ ∈ Rn such that ‖µ̂− Ei∼S bi‖ ≤ β
√
δ.

Theorem 29 Suppose USSEH. There is an absolute constant β∗ < 1 such that if for any constant
α < β∗ Problem 28 has a polynomial-time algorithm then P = NP.

Our main tool is the “moreover” clause in Lemma 15 which allows for G to be an almost (ε, δ)
small set expander rather than a small set expander. This allows us to prove the following result
characterizing the means of embeddings of small sets in G which do not overlap with the small
non-expanding set.

Lemma 30 Suppose that G is an n-node almost (ε, δ) small set expander for ε < ε0, where
ε0 > 0 is a universal constant. Let T ⊆ [n] have |T | ≤ δn and no intersection with the small
non-expanding set in G. Let b1, . . . , bn be the isotropic spectral embedding of G. Then∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥ · |T |n ≤ 2ε0.05
√
δ .

Proof We proceed as in the proof of Theorem 23. By definition, 1
|T |
∑

i∈T bi = A> ·
√
n
|T | 1T where

A has columns which are the eigenvectors of G with eigenvalue at least 1/2. We will combine two
bounds, one for |T | � δn and one for |T | ≈ δn.

Firstly, because ‖A‖ ≤ 1, we have∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥
2

= n ·
∥∥∥∥A> 1T

|T |

∥∥∥∥2

≤ n · ‖1T /|T |‖2 =
n

|T |
.
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Let r = r(ε, δ) be a constant to be chosen later. If |T | ≤ rδn, then we find∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥ · |T |n ≤
√
|T |
n
≤
√
rδ .

Now we address sets with sizes in the range |T | ∈ [rδn, δn]. Here we will use a local Cheeger
inequality – Lemma 15. We are interested in

n

|T |2
〈1T ,Π1/21T 〉 ≤

4n

|T |2
‖G1T ‖2 .

Picking η = ε0.1, if ‖G1T ‖2 ≥ ε0.1‖1T ‖2 then there is a set R of size in the range |R| ∈
[cε0.3rδn,Cδn/ε0.4] for some universal constants c, C, with expansion ΦG(R) ≤ 1 − Ω(ε0.4).
Furthermore, R ∩ S = ∅.

By subsampling at random or adding vertices as necessary, we find that there is a set R′ of size
δn which does not overlap S and has expansion ΦG(R′) ≤ 1 − Ω(rε0.8). Choosing r = ε0.1 and
ε sufficiently small, this violates that G is an almost (ε, δ) small set expander. So it must be that
‖G1T ‖2 ≤ ε0.1‖1T ‖2 ≤ ε0.1δn. We therefore find that for |T | ∈ [rδn, δn],∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥ · |T |n ≤ |T |n · 2
√
n

|T |
· ε0.05

√
δn = 2

√
ε0.1δ .

Proof [Proof of Theorem 29] We will analyze the following reduction from small-set expansion
to robust mean estimation under resilience. Let β∗ be a small-enough absolute constant. (We can
choose it later). Let α < β∗.

Given an n-node graph G and parameters ε, δ > 0, let b1, . . . , bn be the isotropic spectral
embedding ofG. Let µ be the output of an oracle for Problem 28 with parameters α, β∗, δ/2 on input
b1, . . . , bn. Let e1 ∈ Rd = (1, 0, 0, . . . , 0) be the first standard basis vector. If ‖µ − e1‖ > 2β∗

√
δ

then output yes. Otherwise output no.
We need to show that there exists ε > 0 such that for all δ > 0 the following two statements

hold:
Soundness: If ΦG(δ) > 1− ε then ‖µ− e1‖ ≤ 2β∗

√
δ.

Completeness: If G is an almost (ε, δ) small set expander then ‖µ− e1‖ > 2β∗
√
δ.

We address the statements in turn, beginning with soundness. By the proof of Theorem 23, if
ΦG(δ) > 1− ε then the uniform distribution on {b1, . . . , bn} is (2ε1/8

√
δ, δ)-resilient.

Hence every subset of S of size (1−δ/2)n is also (4ε1/8
√
δ, δ/2)-resilient. Fix one such subset

S. By Fact 6, we have Ei∼[n] bi = e1. Hence by resilience, ‖Ei∼S bi − e1‖ ≤ 2ε1/8
√
δ. By the

guarantee of our robust mean estimation oracle, so long as 2ε1/8
√
δ ≤ α then ‖µ − Ei∼S bi‖ ≤

β∗
√
δ. By triangle inequality,

‖µ− e1‖ ≤ ‖µ− Ei∼S bi‖+ ‖Ei∼S bi − e1‖ ≤ (β∗ + 2ε1/8)
√
δ ≤ 2β∗

√
δ

for small-enough ε = ε(α, β∗).
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Now we move on to completeness. Let S ⊆ [n] be the δn-size subset of vertices with ΦG(S) ≤
ε. Let v = Ei∼S bi and let w = Ei/∈S bi. Since (by Fact 6) we have Ei∼[n] bi = e1, simple
calculations show that

w =
e1 − δv
1− δ

.

This rearranges to

e1 − w =
δv + δe1

1− δ
.

We first establish that the set {bi}i/∈S is (4ε0.05
√
δ, δ/4)-resilient. Let R ⊆ [n] \ S have size at

most |R| ≤ δn/2. Then by Lemma 30, we have∥∥∥∥∥ 1

|R|
∑
i∈R

bi

∥∥∥∥∥ ≤ 2ε0.05
√
δ · n
|R|

.

Hence by triangle inequality we have∥∥∥∥∥ 1

|R|
∑
i∈R

bi − w

∥∥∥∥∥ ≤ 2ε0.05
√
δ · n
|R|

+ ‖w‖

and so finally ∥∥∥∥∥ 1

|R|
∑
i∈R

bi − w

∥∥∥∥∥ · |R|n ≤ 2ε0.05
√
δ + δ · ‖w‖ .

It follows that {bi}i/∈S is (2ε0.05 + δ‖w‖, δ/4)-resilient. By Lemma 30, ‖w‖ ≤ 2ε0.05
√

1/δ. So
ultimately, {bi}i/∈S is (4ε0.05

√
δ, δ/4)-resilient.

Therefore, we must have that ‖µ − w‖ ≤ O(ε0.05
√
δ). At the same time, by Lemma 18, we

have ‖v‖2 ≥ 1/2δ, so ‖w − e1‖ ≥ Ω(
√
δ). So,

‖µ− e1‖ = ‖(µ− w) + (w − e1)‖ ≥ ‖w − e1‖ − ‖µ− w‖ ≥ Ω(
√
δ)−O(ε0.05

√
δ) .

So, for sufficiently small β∗ and ε, we find that for all δ, ‖µ− e1‖ > 2β∗
√
δ.

Appendix D. Conclusion and Open Problems

In this paper we give evidence from worst case complexity assumptions that improving existing
algorithms for robust mean estimation may be hard. These results are far from complete, however,
and there are a number of very interesting open questions in this area.

The most natural question is whether or not we can show that improving current algorithms for
robust mean estimation assuming bounded moments or resilience is impossible under SSEH. There
are a number of interesting sub-questions:
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• Can the uniqueness assumption be removed in the proof that USSEH implies improved robust
mean estimation under resilience is NP-hard? As far as we are aware it could even be that
SSEH and USSEH are equivalent – are they?.

• Does SSEH or a variant (such as USSEH) imply that improved robust mean estimation is
hard under bounded moment assumptions? Our current techniques are unable to prove this
for USSEH: they would require an analogue of Lemma 19 in the setting that G is a graph
which contains a unique small non-expanding set. That lemma requires running a random
walk on the graph G for about log n steps; we do not know how to ensure that such a random
walk avoids entering the small non-expanding set (or, if it does, how to control its behavior
across the nonexpanding cut).

Another interesting question is whether or not these techniques can be used to show hardness
for other questions in robust estimation, such as list learning Charikar et al. (2017), or robust sparse
mean estimation Balakrishnan et al. (2017). (Unlike for the main problems addressed in this paper,
SQ lower bounds for these are already known Diakonikolas et al. (2017c, 2018).) We conjecture
that the current spectral-based algorithms for these problems are optimal, even with additional as-
sumptions on resilience or moments.

It is also interesting to ask whether SSEH-type assumptions can be avoided all together. In
addition to showing that approximating the 2 → 4-norm is SSEH-hard, the authors of Barak et al.
(2012a) also show it is NP-hard assuming the Exponential Time Hypothesis. That proof does not
appear to easily adapt to our setting, however, because it is not clear the instance of the 2 → 4-
norm problem it produces can be transformed into a distribution with sub-Gaussian moments as we
require, nor can we easily control the kind of tail events we require to prove hardness of resilience.
Nonetheless, it seems plausible that hardness for some robust estimation problem could be shown
under assumptions weaker than SSEH.
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Appendix E. Omitted Proofs from Section 2

E.1. Proofs of Local Cheeger Inequalities

Lemma 31 (Local Cheeger Inequality Steurer (2010b)) For every v ∈ Rn there is a level set
S ⊆ V of the vector wi = v2

i with |S| ≤ δn and expansion

ΦG(S) ≤
√

1− 〈v,Gv〉2/‖v‖4
1− ‖v‖21/δn‖v‖2

.

Proof [Proof of Lemma 14] We follow the proof in Steurer (2010a), keeping track of a factor of
1/ε2 missing in that proof; at the end we apply a standard sub-sampling reduction used in e.g.
Raghavendra et al. (2012).

First, dividing by ‖f‖1, we may assume that ‖f‖1 = 1; i.e. that f is a probability vector. We
will apply Lemma 31 to the distribution g = (f +Gf)/2. Clearly ‖g‖1 = 1.

Since G is contractive in 2-norm, we have ‖g‖2 ≤ ‖f‖2. But since f,Gf are nonnegative, also
‖g‖2 ≥ ‖f‖2/2.

Finally, consider

〈g,Gg〉 = 〈f,Gf〉+ 2〈f,G2f〉+ 〈f,G3f〉 ≥ 2‖Gf‖2 ≥ 2ε‖f‖2

where we used that 〈f,G3f〉, 〈f,Gf〉 ≥ 0 by nonnegativity, and we used our hypothesis on ‖Gf‖2.
Plugging these bounds into Lemma 31, we find that there is a level set S of g having size at most
δn/(γε2) such that

ΦG(S) ≤
√

1− 〈g,Gg〉2/‖g‖4
1− 20ε2/(δn‖g‖2)

≤
√

1− 4ε2

1− 20ε2
≤ 1− Ω(ε2) .

Let T be a random subset of S of size δn. A simple computation shows that

ET (1− ΦG(T )) ≥ γε2(1− ΦG(S)) ≥ Ω(γε4) .

as claimed.

Proof [Proof of Lemma 15] We begin by proving the statement prior to the “moreover,” then we
describe how the proof may be slightly altered in the case that G contains a small non-expanding
set.

Our proof proceeds very similarly to the proof in Steurer (2010b). Let c, C be constants to be
determined later. Let Tt be a random subset drawn from the following distribution: first, t is drawn
uniformly from [0, 1], then Tt = {i ∈ [n] : g2

i ≥ t}. We first establish a number of properties of this
distribution. Observe that since |fi| ≤ 1 for all i, then since G is a random walk matrix, |Gfi| ≤ 1
for all i as well, and so g2

i ≤ 1 for all i. Therefore, by a simple calculation, we have that

Et [|Tt|] =
∑
i∈[n]

g2
i = ‖g‖2 .

We also have that ‖g‖2 ≥ (1 − η)2 ‖f‖2 = (1 − η)2δn. Moreover, if t ≤ (1 − η)2, S ⊆ Tt and
hence |Tt| ≥ δn. Therefore

Pr
t

[|Tt| < δn] ≤ 2η . (5)
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For any U, V ⊆ [n], let G(U, V ) = Pr(i,j)∼G[i ∈ U, j ∈ V ] be the fraction of edges going from U
to T , so that ΦG(U) = nG(U, [n] \ U)/|U |.

Then, by the same calculations as those done in Steurer (2010b), we still have the following
three inequalities:

Et
[
|Tt|2

]
≤ ‖g‖21 , (6)

Et
[
|Tt|1|Tt|>Cδn/(ηε)2

]
≤ η2ε2

Cδn
Et
[
|T |2

]
, (7)

n · EtG(Tt, [n] \ Tt) ≤ ‖g‖2
√

1− 〈g,Gg〉2/ ‖g‖4 . (8)

We now specialize each of these three inequalities to our setting. Observe that f is nonnegative and
satisfies ‖f‖1 = |S| = δn, and so because G is a random walk matrix, we have ‖g‖1 = |S|, and
so (6) simply becomes

Et
[
|Tt|2

]
≤ (δn)2 .

Plugging this bound into (7) yields that

Et
[
|Tt|1|Tt|>Cδn/(ηε)2

]
≤ ε2η2

C
δn . (9)

Finally, observe that

〈g,Gg〉 = (1− η)2〈f,Gf〉+ 2η(1− η) ‖Gf‖2 + η2〈f,G3f〉
(a)

≥ 2η(1− η) ‖Gf‖2

(b)

≥ 2η(1− η)ε ‖f‖2 , (10)

where (a) follows from the nonnegativity of f , and (b) follows from assumption. Moreover ‖g‖2 ≤
‖f‖2 = δn since G is contractive in `2. Thus (8) simplifies in our setting to give

n · EtG(Tt, [n] \ Tt) ≤ ‖g‖2
√

1− (2η(1− η)ε)2 = ‖g‖2 (1− Ω(η2ε2)) . (11)

Now, let T ∗ be the level set of g2 with size in the range I = [cηε2δn,Cδn/(ηε)2] with minimal
Φ(T ∗). Since Φ(T ) = n · G(U,[n]\U)

|U | , we have

Φ(T ∗) ≤ nEtG(Tv, [n] \ Tt)
Et |Tt|1|Tt|∈I

≤ nEtG(Tv, [n] \ Tt)
Et |Tt|1|Tt|∈I

= n
EtG(Tv, [n] \ Tt)

Et |Tt| − Et |Tt|1|Tt|<cηε2δn − Et |Tt|1|Tt|>Cδn/(ηε)2

(a)

≤ n
EtG(Tv, [n] \ Tt)
Et |Tt| − c′η2ε2δn

(b)

≤ ‖g‖
2 (1−O(η2ε2))

‖g‖2 (1− 2ε2η2)

≤ 1−O(η2ε2) ,
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for an appropriate choice of c sufficiently small and C sufficiently large. Here (a) follows from (9),
and since

Et |Tt|1|Tt|<cηε2δn ≤ cηε
2δnPr

[
|Tt| < cηε2δn

]
≤ cη2ε2δn (12)

by (5), and (b) follows since ‖g‖22 ≥ (1− η)2‖f‖2 = (1− η)2δn. This completes the proof, except
for the “moreover” statement, proved below.

Proof [Proof of Lemma 15, “moreover” part] Suppose that G contains a set R as described in the
lemma statement. We describe how the preceeding proof may be altered to ensure that T ∩R = ∅.

The idea is to replace the function g with the function g′ = ΠRg, the projection of g to the
coordinates outside R. The random thresholding procedure is applied to the coordinates of g′ to
produce the set T ; because g′ is supported off of R it holds that T ∩R = ∅ with probability 1.

We now verify that properties of g used above also apply to g′. Since f is supported off of R,
(5) continues to hold. Equations (6), (7), (8) hold for any choice of g and hence in particular for g′.

Because ‖g′‖1 ≤ ‖g‖1, we obtain (9) when T is chosen according to the thresholding procedure
on g.

We need to lower bound 〈g′, Gg′〉 to obtain an analogue of (10). By expanding, we find

〈g′, Gg′〉 = 〈g,Gg〉+ 2〈g′ − g,Gg′〉+ 〈g′ − g,G(g′ − g)〉 .

Because ΦG(R) ≤ ε/10 and |S| = |R| = δn, we obtain that ‖g′− g‖1 = ‖ΠRg‖1 ≤ ηεδn/10.
And because as noted before |gi| ≤ 1 for all i, we have ‖g′‖∞ ≤ 1. So |〈g′ − g,Gg′〉| ≤ ηεδn; the
same argument applies to |〈g′−g,G(g′−g)〉|. And we proved above that 〈g,Gg〉 ≥ 2η(1−η)ε‖f‖2.
We may assume η ≤ 1/2, so it follows that 〈g′, Gg′〉 ≥ η(1 − η)ε‖f‖2. Thus up to a factor of 2,
we obtain the analogue of (10) for g′ in place of g.

Since ‖g′‖2 ≤ ‖g‖2, we also obtain

nEtG(Tt, [n] \ Tt) ≤ ‖g′‖2
√

1− (η(1− η)ε2) = ‖g‖2(1− Ω(η2ε2))

as in (11).
Finally, since ΠRf = f (since f is supported off of R), it still holds that Pr[|Tt| < cηε2δn] ≤ η

as in (12). The rest of the proof goes through unchanged.

E.2. Equivalence of Moments and Mean Shifts

We will repeatedly use the following elementary fact, which proves a near equivalence of moment
bounds and mean shifts for R-valued random variables.

Fact 9 Let X be a R-valued random variable with mean zero, and let q ≥ 1. Then:

• Moment bounds implies bounded deviation Suppose E |X|q is finite. Then for any event A,

we have |EX |A| ≤
(
E |X|q
Pr[A]

)1/q
.

• Bounded deviation implies moment bounds For any p, let Cp = supA Pr[A] · |EX |A|p.
For every p > q, E |X|q ≤ (2Cp)

q/p · p
p−q .
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Proof [Proof of Fact 9] We first prove the first implication. By Holder’s inequality, we have

|EX1A| ≤ (E |X|q)1/q Pr[A]1−1/q ,

and so

|EX |A| = 1

Pr[A]
|EX1A| ≤

(
E |X|q

Pr[A]

)1/q

,

as claimed.
We now turn to the second implication. For any t ≥ 0,

Pr[|X| ≥ t] = Pr[X ≥ t] + Pr[X ≤ −t] ≤ Cp
|EX |X ≥ t|p

+
Cp

|EX |X ≤ −t|p
≤ 2Cp

tp
.

Recall that E |X|q =
∫∞

0 Pr[|X|q ≥ s] ds. We will split this integral into two parts, because
we know two different bounds on Pr[|X|q ≥ s]. First of all, for any s we have Pr[|X|q ≥ s] ≤ 1
Second of all, when s > (2Cp)

q/p a better bound is given by Pr[|X|q ≥ s] ≤ 2Cp/s
p/q < 1. So,

E |X|q =

∫ ∞
0

Pr[|X|q ≥ s] ds ≤
∫ (2Cp)q/p

0
1 ds+

∫ ∞
(2Cp)q/p

2Cp

sp/q
ds .

The first integral is just (2C ′p)
q/p. The second is∫ ∞

(2C′p)q/p

2C ′p

sp/q
ds =

1
p
q − 1

· [(2Cp)q/p]−p/q+1

so long as p > q. (Otherwise the integral does not exist.)
Putting these together,

E |X|q ≤ (2Cp)
q/p +

1
p
q − 1

· 2Cp · [(2Cp)q/p]−p/q+1 = (2Cp)
q/p ·

(
1 +

1

(pq − 1)

)
.

Finally, note that 1 + 1/(pq − 1) = p−q
p−q + q

p−q = p
p−q , which finishes the proof.

As a simple corollary of this, we observe that moment bounds are equivalent to resilience “at every
scale”. For simplicity of exposition, we will state and prove the claim for `2 norm, however, the
claim holds much more generally as well. This gives a novel characterization of resilience which
may be of independent interest.

Corollary 32 Let X be an Rd-valued random variable with mean EX = µ, and let q ≥ 1. Then:

• Moment bounds imply multi-scale resilience Suppose there exists a constant C > 0 so that
E〈v,X〉q ≤ C for all unit vectors v. Then, X is ( 2C1/q

δ1/q−1 , δ)-resilient for all δ ≤ 1/2.

• Multi-scale resilience implies moment bounds Let p > q, and let Cp be so that X is

(
C

1/p
p

δ1/p−1 , δ)-resilient for all δ ≤ 1/2. Then,

E |〈v,X − µ〉|q ≤ (2Cp)
q/p p

p− q

for all unit vectors v ∈ Rd.
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Proof We first prove the first implication. Let v be an arbitrary unit vector, let δ ∈ (0, 1/2) and let
A be an event with Pr[A] ≤ δ. Then, by our assumption and Fact 9, we know that

|E〈v,X〉|A− 〈v, µ〉| ≤
(

C

PrA

)1/q

=
C1/q

Pr[A]1/q−1
· 1

PrA
≤ C1/q

δ1/q−1
· 1

PrA
≤ 2C1/q

δ1/q−1

1− PrA

PrA
.

Taking a supremum of this inequality over all unit vectors v immediately yields the desired bound.
We now prove the other direction. For any unit vector v ∈ Rd, and any event A with PrA ≤

1/2, and by our assumption of resilience (taking δ = PrA), we have

Pr[A] · |E〈v,X〉|A− 〈v, µ〉|p ≤ Pr[A] · ‖EX|A− µ‖p ≤ Cp . (13)

Moreover, for any event A with PrA > 1/2, we also have

Pr[A] · |E〈v,X〉|A− 〈v, µ〉|p = Pr[A] ·
(

PrAc

PrA

)p−1

Pr[Ac] · |E〈v,X〉|Ac − 〈v, µ〉|p ≤ Cp ,

where the last inequality follows from (13). Thus, by Fact 9, we have

E |〈v,X − µ〉|q ≤ (2Cp)
q/p p

p− q
,

as claimed.

We briefly remark that to generalize this statement to more general norms ‖ · ‖, it suffices to have
the moment bound be taken over all unit vectors over the dual norm ‖ · ‖∗. The proof is a fairly
standard generalization of this argument and we omit the proof for simplicity of exposition.

Appendix F. Omitted Proofs from Section 3

Proof [Proof of Lemma 18] Let B =
√
nA. We start by expanding:∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥
2

=
1

|T |2
· 1>TBB>1>T =

n

|T |2
1>T Π1/21T .

Let v1, . . . , vn be the eigenvectors ofG, with associated eigenvalues λ1, . . . , λn. SinceG is stochas-
tic, |λi| ≤ 1. So for any vector v we have

v>Π1/2v =
∑

i :λi≥1/2

〈v, vi〉2 ≥
n∑
i=1

λi〈v, vi〉2 −
1

2
· ‖v‖2 = v>Gv − 1

2
· ‖v‖2 .

Putting it together,∥∥∥∥∥ 1

|T |
∑
i∈T

bi

∥∥∥∥∥
2

≥ n

|T |2
·
(
1>TG1T −

1

2
· |T |

)
=

n

|T |2
· |T | ·

(
1

2
− ΦG(T )

)
.
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Appendix G. Sketch of random-walk rounding for analytically sparse
vectors

In this section we describe the proof of Theorem 12. The key is the following lemma, which says
that if w is a vector in the high eigenspaces of G with ‖w‖44 ≥ 1/δn, then there is a level set S of
|w| (applying the absolute value function coordinate-wise) containing O(δn) coordinates such that
‖ 1
|S|
∑

i∈S bi‖ is large. The rest of the proof follows the same argument in Lemma 19, showing that
as the random walk is run from initial distribution over S, it must eventually encounter a small cut
with imperfect expansion or else it would violate the local Cheeger inequality.

Lemma 33 LetG a graph with isotropic spectral embedding bi, . . . , bn and corresponding uniform
distribution D. Suppose there exists a unit vector v so that E〈v,X〉4 ≥ 1

δ . Then, there exists t > 0

so that if we let S = {i : |〈v,X〉| > t}, then |S| ≤ O(δn) and |E〈v,X〉|E| ≥ Ω
(

1
δ1/2 log1/4 1/δ

)
.

Proof By Fact 9, we know that for all p > 4 there exists some event A so that

Pr[A]4/p |E〈v,X〉|A|4 · p

p− 4
≥ 1

δ
. (14)

Let Ap be the set which achieves the largest value for the LHS in (14). Without loss of generality,
we may take Ap to be of the form Ap = {i : |〈v,X〉| > tp} for some tp > 0, since such sets
maximize the mean shift in the direction v.

Because E〈v,X〉2 = 1, by Fact 9, we must have |E〈v,X〉|Ap| ≤ 1√
Pr[Ap]

. Thus, Pr[Ap] ≤

δp/(2p−4), as otherwise we would have

Pr[Ap]
4/p · |E〈v,X〉|Ap|4 ≤ 1

Pr[Ap]2−4/p <
1
δ ,

which contradicts our choice of Ap. This implies that for all p > 4, we have

δ4/(2p−4) |E〈v,X〉|Ap|4 ·
p

p− 4
≥ 1

δ

For p ≤ 6, if we let q = p− 2 we have that

δ4/(2p−4) p

p− 4
≥ δ2/q 4

q − 2
,

so optimizing over q > 2 and using Fact 10 (see below) yields that by choosing q = 2 log 1/δ
log 1/δ−1 , we

obtain that

|E〈v,X〉|Aq+2|4 ≥
O(1)

δ2 log 1/δ
.

Finally, in this case, we have

PrAq+2 ≤ δ1+1/(2 log 1/δ) = O(δ) .

This completes the proof of the lemma.
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Fact 10 Let x ∈ (0, 1), and let r ≥ 2. Then we have

min
s>r

xr/s
s

s− r
≤ ex log

1

x
,

and the minimum is attained at s = r · log 1/x
log 1/x−1 .

Proof [Proof of Fact 10] By monotonicity of logarithm, it suffices to find the minimizer of the
function

f(s) =
r

s
log x+ log s− log(s− r) .

Taking derivatives, we find that

f ′(s) = − r

s2
log x+

1

s
− 1

s− r
.

Thus solving for f ′(s) = 0, the minimizer of f must satisfy

r

s2
log

1

x
=

r

s(s− r)
,

or equivalently s/(s − r) = log 1/x and r/s = 1 − 1/ log(1/x). Plugging these bounds into the
original function yields the desired estimate.
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