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Abstract
A distance matrix A ∈ Rn×m represents all pairwise distances, Aij = d(xi, yj), between two
point sets x1, ..., xn and y1, ..., ym in an arbitrary metric space (Z,d). Such matrices arise in
various computational contexts such as learning image manifolds, handwriting recognition, and
multi-dimensional unfolding.

In this work we study algorithms for low-rank approximation of distance matrices. Recent work
by Bakshi and Woodruff (NeurIPS 2018) showed it is possible to compute a rank-k approximation
of a distance matrix in time O((n+m)1+γ) · poly (k, 1/ε), where ε > 0 is an error parameter and
γ > 0 is an arbitrarily small constant. Notably, their bound is sublinear in the matrix size, which is
unachievable for general matrices.

We present an algorithm that is both simpler and more efficient. It reads only O((n+m)k/ε)
entries of the input matrix, and has a running time of O(n + m) · poly (k, 1/ε). We complement
the sample complexity of our algorithm with a matching lower bound on the number of entries
that must be read by any algorithm. We provide experimental results to validate the approximation
quality and running time of our algorithm.
Keywords: Low-rank Approximation, Distance Matrix

1. Introduction

Computing low-rank approximations of matrices is a classic computational problem, with a remark-
able number of applications in science and engineering. Given an n×mmatrixA, and a parameter k,
the goal is to compute a rank-k matrix A′ that minimizes the approximation loss ‖A− A′‖F . Such
an approximation can be found by computing the singular value decomposition of A. However,
since the input matrix A is often very large, faster approximate algorithms for computing low-rank
approximations have been studied extensively (see the surveys (Mahoney, 2011; Woodruff, 2014)
and references therein). In particular, it is known for that for several interesting special classes of
matrices, one can find an approximate low-rank solution using only a sublinear amount of time or
samples from the input matrix. This includes algorithms for incoherent matrices (Candès and Recht,
2009), positive semidefinite matrices (Musco and Woodruff, 2017) and distance matrices (Bakshi
and Woodruff, 2018). Note that sub-linear time or sampling bounds are not achievable for general
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matrices, as a single large entry in a matrix can significantly influence the output, and finding such
an entry could take Ω(nm) time.

In this paper we focus on computing low-rank approximations of distance matrices, i.e., matrices
whose entries are induced by distances between points in some metric space. Formally:

Definition 1.1 (distance matrix) A matrix A ∈ Rn×m is called a distance matrix if there is an
associated metric space (Z,d) with X = {x1, . . . , xn} ⊂ Z and Y = {y1, . . . , ym} ⊂ Z , such
that Aij = d(xi, yj) for every i, j.

Distance matrices occur in many applications, such as learning image manifolds (Weinberger
and Saul, 2006), image understanding (Tenenbaum et al., 2000), protein structure analysis (Holm
and Sander, 1993), and more. The recent survey (Dokmanic et al., 2015) provides a comprehensive
list. Common software packages such as Julia, MATLAB or R include operations specifically design
to produce or process such matrices.

Motivated by these applications, a recent paper by (Bakshi and Woodruff, 2018) introduced the
first sub-linear time approximation algorithm for distance matrices. Their algorithm computes a
rank-k approximation of a distance matrix in time O((n + m)1+γ) · poly (k, 1/ε), where ε > 0
is an error parameter and γ > 0 is an arbitrarily small constant. Specifically, it outputs matrices
V ∈ Rn×k and U ∈ Rk×m, that satisfy an additive approximation guarantee of the form:

‖A− V U‖2F ≤ ‖A−Ak‖2F + ε‖A‖2F ,

where Ak is the optimal low-rank approximation of A. The result of (Bakshi and Woodruff,
2018) raises the question whether even faster algorithms for low-rank approximations of distance
matrices are possible. This is the problem we address in this paper.

1.1. Our results

In this paper we present an algorithm for low-rank approximation of distance matrices that is both
simpler and more efficient than the prior work. Specifically, we show:

Theorem 1.2 (upper bound) There is a randomized algorithm that given a distance matrix A ∈
Rn×m, reads O((n + m)k/ε) entries of A, runs in time Õ(n + m) · poly (k, 1/ε), and computes
matrices V ∈ Rn×k, U ∈ Rk×m that with probability 0.99 satisfy

‖A− V U‖2F ≤ ‖A−Ak‖2F + ε‖A‖2F . (1)

We complement the sample complexity of our algorithm with a matching lower bound on the
number of entries of the input matrix that must be read by any algorithm.

Theorem 1.3 (lower bound) Let k ≤ m ≤ n and ε > 0 be such that k/ε = O(min(m,n1/3)).
Any randomized and possibly adaptive algorithm that given a distance matrixA ∈ Rn×m, computes
V ∈ Rn×k, U ∈ Rk×m that satisfy ‖A − V U‖2F ≤ ‖A − Ak‖2F + ε‖A‖2F , must read at least
Ω((n + m)k/ε) entries of A in expectation. The lower bound holds even for symmetric distance
matrices.

We include an empirical evaluation of our algorithm on synthetic and real data. The results val-
idate that our approach attains good approximation with faster running time than existing methods.
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1.2. Our techniques

Upper bound. On a high level, our algorithm follows the approach of (Bakshi and Woodruff,
2018). The main idea is to use the result of (Frieze et al., 2004), which shows how to compute a
solution satisfying Equation 1 in Õ(n + m) · poly (k, 1/ε) time, assuming the ability to sample a
row (or a column) of the matrix A with the probability at least proportional to its squared-norm.1

Thus the main challenge is to estimate row and column norms in sub-linear time. Although this
cannot be done for general matrices, distance matrices have additional structure (imposed by the
triangle inequality), which makes the problem easier. Specifically, estimating column norms in
distance matrices corresponds to computing, for all x ∈ X , the sum of distances (squared) from
all points in Y to x. (Bakshi and Woodruff, 2018) gives a sampling algorithm that computes an
n0.9-approximation of those sums in sub-linear time. Since the approximation is pretty rough, they
need to sample many more columns than the original algorithm of (Frieze et al., 2004), and then
they apply the algorithm recursively to the sampled columns. The recursive nature of the algorithm
makes the procedure and its analysis quite complex.

To avoid this issue, one could design an algorithm that computes a constant-factor approxima-
tion to row and column norms. In the symmetric case X = Y , this problem has been already studied
in (Indyk, 1999). Specifically, the latter paper developed an approximate comparator, which enables
determining whether one row norm is approximately greater than another. Using standard sorting
algorithms, one can approximately sort the rows by their norms using roughly Õ(n) comparisons,
where each comparison involves sampling roughly Õ(1) entries of A. Together with fully comput-
ing the norms of Õ(1) landmark rows, this approximate sorting yields sufficiently approximations
of all row norms. Unfortunately, this approach does not immediately generalize to the asymmetric
case, and exceeds the optimal number of samples by a few logarithmic factors.

Our solution is to estimate row and column norms up to a constant factor with a one-sided
guarantee. Specifically, we construct estimations that (a) do not underestimate the true values and
(b) the total sum of the estimations is comparable to the sum of the true values. This is sufficient to
support a reduction to (Frieze et al., 2004), while making the estimation procedure much simpler.
In the symmetric case, our procedure samples a random point x∗, and then estimates the sum of the
distances from x to Y as a sum of the distance from x to x∗ and the average distance from x∗ to
Y . A simple application of the the triangle inequality shows this estimation provides the desired
guarantee. We note that this idea was inspired by the construction of core-sets from (Chen, 2009),
although the technical development is quite different (and much simpler).

After executing the algorithm of (Frieze et al., 2004), we still need one more step to compute
the solution (as their method reports U but not V ). This amounts to a regression problem that can be
solved by standard techniques. To obtain a tight sampling bound that avoids any logarithmic factor
in k, we use a recent solver of (Chen and Price, 2017).

Lower bound. First let us note that an Ω(nk) lower bound can be easily obtained. It is not hard to
see that any n×k matrix with entries in {1, 2} is an (asymmetric) distance matrix, since the triangle
inequality is satisfied trivially. If we choose a uniformly random matrix from {1, 2}n×k, then any
algorithm that computes a matrix satisfying Equation (1) with ε = Ω(1), must match a 1 − Ω(ε)
fraction of the entries exactly, yielding the lower bound.

1. Formally, the probability of selecting a given row Ai should be Ω(‖Ai‖2/‖A‖2F ).
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Our Ω(nk/ε) lower bound is considerably more involved, and uses tools from communication
complexity and random matrix theory. For simplicity, let us describe our techniques in the case
k = 1. Consider the problem of reporting the majority bit of a random binary string of length
r = Θ(1/ε). This requires reading Ω(r) of the input bits. If we stack together n instances into an
n × r random binary matrix A, then reporting the majority bit for a large fraction of rows requires
reading Ω(nr) input bits. This is our target lower bound.

The reduction proceeds by first shifting the values in A from {0, 1} to {1, 2}, so that it becomes
an (asymmetric) distance matrix. A naı̈ve rank-1 approximation would be to replace each entry with
1.5, yielding a total squared Frobenius error of 1

4nr. However, the optimal rank-1 approximation
is (essentially) to replace each row by its true mean value instead of 1.5. By anti-concentration of
the binomial distribution, in most rows the majority bit appears Ω(

√
r) times more often than the

minority bit. A simple calculation shows this leads to a constant additive advantage per row, and
Ω(n) advantage over the whole matrix, of the optimal rank-1 approximation over the naı̈ve one.
Since ε‖A‖2F = O(n), any algorithm that satisfies Equation (1) must attain a similar advantage.

By spectral properties of random matrices, the optimal rank-1 approximation of A is essentially
unique. In particular, the largest singular value of A is much larger than the second-largest one.
For technical reasons we need to sharpen this separation even further. We accomplish this by aug-
menting the matrix with an extra row with very large values, which corresponds to augmenting the
metric space with an extra very far point. As a result, any algorithm that satisfies Equation (1) must
approximately recover the mean values for a large fraction of the rows. This allows us to solve
the majority problem, by reporting whether each row mean in the rank-1 approximation matrix is
smaller or larger than 1.5. This yields the desired lower bound for asymmetric distance matrices.
The result for symmetric distance matrices, and for general values of k, builds on similar techniques.

2. Preliminaries

Consider a distance matrix A ∈ Rn×m induced by two point sets, x1, ..., xn and y1, ..., ym, as
defined in Theorem 1.1. If n = m and xi = yi for every i ∈ [n],2 then we call A a symmetric
distance matrix. Otherwise we call it a bipartite distance matrix. Throughout, Ak denotes the
optimal rank-k approximation of A.

As mentioned earlier, our algorithm uses two sub-linear time algorithms as subroutines. They
are formalized in the following two theorems. The first reduces low-rank approximation to sampling
proportionally to row (or column) norms. We use Ai,∗ to denote the ith row of A.

Theorem 2.1 (Frieze et al. (2004)) Let A ∈ Rn×m be any matrix. Let S be a sample of O(k/ε)
rows according to a probability distribution (p1, . . . , pn) that satisfies pi ≥ Ω(1) · ‖Ai,∗‖22/‖A‖2F
for every i = 1, . . . , n. Then, in time O(mk/ε + poly (k, 1/ε)) we can compute from S a matrix
U ∈ Rk×m, that with probability 0.99 satisfies

‖A−AUTU‖2F ≤ ‖A−Ak‖2F + ε‖A‖2F . (2)

The second result approximately solves a regression problem while reading only a small number
of columns of the input matrix.

2. Throughout we use [`] to denote {1, . . . , `} for an integer `.
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Input: Distance matrix A ∈ Rn×m. Output: Matrices V ∈ Rn×k and U ∈ Rk×m.

1: Choose i∗ ∈ [n] and j∗ ∈ [m] uniformly at random.
2: For each i = 1, . . . , n: pi ← A2

i,j∗ +A2
i∗,j∗ + 1

m

∑m
j=1A

2
i∗,j .

3: Sample O(k/ε) rows of A according to the distribution proportional to (p1, . . . , pn).
4: Compute U from the sample, using Theorem 2.1.
5: Compute V from A and U , using Theorem 2.2.
6: Return V,U .

Algorithm 1: Low-rank approximation for distance matrices

Theorem 2.2 (Chen and Price (2017)) There is a randomized algorithm that given matrices A ∈
Rn×m and U ∈ Rk×m, reads only O(k/ε) columns of A, runs in time O(mk) + poly (k, 1/ε), and
returns V ∈ Rn×k that with probability 0.99 satisfies

‖A− V U‖2F ≤ (1 + ε) min
X∈Rn×k

‖A−XU‖2F . (3)

Since our sampling procedure evaluates the sum of squared distances (rather than just distances),
we need the following approximate version of the triangle inequality.

Claim 2.3 For every x, y, z ∈ Z in a metric space (Z, d), d(x, y)2 ≤ 2(d(x, z)2 + d(z, y)2).

Proof By the triangle inequality, d(x, y)2 ≤ (d(x, z) + d(z, y))2 = d(x, z)2 + 2d(x, z)d(z, y) +
d(z, y)2. By the inequality of means, d(x, z)d(z, y) ≤ 1

2(d(x, z)2 + d(z, y)2).

3. Algorithm

In this section we prove Theorem 1.2. The algorithm is stated in Algorithm 1. The main step in
the analysis is to provide guarantees for the sampling probabilities pi computed in Steps 1 and 2 of
the algorithm. They are specified by the following theorem.

Theorem 3.1 There is a randomized algorithm that given a distance matrix A ∈ Rn×m, runs in
time O(m+n), reads O(m+n) entries of A, and outputs sampling probabilities (p1, . . . , pn), that
with probability 1− δ satisfy pi ≥ Ω(δ) · ‖Ai,∗‖22/‖A‖2F for every i = 1, . . . , n.

Proof Let (Z, d) be the metric space associated with A. Let X = {x1, . . . , xn} and Y =
{y1, . . . , ym} be the pointsets associated with its rows and its columns, respectively. Choose a
uniformly random i∗ ∈ [n] and a uniformly random j∗ ∈ [m]. For every i ∈ [n], the output
sampling probabilities are given by

pi = d(xi, yj∗)
2 + d(xi∗ , yj∗)

2 +
1

m

m∑
j=1

d(xi∗ , yj)
2.

All pi’s can be computed in time O(n+m) and by reading n+m entries of A, since they only
involve distances between xi∗ to Y and between yj∗ to X . For every i ∈ [n],
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‖Ai,∗‖22 =

m∑
j=1

d(xi, yj)
2 ≤ 2

m∑
j=1

(
d(xi, yj∗)

2 + d(yj∗ , yj)
2
)

by Claim 2.3

≤ 2

m∑
j=1

(
d(xi, yj∗)

2 + 2d(xi∗ , yj∗)
2 + 2d(xi∗ , yj)

2
)

by Claim 2.3

= 2m · d(xi, yj∗)
2 + 4m · d(xi∗ , yj∗)

2 + 4
m∑
j=1

d(xi∗ , yj)
2

≤ 4m · pi.

On the other hand, in expectation over i∗ and j∗ we have E
[
d(xi, yj∗)

2
]

= 1
m

∑m
j=1 d(xi, yj)

2,
and E

[
d(xi∗ , yj∗)

2
]

= 1
nm

∑n
i=1

∑m
j=1 d(xi, yj)

2, and E
[
d(xi∗ , yj)

2
]

= 1
n

∑n
i=1 d(xi, yj)

2. Thus,

E

[
n∑
i=1

pi

]
=

n∑
i=1

E
[
d(xi, yj∗)

2
]

+ E
[
d(xi∗ , yj∗)

2
]

+ E

 1

m

m∑
j=1

d(xi∗ , yj)
2


= 3n · 1

nm

n∑
i=1

m∑
j=1

d(xi, yj)
2 =

3

m
‖A‖2F .

By Markov’s inequality,
∑n

i=1 pi ≤
3
δm‖A‖

2
F with probability 1 − δ. Normalizing the pi’s by

their sum yields the theorem.

We remark that if A is a symmetric distance matrix, i.e., X = Y , the sampling probabilities can
be simplified to choosing a single i∗ ∈ [n] uniformly at random, and letting pi = d(xi, xi∗)

2 +
1
n

∑m
j=1 d(xi∗ , xj)

2. The proof is similar to the above.

Proof of Theorem 1.2. Consider Algorithm 1. By Theorem 3.1, the probabilities computed in
Steps 1–2 are suitable for invoking Theorem 2.1. This ensures that the matrix U computed in
Steps 3–4 satisfies Equation (2). Theorem 2.2 guarantees that the matrix V computed in Step 5
satisfies Equation (3). Putting these together, we have

‖A− V U‖2F ≤ (1 + ε) min
X∈Rn×k

‖A−XTU‖2F by Equation (3)

≤ (1 + ε)‖A−AUTU‖2F
≤ (1 + ε)

(
‖A−Ak‖2F + ε‖A‖2F

)
by Equation (2)

≤ ‖A−Ak‖2F + ε · (2 + ε) · ‖A‖2F since ‖A−Ak‖2F ≤ ‖A‖2F ,

and we can scale ε by a constant. This proves Equation (1). For the query complexity bound,
observe that Theorem 2.1 readsO(k/ε) rows and Theorem 2.2 readsO(k/ε) columns of the matrix,
yielding a total of O((n + m)k/ε) queries. Finally, the running time is the sum of runnings times
of Theorems 2.1, 2.2 and 3.1. �
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4. Lower Bound

For a clearer presentation, in this section we prove the lower bound in the special case k = 1, for
distance matrices that can be asymmetric (called bipartite in Definition 1.1). This case encompasses
the main ideas. The full proof of Theorem 1.3 appears in the appendix. For concreteness, let us
formally state the special case that will be proven in this section.

Theorem 4.1 Let n, r, ε be such that r ≤ n and 1 > ε ≥ Ω(n−1/3). Any randomized algorithm
that given a distance matrix A ∈ Rn×r, computes V ∈ Rn×k, U ∈ Rk×r that with probability 2/3
satisfy ‖A−V U‖2F ≤ ‖A−A1‖2F + ε‖A‖2F , must read at least Ω(n/ε) entries of A in expectation.

4.1. Hard Distribution over Distance Matrices

By Yao’s principle, it suffices to construct a distribution over distance matrices, and prove the sam-
pling lower bound for any deterministic algorithm that operates on inputs from that distribution. We
begin by defining a suitable distribution over distance matrices and proving some useful properties.

Hard problem. In the majority problem, the goal is to compute the majority bit of an input bit-
string. We will show the hardness of low-rank approximation via reduction from solving multiple
random instances of the majority problem. The sample-complexity hardness of this problem is
well-known, and is stated in the following lemma. The proof is included in the appendix.

Lemma 4.2 Let r, t > 0 be integers. Any deterministic algorithm that gets a uniformly random
matrix S ∈ {0, 1}t×r as input, and outputs s∗ ∈ {0, 1}t such that for every i ∈ [t], Pr[s∗(i) =
majority element of ith row of S] ≥ 2/3, must read in expectation at least Ω(rt) entries of S.

The distribution. Given n and ε > 0, let β,C > 0 be constants that will be chosen later. (β will
be sufficiently small and C sufficiently large.) Let r = β/ε, and assume w.l.o.g. this is an integer by
letting ε be sufficiently smaller. Note that in Lemma 4.2, we can symbolically replace the majority
alphabet {0, 1} with any alphabet of size 2, and here we will use {1, 2}. Let S ∈ {1, 2}n×r be
a uniformly random matrix. Let s1, . . . , sn be its rows. We call each of its rows an instance (of
the majority problem). Thus S is an instance of the random multi-instance majority problem from
Lemma 4.2 (with t = n). We begin by establishing some of its probabilistic properties.

Our goal is to solve S via reduction to rank-1 approximation of distance matrices. To obtain a
distribution over distance matrices, we first take S and randomly permute its rows to obtain a matrix
A. The random permutation is denoted by π : [n] → [n].3 Then, we add an additional (n + 1)th
row to A, whose entries are all equal M =

√
Cn. The matrix with the added row is denoted by Ā.

Metric properties. First we show that Ā is indeed a (bipartite) distance matrix.

Lemma 4.3 Every supported Ā is a distance matrix.

3. The random permutation is for a technical reason and does not change the distribution. Specifically, it is to prevent
the algorithm in Lemma 4.2 from focusing on a few fixed instances {si}n

′
i=1,, n

′ � n, and never attempt the rest.
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Proof Consider a symbolic pointset X = P ∪Q where P ∩Q = ∅, such that P = {p1, . . . , pn+1}
corresponds to the rows of Ā, and Q = {q1, . . . , qr} to the columns of Ā. Our goal is to define a
metric d on X such that d(pi, qj) = Āij for every i ∈ [n+ 1] and j ∈ [r]. We need to set the rest of
the distances such that d is indeed a metric – that is, such that d satisfies the triangle inequality. For
every i, i′ ∈ [n] we set d(pi, pi′) = 1. For every j, j′ ∈ [r] we set d(qj , qj′) = 1. Finally we need
to set the distances from pn+1. By construction of Ā we already have d(pn+1, qj) = M for every
j ∈ [r]. We set all the remaining distances, d(pi, pn+1) for every i ∈ [n], to also be M .

We need to verify that for all distinct triplets x, y, z ∈ X , d(x, y) ≤ d(x, z) + d(z, y). Indeed,
all distances are in {1, 2,M}. If d(x, y) ∈ {1, 2} then the inequality holds for any setting of d(x, z)
and d(z, y). Otherwise d(x, y) = M , hence necessarily either x = pn+1 or y = pn+1, and in both
cases d(x, z) + d(z, y) ≥ max{d(x, z),d(z, y)} ≥ d(pn+1, z) = M = d(x, y) as needed.

Probabilistic properties. By anti-concentration of the binomial distribution, it is known that in a
random length-r bistring, the majority bit is likely appear Ω(

√
r) times more than the other bit.

Lemma 4.4 (anti-concentration) Let 0 < δ < 1. Let s ∈ {1, 2}r be a uniformly random majority
instance. Then, for γ = Ω(δ), the majority element of s appears in it at least 1

2r + γ
√
r times with

probability at least 1− δ.

We call an instance s in S typical if its majority element appears in it at least 1
2r + γ

√
r times,

where γ is the constant from Lemma 4.4. Otherwise, we call the instance atypical.
Let Ψtypical denote the event there are at least 0.9n typical instances. By Markov’s inequality,

Pr[Ψtypical] ≥ 1− 10δ.

Spectral properties. We will also require some facts from random matrix theory about the spec-
trum of A. Let 1 denote the all-1’s vector in Rr. Let P1 denote the orthogonal projection on the
subspace spanned by 1. The proofs of the following two lemmas are given in the appendix.

Lemma 4.5 Suppose r3 = O(n). With probability 1− e−Ω(n/r3/2), ‖A−A1‖2F ≥
1
4nr −O(n).

In the next lemma and throughout, ‖X‖2 denotes the spectral norm of a matrix X .

Lemma 4.6 Let ζ > 0. Let Z be a rank-1 matrix such that ‖Z‖2 ≤ ζ
√
n. Then with probability

1− o(1), ‖AP⊥1 − Z‖2F ≥ ‖AP⊥1 ‖2F − ζ ·O(n).

Since r = β/ε and in Theorem 4.1 we assume ε−3 = O(n), Lemma 4.5 is satisfied with
probability 1− o(1). Therefore,

Corollary 4.7 Denote by Ψspectral the event that the conclusions of both Lemmas 4.5 and 4.6 hold.
Then Pr[Ψspectral] ≥ 1− o(1), and therefore Pr[Ψtypical ∧Ψspectral] ≥ 1− 10δ − o(1).

Bounds on low-rank approximation Finally we give upper bounds on the approximation error
allowed by Equation (1). For every instance si, let µi = 1

r

∑r
j=1 sij denote its mean.

Lemma 4.8 ‖Ā− Ā1‖2F + ε‖Ā‖2F ≤
∑n

i=1‖si − µi1‖22 + (4 + C)βn.
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Proof Let Ā∗ be the matrix in which each row equals 1 times the mean of the corresponding row
of A. Then ‖Ā− Ā1‖2F ≤ ‖Ā− Ā∗‖2F =

∑n
i=1‖si − µi1‖22, where the first inequality is since Ā∗

has rank 1 (each of its rows is a multiple of 1). Note that the sum ranges only up to n and not n+ 1,
since in the (n+ 1)th row all entries are equal (to M ) and thus it contributes 0 to ‖Ā− Ā∗‖2F . This
bounds the first summand in the lemma. To bound the second summand, note that each entry in the
first n rows of Ā is at most 2, thus contributing in total 4rn to ‖Ā‖2F . The final row contributes
rM2 = Crn. Recalling that εr = β, we have ε‖A‖2F ≤ (4 + C)βn.

Corollary 4.9 ‖Ā− Ā1‖2F + ε‖Ā‖2F ≤
1
4nr + (4 + C)βn.

Proof For every si, its mean µi minimizes the sum of squared differences from a single value,
namely ‖si−µi1‖22 = minν∈R‖si−ν1‖22. In particular, ‖si−µi1‖22 ≤ ‖si−1.5·1‖22. Furthermore,
since si ∈ {1, 2}r, we have ‖si − 1.5 · 1‖22 = r · (1

2)2 = 1
4r. Hence

∑n
i=1‖si − µi1‖22 ≤

1
4nr, and

the corollary follows from Lemma 4.8.

4.2. Invoking the Algorithm

Suppose we have a deterministic algorithm that given Ā, returns Ā′ = ābT , where ā ∈ Rn+1 and
b ∈ Rr, such that

‖Ā− ābT ‖2F ≤ ‖Ā− Ā1‖2F + ε‖Ā‖2F . (4)

Let a ∈ Rn denote the restriction of ā to the first n entries. By scaling (i.e., multiplying ā by a
constant and b by its reciprocal), we can assume w.l.o.g. that an+1 = M . Since the (n + 1)th row
of Ā equals M · 1, we have

‖Ā− ābT ‖2F = ‖A− abT ‖2F + ‖M · 1− an+1b‖22 = ‖A− abT ‖2F +M2‖1− b‖22.

If we rearrange this, and use Equation (4) and Corollary 4.9 as an upper bound on ‖Ā− ābT ‖2F and
Lemma 4.5 as a lower bound on ‖A− abT ‖2F , we get M2‖1− b‖22 ≤ (4 +C)βn+O(n). Plugging
M =

√
Cn,

‖1− b‖22 ≤
(

4

C
+ 1

)
β +

O(1)

C
=
O(1)

C
. (5)

This facts yields the following two lemmas, whose full proofs appear in the appendix.

Lemma 4.10 We have 1− η/
√
r ≤ ‖bTP1‖/‖1‖ ≤ 1 + η/

√
r, where η > 0 is a constant that can

be made arbitrarily small by choosing C > 0 sufficiently large.

Lemma 4.11 ‖a‖ = O(
√
n).

4.3. Solving Majority

We now show how to use Ā′ = ābT to solve the majority instance S of the problem in Lemma 4.2.
We condition on the intersection of the events Ψtypical and Ψspectral. By Corollary 4.7 it occurs with
probability at least 1− 10δ − o(1).

Let s1, . . . , sn ∈ {1, 2}r denote the random instances in S. Recall that we assigned them to
rows of A by a uniformly random permutation π, that is, the π(i)th row of A equals si.
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We use a to solve the majority problem as follows. For each si, if aπ(i) ≤ 1.5 then we output that
the majority is 1, and otherwise we output that the majority is 2. We say that a solves the instance
si if the output is correct. Due to π being random, the probability that A solves any instance si is
identical. Denote this probability by p. We need to show that p ≥ 2/3.

Assume by contradiction that p < 2/3. By Markov’s inequality, with probability at least 4/5
we have at least n/6 unsolved instances. Since by Ψtypical there are only 0.1n atypical instances, we
have at least n/15 unsolved typical instances. Denote by S′ the set of unsolved typical instances.
Consider such instance si ∈ S′. Suppose its majority element is 1. Then, since it is typical,

‖si − µi1‖22 ≤ ‖si − (1.5− γ/
√
r)1‖22

≤
(

1
2r + γ

√
r
) (

1
2 − γ/

√
r
)2

+
(

1
2r − γ

√
r
) (

1
2 + γ/

√
r
)2

= 1
4r − γ

2. (6)

On the other hand, since si is unsolved then aπ(i) ≥ 1.5. Hence by Lemma 4.10, ‖b
TP1‖2
‖1‖2 · aπ(i) ≥

1.5− η/
√
r. Therefore, noting that bTP1 = ‖bTP1‖2

‖1‖2 · 1, we have

‖si − aπ(i)b
TP1‖22 = ‖si −

‖bTP1‖2
‖1‖2

· aπ(i)1‖22

≥ ‖si − (1.5− η√
r
) · 1‖22

≥
(

1
2r + γ

√
r
) (

1
2 − η/

√
r
)2

+
(

1
2r − γ

√
r
) (

1
2 + η/

√
r
)2

= 1
4r + η2 − 2γη. (7)

Similar calculations yield the same bounds when the majority element is 2. From Equation (6),
together with Equation (4) and Lemma 4.8, we get:

‖Ā− ābT ‖2F ≤
n∑
i=1

‖si − µi1‖22 ≤ 1
15n(1

4r − γ
2) +

∑
si /∈S′
‖si − µi1‖22 + (4 + C)βn. (8)

On the other hand, by Equation (7),

‖A− abTP1‖2F =
n∑
i=1

‖si − aπ(i)b
TP1‖22 ≥ 1

15n(1
4r + η2 − 2γη) +

∑
si /∈S′
‖si − µi1‖22. (9)

It remains to relate Equations (8) and (9) to derive a contradiction. By the Pythagorean identity,
‖A− abT ‖2F = ‖AP1 − abTP1‖2F + ‖AP⊥1 − abTP⊥1 ‖2F , and

‖A− abTP1‖2F = ‖AP1 − abTP 2
1‖2F + ‖AP⊥1 − abTP1P

⊥
1 ‖2F = ‖AP1 − abTP1‖2F + ‖AP⊥1 ‖2F .

Together, ‖A−abTP1‖2F = ‖A−abT ‖2F +
(
‖AP⊥1 ‖2F − ‖AP⊥1 − abTP⊥1 ‖2F

)
. Let us upper-bound

both terms. For the first term, we simply use ‖A − abT ‖2F ≤ ‖Ā − ābT ‖2F . For the second term,
note that ‖bTP⊥1 ‖2 = ‖1P⊥1 − bTP⊥1 ‖2 ≤ ‖1 − b‖2. Together with Lemma 4.11, ‖abTP⊥1 ‖2 ≤
O(
√
n) · ‖1 − b‖2. Thus by Lemma 4.6,

(
‖AP⊥1 ‖2F − ‖AP⊥1 − abTP⊥1 ‖2F

)
≤ O(n) · ‖1 − b‖2.

By Equation (5), the latter is O(n)/
√
C. Plugging both upper bounds,

‖A− abTP1‖2F ≤ ‖Ā− ābT ‖2F +O(n) · C−1/2.
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This relates Equations (8) and (9), yielding

1
15(γ2 + η2) ≤ 2

15 · γη + (4 + C)β +O(1) · C−1/2.

Since γ is fixed, choosing β, η sufficiently small and C sufficiently large leads to a contradiction.
Thus p ≥ 2/3, meaning the reduction solves each instance in the majority problem S with

probability at least 2/3. Accounting for the conditioning on Ψtypical and Ψspectral, the determined
low-rank approximation algorithm from Section 4.2 solves a random instance of Lemma 4.2 with
probability at least 2/3−10δ−o(1) (the constants can be scaled without changing the lower bound).
Hence, it requires reading at least Ω(n/ε) bits from the matrix, which proves Theorem 4.1.

5. Experiments

In this section, we evaluate the empirical performance of Algorithm 1 compared to the existing
methods in the literature: conventional SVD, the algorithm of (Bakshi and Woodruff, 2018) (BW),
and the input-sparsity time algorithm of (Clarkson and Woodruff, 2017) (IS). For SVD we use
numpy’s linear algebra package.4 The experimental setup is analogous to that in (Bakshi and
Woodruff, 2018). Specifically, we consider two datasets:

• Synthetic clustering dataset. This data set is generated using the scikit-learn package.
We generate 10, 000 points with 200 features and partition the points into 20 clusters. As ob-
served in our experiments, the dataset is expected to have a good rank-20 approximation.

• MNIST dataset. The dataset contains 70, 000 handwritten characters, and each is considered a
point. We subsample 10, 000 points.

For each dataset we construct a symmetric distance matrix Ai,j = d(pi, pj). We use four distances
d: Manhattan (`1), Euclidean (`2), Chebyshev (`∞) and Canberra5 (`c). Figures 1 and 2 show the
approximation error for each distance on each dataset, for varying values of the rank k. Note that
SVD achieves the optimal approximation error. Table 1 lists the running times for k = 40. Figure 3
shows the running time of our algorithm for MNIST subsampled to varying sizes, for k = 40.

Table 1: Running times (in seconds) of the compared methods for rank k = 40 approximation

Synthetic MNIST
Metric SVD IS BW This Work SVD IS BW This Work
`2 398.77 8.95 1.70 1.17 398.50 34.32 4.17 1.23
`1 410.60 8.16 1.82 1.197 560.91 39.50 3.71 1.23
`∞ 427.90 9.18 1.63 1.16 418.01 39.33 4.00 1.14
`c 452.17 8.49 1.76 1.15 390.07 38.34 3.91 1.24

4. https://docs.scipy.org/doc/numpy-1.15.1/reference/routines.linalg.html. This performs full SVD. The iterative SVD
algorithms built into MATLAB and Python yielded errors larger by a few orders of magnitude than the reported
methods, so they are not included.

5. The Canberra distance dc between vectors p, q ∈ Rn is defined as dc(p, q) =
∑n

i=1
|pi−qi|
|pi|+|qi|

.
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Figure 1: The approximation error of the four algorithms on the synthetic clustering dataset.

Figure 2: The approximation error of the four algorithms on the MNIST dataset.
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Figure 3: Running time of our algorithm on subsets of MNIST, for k = 40.

Appendix A. Deferred Proofs from Section 4

A.1. Preliminary Lemmas

The following lemmas are known and we include their proofs for completeness.
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Lemma A.1 (hardness of majority, Lemma 4.2 restated) Let r, t > 0 be integers. Any determin-
istic algorithm that gets a uniformly random matrix S ∈ {0, 1}t×r as input, and outputs s∗ ∈ {0, 1}t
such that for every i ∈ [t], Pr[s∗(i) = majority element of ith row of S] ≥ 2/3, must read in expec-
tation at least Ω(rt) entries of S.

Proof The reduction is from the distributional Gap-Hamming communication problem, which is
defined as follows. Alice has a bit string x in {0, 1}r and Bob has a bit string y in {0, 1}r, where x
and y are independent and uniformly distributed. Let ∆(x, y) denote their Hamming distance. The
goal is to decide whether ∆(x, y) ≥ 1

2r+
√
r or ∆(x, y) ≤ 1

2r−
√
r. If neither case holds, then any

output is considered successful. The information cost under this distribution is Ω(r) (Braverman
et al., 2016).

Next consider the r-fold version of the same problem, i.e., Alice and Bob are given r instances
of distributional Gap-Hamming, and they need to solve a constant fraction of them. By a standard
direct sum theorem (see e.g. (Braverman and Rao, 2014)), this requires Ω(rt) bits of communica-
tion.

Finally we reduce this problem to the majority problem in lemma statement. Let X denote the
xor matrix of Alice’s and Bob’s matrices. The Gap Hamming problem is equivalent to finding the
majority bit over rows ofX in which the majority bit appears at least 1

2r+
√
r times (call these rows

“typical”). By Lemma 4.4 this happens in a large constant fraction of the rows. Given a black-box
algorithm for the majority problem that queries q entries of the input matrix, Alice and Bob can
simulate it on M by communicating to each other only those entries of their matrices, which costs
them Θ(q). The algorithm solves a large fraction of the rows, and thus a large fraction of the typical
rows. Hence they have solved the Gap Hamming problem, and q = Ω(rt).

Lemma A.2 (binomial anti-concentration, Lemma 4.4 restated) Let 0 < δ < 1. Let s ∈ {1, 2}r
be a uniformly random majority instance. Then, for γ = Ω(δ), the majority element of s appears in
it at least 1

2r + γ
√
r times with probability at least 1− δ.

Proof Let X ∼ Binomial(r, 1
2). The statement we need to show is equivalent to Pr[|X − 1

2r| <
1
2γ
√
r] < δ, or equivalently,

d12 r+
1
2γ
√
re∑

i=b12 r−
1
2γ
√
rc

Pr[X = i] < δ.

Let γ =
√
π/2 · δ. Note that Pr[X = i] ≤ Pr[X = br/2c] for every i, and Pr[X = br/2c] =

2−r
(

r
br/2c

)
≤ 1/

√
2πr by a known estimate. Therefore, the above left-hand side sum is upper-

bounded by 2γ
√
r/
√

2πr = δ as needed.

A.2. Spectral Properties

For the next two lemmas, write A = 1.5J +B where J is the all-1’s matrix and B is a matrix with
i.i.d. random entries chosen uniformly from {−1

2 ,
1
2}.

Lemma A.3 (Lemma 4.5, restated) Suppose r3 = O(n). With probability 1− e−Ω(n/r3/2), ‖A−
A1‖2F ≥

1
4nr −O(n).
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Proof We use a sharp estimate of (Feldheim and Sodin, 2010) on the smallest singular value
of B (see also (Rudelson and Vershynin, 2010), eq. (2.5)). It states that with probability 1 −
exp(−Ω(n/r3/2)), all r singular values of B are at least 1

4n − O(
√
nr). Furthermore, since A

is obtained from B by adding a rank-1 matrix (1.5J), then by Theorem 1 of (Thompson, 1976), A
has at least r− 1 singular values which are at least 1

4n−O(
√
nr). Therefore ‖A−A1‖2F , which is

the sum of all squared singular values of A except the largest, is at least (r− 2) · (1
4n−O(

√
nr)) =

1
4nr −O(n)−O(r3/2√n).

Lemma A.4 (Lemma 4.6, restated) Let ζ > 0. Let Z be a rank-1 matrix such that ‖Z‖2 ≤ ζ
√
n.

Then with probability 1− o(1), ‖AP⊥1 − Z‖2F ≥ ‖AP⊥1 ‖2F − ζ ·O(n).

Proof By the Hoffman-Wielandt inequality (Hoffman and Wielandt, 2003) for singular values6, any
X,Y ∈ Rn×r satisfy ‖X − Y ‖2F ≥

∑r
j=1(σj(X) − σj(Y ))2, where σ1(X) ≥ . . . ≥ σr(X) and

σ1(Y ) ≥ . . . ≥ σr(Y ) are their respective sorted singular values. In particular, letting X = AP⊥1
and Y = Z, since Z has rank 1, we have

‖AP⊥1 − Z‖2F ≥
r∑
j=2

(σj(AP
⊥
1 ))2 +

(
σ1(AP⊥1 )− σ1(Z)

)2

= ‖AP⊥1 ‖2F − 2σ1(AP⊥1 )σ1(Z) + (σ1(Z))2

= ‖AP⊥1 ‖2F − 2‖AP⊥1 ‖2‖Z‖2 + ‖Z‖22.

Therefore it suffices to show that ‖AP⊥1 ‖2 = O(
√
n). Indeed, ‖AP⊥1 ‖2 = ‖(1.5J + B)P⊥1 ‖2 =

‖BP⊥1 ‖2 ≤ ‖B‖2, and an upper bound ‖B‖2 = O(
√
n) is well known, e.g., see Proposition 2.4 in

(Rudelson and Vershynin, 2010).

A.3. Lemmas from Section 4.2

Lemma A.5 (Lemma 4.10, restated) We have

1− η√
r
≤ ‖b

TP1‖
‖1‖

≤ 1 +
η√
r
,

where η > 0 is a constant that can be made arbitrarily small by choosing C > 0 sufficiently large.

Proof By the triangle inequality we have

‖1‖2 − ‖1− b‖2 ≤ ‖b‖2 ≤ ‖1‖2 + ‖1− b‖2.

The upper bound implies
‖bTP1‖ ≤ ‖b‖ ≤ ‖1‖2 + ‖1− b‖2. (10)

The lower bound implies

‖1− b‖22 = ‖1‖22 + ‖b‖22 − 2bT1 ≥ ‖1‖22 + ‖1‖22 + ‖1− b‖22 − 2‖1‖2‖1− b‖2 − 2bT1,

6. See also Exercise 22(v) in (Tao, 2010)
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which rearranges to bT1 ≥ ‖1‖22 − ‖1‖2‖1− b‖2, implying

‖bTP1‖ = bT (
1

‖1‖2
1) ≥ ‖1‖2 − ‖1− b‖2. (11)

Putting Equations (10) and (11) together,

‖1‖2 − ‖1− b‖2 ≤ ‖bTP1‖ ≤ ‖1‖2 + ‖1− b‖2,

and the lemma follows since ‖1‖2 =
√
r and since by eq. (5), ‖1 − b‖2 is a constant that can be

made arbitrarily small by choosing C > 0 sufficiently large.

Lemma A.6 (Lemma 4.11, restated) ‖a‖ = O(
√
n).

Proof By the triangle inequality, ‖b‖2 ≥ ‖1‖2 − ‖b − 1‖2. Since ‖1‖2 =
√
r and ‖b − 1‖2 is an

arbitrarily small constant by Equation (5), ‖b‖2 ≥ 1
2

√
r. Thus

‖abT ‖2F = ‖a‖22‖b‖22 ≥ 1
4r‖a‖

2
2. (12)

We finish by showing that ‖abT ‖2F = O(nr). Indeed,

‖A− abT ‖2F ≤ ‖Ā− ābT ‖2F
≤ ‖Ā− Ā1‖2F + ε‖Ā‖2F by Equation (4)

≤ 1
4nr + (4 + C)βn. by Corollary 4.9

Furthermore ‖A‖2F ≤ 4nr since each entry of A has absolute value at most 2. Finally, by approxi-
mate triangle inequality (Claim 2.3),

‖abT ‖2F ≤ 2‖A‖2F + 2‖A− abT ‖2F = O(nr).

With Equation (12) this implies the lemma.

A.4. Lower Bound for Symmetric Distance Matrices

In this section we show that the lower bound in Theorem 4.1 applies also to symmetric distance
matrices. The proof is by a reduction to the asymmetric case.

A.4.1. General k

We start by reducing rank-k approximation of asymmetric distance matrices to rank-(2k + 2) ap-
proximation of symmetric distance matrices. By tuning β, suppose w.l.o.g. that kr = βk/ε is a
divisor of n. Let B ∈ Rn×kr be an asymmetric distance matrix drawn from the hard distribution.
Recall that all entries are in {1, 2, 3}. We can scale them by half so they are all the interval [1, 2].

We construct a symmetric distance matrix A ∈ R2n×2n. It is partitioned into n× n blocks,

A =

[
A11 A12

A21 A22

]
.
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We set its entries as follows. Its main diagonal is all-zeros. A21 consists of n/(kr) copies of B,
concatenated horizontally. A11 has all off-diagonal entries set to 1. A12 and A22 are determined
symmetrically. Since all entries are in the interval [1, 2], the triangle inequality is satisfied trivially
and thus A is a distance matrix.

We will show here that any rank-(2k + 2) approximation algorithm for A must read at least
Ω(nk/ε) of its entries. Let 0 and 1 denote the all-0’s and all-1’s vectors in Rn, respectively. For any
x, y ∈ Rn let [x y] denote their concatenation into a vector in R2n. Let Bk be the optimal rank-k
approximation of B. Write B as B = UV T where U ∈ Rn×k and V ∈ Rkr×k. Let u1, . . . , uk be
the columns of U and let v1, . . . , vk be the columns of V T . For every i ∈ [k], let v̄i be the vector
given by concatenating n/(kr) copies of vi. Consider the rank-(2k + 2) approximation of A given
by the column vectors {[0 ui] : i ∈ [k]} ∪ {[v̄i 0] : i ∈ [k]} ∪ {[1 0], [0 1]}. Let us bound its
error in approximating A. On A12 and A21, which contain concatenated copies of B, the vectors
{[0 ui] : i ∈ [k]}∪{[v̄i 0] : i ∈ [k]} attain the optimal error. On A11 and A11, which contain 0’s on
the diagonal and 1’s off the diagonal, the vectors {[1 0], [0 1]} attain zero error on the off-diagonal
entries, and 2n error in total over the diagonal entries. Consequently,

‖A−A2k+2‖2F ≤ t · ‖B −B1‖2F + 2n,

where t = 2n/(kr) is the number of copies of B embedded in A.
Suppose we have an algorithm that givenA, returns a rank-(2k+2) matrixA′ that satisfies Equa-

tion (1). Let A′1, . . . , A
′
t denote the restriction of A′ to the blocks matching the copies of B embed-

ded in A. Thus, ‖A − A′‖2F ≥
∑t

i=1‖B − A′i‖2F . Furthermore, since ‖A‖2F = Θ(n2) = Θ(tnkr)
and ‖B‖2F = Θ(nkr), we have ‖A‖2F = O(1) · t · ‖B‖2F . Putting everything into Equation (1),

t∑
i=1

‖B −A′i‖2F ≤ t ·
(
‖B −Bk‖2F +O(n) +O(ε) · ‖B‖2F

)
.

By averaging, for at least one i ∈ [t] we have ‖B−A′i‖2F ≤ ‖B−Bk‖2F +O(ε) · ‖B‖2F . By scaling
ε by a constant,A′ solves the rank-k approximation problem forB. By the proof for the asymmetric
case, this requires Ω(nk/ε) queries to its input.

A.4.2. k = 1

The previous section proves hardness for rank-k approximation of symmetric distance matrices, for
k ≥ 4. For completeness let us also show hardness for the k = 1 case, by a somewhat more refined
analysis of the reduction in that case.

To this end we slightly modify the construction of A from the previous section. We draw
B ∈ Rn×r from the hard distribution for asymmetric distance matrices in the k = 1 case. A is
constructed as above, except that in A11 and A22, we change the off-diagonal entries from 1 to
1.52 = 2.25. Again we can scale everything by a constant so that all entries are in the interval [1, 2],
which yields a distance matrix.

Let B1 = uvT be the best rank-1 approximation of B, where u ∈ Rn and v ∈ Rr. As above we
let v̄ denote n/r copies of v concatenated to form a vector in Rn. Consider the rank-1 approximation
of A given by A′ = [v̄ u][v̄ u]T . The error on A12 and A21 is optimal by construction. We need
to show that the error on A11 and A22 is at most ε · O(n2). To this end we use the fact in our hard
distribution that generated B in Section 4, for all supported B, the top left and right singular vectors
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are nearly the same. Namely, the top-right one is close to 1, and the top-left one is close to 1.5 · 1,
for any matrix B in the support.

Concretely, consider an entry in A22 whose value is 2.25. The corresponding entry in A′ is
vivj for i 6= j. Each vi is the mean of a uniformly random vector in {1, 2}r. Thus it is a scaled
binomial random variable with mean 1.5 and variance 1/(4r) = 1

4βε. Furthermore, vi and vj are
independent. Therefore, the expected squared Frobenius norm error on that entry is

E[(2.25− vivj)2] = Var[vivj ] = Var[vi] ·Var[vj ] = (1
4βε)

2.

Thus the expected total error over all of the 2.25 entries (of which there areO(n2)) is ε ·O(n2). The
concentration for the 1-entries is even stronger. This completes the proof of the symmetric case for
k = 1.

Appendix B. Lower Bound for General k

In this section we prove the full statement of Theorem 1.3. The proof largely goes by reduction to
the k = 1 case, described as follows. We take k copies (referred to as blocks) of the hard distribution
from the k = 1 case, and concatenate them horizontally into an n×(kr) matrix (where as previously,
r = Θ(1/ε)). Then, for each block we pick a Hadamard vector, and add it to all columns in that
block. This renders the blocks nearly orthogonal, forcing any low-rank approximation algorithm
to compute the majority element of most rows in most blocks, thus solving Ω(nk/ε) instances of
random majority, yielding the desired lower bound. Even though the description is straightforward,
the formal proof requires some elaborate technical work, as given in the rest of this section.

Another rather minor difference is that due to having k blocks (which correspond to k clusters
of points in the metric space), we cannot add a “heavy row” (which would correspond to a very far
point), with all entries set to a largeM > 0, to each block as we did in the k = 1 case. The reason is
that the clusters are close (the distance between every two clusters is at most 2), so any point which
is far from one cluster must be far from all of them. Thus it would sharpen the spectrum separation
of the entire matrix, but not of each block separately, which is the effect we wish to achieve (namely,
it would increase the top singular value, but not all top-k singular values.). This is solved by adding
M2 light rows instead of a single heavy row. In a light row, we can set all distances to a given
cluster i ∈ [k] to 2, and the rest of the distances to 1. This makes the corresponding point slightly
further from cluster i than from the rest of the clusters. Over many similar light rows, this yields the
desired effect.

B.1. Hard distribution

Given n, k, ε, let β,C > 0 be constants that will be chosen later. (β will be sufficiently small and
C sufficiently large.) Let r = β/ε, and assume w.l.o.g. this is an integer by letting ε be sufficiently
smaller. Let N = (1 + C)n.

Next we use the Walsh construction of Hadamard vectors. Recall these are vectors with entries
in {±1}N which are pairwise orthogonal. Let v1, . . . , vk ∈ RN be k Hadamard column vectors,
which are different than all-1’s. We rescale them to have entries in {±1

2}. Let V i ∈ RN×r be made
of r copies of vi concatenated horizontally.

For every i = 1, . . . , k let Si ∈ {±1
2}
n×r be made of n vertically stacked instances of majority,

after a random permutation of the rows. We complete it to a matrix S̄i ∈ {0,±1
2}
N×r by adding
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all-0’s lines at the bottom. We use J to denote the all-1’s matrix of dimensions implied by context.
We form a matrix Āi ∈ RN×r by

Āi = 2J + V i + S̄i.

We concatenate the Ai’s horizontally to obtain a matrix Ā ∈ RN×kr. This defines the hard distribu-
tion over distance matrices Ā ∈ RN×kr.
Claim B.1 Every supported Ā is a bipartite distance matrix.

Proof It can checked that all entries of Ā are in {1, 11
2 , 2, 2

1
2 , 3} ⊂ [1, 3], and thus they satisfy the

triangle inequality in a bipartite metric.

Let B̄ = Ā − 2J and B̄i = V i + S̄i. Moreover, let B ∈ Rn×kr denote the restriction of
B̄ to its top n rows. In most of the proof we will actually work with the matrix B̄ instead of Ā
(cf. Lemma B.5 later on).

B.1.1. Spectral Properties

Lemma B.2 Suppose (kr)3 = O(n). With probability at least 1− e−Ω(n/(kr)3/2 , each of the top k
squared singular values of B̄ is Θ(nr), and every other squared singular value is (1

4 ± o(1))n.

Proof Similarly to Lemma 4.5, all squared singular value of the random portion of B̄ (which are the
blocks Si) are (1

4 ± o(1))n with high probability. Since B̄ is obtained by adding k rank-1 matrices
to that random portion, this bound holds for all but the top-k singular values of B̄.

For the upper part of the spectrum, first note that the absolute value of each entry in B̄ is
distributed uniformly i.i.d. in {0, 1}. Thus with high probability, ‖B̄‖2F ≥

1
2Cnkr. By the above,

the squared singular values except the top-k sum to at most (1
4 +o(1))nkr (since there are kr−k of

them). Thus the sum of squares of the top-k singular vectors is at least, say, 1
4Cnkr. On the other

hand, for every block i, if we multiply B̄ on the left by vi and on the right by the ith block indicator,
we get (1 − o(1))Cnr. Since the Hadamard vectors {vi} are orthogonal and the block indicators
are orthogonal, B̄ must have at least k singular values whose square is at least (1− o(1))Cnr. The
lemma follows.

B.1.2. Bounds on Low-Rank Approximation

For every i ∈ [k] and j ∈ [n] let us denote by sij the majority instance which is at the jth line of Si.
Let µij denote its mean. As in the k = 1 case, let 1 denote the all-1’s vector in Rr, and let P1 denote
the orthogonal projection on the subspace spanned by it.

Lemma B.3 ‖B̄ − B̄k‖2F + ε‖B̄‖2F ≤
∑k

i=1

∑n
j=1‖sij − µij1‖22 + 4(1 + C)βnk.

Proof For the first summand, consider the rank-k matrix given by replacing each majority instance
sij in B by µij1. For the second summand, note that each entry in B̄ has magnitude at most 2, thus
ε‖B̄‖2F ≤ ε · (1 + C)n · kr = 4(1 + C)βnk.

Corollary B.4 ‖B̄ − B̄k‖2F + ε‖B̄‖2F ≤
1
4nkr + 4(1 + C)βkn.

Proof In the term
∑n

i=1‖si − µi1‖22 in the above lemma, if we replace µi by 1.5 (which does not
decrease the term since the means are optimal for it), we pay exactly (1

2)2 per entry.
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B.2. Invoking the Algorithm

Suppose we have a deterministic algorithm that given Ā, returns Ā′ of rank k+1that with probability
at least (2/3) + δ satisfies

‖Ā− Ā′‖2F ≤ ‖Ā− Āk+1‖2F + ε‖Ā‖2F . (13)

This the hypothesis of Theorem 1.3, except with k + 1 instead of k; this will be more convenient to
work with, and does not change the theorem statement (one can shift k by 1 everywhere).

We now move from working with Ā to working with B̄.

Lemma B.5 We can obtain an approximation B̄′ of rank k + 2 that satifies

‖B̄ − B̄′‖2F ≤ ‖B̄ − B̄k‖2F +O(ε) · ‖B̄‖2F . (14)

Proof We take B̄′ = Ā′ − 2J . Then, for a constant c > 0,

‖B̄ − B̄′‖2F = ‖(Ā− 2J)− (Ā′ − 2J)‖2F
= ‖Ā− Ā′‖2F
≤ ‖Ā− Āk+1‖2F + ε‖Ā‖2F
≤ ‖Ā− B̄k − 2J‖2F + ε‖Ā‖2F
≤ ‖B̄ − B̄k‖2F + cε‖B̄‖2F ,

and we scale ε down by c.

Combined with Corollary B.4, we get

Corollary B.6 ‖B̄ − B̄′‖2F ≤
1
4nkr + 4(1 + C)βkn.

Recall that B̄′k denotes the optimal rank-k approximation of B̄′, and thus ‖B̄′k‖2F is the sum of
squares of the top-k singular values of B̄′ (which has a total of k + 2 singular values).

Lemma B.7 The singular values of B̄′ satisfy

k+2∑
i=1

(
σi(B̄)− σi(B̄′)

)2 ≤ O(Cβnk).

Furthermore, the two bottom squared singular values are each O(Cβnk).

Proof Using Lemma B.5 as an upper bound and the Hoffman-Weilandt inequality as a lower bound
on ‖B̄ − B̄′‖2F ,

k+2∑
i=1

(
σi(B̄)− σi(B̄′)

)2
+ ‖B̄ − B̄k+2‖2F ≤ ‖B̄ − B̄′‖2F ≤ ‖B̄ − B̄k‖2F +O(Cβnk).
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Observe that ‖B̄ − B̄k‖2F − ‖B̄ − B̄k+2‖2F = σk+1(B̄)2 + σk+2(B̄)2, and by Lemma B.2 each of
these two summands is O(n), which is less than O(Cβnk).7 Plugging this above yields the desired
inequality,

∑k+2
i=1

(
σi(B̄)− σi(B̄′)

)2 ≤ O(Cβnk).
As for the bottom two singular values of B̄′, the inequality just proven yields in particu-

lar
(
σk+1(B̄)− σk+1(B̄′)

)2 ≤ O(Cβnk), hence σk+1(B̄′) ≤ σk+1(B̄) + O(
√
Cβnk). As al-

ready mentioned above, σk+1(B̄) = O(
√
n) = O(

√
Cβnk) by Lemma B.2. Thus σk+1(B̄′)2 ≤

O(Cβnk). The same holds for σk+2(B̄′).

B.2.1. Averaging Columns in Blocks

We now carry out the main part of the reduction to the rank-1 case. We do this by showing that
B̄ can be approximated by the matrix resulting from taking B̄′ and replacing each column in each
block by the average of columns in that block. Note that in the resulting matrix, each block has rank-
1 since its columns are identical. Therefore, by averaging, we could get a rank-1 approximation for
a large constant fraction of the blocks. Let us now argue this formally.

Let Π1 be the orthogonal projection of Rkr on the subspace spanned by block indicators. Note
that for a matrix Z ∈ RN×kr, the operation ZΠ1 averages the columns in each block. The main
lemma for this part of this following.

Lemma B.8 ‖B̄ − B̄′Π1‖2F ≤ ‖B̄ − B̄′‖2F +O(
√
Cβ · nk).

The proof will go by showing that the row space of B̄′ has to be close to the span of the block
indicators, which is the subspace on which Π1 projects. (This would yield B̄′ ≈ B̄′Π1 and hence
‖B̄ − B̄′‖2F ≈ ‖B̄ − B̄′Π1‖2F , as the lemma asserts). The way we show this is by transitivity, by
showing that both subspaces are close to the top-k row space of B̄. We will require the following
technical linear algebraic claims, whose proofs are deferred to Appendix B.4 for better readability.

Lemma B.9 Let A,B ∈ Rn×m. Let B = UΣV T be the SVD of B. Suppose ‖A − B‖2F ≤
‖A‖2F −∆. Then ‖AV ‖2F ≥ ∆.

Lemma B.10 Let A ∈ Rn×n and let A = UΣV T be its SVD. Let Vk be the restriction of V to the
top-k right singular vectors of A. Let Π an orthogonal projection on some k-dimensional subspace.
If

(1− ε)k ≤ ‖V T
k Π‖2F ≤ k,

then
‖(AΠ⊥)k‖2F ≤ ‖Aεk‖2F + ‖(An−k)k‖2F .

(Recall again that ‖Xk‖2F denotes the sum of squared top-k singular values for every matrix X .)

As a small digression, let us preview that we will use this lemma twice, on the matrices B̄ and
B̄′. In both cases the projection would be Π1. In the former case the bound yielded by the lemma
would be O(nk), and it the latter case it would be (the better bound) O(Cβnk). That is, we will get
‖(B̄Π⊥)k‖2F = O(nk) and ‖(B̄′Π⊥)k‖2F = O(Cβnk) (see Appendix B.4 for an elaboration why).

7. We recall that β and C are constants that will eventually be chosen such that Cβ is smaller than a sufficiently
small constant. It holds that n = O(Cβnk) is k is larger than a sufficiently large constant, which we can assume
w.l.o.g. since we have already proven the k = 1 case.
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However we still need to establish the condition (1 − ε)k ≤ ‖V T
k Π‖2F ≤ k for both invocations,

which we will do shortly.

Lemma B.11 Let V,U,W ∈ Rn×k matrices such that each has orthonormal columns. Suppose
‖V TU‖2F ≥ (1− ε)k and ‖UTW‖2F ≥ (1− ε)k. Then ‖V TW‖2F ≥ (1−O(ε))k.

We now prove Lemma B.8. Let B̄ = UΣV T denote the SVD of B̄. Write it as B̄ = UΣV T =
UTΣTV

T
T + UBΣBV

T
B where ΣT are the top k singular values and ΣB are the remaining (bottom)

singular values.

Lemma B.12 Let B̄∗ ∈ RN×kr be a rank-k′ matrix such that ‖B̄ − B̄∗‖2F ≤
1
4nkr +O(nk). Let

W ∈ Rk′×kr be an orthonormal basis for the row span of B̄∗. Then ‖WVT ‖2F ≥ k−O(ε(k+ k′)).

Proof On one hand, since ‖B̄‖2F ≥
1
2nkr −O(kn), the hypothesis ‖B̄ − B̄∗‖2F ≤

1
4nkr +O(kn)

implies, by Lemma B.9, ‖B̄W T ‖2F ≥
1
4nkr −O(kn). On the other hand,

1
4nkr −O(kn) ≤ ‖B̄W T ‖2F = ‖UTΣTV

T
T W

T + UBΣBV
T
BW

T ‖2F
= ‖ΣTV

T
T W

T ‖2F + ‖ΣBV
T
BW

T ‖2F
≤ ‖ΣT ‖22‖V T

T W
T ‖2F + ‖ΣB‖22‖V T

BW
T ‖2F

≤ (1
4nr +O(n)) · ‖V T

T W
T ‖2F +O(n) · ‖V T

BW
T ‖2F

≤ (1
4nr +O(n)) · ‖V T

T W
T ‖2F +O(n) · k′.

The lemma follows by rearranging and recalling that r = Θ(1/ε).

We apply the above lemma twice: once with B̄∗ being B̄′ (whose rank is k + 2), and once with
B̄∗ being the matrix obtained from averaging the columns in each block of B̄ (note that this matrix
has rank is k). Since Π1 is the orthogonal projection on the row space of that matrix, then by the
latter application of Lemma B.12 we have

k ≥ ‖V T
T Π1‖2F ≥ k −O(εk), (15)

which establishes the condition of Lemma B.10, yielding

‖(B̄Π⊥1 )k‖2F ≤ O(nk).

For the former application, let B̄′ = U ′Σ′(V ′)T denote the SVD of B̄′. Corollary B.6 provides
the requirement of Lemma B.12, which in turn yields ‖(V ′)TVT ‖2F ≥ k − O(εk). Together with
Equation (15), by transitivity (Lemma B.11),

k ≥ ‖(V ′)TΠ1‖2F ≥ k −O(εk),

which establishes the condition of Lemma B.10, yielding

‖(B̄′Π⊥1 )k‖2F ≤ O(Cβnk).

Together with the above,

‖(B̄Π⊥1 )k‖F ‖(B̄′Π⊥1 )k‖F ≤ O(
√
Cβ · nk). (16)
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We can extend this from rank-k to rank-(k + 2) since the additional two square singular value of
each of the matrices is O(Cβnk) (cf. Lemmas B.2 and B.7).8 Since B̄′Π⊥1 has rank k + 2, then by
Hoffman-Weilandt,

‖B̄Π⊥1 − B̄′Π⊥1 ‖2F ≥
∑
i

(
σi(B̄Π⊥1 )− σi(B̄′Π⊥1 )

)2
by Hoffman-Weilandt

= ‖B̄Π⊥1 ‖2F −
k+2∑
i=1

σi(B̄Π⊥1 )σi(B̄
′Π⊥1 ) + ‖B̄′Π⊥1 ‖2F rank(B̄′Π⊥1 ) = k + 2

≥ ‖B̄Π⊥1 ‖2F −
k+2∑
i=1

σi(B̄Π⊥1 )σi(B̄
′Π⊥1 )

≥ ‖B̄Π⊥1 ‖2F − ‖(B̄Π⊥1 )k‖F ‖(B̄′Π⊥1 )k‖F by Cauchy-Schwartz

≥ ‖B̄Π⊥1 ‖2F −O(
√
Cβ · nk) by Equation (16) .

Finally, by Pythagorean identities,

‖B̄ − B̄′Π1‖2F = ‖B̄Π1 − B̄′Π1‖2F + ‖B̄Π⊥1 ‖2F
= ‖B̄ − B̄′‖2F +

(
‖B̄Π⊥1 ‖2F − ‖B̄Π⊥1 − B̄′Π⊥1 ‖2F

)
≤ ‖B̄ − B̄′‖2F +O(

√
Cβ · nk).

This proves Lemma B.8.

B.2.2. Relevant Blocks

Lemma B.13 There is a subset I ⊂ [k] of size at least |I| ≥ 0.99k such that for every i ∈ I ,

‖B̄i − (B̄′)iP1‖2F ≤ ‖B̄i = (B̄i)1‖2F +O(
√
Cβ · n), (17)

where (B̄i)1 is (as usual) the optimal rank-1 approximation of B̄i. We refer to blocks Bi with i ∈ I
as relevant blocks.

Proof By Lemma B.8, ‖B̄ − B̄′Π1‖2F ≤ ‖B̄ − B̄′‖2F +O(
√
Cβ · nk). Note that the left-hand side

equals
∑k

i=1‖B̄i− (B̄′)iP1‖2F . As for the right-hand side, by Equation (14) we have ‖B̄− B̄′‖2F ≤
‖B̄ − B̄k‖2F + O(ε) · ‖B‖2F , and we recall that ‖B‖2F = O(Cnkr) = O(Cβnk/ε). Furthermore,
‖B̄ − B̄k‖2F ≤

∑k
i=1‖B̄i − (B̄i)1‖2F . Putting it all together yields

∑k
i=1‖B̄i − (B̄′)iP1‖2F ≤∑k

i=1‖B̄i − (B̄i)1‖2F +O(
√
Cβ · nk), or rearranging,

k∑
i=1

(
‖B̄i − (B̄′)iP1‖2F − ‖B̄i − (B̄i)1‖2F

)
≤ O(

√
Cβ · nk).

Each term in the sum on the left-hand side is non-negative, by the optimality of (B̄i)1 for rank-
1 approximation of B̄i. Therefore we can use an averaging argument (Markov’s inequality) and

8. Recall again that we set Cβ < 1.
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conclude that at least 0.99k of the k summands on the left-hand side are at most 100/k times the
right-hand side. The lemma follows.

Fix i ∈ I . Since (B̄′)iP1 is a rank-1 matrix we can write it as āi(bi)T where āi ∈ RN and bi ∈
Rr. Let ai ∈ Rn denote the restriction of āi to the first n entries. Consider ‖B̄i − āi(bi)T ‖2F . Note
that the last Cn rows of are either all 1 or all −1, depending on the Hadamard vector vi. Let σij ∈
{±1} denote the sign of row j. Then the contribution of the last Cn rows is

∑Cn
j=n+1‖σij1− aijbi‖22

which can be rewritten as
∑Cn

j=n+1‖1−σijaijbi‖22. Pick the j that minimizes the term ‖1−σijaijbi‖22
and set all entries ain+1, . . . , a

i
Cn to aij with the appropriate sign, to obtain a vector âi. By choice of

j we have
‖B̄i − âi(bi)T ‖2F ≤ ‖B̄i − āi(bi)T ‖2F . (18)

Furthermore,
‖B̄i − âi(bi)T ‖2F = ‖Bi − ai(bi)T ‖2F + Cn‖bi − 1‖22. (19)

Combining Equations (18) and (19),

‖Bi − ai(bi)T ‖2F + Cn‖bi − 1‖22 ≤ ‖B̄i − āi(bi)T ‖2F . (20)

If we use Lemma B.13 as an upper bound on ‖B̄i− āi(bi)T ‖2F and Lemma 4.5 as a lower bound on
‖Bi − ai(bi)T ‖2F , we get Cn‖1− bi‖22 ≤ O(n), which rearranges to

‖1− bi‖22 ≤
O(1)

C
. (21)

This implies Lemmas 4.10 and 4.11 for every relevant block, by the same proofs as their original
proofs.

B.3. Solving Majority

Recall we have a total of nk majority instances (each of length r) embedded in B̄. Note by the
construction of B̄, each of them has alphabet either {0, 1} or {0,−1}, depending on the sign of
the corresponding entry of the Hadamard vector vi, where i the block in which the instance is
embedded.

By Lemma 4.4 and Markov’s inequality, at least 0.9nk of the instances are typical. For an
instance with alphabet {0, 1}, we solve it using B̄′ by reporting that the majority element is 1 if
the average over the corresponding entries in B̄′ is larger than 0.5, and reporting 0 if it is smaller
than 0.5. Instances with alphabet {0,−1} are solved similarly with threshold −0.5. Note that
the solution procedure compares the threshold to the mutual value of the corresponding entries of
B̄′Π1. If we are correct on an instance, we say it is solved, and otherwise unsolved. For relevant
block i ∈ I , let S′i denote the subset of majority instances which are both typical and unsolved. Let
S′ = ∪i∈IS′i be the subset of all instances which are typical, unsolved, and embedded in a relevant
block.

Our goal is to show that we solve each instance with probability at least 2/3. Since the instances
were placed in B̄ by random permutation, every instance has the same probability p to be solved,
thus we need to show p ≥ 2/3. Suppose by contradiction that p < 2/3. Since at least 0.9nk
instances are typical, and at least 0.99k blocks are relevant, then there is a fixed constant ζ > 0 (this
was 1

15 in the k = 1 case) such that |S′| ≥ ζnk.
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For every i ∈ I we have (by definition of relevant blocks),

‖B̄i − (B̄′Π1)i‖2F ≤ ‖B̄i − (B̄i)1‖2F +O(
√
Cβ · n) ≤

n∑
j=1

‖sj − µj1‖22 +O(
√
Cβ · n).

By bounding
∑n

j=1‖sj − µj1‖22 in the same way as in the k = 1 case,

‖B̄i − (B̄′Π1)i‖2F ≤ |S′i|(1
4r − γ

2) +
∑
sj /∈S′i

‖sj − µj1‖22 +O(
√
Cβ · n). (22)

Similarly, if we denote (B̄′)iP1 = āi(bi)T (since this is a rank-1 matrix), then as in the k = 1 case,

‖Bi − (B′Π1)i‖2F =
n∑
i=1

‖si − āij(bi)T ‖22 ≥ |S′i|(1
4r + η2 − 2γη) +

∑
sj /∈S′i

‖sj − µj1‖22. (23)

(We remark that the latter inequality relies on Lemmas 4.10 and 4.11, which were proven in the
previous section for relevant blocks, based on eq. (21); as per Lemma 4.10, η = Θ(1/

√
C).)

Together,
|S′i|(1

4r + η2 − 2γη) ≤ |S′i|(1
4r − γ

2) +O(
√
Cβ · n).

We sum this over all i ∈ I , and recall that
∑

i∈I |S′i| = |S′|. This yields,

|S′|(1
4r + η2 − 2γη) ≤ |S′|(1

4r − γ
2) +O(

√
Cβ · kn),

which rearranges to |S′|(γ − η)2 ≤ O(
√
Cβ · nk). Recalling that |S′| ≥ ζnk, we get ζ(γ − η)2 ≤

O(
√
Cβ·). Since ζ and γ are fixed constant, we can take η and β to be sufficiently small, and arrive

at the desired contradiction. �

B.4. Deferred Proofs from Appendix B.2.1

Lemma B.14 Let A,B ∈ Rn×m. Let B = UΣV T be the SVD of B. Suppose ‖A − B‖2F ≤
‖A‖2F −∆. Then ‖AV ‖2F ≥ ∆.

Proof

‖AV ‖2F = ‖AV V T ‖2F
= ‖A‖2F − ‖A(I − V V T )‖2F Pythagorean theorem

≥ ∆ + ‖A−B‖2F − ‖A(I − V V T )‖2F
= ∆ + ‖AV V T −BV V T ‖2F + ‖A(I − V V T )‖2F − ‖A(I − V V T )‖2F Pythagorean theorem

≥ ∆.
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Lemma B.15 Let A ∈ Rn×n and let A = UΣV T be its SVD. Let Vk be the restriction of V to the
top-k right singular vectors of A. Let Π an orthogonal projection on some k-dimensional subspace.
If

(1− ε)k ≤ ‖V T
k Π‖2F ≤ k,

then
‖(AΠ⊥)k‖2F ≤ ‖Aεk‖2F + ‖(An−k)k‖2F .

(Recall again that ‖Xk‖2F denotes the sum of squared top-k singular values for every matrix X .)

Proof We have ‖(AΠ⊥)k‖2F = ‖(An−kΠ⊥+AkΠ
⊥)k‖2F . We can writeAΠ⊥ asAn−kΠ⊥+AkΠ

⊥,
and for any vector x, An−kΠ⊥x and AkΠ⊥x are orthogonal, and so ‖AΠ⊥x‖22 = ‖An−kΠ⊥x‖22 +
‖AkΠ⊥x‖22. It follows that

‖(AΠ⊥)k‖2F ≤ ‖AkΠ⊥‖2F + ‖(An−kΠ⊥)k‖2F .

Note that ‖(An−kΠ⊥)k‖2F ≤ ‖(An−k)k‖2F . Thus it remains to show ‖AkΠ⊥‖2F ≤ ‖Aεk‖2F , or
equivalently, by the Pythagorean theorem, ‖AkΠ‖2F ≥ ‖Ak‖2F − ‖Aεk‖2F =

∑k
i=εk+1 σ

2
i (A).

We have ‖AkΠ‖2F = ‖ΣkV
T
k Π‖2F and we know ‖V T

k Π‖2F ≥ k(1 − ε). Let R be an n × n
rotation matrix that takes V T

k to [Ik 0], where here Ik is the identity matrix of order k and 0 is
an k × (n − k) zero matrix. Replace Π with RTΠ. Then ‖AkΠ‖2F = ‖Σk(V

T
k R)(RTΠ)‖2F and

‖(V T
k R)(RTΠ)‖2F ≥ k(1 − ε). Thus, we can assume w.l.o.g. that V T

k = [Ik 0], and so RTΠ has
the form [Φ 0], where Φ is k × k.

Thus ‖AkΠ‖2F = ‖ΣkΦ‖2F subject to ‖Φ‖2F ≥ k(1− ε). Also each row of Φ has squared norm
at most 1 since it is a submatrix of a rotation matrix. Consequently, since Σk is a diagonal matrix,
‖ΣkΦ‖2F is minimized when placing all mass of Φ on the bottom k(1 − ε) rows, and in this case it
is exactly

∑k
i=εk+1 σ

2
i (A).

We have applied this lemma in Appendix B.2.1 to both B̄k and B̄′. Let us show the resulting
upper bound ‖Aεk‖2F + ‖(An−k)k‖2F in each case.

For B̄k, by Lemma B.2 we know that the top k squared singular values of B̄ are Θ(Cnr) =
O(Cnβ/ε) each, thus ‖B̄εk‖2F = O(εk · Cnβ/ε) = O(Cβnk), and the rest of the squared singular
values are Θ(n), thus ‖(B̄n−k)k‖2F = O(kn). The total bound is O(nk).

For B̄′,

‖B̄′εk‖2F =

εk∑
i=1

σi(B̄
′)2

=
εk∑
i=1

(
σi(B̄

′)− σi(B̄) + σi(B̄)
)2

≤
εk∑
i=1

2
(
σi(B̄)2 + (σi(B̄)− σi(B̄′))2

)
Similarly to Claim 2.3

= 2‖B̄εk‖2F + 2
εk∑
i=1

(σi(B̄)− σi(B̄′))2.
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The first term was already upper bounded byO(Cβnk) above, and the second sum is upper bounded
by O(Cβnk) by Lemma B.7. The term ‖(B̄′n−k)k‖2F is O(Cβnk) since there are two remaining
eigenvalues and each is O(Cβnk) by Lemma B.7. The total bound is O(Cβnk).

Lemma B.16 Let V,U,W ∈ Rn×k matrices such that each has orthonormal columns. Suppose
‖V TU‖2F ≥ (1− ε)k and ‖UTW‖2F ≥ (1− ε)k. Then ‖V TW‖2F ≥ (1−O(ε))k.

Proof Note we can replace V T with V TR and U with RTU and W with RTW , where R is an
n× n rotation which takes U to the top k standard unit vectors. All norms in the premise and goal
of the claim are preserved. So we can assume that ‖Vtop‖2F ≥ k(1− ε), ‖Wtop‖2F ≥ k(1− ε), and
need to show ‖V TW‖2F ≥ k −O(kε), where “top“ means the top k × k submatrix with remaining
rows replaced with 0s. Let W = Wtop +Wrest and V = Vtop + Vrest.

Then,

‖V TW‖2F = ‖V T
topWtop + V T

restWrest‖2F
≥ ‖V T

topWtop‖2F − 2Tr(W T
restVrestV

T
topWtop) (i)

= ‖V T
topWtop‖2F − 2Tr(WtopW

T
restVrestV

T
top) (ii)

≥ ‖V T
topWtop‖2F − 2‖WtopWrest‖F ‖VrestV T

top‖F (iii)

≥ ‖V T
topWtop‖2F − 2‖Wtop‖2‖Wrest‖F ‖Vtop‖2‖Vrest‖F (iv)

≥ ‖V T
topWtop‖2F − 2‖Wrest‖F ‖Vrest‖F (v)

= ‖V T
topWtop‖2F − 2(1− ‖Wtop‖2F )1/2(1− ‖Vtop‖2F )1/2

= ‖V T
topWtop‖2F − 2(εk)1/2(εk)1/2

= ‖V T
topWtop‖2F − 2εk, (∗)

where,

• (i) is by expanding the square and dropping a non-negative term;

• (ii) is by cyclicity of trace;

• (iii) is since Tr(AB) <= ‖A‖F ‖B‖F ;

• (iv) is by submultiplicativity of operator and Frobenius norm;

• (v) is since W and V are orthonormal so their operator norm is 1, and operator norm does not
decrease by taking submatrices.

So we just need to lower bound ‖V T
topWtop‖2F , and we can drop the last n− k rows of Vtop and

Wtop since they are zeros. Next, we write Vtop in its SVD, Vtop = AΣBT . Then since ‖Vtop‖2F ≥
k(1 − ε) and ‖Vtop‖22 ≤ 1 (since it is a submatrix of V ), necessarily, there are at least k(1 − 2ε)
singular values of squared value at least 1− 2ε. Indeed, otherwise ‖Vtop‖2F ≤ k(1− 2ε)(1− 2ε) +
2εk · 1 < k(1 − ε) for ε less than a small enough constant. Let Σh be these singular values and Σl

be the remaining ones. Then

‖V T
topWtop‖2F = ‖ΣBTWtop‖2F ≥ (1− 2ε)‖BT

hWtop‖2F .
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Now ‖Wtop‖2F ≥ k(1 − ε), and Bh is a k(1 − 2ε)-dimensional subspace of span(e1, ..., ek) (the
standard unit vectors), and so we can extend it with an orthonormal basisB′ so that span(Bh, B

′) =
span(e1, ..., ek). Then by the Pythagorean theorem

k(1− ε) ≤ ‖Wtop‖2F = ‖BT
hWtop‖2F + ‖B′Wtop‖2F ,

and since ‖Wtop‖22 ≤ 1, we have ‖B′Wtop‖2F ≤ ‖B′‖2F ≤ 2εk. Consequently, ‖BT
hWtop‖2F ≥

k(1 − ε) − 2εk = k − 3εk. Hence, ‖V T
topWtop‖2F ≥ (1 − 2ε)k(1 − 3ε) ≥ k(1 − O(ε)). Plugging

into (*) gives us our desired k(1−O(ε)) lower bound on ‖V TW‖2F .
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