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Abstract
We present novel, computationally efficient, and differentially private algorithms for two fundamental
high-dimensional learning problems: learning a multivariate Gaussian and learning a product
distribution over the Boolean hypercube in total variation distance. The sample complexity of our
algorithms nearly matches the sample complexity of the optimal non-private learners for these tasks
in a wide range of parameters, showing that privacy comes essentially for free for these problems.
In particular, in contrast to previous approaches, our algorithm for learning Gaussians does not
require strong a priori bounds on the range of the parameters. Our algorithms introduce a novel
technical approach to reducing the sensitivity of the estimation procedure that we call recursive
private preconditioning.
Keywords: Privacy, learning, Gaussian, product distribution1

1. Introduction

A central problem in machine learning and statistics is to learn (estimate) the parameters of
an unknown distribution using samples. However, in many applications, these samples consist of
highly sensitive information belonging to individuals, and the output of the learning algorithm may
inadvertently reveal this information. While releasing only the estimated parameters of a distribution
may seem harmless, when there are enough parameters—that is, when the data is high-dimensional—
these statistics can reveal a lot of individual-specific information (see e.g. Dinur and Nissim (2003);
Homer et al. (2008); Bun et al. (2014); Dwork et al. (2015); Shokri et al. (2017), and the survey Dwork
et al. (2017)). For example, the influential attack of Homer et al. (2008) showed how to use very
simple statistical information released in the course of genome wide association studies to detect the
presence of individuals in those studies, which implies these individuals have a particular medical
condition. Thus it is crucial to design learning algorithms that ensure the privacy of the individuals
in the dataset.

The most widely accepted solution to this problem is differential privacy (Dwork et al., 2006),
which provides a strong individual privacy guarantee by ensuring that no individual sample has
a significant influence on the learned parameters. A large body of literature now shows how to

1. A full version of this paper is available as Kamath et al. (2018).
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implement nearly every statistical algorithm privately, and differential privacy is now being deployed
by Apple (Differential Privacy Team, Apple, 2017), Google (Erlingsson et al., 2014), and the US
Census Bureau (Dajani et al., 2017).

Differential privacy is typically achieved by adding noise to some non-private estimator, where the
magnitude of the noise is calibrated to mask the effect of the single sample. However, straightforward
methods for adding this noise require strong a priori bounds on the distribution to provide meaningful
accuracy guarantees.

Example: Suppose we want to estimate the mean µ ∈ (−R,R) of a Gaussian random
variable with known variance 1, using the empirical mean of the data. The empirical
mean itself has variance 1/n. However, the naı̈ve strategy for adding noise to the
empirical mean would increase the variance by O(R2/n2). Thus, the variance of
the naı̈ve private algorithm dominates the variance in the data unless we have Ω(R2)
samples, forcing the user to have strong a priori knowledge of the mean.

This problem is pervasive in applications of differential privacy, and considerable effort has been
made to cope with this need for the parameters to lie in a small range, including multiple systems
that have been built to help elicit this information from the user (Mohan et al., 2012; Gaboardi et al.,
2016a).

When the distribution is low-dimensional, there are many more effective algorithms that avoid
the polynomial dependence on the size of the range. For example, in the setting above of estimating
a single univariate Gaussian, Karwa and Vadhan (2018) showed how to estimate the mean with
essentially no dependence on R. More generally, there are also a plethora of general algorithmic
techniques that can be used to address this general problem, such as smooth sensitivity (Nissim et al.,
2007), subsample-and-aggregate (Nissim et al., 2007; Smith, 2011), propose-test-release (Dwork
and Lei, 2009). Unfortunately, none of these methods extend well to high-dimensional problems.
When they exist, natural extensions either incur a costly dependence on the dimension in the sample
complexity, or have running time exponential in the dimension.

In this work we show how to privately learn two fundamental families of high-dimensional
distributions with comparable costs to the corresponding optimal non-private learning algorithms:

• We give a computationally efficient algorithm for learning a multivariate Gaussian with
unknown mean and covariance in total variation distance. This algorithm requires only weak
a priori bounds on the mean and covariance, and in a wide range of parameters its sample
complexity matches the optimal non-private algorithm up to lower-order terms.

• We give a computationally efficient algorithm for learning a product distribution over the
Boolean hypercube in total variation distance, which requires adding noise to each coordinate
proportional to its variance, despite not knowing the variance a priori. Again, for many
parameter regimes, the sample complexity of this algorithm is similar to that of the optimal
non-private algorithm.

Our results show that it is possible to obtain privacy nearly for free when learning these important
classes of high-dimensional distribution. We obtain these results using a novel approach to reduce
the sensitivity of the estimation procedure, which we call private recursive preconditioning.
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1.1. Our Results

1.1.1. PRIVATELY LEARNING GAUSSIANS

The most fundamental class of high-dimensional distributions is the multivariate Gaussian in
Rd. Our first result is an algorithm that takes samples from a distribution N (µ,Σ) with unknown
mean µ ∈ Rd and covariance Σ ∈ Rd×d and estimates parameters µ̂, Σ̂ such thatN (µ̂, Σ̂) is close to
the true distribution in total variation distance (TV distance). Without privacy, n = Θ( d

2

α2 ) samples
suffice to guarantee total variation distance at most α (this is folklore, but see e.g. Diakonikolas et al.
(2016)).

Despite the simplicity of this problem, it was only recently that Karwa and Vadhan (2018)
gave an optimal algorithm for learning a univariate Gaussian. Specifically, they showed that just
n = Õ( 1

α2 + 1
αε + log(R log κ)

ε ) samples are sufficient to learn a univariate Gaussian N (µ, σ2) with
|µ| ≤ R and 1 ≤ σ2 ≤ κ, up to α in total variation distance subject to ε-differential privacy. In
contrast to naı̈ve approaches, their result has two important features: (1) The sample complexity
has only mild dependence on the range parameters R and κ, and (2) the sample complexity is only
larger than that of the non-private estimator by a small multiplicative factor and an additive factor
that is a lower order term for a wide range of parameters. When the covariance is unknown, a naı̈ve
application of their algorithm would preserve neither of these features.

We show that it is possible to privately estimate a multivariate normal while preserving both
of these features. Our algorithms satisfy the strong notion of concentrated differential privacy
(zCDP) (Dwork and Rothblum, 2016; Bun and Steinke, 2016), which is formally defined in Section B.
To avoid confusion we remark that these definitions are on different scales so that ε2

2 -zCDP is
comparable to ε-DP and (ε, δ)-DP.

Theorem 1 (Gaussian Estimation) There is a polynomial time ε2

2 -zCDP algorithm that takes

n = Õ

(
d2

α2
+
d2

αε
+
d3/2 log1/2 κ+ d1/2 log1/2R

ε

)
samples from a Gaussian N (µ,Σ) with unknown mean µ ∈ Rd such that ‖µ‖2 ≤ R and unknown
covariance Σ ∈ Rd×d such that I � Σ � κI, and outputs estimates µ̂, Σ̂ such that, with high
probability dTV(N (µ,Σ),N (µ̂, Σ̂)) ≤ α. Here, Õ(·) hides polylogarithmic factors of d, 1

α ,
1
ε , log κ,

and logR. The same algorithm satisfies (ε
√

log(1/δ), δ)-differential privacy for every δ > 0.

Theorem 1 will follow by combining Theorem 9 for covariance estimation with Theorem 12 for
mean estimation. Observe that, since the sample complexity without privacy is Θ( d

2

α2 ), Theorem 1
shows that privacy comes almost for free unless 1

ε , κ, or R are quite large.
The main difficulty that arises when trying to extend the results of Karwa and Vadhan (2018)

to the multivariate case is that the covariance matrix of the Gaussian might be almost completely
unknown. The main technically novel part of our algorithm is a method for learning a matrix A
approximating the inverse of the covariance matrix so that I � AΣA � 1000I. This matrix can
be used to transform the Gaussian to be nearly spherical, making it possible to apply the methods
of Karwa and Vadhan (2018).

Theorem 2 (Private Preconditioning) There is an ε2

2 -zCDP algorithm that takes n = Õ
(
d3/2 log1/2 κ

ε

)
samples from an unknown Gaussian N (0,Σ) over Rd with Σ ∈ Rd×d such that I � Σ � κI, and
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outputs a symmetric matrix A such that I � AΣA � 1000I. Here, Õ(·) hides polylogarithmic
factors of d, 1

ε , and log κ.

We describe and analyze our algorithm for private covariance estimation in Section 2, and in
Section 3 we combine it with the algorithms of Karwa and Vadhan (2018) to obtain Theorem 1.

1.1.2. PRIVATELY LEARNING PRODUCT DISTRIBUTIONS

The simplest family of high-dimensional discrete distributions are product distributions over
{0, 1}d. Without privacy, Θ( d

α2 ) are necessary and sufficient to learn up to α in total variation
distance. The standard approach to achieving DP by perturbing each coordinate independently
requires Θ̃( d

α2 + d3/2

αε ) samples. We give an improved algorithm for this problem that avoids this
blowup in sample complexity. While our algorithm for learning product distributions is quite different
to our algorithm for estimating Gaussian covariance, it uses a similar recursive preconditioning
technique, highlighting the versatility of this approach.

Theorem 3 There is a polynomial time ε2

2 -zCDP algorithm that takes n = Õ
(
d
α2 + d

αε

)
samples

from an unknown product distribution P over {0, 1}d and outputs a product distribution Q such that,
with high probability, dTV(P,Q) ≤ α. Here, Õ(·) hides polylogarithmic factors of d, 1

α , and 1
ε . The

same algorithm satisfies (ε
√

log(1/δ), δ)-differential privacy for every δ > 0.

We describe and analyze our algorithm in Section D.

1.1.3. LOWER BOUNDS

We prove lower bounds for the problems we consider in this paper, demonstrating that for many
problems, our sample complexity is optimal up to polylogarithmic factors. One example statement
is the following lower bound for private mean estimation of a product distribution, for the more
permissive notion of (ε, δ)-differential privacy (compared to our upper bounds, which are in terms of
zCDP):

Theorem 4 Any (ε, 1
64n)-differentially private algorithm that takes samples from an arbitrary

unknown product distribution P over {0, 1}d and outputs a product distribution Q such that
dTV(P,Q) ≤ α with probability ≥ 9/10 requires n = Ω( d

α2 + d
αε log d) samples.

We also prove a qualitatively similar lower bound for privately estimating the mean of a Gaussian
distribution.

In addition, we prove lower bounds for privately estimating a Gaussian with unknown covariance.
These are qualitatively weaker, as they are only for ε-differential privacy, and we consider it an
interesting open question to prove lower bounds for covariance estimation under concentrated or
approximate differential privacy.

Theorem 5 Any ε-differentially private algorithm that takes samples from an arbitrary unknown
Gaussian distribution P and outputs a Gaussian distribution Q such that dTV(P,Q) ≤ α with
probability ≥ 9/10 requires n = Ω( d

2

α2 + d2

αε) samples.
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The last question to address is the dependence on the parameters R and κ. It is well-known
that, under zCDP, the existence of a 0.1-packing (in total variation distance) P results in a lower
bound of n = Ω(1

ε log1/2 |P|) (Hardt and Talwar, 2010; Beimel et al., 2014; Bun and Steinke, 2016).
Since, for a set of identity covariance Gaussians, there exists such a packing of size RΩ(d), this
implies that the dependence of Theorem 1 on R is optimal up to logarithmic factors. As for the
dependence on κ, it can be shown that for d = 2, there exists a packing of zero-mean Gaussians
of size poly(κ) (Kamath, 2019), in contrast to poly log κ in one dimension. That is, though our
algorithm’s dependence on κ is exponentially greater than that of Karwa and Vadhan (2018), this is
necessary for any d ≥ 2.

All our lower bounds are presented in Section E.

1.1.4. COMPARISON TO LOWER BOUNDS FOR HIGH-DIMENSIONAL DP

Readers familiar with differential privacy may wonder why our results do not contradict known
lower bounds for high-dimensional estimation in differential privacy (Bun et al., 2014; Steinke and
Ullman, 2015; Dwork et al., 2015). The two key differences are (1) lower bounds showing that
privacy is costly are for the relatively weak `∞ estimation guarantee whereas we want a rather
stringent estimation guarantee, and (2) we exploit the structure of Gaussians and product distributions
to obtain guarantees that are not possible for arbitrary distributions.

To understand the first issue, most lower bounds in differential privacy apply to estimating the
mean of the distribution up to α in `∞ distance. This guarantee can be achieved with Θ( log d

α2 )

samples non-privately but requires Θ( log d
α2 +

√
d
α ) samples with differential privacy. Thus, for `∞

estimation, privacy is costly in high dimensions. However, if we consider the more stringent `2
metric, then the cost of privacy goes away, and Θ( d

α2 ) samples are sufficient with or without privacy.2

Thus, for this stronger guarantee, privacy is not costly in high-dimensions. This phenomenon is fairly
general, and is not specific to Gaussians or product distributions.

To understand the second issue, in order to learn Gaussians or product distributions in total
variation distance, we need to learn in metrics that are related to `2, but take into account the variance
of the distribution. In the case of Gaussians we learn in the Mahalanobis distance ‖ · ‖Σ and for
product distributions our guarantees are closely related to χ2-divergence. For example, Theorem 1
can actually be rephrased as saying that, for our algorithm,

n = Õ

(
d3/2 log1/2 κ

ε

)
=⇒ ‖Σ− Σ̂‖Σ = O

(√
d2

n
+
d2

εn

)
.

This sort of guarantee where the error in the Σ-norm does not depend on the range parameter κ
cannot be achieved for arbitrary distributions, and thus for this part of the guarantee we crucially use
the fact that the data is i.i.d. from a Gaussian. A similar phenomenon arises for product distributions,
where, as we show, learning the mean of a product distribution in the right metric can be done with
Õ(d) samples for product distributions but would require Ω(d3/2) samples for arbitrary distributions.

2. One way to see this is that estimation up to α/
√
d in `∞ implies estimation up to α in `2, so the non-private term and

the private term in the `∞ bounds have roughly the same dependence on the dimension in this case.
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1.2. Techniques

1.2.1. PRIVATELY LEARNING GAUSSIANS

We now give an overview of the main ideas that go into estimating multivariate Gaussians
(Theorem 1). We make two simplifications to ease the presentation. First, we assume the distribution
has mean zero, and focus only on covariance estimation. Second, we elide the accuracy and privacy
parameters, α and ε, since they do not play a central role in the discussion.

Suppose we are given samples X1, . . . , Xn ∼ N (0,Σ) and want to output Σ̂ such that N (0, Σ̂)
is close to the true distribution in TV distance. More precisely, we want to guarantee

‖Σ̂− Σ‖Σ = ‖Σ−1/2Σ̂Σ−1/2 − I‖F .
1

100
, (1)

which implies closeness in TV distance. Then the standard solution is to use the empirical covariance
Σ̃ = 1

n

∑
iXiX

T
i , guaranteeing ‖Σ̃− Σ‖Σ .

√
d2/n, satisfying (1) when n & d2.

First Attempt: The Gaussian Mechanism. The standard way to privately estimate a function
f , is to use the Gaussian mechanism. In this case we are interested in the matrix-valued empirical
covariance Σ̃(X1, . . . , Xn) = 1

n

∑
iXiX

T
i , so the Gaussian mechanism would output

Σ̂ = Σ̃(X1, . . . , Xn) + Z where Z ∼ N (0, O(∆2
Σ̃

))d×d

is a random Gaussian noise matrix and ∆
Σ̃

= maxX∼X′ ‖Σ̃(X)− Σ̃(X ′)‖F where X ∼ X ′ denotes
that X,X ′ differ on at most one sample and ∆

Σ̃
is called the global sensitivity. Note that it is only a

coincidence that the true distribution and the noise distribution are both Gaussian.
Unfortunately, the empirical covariance has infinite sensitivity, since Xi is an arbitrary vector,

and thus changing a single sample can change the empirical covariance arbitrarily. The simplest
way to address this problem is to assume that we have some prior information about Σ, namely that
I � Σ � κI. In this case we can clamp every sample so that ‖Xi‖22 ≤ Õ(κd). Once we do this, the
sensitivity of the clamped empirical covariance is Õ(κd/n). However, if the data really came from
a Gaussian, then the clamping will not have any effect, as long as there are no significant outliers.
Thus, when we apply the Gaussian mechanism we obtain the guarantee∥∥∥Σ̂− Σ

∥∥∥
Σ
≤
∥∥∥Σ̂− Σ

∥∥∥
F

= Õ

(√
d2

n
+
κd2

n

)
, (2)

where the first inequality follows from the assumption that Σ � I and the second uses a standard
bound on the Frobenius norm of a random Gaussian matrix. Unfortunately, (2) has a linear depen-
dence on κ, meaning the number of samples has to be at least Ω(κd2) to achieve (1), and this analysis
is tight when, say, Σ = I.

Before moving on, we highlight the fact that, due to truncation, this algorithm ensures privacy
for any dataset, even one not drawn from a Gaussian. This is a critical feature in private estimation
that our algorithms will preserve.

Recursive Private Preconditioning. Looking at (2), we can see that the Gaussian mechanism
actually has excellent accuracy when κ = O(1), specifically the term corresponding to privacy
vanishes faster than the term corresponding to sampling error. Thus, our approach to improve over
the Gaussian mechanism is to private find a symmetric preconditioner A so that I � AΣA �

6



PRIVATELY LEARNING HIGH-DIMENSIONAL DISTRIBUTIONS

O(1)I. Given such a matrix, we can apply the Gaussian mechanism to the data AX1, . . . , AXn ∼
N (0, AΣA), and learn this transformed distribution using just Õ(d2) samples. Of course, to be
useful, we need to find the private preconditioner using Õ(d2) samples.

In order to obtain such a matrix A, we essentially need a good multiplicative estimate of the
covariance matrix Σ along every direction. However, the Gaussian mechanism makes this difficult
because it adds an i.i.d. Gaussian matrix Z, which ignores the shape of Σ. Specifically, if we use
the Gaussian mechanism and add the noise matrix Z, then unless we draw Ω(κd3/2) samples, the
directions of low variance will be completely overwhelmed by noise.

Our main observation is that when we use the Gaussian mechanism, even with just n = Õ(d3/2)
samples, we can still obtain a good enough estimate of Σ to make some progress. Specifically, we
can find a matrix A such that I � AΣA � 7

10κI. Given such a procedure, we can iterate O(log κ)
times until the condition number is a constant.

To see how we make progress, we argue that if we draw just Õ(d3/2) samples, and compute the
noisy empirical covariance Σ̂ = Σ̃+Z, then the directions of Σ̃ with large variance are approximately
preserved, even though the directions with small variance will be overwhelmed by noise. We can
leverage this fact in the following way. Suppose we see a direction of Σ̂ with variance at least κ/2.
Then this direction cannot only appear to have large variance due to noise, it must also be large in
Σ, meaning we have a good multiplicative approximation. On the other hand, suppose we see a
direction of Σ̂ with variance at most κ/2. Then this direction may have almost no variance in Σ, but
it cannot possibly have variance much larger than κ/2. Thus, we have discovered that this direction
has less variance than our bound κ, meaning we can clamp the samples more aggressively in that
direction to reduce the sensitivity of the estimator! More precisely, we compute the eigenvectors
and eigenvalues of Σ̂ and let A be the matrix that partially projects out the eigenvectors with large
eigenvalues. We can show that this matrix reduces the maximum variance by more than it reduces
the minimum variance, thus (after some rescaling) I � AΣA � 7

10κI, as desired.

Connection to Average Sensitivity. At a high level, the problem with the Gaussian mechanism
is that it adds noise proportional to the global sensitivity, which is the maximum that changing one
sample can change the estimate in the worst case. Intuitively, we’d like to add noise proportional to
the average sensitivity, which is the amount that replacing one sample from the true distribution with
an independent random sample from the true distribution changes the estimate. Simply adding noise
proportional to average sensitivity is not private, however there are several techniques (e.g. Nissim
et al. (2007); Dwork and Lei (2009)) that make it possible to add noise roughly proportional to
average sensitivity for univariate statistics. Unfortunately, these techniques either do not apply,
or are computationally inefficient for multivariate statistics. Our recursive private preconditioning
technique can be viewed as a new technique for adding noise proportional to average sensitivity that
is computationally efficient in high dimensions. Currently the technique is specific to Gaussian (or
subgaussian) covariance estimation, but it would be interesting to understand how generally this
technique can be applied.

1.2.2. PRIVATELY LEARNING PRODUCT DISTRIBUTIONS

Although learning Boolean product distributions is quite different from learning Gaussians, our
algorithm uses a similar approach of recursively reducing the sensitivity of the natural estimator.
Suppose we have a product distribution P over {0, 1}d with mean p = E[P] and want to output a
product distribution P̂ with mean p̂ that is close in TV distance. Bounding the TV distance between
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P, P̂ requires some care, so to simplify this high-level discussion, we assume that p � 1/d, in which
case

dTV(P, P̂) ≤ O

√√√√∑
j

(pj − p̂j)2

pj

 (3)

is a reasonably tight bound. Without privacy, it would suffice to draw samples X1, . . . , Xn ∼ P
and compute the empirical mean p̃ = 1

n

∑
iXi and output the corresponding product distribution,

ensuring dTV(P, P̂) .
√
d/n.

First Attempt: The Gaussian Mechanism. As with Gaussians, the natural approach is to use
the Gaussian mechanism, and compute p̂ = p̃ + Z where Z ∼ N (0, (

√
d/n)2)d is a vector with

i.i.d. Gaussian entries and
√
d/n is the global sensitivity of the empirical mean. The problem with

this mechanism is that if the mean of P is roughly 1/d in every coordinate, then we cannot upper
bound (3) unless ‖Z‖2 . 1/

√
d, which requires n = Ω(d3/2).

Recursive Private Preconditioning. The key to improving the sample complexity is to recog-
nize that the sensitivity analysis and the accuracy analysis cannot both be tight at the same time.
That is, if p = (1

2 , . . . ,
1
2) then it suffices to have ‖Z‖2 . 1, which requires only n = O(d) samples.

On the other hand, if p = (1
d , . . . ,

1
d), then we really need ‖Z‖2 . 1/

√
d. However, in this case

each sample from P will satisfy ‖Xi‖2 = O(log d), so we reduce the sensitivity to just O(log d/n)
by clamping the samples to have this norm, in which case we can obtain ‖Z‖2 = 1/

√
d using just

n = Õ(d) samples.
The challenge is that p may have some coordinates that are roughly balanced and some that are

very biased. If we could partition the coordinates into groups based on their bias, then we could
apply an argument like the above on each group separately, but the challenge is to do this partitioning
privately.

Similar to what we did for Gaussians, we can achieve this partitioning by starting with the
Gaussian mechanism. Suppose we use the Gaussian mechanism to obtain p̂ = p̃+ Z. Then if we
draw n = Õ(d) samples, we will have ‖Z‖∞ = Õ(1/

√
d). Now, consider two cases: for coordinates

j such that p̂j ≥ 1/4, then we know that p̃j is at least, say, 1/8, so we have (p̂j − p̃j)2/p̃j = O(1/d)
which is a good enough estimate for that coordinate. Thus, we can lock in our estimate of these
coordinates and move on. Now, the coordinates j we have left satisfy p̂j ≤ 1/4, and thus we know p̃j
is at most, say, 3/8. Thus, if we restrict the distribution to just these coordinates, then we can clamp
the norm of the samples and estimate again using less noise. Every time we iterate this process, we
can reduce the upper bound on the bias by a constant factor until we get down to the case where
all coordinates have bias at most O(1/d), which we can handle separately. Iterating this approach
O(log d) times requires us to add up estimation error and privacy loss across the different rounds,
but this only incurs additional polylogarithmic factors.

1.3. Organization

In the body of this extended abstract, we go into more detail about our upper bounds for Gaussian
estimation. We defer preliminaries (which include fairly standard definitions and properties of
differential privacy), proofs of our upper bounds for Gaussian estimation, and our upper bounds for
product distributions and lower bounds to the appendix.
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2. Private Covariance Estimation for Gaussians

In this section we present our algorithm for privately estimating the covariance of an unknown
Gaussian. Suppose we are given i.i.d. samples X1, . . . , Xn ∼ N (0,Σ) where I � Σ � κI. Our goal
is to privately output Σ̂ so that ‖Σ − Σ̂‖Σ ≤ O(α), where ‖A‖Σ = ‖Σ−1/2AΣ−1/2‖F . Here the
matrix square root denotes any possible square root; it is trivial to check that all such choices are
equivalent. By Lemma 21, this condition ensures dTV(N (0,Σ),N (0, Σ̂)) ≤ O(α). We cover some
useful concentration inequalities in Section C.1, and some deterministic regularity conditions of our
dataset that we condition on in Section C.2.

2.1. A Simple Algorithm for Well Conditioned Gaussians

We first consider the following simple algorithm: remove all points whose norm exceeds a certain
threshold, then compute the empirical covariance of the resulting data set, and perturb the empirical
covariance with noise to preserve privacy. This algorithm will have nearly-optimal dependence
on most parameters, however, it will have a polynomial dependence on the condition number.
Pseudocode for this algorithm is given in Algorithm 1.

Algorithm 1: Naive Private Gaussian Covariance Estimation NAIVEPCEρ,β,κ(X)
Input: A set of n samples X1, . . . , Xn from an unknown Gaussian. Parameters ρ, β, κ > 0
Output: A covariance matrix M .

Let S ←
{
i ∈ [n] : ‖Xi‖22 ≤ O(dκ log(n/β))

}
Let σ ← Θ

(
dκ log(n

β
)

nρ1/2

)
Let M ′ ← 1

n

∑
i∈S XiX

>
i +N where N ∼ GUE(σ2)

Let M be the projection of M ′ into the set of PSD matrices.
Return M

The following is an immediate consequence of Lemma 27 (in Section C.3), seen by noting that
‖Σ−M‖Σ = ‖Σ−1/2NΣ−1/2 +N ′‖F ≤ ‖N‖Σ + ‖N ′‖F .

Theorem 6 For every ρ, β, κ > 0, the algorithm NAIVEPCEρ,β,κ is ρ-zCDP and, when given n =

O

(
d2+log( 1

β
)

α2 +
κd2polylog( κd

αβρ
)

αρ1/2

)
, samples from N (0,Σ) satisfying I � Σ � κI, with probability at

least 1−O(β), it returns M such that ‖Σ−M‖Σ ≤ O(α).

2.2. A Private Recursive Preconditioner

When κ is a constant, Theorem 6 says that NAIVEPCE privately estimates the covariance of a
Gaussian with little overhead compared to non-private estimation. In this section we will show how
to nearly eliminate the dependence on the covariance by privately learning a preconditioner A such
that I � AΣA � 1000I. Once we have this preconditioner, we can reduce the condition number of
the distribution to a constant. In this state, we can apply NAIVEPCE to estimate the covariance at no
cost in κ.
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2.2.1. REDUCING THE CONDITION NUMBER BY A CONSTANT

Our preconditioner works recursively. The main ingredient in the recursive construction is an
algorithm, WEAKPPC (Algorithm 2) that privately estimates a matrix A such that the condition
number of AΣA improves over that of Σ by a constant factor. Once we have this primitive we can
apply it recursively in a straightforward way. Note that in Algorithm 2, when we apply NAIVEPCE to
obtain a weak estimate of Σ, we use too few samples for NAIVEPCE to obtain a good estimate of Σ
on its own.

Algorithm 2: Private Preconditioning WEAKPPCρ,β,κ,K(X)
Input: A set of n samples X1, . . . , Xn from an unknown Gaussian. Parameters ρ, β, κ,K > 0.
Output: A symmetric matrix A.
Let Z ← NAIVEPCEρ,β,κ(X1, . . . , Xn)
Let (λ1, v1), . . . , (λd, vd) be the eigenvalues and the corresponding eigenvectors of Z
Let V ← span

({
vi : λi ≥ κ

2

})
⊆ Rd

Return the pair (V,A) where A = 1√
K

ΠV + ΠV ⊥

The guarantee of Algorithm 2 is captured in the following theorem. In Section C.4, we state a
more precise and complete version as Theorem 28, and prove it.

Theorem 7 For every ρ, β, κ,K > 0, WEAKPPCρ,β,κ,K(X) satisfies ρ-zCDP and, if X1, . . . , Xn

are sampled i.i.d. from N (0,Σ) for I � Σ � κI where κ > 1000, K is an appropriate constant,

and n = O

(
d3/2polylog( d

ρβ
)

ρ1/2

)
, then with probability at least 1 − O(β) it outputs A such that

I � (1.1A)Σ(1.1A) � 7
10κI.

2.2.2. RECURSIVE PRECONDITIONING

Once we have WEAKPPC, we can apply it recursively to obtain a private preconditioner, PPC (Al-
gorithm 3) that reduces the condition number down to a constant.

Algorithm 3: Privately estimating covariance PPCρ,β,κ(X)
Input: A set of n samples X1, . . . , Xn from an unknown GaussianN (0,Σ). Parameters ρ, β, κ > 0
Output: A symmetric matrix A
Let T ← O(log κ) ρ′ ← ρ/T β′ ← β/T
Let K be the constant from Theorem 28
Let κ(1) ← κ and let X(1)

i ← Xi for i = 1, . . . , n
For t = 1, . . . , T

Let Ã(t) ← WEAKPPCρ′,β′,κ(t),K(X
(t)
1 , . . . , X

(t)
n ), and let A(t) ← 1.1Ã(t)

Let κ(t+1) ← 0.7κ(t)

Let X(t+1)
i ← A(t)X

(t)
i for i = 1, . . . , n

Return The matrix A =
∏T
t=1A

(t).

Theorem 8 For every ρ, α, β, κ > 0, the algorithm PPCρ,β,κ satisfies ρ-zCDP, and when given

n = O

(
d3/2 log1/2(κ)polylog( d log κ

ρβ
)

ρ1/2

)
, samples X1, . . . , Xn ∼ N (0,Σ) for I � Σ � κI, with

probability 1−O(β) it outputs a symmetric matrix A such that I � AΣA � 1000I.

10
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2.3. Putting It All Together

We can now combine our private preconditioning algorithm with the naı̈ve algorithm for covari-
ance estimation to obtain a complete algorithm for covariance estimation.

Algorithm 4: Private Covariance Estimator PGCEρ,β,κ(X)
Input: Samples X1, . . . , Xn from an unknown Gaussian N (0,Σ). Parameters ρ, β, κ > 0.
Output: A matrix Σ̂ such that ‖Σ− Σ̂‖Σ ≤ α.
Let ρ′ ← ρ/2 and β′ ← β/2
Let A← PPCρ′,β′,κ(X1, . . . , Xn) be the private preconditioner
Let Yi ← AXi for i = 1, . . . , n
Let Σ̃← NAIVEPCEρ′,β′,1000(Y1, . . . , Yn)

Return Σ̂ = A−1Σ̃A−1

This algorithm has the following guarantee.

Theorem 9 For every ρ, β, κ > 0, the algorithm PGCEρ.β,κ(X) is ρ-zCDP and, when given

n = O

(
d2+log( 1

β
)

α2 +
d2polylog( d

αβρ
)

αρ1/2
+

d3/2 log1/2(κ)polylog( d log κ
ρβ

)

ρ1/2

)
, X1, . . . , Xn ∼ N (0,Σ) for I �

Σ � κI, with probability 1−O(β), it outputs Σ̂ such that ‖Σ− Σ̂‖Σ ≤ O(α).

3. Private Mean Estimation for Gaussians

Suppose we are given i.i.d. samples X1, . . . , Xn, such that Xi ∼ N (µ,Σ) where ‖µ‖2 ≤ R is
an unknown mean and I � Σ � κI is an unknown covariance matrix. Our goal is to find an estimate
µ̂ such that ‖µ− µ̂‖Σ ≤ O(α) where ‖v‖Σ = ‖Σ−1/2v‖2 is the Mahalanobis distance with respect
to the covariance Σ. This guarantee ensures dTV(N (µ,Σ),N (µ̂,Σ)) = O(α).

When κ is a constant, we can obtain such a guarantee in a relatively straightforward way by
applying the mean-estimation procedure for univariate Gaussians due to Karwa and Vadhan Karwa
and Vadhan (2018) to each coordinate. To handle large values of κ, we combine their procedure with
our procedure for privately learning a strong approximation to the covariance matrix.

3.1. Mean Estimation for Well-Conditioned Gaussians

We start with the following algorithm for learning the mean of a univariate Gaussian, which is a
trivial variant of the algorithm of Karwa and Vadhan Karwa and Vadhan (2018) to the definition of
zCDP.

Theorem 10 (Variant of Karwa and Vadhan (2018)) For every ε, δ, α, β,R, σ > 0, there is an
ε2

2 -zCDP algorithm KVMEANε,α,β,R,κ(X) and an n = O

(
log( 1

β
)

α2 +
log( logR

αβε
)

αε +
log1/2(R

β
)

ε

)
, such

that if X = (X1, . . . , Xn) are i.i.d. samples from N (µ, σ2) for |µ| ≤ R and 1 ≤ σ2 ≤ κ then, with
probability at least 1− β, KVMEAN outputs µ̂ such that |µ− µ̂| ≤ ακ. This algorithm also satisfies
ρ-zCDP for ρ = ε2

2 in which case we denote the algorithm KVMEANρ,α,β,R,κ(X).

Note that the algorithm only needs an upper bound κ on the true variance σ2 as a parameter.
However, since the error guarantees depend on this upper bound, the upper bound needs to be
reasonably tight in order to get a useful estimate of the mean.

11
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We will describe our naı̈ve algorithm for the case of ρ-zCDP since the parameters are cleaner.
We could also obtain an (ε, δ)-DP version using the (ε, δ)-DP version of NAIVEPME and setting
parameters appropriately.

Algorithm 5: Naı̈ve Private Mean Estimator NAIVEPMEρ,α,β,R,κ(X)
Input: Samples X1, . . . , Xn ∈ Rd from a d-variate Gaussian. Parameters ρ, α, β,R, κ > 0.
Output: A vector µ̂ such that ‖µ− µ̂‖Σ ≤ α.
Let ρ′ ← ρ/d α′ ← α/κ

√
d β′ ← β/d

For j = 1, . . . , d
Let µ̂j ← KVMEANρ′,α′,β′,R,κ(X1,j , . . . , Xn,j)

Return µ̂ = (µ̂1, . . . , µ̂d)

Theorem 11 For every ρ, α, β,R, κ > 0, the algorithm NAIVEPMEρ,α,β,R,κ is ρ-zCDP and there

is an n = O

(
κ2d log( d

β
)

α2 +
κd log(κd logR

αβρ
)

αρ1/2
+

√
d log1/2(Rd

β
)

ρ1/2

)
, such that if X1, . . . , Xn ∼ N (µ,Σ) for

‖µ‖2 ≤ R and I � Σ � κI then, with probability at least 1− β, NAIVEPME outputs µ̂ such that
‖µ− µ̂‖Σ ≤ α.

3.2. An Algorithm for General Gaussians

If Σ were known, then we could easily perform mean estimation without dependence on κ simply
by applying Σ−1/2 to each sample and running NAIVEPME. Specifically, if Xi ∼ N (µ,Σ) then
Σ−1/2Xi ∼ N (Σ−1/2µ, I). Then applying NAIVEPME we would obtain µ̂ such that ‖µ− µ̂‖Σ =
‖Σ−1/2(µ − µ̂)‖2 ≤ α and the sample complexity would be independent of κ. Using the private
preconditioner from the previous section, we can obtain a good enough approximation to Σ−1/2 to
carry out this reduction.

Algorithm 6: Private Mean Estimator PMEρ,α,β,R,κ(X)
Input: Samples X1, . . . , X3n ∈ Rd from a d-variate Gaussian N (µ,Σ) with unknown mean and

covariance. Parameters ρ, α, β,R, κ > 0.
Output: A vector µ̂ such that ‖µ− µ̂‖Σ ≤ α.
For i = 1, . . . , n, let Zi = 1√

2
(X2i −X2i−1)

Let A← PPCρ,β,κ(Z1, . . . , Zn)
For i = 1, . . . , n, let Yi = AX2n+i

Let µ̃← NAIVEPMEρ,α,β,1000R,1000(Y1, . . . , Yn)
Return µ̂← A−1µ̃

We capture the properties of PME in the following theorem

Theorem 12 For every ρ, α, β,R, κ > 0, the algorithm PMEρ,α,β,R,κ is 2ρ-zCDP and there is an

n = O

(
d log( d

β
)

α2 +
d log( d logR

αβρ
)

αρ1/2
+

√
d log1/2(Rd

β
)

ρ1/2
+ nPPC

)
such that if X1, . . . , Xn ∼ N (µ,Σ) for

‖µ‖2 ≤ R and I � Σ � κI then, with probability at least 1 − 2β, PME outputs µ̂ such that
‖µ− µ̂‖Σ ≤ α. In the above, nPPC is the sample complexity required by PPCρ,β,κ (Theorem 8).

12



PRIVATELY LEARNING HIGH-DIMENSIONAL DISTRIBUTIONS

Acknowledgments

Work done when GK was a graduate student at MIT, supported by NSF Award CCF-1617730,
CCF-1650733, CCF-1741137, and ONR N00014-12-1-0999, and when a Microsoft Research Fellow,
as part of the Simons-Berkeley Research Fellowship program. Work done when JL was a graduate
student at MIT, supported by NSF Award CCF-1453261 (CAREER), CCF-1565235, a Google
Faculty Research Award, and an NSF Graduate Research Fellowship, and when a VMware Research
Fellow, as part of the Simons-Berkeley Research Fellowship program. Part of this work was also
performed while JL was an intern at Google. VS supported by NSF award CCF-1750640. JU
supported by NSF awards CCF-1750640 and NSF awards CCF-1718088 and CNS-1816028, and a
Google Faculty Research Award.

References

Jayadev Acharya, Gautam Kamath, Ziteng Sun, and Huanyu Zhang. Inspectre: Privately estimating
the unseen. In Proceedings of the 35th International Conference on Machine Learning, ICML ’18,
pages 30–39. JMLR, Inc., 2018a.

Jayadev Acharya, Ziteng Sun, and Huanyu Zhang. Differentially private testing of identity and
closeness of discrete distributions. In Advances in Neural Information Processing Systems 31,
NeurIPS ’18, pages 6878–6891. Curran Associates, Inc., 2018b.

Maryam Aliakbarpour, Ilias Diakonikolas, and Ronitt Rubinfeld. Differentially private identity and
closeness testing of discrete distributions. In Proceedings of the 35th International Conference on
Machine Learning, ICML ’18, pages 169–178. JMLR, Inc., 2018.

Mitali Bafna and Jonathan Ullman. The price of selection in differential privacy. In Proceedings of
the 30th Annual Conference on Learning Theory, COLT ’17, pages 151–168, 2017.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In Proceedings of the 55th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’14, pages 464–473, Washington, DC, USA, 2014. IEEE
Computer Society.

Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample
complexity for private learning and private data release. Machine Learning, 94(3):401–437, 2014.

Andrew C. Berry. The accuracy of the Gaussian approximation to the sum of independent variates.
Transactions of the American Mathematical Society, 49(1):122–136, 1941.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and
lower bounds. In Proceedings of the 14th Conference on Theory of Cryptography, TCC ’16-B,
pages 635–658, Berlin, Heidelberg, 2016. Springer.

Mark Bun, Jonathan Ullman, and Salil Vadhan. Fingerprinting codes and the price of approximate
differential privacy. In Proceedings of the 46th Annual ACM Symposium on the Theory of
Computing, STOC ’14, pages 1–10, New York, NY, USA, 2014. ACM.

13



PRIVATELY LEARNING HIGH-DIMENSIONAL DISTRIBUTIONS

Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Differentially private release and learning
of threshold functions. In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science, FOCS ’15, pages 634–649, Washington, DC, USA, 2015. IEEE Computer
Society.

Mark Bun, Thomas Steinke, and Jonathan Ullman. Make up your mind: The price of online queries
in differential privacy. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’17, pages 1306–1325, Philadelphia, PA, USA, 2017. SIAM.

Bryan Cai, Constantinos Daskalakis, and Gautam Kamath. Priv’it: Private and sample efficient
identity testing. In Proceedings of the 34th International Conference on Machine Learning, ICML
’17, pages 635–644. JMLR, Inc., 2017.

T. Tony Cai, Yichen Wang, and Linjun Zhang. The cost of privacy: Optimal rates of convergence for
parameter estimation with differential privacy. arXiv preprint arXiv:1902.04495, 2019.

Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In Proceedings
of the 49th Annual ACM Symposium on the Theory of Computing, STOC ’17, pages 47–60, New
York, NY, USA, 2017. ACM.

Aref N. Dajani, Amy D. Lauger, Phyllis E. Singer, Daniel Kifer, Jerome P. Reiter, Ashwin Machanava-
jjhala, Simson L. Garfinkel, Scot A. Dahl, Matthew Graham, Vishesh Karwa, Hang Kim, Philip
Lelerc, Ian M. Schmutte, William N. Sexton, Lars Vilhuber, and John M. Abowd. The moderniza-
tion of statistical disclosure limitation at the U.S. census bureau, 2017. Presented at the September
2017 meeting of the Census Scientific Advisory Committee.

Luc Devroye, Abbas Mehrabian, and Tommy Reddad. The minimax learning rate of normal and
Ising undirected graphical models. arXiv preprint arXiv:1806.06887, 2018.

Ilias Diakonikolas, Moritz Hardt, and Ludwig Schmidt. Differentially private learning of structured
discrete distributions. In Advances in Neural Information Processing Systems 28, NIPS ’15, pages
2566–2574. Curran Associates, Inc., 2015.

Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Robust estimators in high dimensions without the computational intractability. In Proceedings
of the 57th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’16, pages
655–664, Washington, DC, USA, 2016. IEEE Computer Society.

Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Being robust (in high dimensions) can be practical. In Proceedings of the 34th International
Conference on Machine Learning, ICML ’17, pages 999–1008. JMLR, Inc., 2017.

Ilias Diakonikolas, Gautam Kamath, Daniel M. Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Robustly learning a Gaussian: Getting optimal error, efficiently. In Proceedings of the 29th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, Philadelphia, PA, USA, 2018. SIAM.

Differential Privacy Team, Apple. Learning with privacy at scale.
https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf,
December 2017.

14



PRIVATELY LEARNING HIGH-DIMENSIONAL DISTRIBUTIONS

Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceedings of the
22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’03,
pages 202–210, New York, NY, USA, 2003. ACM.

Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceedings of the 41st
Annual ACM Symposium on the Theory of Computing, STOC ’09, pages 371–380, New York, NY,
USA, 2009. ACM.

Cynthia Dwork and Guy N. Rothblum. Concentrated differential privacy. arXiv preprint
arXiv:1603.01887, 2016.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Proceedings of the 3rd Conference on Theory of Cryptography, TCC ’06,
pages 265–284, Berlin, Heidelberg, 2006. Springer.

Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan. On the complexity
of differentially private data release: Efficient algorithms and hardness results. In Proceedings of
the 41st Annual ACM Symposium on the Theory of Computing, STOC ’09, pages 381–390, New
York, NY, USA, 2009. ACM.

Cynthia Dwork, Guy N. Rothblum, and Salil Vadhan. Boosting and differential privacy. In Proceed-
ings of the 51st Annual IEEE Symposium on Foundations of Computer Science, FOCS ’10, pages
51–60, Washington, DC, USA, 2010. IEEE Computer Society.

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze Gauss: Optimal bounds
for privacy-preserving principal component analysis. In Proceedings of the 46th Annual ACM
Symposium on the Theory of Computing, STOC ’14, pages 11–20, New York, NY, USA, 2014.
ACM.

Cynthia Dwork, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan. Robust trace-
ability from trace amounts. In Proceedings of the 56th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’15, pages 650–669, Washington, DC, USA, 2015. IEEE Computer
Society.

Cynthia Dwork, Adam Smith, Thomas Steinke, and Jonathan Ullman. Exposed! a survey of attacks
on private data. Annual Review of Statistics and Its Application, 4(1):61–84, 2017.
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Appendix A. Additional Related Work

Differentially Private Learning and Statistics. The most directly comparable papers to ours
are recent results on learning low-dimensional statistics. In addition to the aforementioned work
of Karwa and Vadhan (2018), Bun et al. (2015) showed how to private learn an arbitrary distribution
in Kolmogorov distance, which is weaker than TV distance, with almost no increase in sample
complexity. Diakonikolas et al. (2015) extended that work to give a practical algorithm for learning
structured one-dimensional distributions in TV distance.

An elegant work of Smith (2011) showed how to estimate arbitrary asymptotically normal
statistics with only a small increase in sample complexity compared to non-private estimation. Tech-
nically, this work doesn’t apply to covariance estimation or estimating sparse product distributions,
for which the asymptotic distribution is not normal. More fundamentally, this algorithm learns a
high-dimensional distribution one coordinate at a time, which is quite costly for the distributions we
consider here.

Subsequent to our work, Cai et al. (2019) studied mean and covariance estimation of subgaussian
distributions (as well as sparse mean estimation, which we don’t consider in this work) subject to
differential privacy, but in a setting with strong a priori bounds on the parameters. In particular,
they prove a lower bound for mean estimation of subgaussian distributions that is incomparable to
our Theorems 52 and 56. It is quantitatively larger by a factor of log1/2(1/δ), but it only holds for
the more general class of subgaussian non-product distributions. In particular they use a reduction
from Steinke and Ullman (2017a) to boost one of Theorem 52 or 56 in a way that fails to preserve
the property of being Gaussian or being a product distribution.

Covariance Estimation. For covariance estimation, the works closest to ours are that of Dwork
et al. (2014) and Sheffet (2017). Their algorithms require that the norm of the data be bounded, and
the sample complexity depends polynomially on this bound. In contrast, our algorithms have either
mild or no dependence on the norm of the data.

Robust Statistical Estimation on High-Dimensional Data. Recently, there has been significant
interest in the computer science community in robustly estimating distributions (Diakonikolas et al.,
2016; Lai et al., 2016; Charikar et al., 2017; Diakonikolas et al., 2017, 2018; Steinhardt et al., 2018),
where the goal is to estimate some distribution from samples even when a constant fraction of the
samples may be corrupted by an adversary. As observed by Dwork and Lei (2009), differentially
private estimation and robust estimation both seek to minimize the influence of outliers, and thus
there is a natural conceptual connection between these two problems. Technically, the two problems
are incomparable. Differential privacy seeks to limit the influence of outliers in a very strong sense,
and without making any assumptions on the data, but only when up to O(1/ε) samples are corrupted.
In contrast, robust estimation limits the influence of outliers in a weaker sense, and only when the
remaining samples are chosen from a nice distribution, but tolerates up to Ω(n) corruptions.

Differentially Private Testing. There have also been a number of works on differentially private
hypothesis testing. For example, Wang et al. (2015); Gaboardi et al. (2016b); Kifer and Rogers
(2017); Cai et al. (2017); Kakizaki et al. (2017) gave private algorithms for goodness-of-fit testing,
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closeness, and independence testing. Recently, Acharya et al. (2018b) and Aliakbarpour et al. (2018)
have given essentially optimal algorithms for goodness-of-fit and closeness testing of arbitrary
distributions. Acharya et al. (2018a) designed nearly optimal algorithms for estimating properties
like support size and entropy. Gaboardi and Rogers (2018); Sheffet (2018) study hypothesis testing
in the local differential privacy setting. All these works consider testing of arbitrary distributions,
and so they necessarily have sample complexity growing exponentially in the dimension.

Privacy Attacks and Lower Bounds. A complementary line of work has established limits on
the accuracy of private algorithms for high-dimensional learning. For example, Dwork et al. (2015)
(building on Bun et al. (2014); Hardt and Ullman (2014); Steinke and Ullman (2015, 2017a)) designed
a robust tracing attack that can infer sensitive information about individuals in a dataset using
highly noisy statistical information about the dataset. These attacks apply to nice distributions like
product distributions and Gaussians, but require that the dataset be too small to learn the underlying
distribution in total variation distance, and thus do not contradict our results. These attacks apply to a
number of learning problems, such as PCA (Dwork et al., 2014), ERM (Bassily et al., 2014), and
variable selection (Bafna and Ullman, 2017; Steinke and Ullman, 2017b). Similar attacks lead to
computational hardness results for differentially private algorithms for high-dimensional data (Dwork
et al., 2009; Ullman and Vadhan, 2011; Ullman, 2016; Kowalczyk et al., 2016, 2018), albeit for
learning problems that encode certain cryptographic functionalities.

Appendix B. Preliminaries

A dataset X = (X1, . . . , Xn) ∈ X n is a collection of elements from some universe. We say
that two datasets X,X ′ ∈ X n are neighboring if they differ on at most a single entry, and denote
this by X ∼ X ′. Informally, differential privacy requires that for every pair of datasets X,X ′ ∈ X n
that differ on at most a single entry, the distributions M(X) and M(X ′) are close. In our work we
consider a few different variants of differential privacy. The first is the standard variant of differential
privacy.

Definition 13 (Differential Privacy (DP) (Dwork et al., 2006)) A randomized algorithmM : X n →
Y satisfies (ε, δ)-differential privacy ((ε, δ)-DP) if for every pair of neighboring datasets X,X ′ ∈
X n,

∀Y ⊆ Y P[M(X) ∈ Y ] ≤ eεP
[
M(X ′) ∈ Y

]
+ δ.

The second variant is so-called concentrated differential privacy (Dwork and Rothblum, 2016),
specifically the refinement zero-mean concentrated differential privacy (Bun and Steinke, 2016).

Definition 14 (Concentrated Differential Privacy (zCDP) (Bun and Steinke, 2016)) A random-
ized algorithm M : X n → Y satisfies ρ-zCDP if for every pair of neighboring datasets X,X ′ ∈ X n,

∀α ∈ (1,∞) Dα

(
M(X)||M(X ′)

)
≤ ρα,

where Dα(M(X)||M(X ′)) is the α-Rényi divergence between M(X) and M(X ′).3

Both of these definitions are closed under post-processing

3. Given two probability distributions P,Q over Ω, Dα(P‖Q) = 1
α−1

log
(∑

x P (x)αQ(x)1−α
)
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Lemma 15 (Post-Processing (Dwork et al., 2006; Bun and Steinke, 2016)) If M : X n → Y is
(ε, δ)-DP and P : Y → Z is any randomized function, then the algorithm P ◦M is (ε, δ)-DP.
Similarly if M is ρ-zCDP then the algorithm P ◦M is ρ-zCDP.

Qualitatively, DP with δ = 0 is stronger than zCDP, which is stronger than DP with δ > 0. These
relationships are quantified in the following lemma.

Lemma 16 (Relationships Between Variants of DP (Bun and Steinke, 2016)) For every ε ≥ 0,

1. If M satisfies (ε, 0)-DP, then M is ε2

2 -zCDP.

2. If M satisfies ε2

2 -zCDP, then M satisfies ( ε
2

2 + ε
√

2 log(1
δ ), δ)-DP for every δ > 0.

Note that the parameters for DP and zCDP are on different scales, with (ε, δ)-DP roughly commen-
surate with ε2

2 -zCDP.

Composition. A crucial property of all the variants of differential privacy is that they can be com-
posed adaptively. By adaptive composition, we mean a sequence of algorithms M1(X), . . . ,MT (X)
where the algorithmMt(X) may also depend on the outcomes of the algorithmsM1(X), . . . ,Mt−1(X).

Lemma 17 (Composition of DP (Dwork et al., 2006, 2010; Bun and Steinke, 2016)) If M is an
adaptive composition of differentially private algorithms M1, . . . ,MT , then the following all hold:

1. If M1, . . . ,MT are (ε1, δ1), . . . , (εT , δT )-DP then M is (ε, δ)-DP for

ε =
∑
t

εt and δ =
∑
t

δt

2. If M1, . . . ,MT are (ε0, δ1), . . . , (ε0, δT )-DP for some ε0 ≤ 1, then for every δ0 > 0, M is
(ε, δ)-DP for

ε = ε0

√
6T log(1/δ0) and δ = δ0 +

∑
t

δt

3. If M1, . . . ,MT are ρ1, . . . , ρT -zCDP then M is ρ-zCDP for ρ =
∑

t ρt.

Note that the first and the third properties say that (ε, δ)-DP and ρ-zCDP compose linearly—the
parameters simply add up. The second property says that (ε, δ)-DP actually composes sublinearly—
the parameter ε grows roughly with the square root of the number of steps in the composition,
provided we allow a small increase in δ.

The Gaussian Mechanism. Our algorithms will extensively use the well known and standard
Gaussian mechanism to ensure differential privacy.

Definition 18 (`2-Sensitivity) Let f : X n → Rd be a function, its `2-sensitivity is

∆f = max
X∼X′∈Xn

‖f(X)− f(X ′)‖2
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Lemma 19 (Gaussian Mechanism) Let f : X n → Rd be a function with `2-sensitivity ∆f . Then
the Gaussian mechanism

Mf (X) = f(X) +N

(
0,

(
∆f√

2ρ

)2

· I

)
satisfies ρ-zCDP.

In order to prove accuracy, we will use the following standard tail bounds for Gaussian random
variables.

Lemma 20 If Z ∼ N(0, σ2) then for every t > 0, P[|Z| > tσ] ≤ 2e−t
2/2.

Parameter Estimation to Distribution Estimation. In this work, our goal is to estimate some
underlying distribution in total variation distance. For both Gaussian and product distributions, we
will achieve this by estimating the parameters of the distribution, and we argue that a distribution from
the class with said parameters will be accurate in total variation distance. For product distributions,
we require an estimate of the parameters, which is accurate in terms of a type of chi-squared distance;
this is shown in the proof of Theorem 32. For Gaussian distributions, the parameter estimate we
require is slightly more difficult to describe. For a vector x, define ‖x‖Σ = ‖Σ−1/2x‖2. Similarly,
for a matrix X , define ‖X‖Σ = ‖Σ−1/2XΣ−1/2‖F . With these two norms in place, we have the
following lemma, which is a combination of Corollaries 2.13 and 2.14 of Diakonikolas et al. (2016).

Lemma 21 Let α ≥ 0 be smaller than some absolute constant. Suppose that ‖µ− µ̂‖Σ ≤ α, and
‖Σ− Σ̂‖Σ ≤ α, where N (µ,Σ) is a Gaussian distribution in Rd, µ̂ ∈ Rd, and Σ ∈ Rd×d is a PSD
matrix. Then dTV(N (µ,Σ),N (µ̂, Σ̂)) ≤ O(α).

Appendix C. Additional Details for Gaussian Estimation

C.1. Useful Concentration Inequalities

We will need several facts about Gaussians and Gaussian matrices. Throughout this section, let
GUE(σ2) denote the distribution over d × d symmetric matrices M where for all i ≤ j, we have
Mij ∼ N (0, σ2) i.i.d.. From basic random matrix theory, we have the following guarantee.

Theorem 22 (see e.g. Tao (2012) Corollary 2.3.6) For d sufficiently large, there exist absolute
constants C, c > 0 such that

P
M∼GUE(σ2)

[
‖M‖2 > Aσ

√
d
]
≤ C exp(−cAd)

for all A ≥ C.

We also require the following, well known tail bound on quadratic forms on Gaussians.

Theorem 23 (Hanson-Wright Inequality (see e.g. Laurent and Massart (2000))) LetX ∼ N (0, I)
and let A be a d× d matrix. Then, for all t > 0, the following two bounds hold:

P
[
X>AX − tr(A) ≥ 2‖A‖F

√
t+ 2‖A‖2t

]
≤ exp(−t) (4)

P
[
X>AX − tr(A) ≤ −2‖A‖F

√
t
]
≤ exp(−t) (5)

21



PRIVATELY LEARNING HIGH-DIMENSIONAL DISTRIBUTIONS

As a special case of the above inequality, we also have

Fact 24 (Laurent and Massart (2000)) Fix β > 0, and let X1, . . . , Xm ∼ N (0, σ2) be indepen-
dent. Then

Pr

[∣∣∣∣∣ 1

m

m∑
i=1

X2
i − σ2

∣∣∣∣∣ > 4σ2

(√
log(1/β)

m
+

2 log(1/β)

m

)]
≤ β

C.2. Deterministic Regularity Conditions

We will rely on certain regularity properties of i.i.d. samples from a Gaussian. These are standard
concentration inequalities, and a reference for these facts is Section 4 of Diakonikolas et al. (2016).

Fact 25 Let X1, . . . , Xn ∼ N (0,Σ) i.i.d. for I � Σ � κI. Let Yi = Σ−1/2Xi and let

Σ̂Y =
1

n

n∑
i=1

YiY
>
i

Then for every β > 0, the following conditions hold except with probability 1−O(β).

∀i ∈ [n] ‖Yi‖22 ≤ O(d log(n/β)) (6)(
1−O

(√
d+ log(1/β)

n

))
· I � Σ̂Y �

(
1 +O

(√
d+ log(1/β)

n

))
· I (7)

∥∥∥I− Σ̂Y

∥∥∥
F
≤ O

(√
d2 + log(1/β)

n

)
(8)

We now note some simple consequences of these conditions. These inequalities follow from simple
linear algebra and we omit their proof for conciseness.

Lemma 26 Let Y1, . . . , Yn satisfy (6)–(8). Fix M � 0, and for all i = 1, . . . , n, let Zi = M1/2Yi,
and let Σ̂Z = 1

n

∑n
i=1 ZiZ

>
i . Let κ′ be the top eigenvalue of M . Then

∀i ∈ [n] ‖Zi‖22 ≤ O
(
κ′d log(n/β)

)(
1−O

(√
d+ log(1/β)

n

))
·M � Σ̂Z �

(
1 +O

(√
d+ log(1/β)

n

))
·M

∥∥∥M − Σ̂Z

∥∥∥
M
≤ O

(√
d2 + log(1/β)

n

)

C.3. Analysis of Algorithm 1

Lemma 27 (Analysis of NAIVEPCE) For every ρ, β, κ, n, NAIVEPCEρ,β,κ(X) satisfies ρ-zCDP,
and if X1, . . . , Xn are sampled i.i.d. from N (0,Σ) for I � Σ � κI and satisfy (6)–(8), then
with probability at least 1 − O(β), it outputs M so that M = Σ1/2(I + N ′)Σ1/2 + N where
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Σ1/2(I +N ′)Σ1/2 � 0, and

‖N ′‖F ≤ O

(√
d2 + log(1/β)

n

)
and ‖N‖Σ ≤ O

(
d2κ log(n/β) log1/2(1/β)

nρ1/2

)
, and (9)

‖N ′‖2 ≤ O

(√
d+ log(1/β)

n

)
and ‖N‖2 ≤ O

(
d3/2κ log(n/β) log(1/β)

nρ1/2

)
. (10)

Proof We first prove the privacy guarantee. Given two neighboring data sets X,X ′ of size n which
differ in that one contains Xi and the other contains X ′i, the truncated empirical covariance of these
two data sets can change in Frobenius norm by at most∥∥∥∥ 1

n

(
XiX

>
i −X ′i(X ′i)>

)∥∥∥∥
F

≤ 1

n
‖Xi‖22 +

1

n
‖X ′i‖22 ≤ O

(
dκ log(n/β)

n

)
.

Thus the privacy guarantee follows immediately from Lemma 19.
We now prove correctness. Recall M ′ is the original noised covariance before projection back to

the SDP cone. We first prove that M ′ satisfies this form, with Σ1/2(I +N ′)Σ1/2 = 1
n

∑n
i=1XiX

>
i .

Clearly this implies that Σ1/2(I+N ′)Σ1/2 � 0. Since (6) holds, we have S = [n]. The first inequality
in (9) now follows from Lemma 26, and the second follows from Fact 24 and since ‖N‖Σ ≤ ‖N‖F ,
as Σ � I . By a similar logic, (10) holds since we can apply Lemma 26 and Theorem 22. Finally, to
argue about M , simply observe that Σ1/2(I +N ′)Σ1/2 is PSD, and projection onto the PSD cone
can only decrease distance (in either spectral norm or Frobenius norm) to any element in the PSD
cone.

C.4. Analysis of Algorithm 2

Theorem 28 For every ρ, β, κ,K > 0, WEAKPPCρ,β,κ,K(X) satisfies ρ-zCDP and, ifX1, . . . , Xn

are sampled i.i.d. from N (0,Σ) for I � Σ � κI and satisfy (6)–(8), then with probability at least
1−O(β) it outputs (V,A) such that

(1− ψ)2(1− Γ)I � AΣA � (1 + ψ) · κ
(

max

(
1

K
,
1

2

)
+ ϕ

)
I (11)

where

ϕ = O

(
d3/2 log(n/β) log(1/β)

nρ1/2

)
,

ψ = O

(√
d+ log(1/β)

n

)
, and

Γ = max

{
2K

(1/2− ϕ)κ
,

16Kϕ2

(1/2− ϕ)2

}
In particular, if κ > 1000, and K is an appropriate constant, and

n ≥ O

(
d3/2polylog( d

ρβ )

ρ1/2

)
then 1.1A is such that I � (1.1A)Σ(1.1A) � 7

10κI.
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Proof Privacy follows since we are simply post-processing the output of Algorithm 1 (Lemma 15).
Thus it suffices to prove correctness. We assume that (6)–(8) hold simultaneously. By Lemma 27,
(9)–(10) hold simultaneously for the matrix Z except with probability O(β). We will condition on
these events throughout the remainder of the proof. Observe that (7) implies that Σ̂ = 1

n

∑n
i=1XiX

>
i

is non-singular.
We will prove the upper bound and lower bound in (11) in two separate lemmata.

Lemma 29 Let V,A be as in Algorithm 2. Then, conditioned on (6)–(10), with probability 1−O(β),
we have

‖AΣA‖2 ≤ (1 + ψ) · κ
(

max

(
1

K
,
1

2

)
+ ϕ

)
.

Lemma 30 Let V,A be as in Algorithm 2. Then, conditioned on (6)–(10), with probability 1−O(β),
we have

AΣA � (1− ψ)2(1− Γ)I . (12)

These two lemmata therefore together imply Theorem 28. We now turn our attention to the proofs of
these lemmata. Let N be the Gaussian noise added to the empirical covariance in NAIVEPCE, so
that Z = Σ̂ +N .
Proof [Proof of Lemma 29] By Lemma 26 (with M = Σ), it suffices to show that

‖AΣ̂A‖2 ≤ κ
(

max

(
1

K
,
1

2

)
+ ϕ

)
.

But with probability 1− β, we have∥∥∥AΣ̂A
∥∥∥

2
≤ ‖AZA‖2 + ‖ANA‖2
(a)

≤ ‖AZA‖2 + κϕ ,

where (a) follows since ‖A‖2 ≤ 1 and Theorem 22. We now observe that since V is a span of
eigenvectors of Z, we have

AZA =
1

K
ΠV ZΠV + ΠV ⊥ZΠV ⊥ ,

and so by our choice of V , we have ‖AZA‖2 ≤ κ ·max(1/K, 1/2). This completes our proof.

We now prove the lower bound in Theorem 28:
Proof [Proof of Lemma 30] As before, by Lemma 26, it suffices to prove that

AΣ̂A � (1− ψ)(1− Γ)I .

This is equivalent to showing that for all unit vectors u, we have

uTAΣ̂Au ≥ (1− ψ)(1− Γ) .

Fix any such u. Expanding, we have

uTAΣ̂Au =
1

K
uTΠV Σ̂ΠV u+

1

K1/2
uTΠV Σ̂ΠV ⊥u+

1

K1/2
uTΠV ⊥Σ̂ΠV u+ uTΠV ⊥Σ̂ΠV ⊥u .

(13)
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The first and last terms are non-negative since Σ̂ is PSD, but the other terms may be negative, so we
need to control their magnitude. Note that

uTΠV Σ̂ΠV u = uTΠV ZΠV u− uTΠVNΠV u

≥ κ

2
‖ΠV u‖22 − κϕ‖ΠV u‖22 = κ

(
1

2
− ϕ

)
‖ΠV u‖22 .

where the inequality follows from our choice of V (the “large” directions of Z), and Theorem 22
(bounding the spectral norm of N ). On the other hand, we have∣∣∣∣ 1

K1/2
uTΠV Σ̂ΠV ⊥u

∣∣∣∣ =

∣∣∣∣ 1

K1/2
uTΠV (Z −N)ΠV ⊥u

∣∣∣∣
(a)
=

∣∣∣∣ 1

K1/2
uTΠVNΠV ⊥u

∣∣∣∣
(b)

≤ κ

K1/2
ϕ‖ΠV u‖2‖ΠV ⊥u‖2

≤ κ

K1/2
ϕ‖ΠV u‖2 ,

where (a) follows since ΠV ZΠV ⊥ = 0, and (b) follows from Theorem 22. Similarly, we have∣∣∣∣ 1

K1/2
uTΠV ⊥Σ̂ΠV u

∣∣∣∣ ≤ κ

K1/2
ϕ‖ΠV u‖2 .

Thus, if we have ‖ΠV u‖22 ≥ Γ, by our choice of Γ, we have
1

K
uTΠV Σ̂ΠV u+

1

K1/2
uTΠV Σ̂ΠV ⊥u+

1

K1/2
uTΠV ⊥Σ̂ΠV u

≥ κ

K

(
1

2
− ϕ

)
‖ΠV u‖22 − 2

κ

K1/2
ϕ‖ΠV u‖2

≥ κ

2K

(
1

2
− ϕ

)
‖ΠV u‖22

≥ 1 .

Thus in this case the claim follows since the final term in (13) is nonnegative since Σ̂ is PSD.
Now consider the case where

‖ΠV u‖2 < Γ ,

or equivalently, since by the Pythagorean theorem we have ‖ΠV u‖22 + ‖ΠV ⊥u‖22 = 1,

‖ΠV ⊥u‖22 > 1− Γ .

Then, since we have Σ̂ � (1− ψ)I (Fact 25), we have

uTAΣ̂Au ≥ (1− ψ)uT
(

1

K
ΠV ΠV + ΠV ⊥ΠV ⊥

)
u

≥ (1− ψ)‖ΠV ⊥u‖22
≥ (1− ψ)(1− Γ) ,

as claimed.

Combining Lemma 29 and Lemma 30 yield the desired conclusion.
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C.5. Analysis of Algorithm 3

We present the proof of Theorem 8.
Privacy is immediate from Theorem 28 and composition of ρ-zCDP (Lemma 17).
By Fact 25, (6)–(8) hold for the sample X1, . . . , Xn except with probability O(β). Define

Σ(1) = Σ and recursively define Σ(t) = A(t−1)Σ(t−1)A(t−1) to be the covariance after the t-th round
of preconditioning. By the guarantee of WEAKPPC (Theorem 28), a union bound, and our choice of
n, we have that for every t, we obtain a matrix A(t) such that

I � A(t)Σ(t)A(t) � 0.7κ(t)I.

The theorem now follows by induction on t.

C.6. Analysis of Algorithm 4

We present the proof of Theorem 9.
Privacy follows from Theorem 28 and composition of ρ-zCDP (Lemma 17).
By construction, the samples Y1, . . . , Yn are i.i.d. from N (0, AΣA). By Theorem 8, and our

choice of n, we have that except with probability O(β), A is such that I � AΣA � 1000I.
Therefore, combining the guarantees of NAIVEPCE with our choice of n we obtain that, except
with probability O(β), Σ̃ satisfies ‖AΣA − Σ̃‖AΣA ≤ O(α). The theorem now follows because
‖Σ− Σ̂‖Σ = ‖Σ−A−1Σ̃A−1‖Σ = ‖AΣA− Σ̃‖AΣA ≤ O(α).

C.7. Analysis of Algorithm 5

We present the proof of Theorem 11.
The fact that the algorithm satisfies ρ-zCDP follows immediately from the assumed privacy of

KVMEAN and the composition property for zCDP (Lemma 17).
Next we argue that with probability at least 1− β, for every coordinate j = 1, . . . , d, we have

|µj − µ̂j | ≤ α/
√
d. Observe that, since X1, . . . , Xn are distributed asN (µ,Σ), the j-th coordinates

X1,j , . . . , Xn,j are distributed as N (µj ,Σjj) and, by assumption |µj | ≤ R and 1 ≤ Σjj ≤ κ. Thus,
by Theorem 10, we have |µj − µ̂j | ≤ α′κ = α/

√
d except with probability at most β′ = β/d. The

statement now follows by a union bound.
Assuming that every coordinate-wise estimate is correct up to α/

√
d, we have

‖µ− µ̂‖Σ = ‖Σ−1/2(µ− µ̂)‖2 ≤ ‖Σ−1/2‖2 · ‖µ− µ̂‖2 ≤ α

where the final equality uses the coordinate-wise bound on µ − µ̂ and the fact that I � Σ. To
complete the proof, we can plug our choices of ρ′, α′, β′ into the sample complexity bound for
KVMEAN from Theorem 10.

The proof and algorithm for the final statement of the theorem regarding (ε, δ)-DP are completely
analogous. This completes the proof of the theorem.

C.8. Analysis of Algorithm 6

We present the proof of Theorem 12.
Privacy will follow immediately from the composition property of 2ρ-zCDP and the assumed

privacy of PPC and NAIVEPME. The sample complexity bound will also follow immediately

26



PRIVATELY LEARNING HIGH-DIMENSIONAL DISTRIBUTIONS

from the sample complexity bounds for PCE and NAIVEPME. Thus, we focus on proving that
‖µ− µ̂‖Σ ≤ α.

Since X1, . . . , X2n are i.i.d. from N (µ,Σ), the values Z1, . . . , Zn are i.i.d. from N (0,Σ).
Therefore, with probability at least 1 − β, PPC(Z1, . . . , Zn) returns a matrix A such that I �
AΣA � 1000I . Note that since I � Σ and AΣA � 1000 we have ‖A‖2 ≤ 1000.

Now, since the samples X2n+1, . . . , X3n are i.i.d. from N (µ,Σ), the values Y1, . . . , Yn are i.i.d.
from N (Aµ,AΣA). Note that ‖Aµ‖2 ≤ ‖A‖2‖µ‖2 ≤ 1000R and, by assumption, I � AΣA �
1000I . When we apply NAIVEPMEρ,α,β,1000R,1000 to Y1, . . . , Yn, with probability at least 1− β we
will obtain µ̃ such that ‖Aµ− µ̃‖AΣA ≤ α. Finally, we can write ‖µ− µ̂‖Σ = ‖Aµ−Aµ̂‖AΣA =
‖Aµ− µ̃‖AΣA ≤ α. The theorem now follows by a union bound over the two possible failure events.

Appendix D. Privately Learning Product Distributions

In this section we introduce and analyze our algorithm for learning a product distribution P over
{0, 1}d in total variation distance, thereby proving Theorem 3 in the introduction. The pseudocode
appears in Algorithm 7. For simplicity of presentation, we assume that the product distribution
has mean that is bounded coordinate-wise by 1

2 (i.e. E[P ] � 1
2 ), although we emphasize that this

assumption is essentially without loss of generality, and can easily be removed while paying only a
constant factor in the sample complexity.

D.1. A Private Product-Distribution Estimator

To describe the algorithm, we need to introduce notation for the truncated mean. Given a dataset
element (a vector) Xi ∈ {0, 1}d and B ≥ 0, we use

truncB(Xi) =

{
Xi if ‖Xi‖2 ≤ B
B
‖Xi‖2 ·Xi if ‖Xi‖2 > B

to denote the truncation of x to an `2-ball of radius B. Given a dataset X = (X1, . . . , Xm) ∈
{0, 1}m×d and B > 0, we use

tmeanB(X) =
1

m

m∑
i=1

truncB(Xi)

to denote the mean of the truncated vectors. Observe that the `2-sensitivity of tmeanB is B
m , while

the `2-sensitivity of the untruncated mean is infinite. Note that tmeanB(X) = 1
m

∑m
i=1Xi unless

‖Xi‖2 > B for some i. If one of the inputs to tmeanB does not satisfy the norm bound then we will
say, “truncation occurred,” as a shorthand.

We also use the following notational conventions: Given a dataset element Xi ∈ {0, 1}d, we
will use the array notation Xi[j] to refer to its j-th coordinate, and the notation Xi[S] = (Xi[j])j∈S
to refer to the vector X restricted to the subset of coordinates S ⊆ [d]. Given a dataset X =
(X1, . . . , Xm), we use the notation X[S] = (X1[S], . . . , Xm[S]) to refer to the dataset consisting of
each Xi restricted to the subset of coordinates S ⊆ [d].

The privacy analysis of Algorithm 7 is straightforward, based on privacy of the Gaussian
mechanism and bounded sensitivity of the truncated mean.
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Algorithm 7: Private Product-Distribution Estimator PPDEρ,α,β(X)
Input: SamplesX1, . . . , Xn ∈ {0, 1}d from an unknown product distribution P satisfying E[P ] � 1

2 .
Parameters ρ, α, β > 0.

Output: A product distribution Q over {0, 1}d such that dTV(P,Q) ≤ α.

Set parameters: R ← log2(d/2) c ← 128 log5/4(d/αβ(2ρ)1/2) c′ ← 128 log3(dR/β) m ←
c′d
α2 + cd

α(2ρ)1/2

Split X into R+ 1 blocks of m samples each, denoted Xr = (Xr
1 , . . . , X

r
m)

(Halt and output ⊥ if n is too small.)
Let q[j]← 0 for every j ∈ [d], and let S1 = [d], u1 ← 1

2 , τ1 ← 3
16 , and r ← 1

// Partitioning Rounds
While ur|Sr| ≥ 1

Let Sr+1 ← ∅
Let Br ←

√
6ur|Sr| log(mR/β)

Let qr[Sr]←R tmeanBr(X
r[Sr]) +N

(
0, B2

r
2ρm2 · I

)
For j ∈ Sr

If qr[j] < τr
Add j to Sr+1

Else
Set q[j]← qr[j]

Let ur+1 ← 1
2ur, τr+1 ← 1

2τr, and r ← r + 1

// Final Round
If |Sr| ≥ 1

Let Br ←
√

6 log(m/β)

Let q[Sr]←R tmeanBr(X
r[Sr]) +N

(
0, B2

r
2ρm2 · I

)
Return Q = Ber(q[1])⊗ · · · ⊗ Ber(q[d])

Theorem 31 For every ρ, α, β > 0, PPDEρ,α,β(X) satisfies ρ-zCDP.

Proof Since each individual’s data is used only to compute tmeanBr(X
r) for a single round r,

privacy follows immediately from Lemma 19 and from observing that the `2-sensitivity of tmeanB
is B

n . Note that, since a disjoint set of samples Xr is used for each round r, each sample only affects
a single one of the rounds, so we do not need to apply composition.

D.2. Accuracy Analysis for PPDE

In this section we prove the following theorem bounding the sample complexity required by
PPDE to learn a product distribution up to α in total variation distance.

Theorem 32 For every d ∈ N, every product distribution P over {0, 1}d, and every ρ, α, β > 0, if
X = (X1, . . . , Xn) are independent samples from P for

n = Õ

(
d

α2
+

d

α
√
ρ

)
,

then with probability at least 1− O(β), PPDEρ,α,β(X) outputs Q, such that dTV(P,Q) ≤ O(α).
The notation Õ(·) hides polylogarithmic factors in d, 1

α ,
1
β , and 1

ρ .
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Before proving the theorem, we will introduce or recall a few useful tools and inequalities.

Distances Between Distributions. We use several notions of distance between distributions.

Definition 33 If P,Q are distributions, then

• the statistical distance is dTV(P,Q) = 1
2

∑
x |P (x)−Q(x)|,

• the χ2-divergence is dχ2(P‖Q) =
∑

x
(P (x)−Q(x))2

Q(x) , and

• the KL-divergence is dKL(P‖Q) =
∑

x P (x) log P (x)
Q(x) .

For product distributions P = P1⊗· · ·⊗Pk andQ = Q1⊗· · ·⊗Qk, the χ2 and dKL divergences
are additive, and the statistical distance is subadditive. Specifically,

Lemma 34 Let P = P1 ⊗ · · · ⊗ Pk and Q = Q1 ⊗ · · · ⊗Qk be two product distributions. Then

• dTV(P,Q) ≤
∑d

j=1 dTV(Pj , Qj),

• dχ2(P‖Q) ≤
∑d

j=1 dχ2(Pj‖Qj), and

• dKL(P‖Q) =
∑d

j=1 dKL(Pj‖Qj).

The three definitions also satisfy some useful relationships.

Lemma 35 For any two distributions P,Q we have 2 · dTV(P,Q)2 ≤ dKL(P‖Q) ≤ dχ2(P‖Q).

Tail Bounds. We need a couple of useful tail bounds for sums of independent Bernoulli random
variables. The first lemma is a useful form of the Chernoff bound.

Lemma 36 For every p > 0, if X1, . . . , Xm are i.i.d. samples from Ber(p) then for every ε > 0

P

[
1

m

m∑
i=1

Xi ≥ p+ ε

]
≤ e−dKL(p+ε||p)·m and P

[
1

m

m∑
i=1

Xi ≤ p− ε

]
≤ e−dKL(p−ε||p)·m

The next lemma follows easily from a Chernoff bound.

Lemma 37 Suppose X1, . . . , Xk are sampled i.i.d. from a product distribution P over {0, 1}t,
where the mean of each coordinate is upper bounded by p (i.e. E[P ] � p). Then

1. if pt > 1, then for each i, P
[
‖Xi‖22 ≥ pt

(
1 + 3 log( kβ )

)]
≤ β

k , and

2. if pt ≤ 1, then for each i, P
[
‖Xi‖22 ≥ 6 log( kβ )

]
≤ β

k .
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D.2.1. ANALYSIS OF THE PARTITIONING ROUNDS

In this section we analyze the progress made during the partitioning rounds. We show two
properties: (1) any coordinate j such that q[j] was set during the partitioning rounds has small error
and (2) any coordinate j such that q[j] was not set in the partitioning rounds has a small mean. We
capture the properties of the partitioning rounds that will be necessary for the proof of Theorem 32
in the following lemma.

Lemma 38 If X1, . . . , XR each contain at least

m =
128d log3(dR/β)

α2
+

128d log5/4(d/αβ(2ρ)1/2)

αρ1/2

i.i.d. samples from P , then, with probability at least 1 − O(β), in every partitioning round r =
1, . . . , R:

1. If a coordinate j does not go to the next round (i.e. j ∈ Sr but j 6∈ Sr+1) then q[j] has small
χ2-divergence with p[j],

4(p[j]− q[j])2

q[j]
≤ α2

d
.

Thus, if SA consists of all coordinates such that q[j] is set in one of the partitioning rounds,
dTV(P [SA], Q[SA]) ≤ α.

2. If a coordinate j does go to the next round (i.e. j ∈ Sr, Sr+1), then p[j] is small,

p[j] ≤ ur+1 =
ur
2
.

Proof We will prove the lemma by induction on r (taking a union bound over the events that one
of the two conditions fails in a given round r). Therefore, we will assume that in every round
r, p[j] ≤ ur for every j ∈ Sr and prove that if this bound holds then the two conditions in the
lemma hold. For the base of the induction, observe that, by assumption, p[j] ≤ u1 = 1

2 for every
j ∈ S1 = [d]. In what follows we fix an arbitrary round r ∈ [R]. Throughout the proof, we will use
the notation p̃r = 1

m

∑m
i=1X

r
i to denote the empirical mean of the r-th block of samples.

Claim 39 If p̃r[j] = 1
m

∑m
i=1X

r
i [j] and pj > 1

d , then with probability at least 1− 2β
R ,

∀j ∈ Sr |p[j]− p̃r[j]| ≤

√√√√4p[j] log
(
dR
β

)
m

Proof [Proof of Claim 39] We use a Chernoff Bound (Theorem 36), and facts that

∀γ > 0 dKL(p+ γ||p) ≥ γ2

2(p+ γ)
and dKL(p− γ||p) ≥ γ2

2p
,

and set

γ =

√√√√4p[j] log
(
dR
β

)
m

.
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Note that when p[j] > 1
d , due to our choice of parameters, γ ≤ p[j]. Therefore, 2(p[j] + γ) ≤ 4p[j].

Finally, taking a union bound over the cases when p̃r[j] ≤ p[j]− γ and when p̃r[j] ≥ p[j] + γ, we
prove the claim.

Claim 40 With probability at least 1− β
R , for every Xr

i ∈ Xr, ‖Xr
i ‖2 ≤ Br, so no rows of Xr are

truncated in the computation of tmeanBr(X
r).

Proof [Proof of Claim 40] By assumption, all marginals specified by Sr are upper bounded by ur.
Now, the expected value of ‖Xr

i ‖22 is at most ur|Sr|. Since Br =
√
ur|Sr|6 log(mR/β), we know

that Br ≥
√
ur|Sr|(1 + 3 log(mR/β)). The claim now follows from a Chernoff Bound (Lemma

37) and a union bound over the entries of Xr.

Claim 41 With probability at least 1− 2β
R ,

∀j ∈ Sr |p̃r[j]− qr[j]| ≤

√√√√6ur|Sr| log
(
mR
β

)
log
(

2dR
β

)
ρm2

Proof [Proof of Claim 41] We assume that all marginals specified by Sr are upper bounded by
ur. From Claim 40, we know that, with probability at least 1 − β/R, there is no truncation, so
tmeanBr(X

r[Sr]) = 1
m

∑
Xr
i ∈Xr Xr[Sr] = p̃r[Sr]. So, the Gaussian noise is added to p̃r[j] for

each j ∈ Sr. Therefore, the only source of error here is the Gaussian noise. Using the standard tail
bound for zero-mean Gaussians (Lemma 20), with the following parameters,

σ =

√√√√3ur|Sr| log
(
mR
β

)
ρm2

and t =

√
2 log

(
2dR

β

)
,

and taking a union bound over all coordinates in Sr, and the event of truncation, we obtain the claim.

Plugging our choice ofm into Claims 39 and 41, applying the triangle inequality, and simplifying,
we get that (with high probability),

|p[j]− qr[j]| ≤
α

log1/4
(
d
β

)√ur
d
.

To simplify our calculations, we will define

er =
α

log1/4
(
d
β

)√ur
d

to denote the above bound on |p[j]− q[j]| in round r.
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Claim 42 For all j ∈ Sr, with probability, at least, 1− 4β
R ,

χ2(p[j], qr[j]) ≤
4(p[j]− qr[j])2

qr[j]
.

Proof For every r, and d more than some absolute constant, |er| ≤ 1
4 ,. Also, by assumption,

p[j] ≤ 1
2 , for all j ∈ [d]. Therefore, for every r, and every j ∈ Sr,

χ2(p[j], qr[j]) =
(p[j]− qr[j])2

qr[j]
+

(p[j]− qr[j])2

1− qr[j]

=
(p[j]− qr[j])2

qr[j](1− qr[j])

≤ 4(p[j]− qr[j])2

qr[j]

Claim 43 With probability at least 1− 4β
R , for every j ∈ Sr,

qr[j] ≥ τr =⇒ 4(p[j]− q[j])2

q[j]
≤ α2

d
.

Proof [Proof of Claim 43] We want to show the following inequality.

4(pj − qr[j])2

qr[j]
≤ α2

d

We know that |pj − qr[j]| ≤ er with high probability. Thus, we need to show that if qr[j] ≥ τr, the
following inequality holds:

4e2
r

qr[j]
≤ α2

d
⇐⇒ 4de2

r

α2
≤ qr[j].

We now show that the left-hand side is at most τr, which completes the proof. In the algorithm, we
have τr = 3

4ur+1:

4de2
r

α2
≤ 3

4
ur+1 ⇐⇒

4ur

log1/2
(
d
β

) ≤ 3

4
ur+1 ⇐⇒

16

3 log1/2
(
d
β

) ≤ 1

2
.

Note that the final inequality is satisfied as long as d is larger than some absolute constant.

Claim 44 With probability at least 1− 4β
R , for every j ∈ Sr,

qr[j] < τr =⇒ p[j] ≤ ur+1 =
ur
2
.
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Proof [Proof of Claim 44] We know that with high probability, pj ≤ qr[j] + er. But since qr[j] < τi,
we know that pj < τr + er. Also, τr = 3

4ur+1. Then it is sufficient to show the following.

er ≤
ur+1

4

⇐⇒ α

log1/4
(
d
β

)√ur
d
≤ ur+1

4

⇐⇒ 16α2

du1 log1/2
(
d
β

) ≤ (1

2

)r+1

⇐⇒

 16α2

du1 log1/2
(
d
β

)
 1

r+1

≤ 1

2
. (14)

Now we have 16α2

du1 log1/2
(
d
β

)
 1

r+1

=

(
1

d

) 1
r+1

·

 16α2

u1 log1/2
(
d
β

)
 1

r+1

≤ 1

2
·

 16α2

u1 log1/2
(
d
β

)
 1

r+1

(r ≤ R = log2(d/2))

≤ 1

2

where the last inequality holds for d larger than some absolute constant. Therefore, (14) is satisfied
for all 1 ≤ r ≤ R.

Claim 44 completes the inductive step of the proof. It establishes that at the beginning of round
r+ 1, pj < ur+1 for all j ∈ Sr+1. Now we can take a union bound over all the failure events in each
round and over each of the R rounds so that the conclusions of the Lemma hold with probability
1−O(β). This completes the proof of Lemma 38.

D.2.2. ANALYSIS OF THE FINAL ROUND

In this section we show that the error of the coordinates j such that q[j] was set in the final round
r is small.

Lemma 45 Let r be the final round for which ur|Sr| ≤ 1. If p[j] ≤ ur for every j ∈ Sr, and Xr

contains at least

m =
128d log3(dR/β)

α2
+

128d log5/4(d/αβ(2ρ)1/2)

αρ1/2

i.i.d. samples from P , then with probability at least 1−O(β), then dTV(P [Sr], Q[Sr]) ≤ O(α)

Proof Again, we use the notation, p̃r = 1
m

∑m
i=1X

r
i , for the rest of this proof. First we have, two

claims that bound the difference between p[j] and p̃[j].
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Claim 46 For each j ∈ Sr, such that pj > 1
d , with probability at least 1− 2β/d, we have,

∀j ∈ Sr |p[j]− p̃r[j]| ≤

√√√√4p[j] log
(
d
β

)
m

Proof [Proof of Claim 46] The proof is identical to that of Claim 39.

Claim 47 For each j ∈ Sr, such that pj ≤ 1
d , with probability at least 1− 4β/d, we have,

∀j ∈ Sr |p[j]− p̃r[j]| ≤
α

4d log
(
d
β

)
Proof [Proof of Claim 47] We use a Chernoff Bound (Theorem 36), and facts that

∀γ > 0 dKL(p+ γ||p) ≥ γ2

2(p+ γ)
and dKL(p− γ||p) ≥ γ2

2p
.

There are two cases to analyze.

• pj > α2

16d ln2
(
dR
β

) : In this case, setting γ =

√
4p[j] log

(
d
β

)
m , we get γ ≤ p[j]. Then we apply

Theorem 36 with appropriate parameters.

• pj ≤ α2

16d ln2
(
dR
β

) : In this case, setting γ =
4 log

(
d
β

)
m , we get γ ≥ p[j]. Then we apply Theorem

36 with the corresponding parameters.

Since p[j] ≤ 1
d , if m satisfies the assumption of the lemma, then

max


√√√√4p[j] log

(
d
β

)
m

,
4 log

(
d
β

)
m

 ≤
α

4d log
(
d
β

) .
Therefore, with high probability, the maximum error is α

4d log
(
d
β

) .

Claim 48 With probability at least 1− β, for every Xr
i ∈ Xr, ‖Xr

i ‖2 ≤ Br, so no rows of Xr are
truncated in the computation of tmeanBr(X

r).

Proof [Proof of Claim 48] We assume that all marginals specified by Sr are upper bounded by ur.
Now, the expected value of ‖Xr

i ‖22 is upper bounded by 1. Also, Br =
√

6 log(m/β). With this, we
use a Chernoff Bound (Fact 37) and get the required result.
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Claim 49 With probability at least 1− 2β,

∀j ∈ Sr |p̃[j]− qr[j]| ≤

√√√√6 log
(
m
β

)
log
(

2d
β

)
ρm2

Proof [Proof of Claim 49] We assume that all marginals specified by Sr are upper bounded by ur.
From Claim 48, we know that with high probability, there is no truncation, so, the Gaussian noise is
added to p̃j for each j ∈ Sr. Therefore, the only source of error here is the Gaussian noise. Using
the standard tail bound for zero-mean Gaussians (Lemma 20), with the following parameters,

σ =

√√√√3 log
(
m
β

)
ρm2

and t =

√
2 log

(
2d

β

)
,

and taking the union bound over all columns of the dataset in that round and the event of truncation,
we obtain the claim.

By the above claim, the magnitude of Gaussian noise added to each coordinate in the final round
is less than,

α

2d log1/4
(
d/αβ

√
2ρ
) .

We partition the set Sr into Sr,L = | ∈ S∇ : √[|] ≤ ∞d and Sr,H = | ∈ S∇ : √[|] > ∞
d .

Claim 50 dTV(P [Sr,H ], Q[Sr,H ]) ≤ α

Proof [Proof of Claim 50] For every coordinate j ∈ Sr,H , due Claim 46, and from the upper bound
on the Gaussian noise added, we know that,

|p[j]− q[j]| ≤ α

log1/4
(
d
β

)√p[j]

d
= er,H .

Now, we know that p[j] > 1
d , and er,H ≤ p[j]

2 , when d is greater than some absolute constant. So, we
can bound the χ2-divergence between such p[j] and q[j] by,

4(p[j]− q[j])2

q[j]
≤

4e2
r,H

p[j]− er,H

≤ 8α2

d log1/2
(
d
β

)
≤ α2

d
.

Thus, we have dχ2(P [Sr,H ]‖Q[Sr,H ]) ≤ α2, which implies dTV(P [Sr,H ], Q[Sr,H ]) ≤ α.

Claim 51 dTV(P [Sr,L], Q[Sr,L]) ≤ α
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Proof [Proof of Claim 51] By Claim 47, and from the upper bound on the Gaussian noise added, for
every coordinate j ∈ Sr,L, we have,

|p[j]− q[j]| ≤ 2 ·max

 α

4d log
(
d
β

) , α

2d log1/4
(
d/αβ

√
2ρ
)


≤ α

d log1/4(d/β)
.

Thus, by Lemma 34, we have dTV(P [Sr,L], Q[Sr,L]) ≤ α.

Now, combining Claims 50 and 51, and applying Lemma 34 completes the proof.

D.2.3. PUTTING IT TOGETHER

In this section we combine Lemmas 38 and 45 to prove Theorem 32. First, by Lemma 38, with
probability at least 1 − O(β), if SA is the set of coordinates j such that q[j] was set in any of the
partitioning rounds, then

1. dTV(P [SA], Q[SA]) ≤ O(α) and

2. if j 6∈ SA and r is the final round, then p[j] ≤ ur.

Next, by the second condition, we can apply Lemma 45 to obtain that if SF consists of all coordinates
set in the final round, then with probability at least 1−O(β), dTV(P [SF ], Q[SF ]) ≤ O(α). Finally,
we use a union bound and Lemma 34 to conclude that, with probability at least 1−O(β),

dTV(P,Q) ≤ dTV(P [SA], Q[SA]) + dTV(P [SF ], Q[SF ]) = O(α).

This completes the proof of Theorem 32.

Appendix E. Lower Bounds for Private Distribution Estimation

In this section we prove a number of lower bounds for private distribution estimation, matching
our upper bounds up to polylogarithmic factors. For estimating the mean of product or Gaussian
distributions, we prove lower bounds for the weaker notion of (ε, δ)-differential privacy, but still
show that they nearly match our upper bounds which are under the stronger notion of ε2

2 -zCDP.
For estimating the covariance of Gaussian distributions, our lower bound is for ε-DP, a stronger
notion than our upper bound, which is ε2

2 -zCDP. Proving lower bounds for covariance estimation
with stronger privacy (i.e., concentrated or approximate differential privacy) is an interesting open
question.

Our proofs generally consist of two parts. First, we prove a lower bound on the sample complexity
required for private parameter estimation. For our lower bounds on mean estimation, we use
modifications of the “fingerprinting” method. Then, we show that if two distributions are distance
in parameter distance (either `2-distance between their means, or Frobenius distance between their
covariances), then they will be far in statistical distance. Though we consider questions of the latter
sort to be very natural, we were surprised to find they have not been studied as sigificantly as we
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expected. For example, while a lower bound on the statistical distance between Gaussian distributions
in terms of the `2-distance between their means is folklore, a bound in terms of the Frobenius distance
between their covariance matrices is fairly recent Devroye et al. (2018). Furthermore, to the best of
our knowledge, our lower bound on the statistical distance between binary product distributions in
terms of the `2-distance between their means is entirely novel.

In Section E.1, we describe our lower bounds for learning product distributions. In Section E.2,
we describe our lower bounds for learning Gaussian distributions with known covariance. Finally, in
Section E.3, we describe our lower bounds for learning the covariance of Gaussian distributions.

E.1. Privately Learning Product Distributions

In this section we prove that our algorithm for learning product distributions has optimal sample
complexity up to polylogarithmic factors. Our proof actually shows that our algorithm is optimal
even if we only require the learner to work for somewhat balanced product distributions (i.e. those
whose marginals are bounded away from 0 and 1) and allow the learner to satisfy the weaker variant
of (ε, δ)-DP. The lower bound has two steps: (1) a proof that estimating the mean of a somewhat
balanced product distribution up to α in `2 distance (Lemma 53) and (2) a proof that estimating a
somewhat balanced product distribution in total-variation distance implies estimating its mean in
`2 distance (Lemma 55). Putting these two lemmata together immediately implies the following
theorem:

Theorem 52 For any α ≤ 1 smaller than some absolute constant, any
(
ε, 3

64n

)
-DP mechanism

which estimates a product distribution to accuracy ≤ α in total variation distance with probability
≥ 2/3 requires n = Ω

(
d

αε log d

)
samples.

Proof We will show that no algorithm can estimate the mean of a product distribution up to
accuracy α with probability 2/3 with fewer than O

(
d

αε log d

)
samples (for an appropriate choice of

the constant in the big-Oh notation). By Lemma 55, this would imply an algorithm with the same
sample complexity which estimates the distribution in total variation distance up to accuracy Cα.
The theorem statement follows after a rescaling of α.

Suppose that such an algorithm existed. By repeating the algorithm O(log d) times, the success
probability could be boosted by a standard argument4 to ≥ 1 − 1/d2, with the overall algorithm
requiring O

(
d
αε

)
samples. Since the domain is bounded, any answer will be, at worst, an O(

√
d)-

accurate estimate in `2-distance. This implies that the expected accuracy of the resulting algorithm is
at most O(α), which is precluded by Lemma 53, for an appropriate choice of constant in the big-Oh
notation.

Lemma 53 If M : {±1}n×d → [−1
3 ,

1
3 ]d is

(
ε, 3

64n

)
-DP, and for every product distribution P over

{±1}d such that −1
3 � E[P ] � 1

3 ,

E
X∼P⊗n

[
‖M(X)− E[P ]‖22

]
≤ α2 ≤ d

54

4. Specifically, repeat the algorithm O(log d) times, and choose any output which is close to at least half the outputs.
This is correct with high probability by using the Chernoff bound and the fact that the original algorithm was accurate
with probability ≥ 2/3.
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then n ≥ d
72αε . Equivalently, if M is

(
ε, 3

64n

)
-DP and is such that for every product distribution P

over {0, 1}d such that 1
3 � E[P ] � 2

3 ,

E
X∼P⊗n

[
‖M(X)− E[P ]‖22

]
≤ α2 ≤ d

216

then n ≥ d
144αε .

Proof We will only prove the first part of the theorem for estimation over {±1}d, and the second
part will follow immediately by a change of variables.

Let P 1, . . . , P d ∼ [−1
3 ,

1
3 ] be chosen uniformly and independently from [−1

3 ,
1
3 ]. Let P =

Ber(P 1)⊗· · ·⊗Ber(P d) be the product distribution with meanP = (P 1, . . . , P d). LetX1, . . . , Xn ∼
P be independent samples from this product distribution. Define:

Zji =

(
1
9 − (P j)2

1− (P j)2

)
(M j(X)− P j)(Xj

i − P
j)

Zi =

d∑
j=1

Zji

where Zi is a measure of the correlation between the estimate M(X) and the i-th sample Xi. We
will use the following key lemma, which is an extension of a similar statement in Steinke and Ullman
(2015) for the uniform distribution over [−1, 1].

Lemma 54 (Fingerprinting Lemma) For every f : {±1}n → [−1
3 ,

1
3 ], we have

E
P∼[− 1

3
, 1
3

],X1...n∼P

[(
1
9 − P

2

1− P 2

)
· (f(X)− P ) ·

n∑
i=1

(Xi − P ) + (f(X)− P )2

]
≥ 1

27

Proof [Proof of Lemma 54] Define the function

g(p) = E
X1...n∼p

[f(X)].

For brevity, we will write E
P

[·] to indicate that the expectation is being taken over P , where P is

chosen uniformly from [−1
3 ,

1
3 ]. By (Bun et al., 2017, Lemma A.1), for every fixed p,

h(p) := E
X1...n∼p

[(
1
9 − p

2

1− p2

)
· (f(X)− p) ·

n∑
i=1

(Xi − p)

]
=

(
1

9
− p2

)
g′(p). (15)

Where we have defined the function h(p) for brevity. Now we have,

E
P

[h(P )] = E
P

[(
1

9
− P 2

)
g′(P )

]
=

3

2

1/3∫
−1/3

(
1

9
− p2

)
g′(p)dp

= 2 · E
P

[Pg(P )]. (16)
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Now, using the above identity, we have:

E
P,X1...n∼P

[
(f(X)− P )2

]
= E

P,X1...n∼P

[
f(X)2

]
+ E

P

[
P 2
]
− 2 · E

P
[Pg(P )]

≥ E
P

[
P 2
]
− 2 · E

P
[Pg(P )]

= E
P

[
P 2
]
− E

P
[h(P )] (Using (16))

Rearranging the above inequality gives:

E
P,X1...n∼P

[
(f(X)− P )2

]
+ E[h(P )] ≥ E

P

[
P 2
]

=
1

27
.

Henceforth, all expectations are taken over P , X , and M . We can now apply the lemma to the
function M j(X) for every j ∈ [d], use linearity of expectation, and the accuracy assumption to get
the bound,

n∑
i=1

E[Zi] =

d∑
j=1

E

[
n∑
i=1

Zji

]

≥ d

27
− E

[
‖M(X)− P‖22

]
≥ d

27
− α2

≥ d

54
,

where the second inequality follows from the assumption E
[
‖M(X)− P‖22

]
≤ α2 ≤ d

54 .
To complete the proof, we will give an upper bound on

∑n
i=1 E[Zi] that contradicts the lower

bound unless n is sufficiently large. Consider any i ∈ [n]. Define:

Z̃ji =

(
1
9 − (P j)2

1− (P j)2

)
(M(X∼i)− P j)(Xj

i − P
j)

Z̃i =
d∑
j=1

Z̃ji

where X∼i denotes X with the i-th sample replaced with an independent draw from P . Since X∼i
and Xi are conditionally independent conditioned on P , E

[
Z̃i

]
= 0. Also, we have:

E
[
|Z̃i|
]2
≤ E

[
Z̃2
i

]
= Var

[
Z̃i

]
≤ 1

9
E
[
‖M(X)− P‖22

]
≤ 1

9
α2

where the first inequality is Jensen’s. Furthermore, we have the following upper bound on the
maximum value of Z̃i and Zi: ‖Zi‖∞ ≤ 8d/81 and ‖Z̃i‖∞ ≤ 8d/81.

Now we can apply differential privacy to bound E[Zi], using the fact that X and X∼i differ on
at most one sample. The approach is akin to Lemma 8 of Steinke and Ullman (2017b). The main
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idea is to split Zi into its positive and negative components Zi,+ and Zi,−, write each of them as
E[Zi,∗] =

∫ ‖Zi‖∞
0 P[Zi,∗ ≥ t] dt, and apply the definition of (ε, δ)-approximate differential privacy

to relate them to the similar quantities for Z̃i. Implementing this strategy gives the following:

E[Zi] ≤ E
[
Z̃i

]
+ 2ε · E

[
|Z̃i|
]

+ 2δ · ‖Zi‖∞

≤ 0 + 2ε · 1

3
α+

3

32n
· 8d

81

≤ 2

3
αε+

d

108n
.

Note that we used the upper bound eε − 1 ≤ 2ε for ε ≤ 1. Thus, we have:

n∑
i=1

E[Zi] ≤
2

3
αεn+

d

108
.

Combining the upper and lower bounds gives:

d

54
≤ 2

3
αεn+

d

108
⇐⇒ n ≥ d

72αε
.

This completes the proof.

Lemma 55 Let P and Q be two product distributions with mean vectors p and q respectively, such
that pi ∈ [1/3, 2/3] for all i ∈ [d]. Suppose that

‖E[P ]− E[Q]‖2 ≥ α,

for any α ≤ α0, where 0 < α0 ≤ 1 is some absolute constant. Then dTV(P,Q) ≥ Cα, for some
absolute constant, C.

Proof Consider the set, A = {x | log(P (x)/Q(x)) > α}. If we show that P (A) = Ω(1), then we
would have the following.

∀x ∈ A P (x)

Q(x)
> eα ≥ 1 + α

=⇒ ∀x ∈ A P (x)−Q(x) >
α

1 + α
P (x) ≥ α

2
P (x)

=⇒ P (A)−Q(A) >
α

2
P (A)

=⇒ P (A)−Q(A) > Ω(α)

=⇒ dTV(P,Q) > Ω(α).

To this end, let x = (x1, . . . , xd) ∈ {0, 1}d. Then,

P (x) =

d∏
i=1

pxii (1− pi)1−xi and Q(x) =

d∏
i=1

qxii (1− qi)1−xi .
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Therefore,

Z(x) := log(P (x)/Q(x)) = log(P (x))− log(Q(x))

=

d∑
i=1

xi log
pi
qi

+

d∑
i=1

(1− xi) log
1− pi
1− qi

= −
d∑
i=1

xi log
qi
pi
−

d∑
i=1

(1− xi) log
1− qi
1− pi

.

Now, we lower bound Z(x) by some function of x, so that if that function takes a value larger than α
with probability Ω(1) (measured with respect to P ), then Z(x) ≥ α with probability Ω(1). Noting
that log(t) ≤ t− 1 for all t > 0, we get the following:

log(P (x)/Q(x)) ≥
d∑
i=1

xi

(
1− qi

pi

)
+

d∑
i=1

(1− xi)
(

1− 1− qi
1− pi

)

=
d∑
i=1

(xi − pi)(pi − qi)
pi(1− pi)

Let Yi = (Xi−pi)(pi−qi)
pi(1−pi) be a transformation of the random variable Xi ∼ Pi. To be precise, it will

have the following PMF:

Yi =

{
pi−qi
pi

w.p. pi

−pi−qi
1−pi w.p. 1− pi.

Yi has the following properties:

E[Yi] = 0, σ2
i = E

[
Y 2
i

]
=

(pi − qi)2

pi(1− pi)
, and E

[
Y 3
i

]
=

(pi − qi)3
[
p2
i + (1− pi)2

]
p2
i (1− pi)2

.

Let σ2 =
∑

i∈[d] σ
2
i , and Y = 1

σ

d∑
i=1

Yi. Hence, Z(x) ≥ σY for all x. At this point, it suffices to

show that P[Y > α/σ] ≥ Ω(1). We will do this in two parts: we show that if Y was a Gaussian
with the same mean and variance, then this inequality would hold, and we also show that Y is
well-approximated by said Gaussian. We start with the latter.

We apply the Berry-Esseen theorem Berry (1941); Esseen (1942); Shevtsova (2010) to approxi-
mate the distribution of Y by the standard normal distribution. Let ψ be the actual CDF of Y , and φ
be the CDF of the standard normal distribution:

|ψ(y)− φ(y)| ≤ C1σ
−1 ·max

i

E
[
Y 3
i

]
E
[
Y 2
i

]
= C1σ

−1 ·max
i

(pi − qi)
[
p2
i + (1− pi)2

]
pi(1− pi)

≤ 5C1

2
σ−1 ·max

i
(pi − qi)
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Here, C1 = 0.56 is a universal constant. Now, we can assume that pi − qi ≤ C2α (for some
constant C2 of our choosing), otherwise dTV(P,Q) > C2α trivially. Note that, by our assumption
on pi ∈ [1/3, 2/3], we have the following:

σ2 =
∑
i∈[d]

(pi − qi)2

pi(1− pi)
≥ 9

2

∑
i∈[d]

(pi − qi)2 =
9

2
α2.

Therefore, σ ≥ 2α, and we get the following:

|ψ(y)− φ(y)| ≤ 5C1C2

4
.

We now use this to prove an Ω(1) lower bound on P[Y > α/σ].

1− ψ(α/σ) > 1− φ(α/σ)− 5C1C2

4

= 1− 1√
2π

α/σ∫
0

e−t
2
dt− 5C1C2

4

≥ 1/2− 1√
2π

α

σ
− 5C1C2

4

≥ 1/2− 1

2
√

2π
− 5C1C2

4

≥ 0.30− 5C1C2

4

We want the above quantity to be a constant greater than zero. We could pick any “small enough”
constant, so we pick 0.1. Therefore, by choosing C2 < 0.16/C1 (say 0.25), we guarantee that
P[Y > α/σ] > 0.1. Hence, we have dTV(P,Q) > 0.05α, which completes the proof.

E.2. Privately Learning Gaussian Distributions with Known Covariance

In this section, we will show a lower bound on the number of samples required to estimate the
mean of a Gaussian distribution when its covariance matrix is known. The approach is similar to the
product distribution case (Section E.1), but with modifications required for the different structure and
unbounded data.

Theorem 56 For any α ≤ 1 smaller than some absolute constant, any (ε, δ)-DP mechanism
(for δ ≤ Õ

(√
d

Rn

)
) which estimates a Gaussian distribution (with mean µ ∈ [−R,R]d and known

covariance σ2I) to accuracy ≤ α in total variation distance with probability ≥ 2/3 requires
n = Ω

(
d

αε log(dR)

)
samples.

While the expression for δ might seem complex, one can note that if R = 1 and for d ≥ 1, we have
δ = O

(
1

n
√

logn

)
, very similar to the statement of Lemma 53. Our statement is stronger and more

general for settings of d and R.
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Proof The proof is very similar to that of Theorem 52, so we only sketch the differences. To estimate
the Gaussian to total variation distance α, it is necessary to estimate the mean in `2-distance to
accuracy ασ, evidenced by the following folklore fact (see, e.g., Diakonikolas et al. (2018)):

Fact 57 The total variation distance between N (µ1, σ
2I) and N (µ2, σ

2I) is at least C ‖µ1−µ2‖2σ ,
for an appropriate constant C, and all µ1, µ2, σ such that ‖µ1−µ2‖2σ is smaller than some absolute
constant.

Similar to before, we can argue that the existence of such an algorithm implies the existence
of an algorithm which is correct in expectation, at a multiplicative cost of O(log dR) in the sample
complexity, as any estimate output by the algorithm is accurate up to O(

√
dR) in `2-distance. Such

an algorithm is precluded by Lemma 58 (noting that we must rescale α by a factor of σ), concluding
the proof.

Lemma 58 If M : Rn×d → [−Rσ,Rσ]d is (ε, δ)-DP for δ ≤
√
d

48
√

2Rn
√

log(48
√

2Rn/
√
d)

, and for

every Gaussian distribution P with known covariance matrix, σ2I, such that −Rσ ≤ E[P ] ≤ Rσ,

E
X∼P⊗n

[
‖M(X)− E[P ]‖22

]
≤ α2 ≤ dσ2R2

6
,

then n ≥ dσ
24αε .

Proof By a scaling argument, we will focus on the case where σ = 1. We prove the following
statement: If M : Rn×d → [−R,R]d is (ε, δ)-DP for δ ≤

√
d

48
√

2Rn
√

log(48
√

2Rn/
√
d)

, and for every

Gaussian distribution P with known covariance matrix I such that −R ≤ E[P ] ≤ R,

E
X∼P⊗n

[
‖M(X)− E[P ]‖22

]
≤ α2 ≤ dR2

6
,

implies n ≥ d
24αε .

Let µ1, . . . , µd be chosen independently and uniformly at random from the interval [−R,+R].
Let P be the Gaussian distribution with mean vector µ = (µ1, . . . , µd), and covariance matrix I. Let
X1, . . . , Xn be independent samples from this Gaussian distribution. As in the proof of the lower
bound for product distributions, we define the following quantities.

Zji =
(
R2 − (µj)2

)
(M j(X)− µj)(Xj

i − µ
j)

Zi =

d∑
j=1

Zji

Again, our strategy would be to give upper and lower bounds on
∑n

i=1 E[Zi], which would conradict
each other unless n is larger than some specific quantity. To obtain the lower bound, we first prove a
lemma similar to Lemma 54.

Lemma 59 (Fingerprinting Lemma for Gaussians) For every f : Rn → [−R,R], we have

E
µ∼[R,R],X1...n∼N (µ,1)

[(
R2 − µ2

)
· (f(X)− µ) ·

n∑
i=1

(Xi − µ) + (f(X)− µ)2

]
≥ R2

3
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Proof [Proof of Lemma 59] Define the function

g(µ) = E
X1...n∼N (µ,1)

[f(X)].

For brevity, we will write E
µ

[·] to indicate that the expectation is being taken over µ, where µ is chosen

uniformly from [−R,R]. We use an adaptation of (15) to the Gaussian setting. From an extension of
a similar statement in the full version of Dwork et al. (2015), for every fixed µ,

h(µ) := E
X1...n∼N (µ,1)

[(
R2 − µ2

)
· (f(X)− µ) ·

n∑
i=1

(Xi − µ)

]
=
(
R2 − µ2

) ∂
∂µ
g(µ).

Therefore, we get:
E
µ

[h(µ)] = 2E
µ

[µg(µ)].

Now, using the above, we get:

E
µ,X1...n∼N (µ,1)

[
(f(X)− µ)2

]
= E

µ,X1...n∼N (µ,1)

[
f(X)2

]
+ E

µ

[
µ2
]
− 2 · E

µ
[µg(µ)]

≥ E
µ

[
µ2
]
− 2 · E

µ
[µg(µ)]

= E
µ

[
µ2
]
− E

µ
[h(µ)].

Rearranging the above inequality gives:

E
µ,X1...n∼N (µ,1)

[
(f(X)− µ)2

]
+ E

µ
[h(µ)] ≥ E

µ

[
µ2
]

=
R2

3
.

Henceforth, all expectations are taken over µ, X , and M . In the same way as in case of product
distributions, we obtain the following bound,

n∑
i=1

E[Zi] =

d∑
j=1

E

[
n∑
i=1

Zji

]

≥ dR2

3
− E

[
‖M(X)− µ‖22

]
≥ dR2

3
− α2

≥ dR2

6
, (17)

where the second inequality follows from the assumption E
[
‖M(X)− P‖22

]
≤ α2 ≤ dR2

6 . Now, to
give an upper bound, we first define:

Z̃ji =
(
R2 − (µj)2

)
(M(X∼i)− µj)(Xj

i − µ
j)

Z̃i =
d∑
j=1

Z̃ji
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where X∼i denotes X with the i-th sample replaced with an independent draw from P . Because
X∼i and Xi are independent conditioned on P , E

[
Z̃i

]
= 0. Using similar calculations as in Lemma

53, we get the following.

E
[
|Z̃i|
]2
≤ R4α2

Observe that, in contrast to Lemma 53, we do not have a worst-case bound on the value of the statistic
Zi, as the support of Xj

i is the real line, rather than just {±1} as before. Consequently, we split the
computation of the expectation of Zi,+ into the intervals [0, T ] and (T,∞), and only apply (ε, δ)-DP
to the former. Again, we use the ideas of the same lemma about splitting Zi into Zi,+ and Zi,− to get
the following, for any T > 0.

E[Zi] ≤ E
[
Z̃i

]
+ 2ε · E

[
|Z̃i|
]

+ 2δ · T + 2

∫ ∞
T

P[Zi,+ > t]dt (18)

Now,

Zi,+ ≤ max


d∑
j=1

(R2 − (µj)2)(Xj
i − µ

j)(M j(X)− µj), 0


≤ max

2R3
d∑
j=1

(Xj
i − µ

j), 0


= max{Yi, 0},

where Yi ∼ N (0, 4R6d). Let Wi = Yi
2R3
√
d
, and S = T

2R3
√
d
. This transformation results in Wi

being a standard normal random variable. We perform a change of variables, and repeatedly use the
inequality erfc(x) ≤ exp

(
−x2

)
in the following derivation:∫ ∞

T
P[Zi,+ > t]dt = 2R3

√
d

∫ ∞
S

P[Wi > s]ds

≤ R3
√
d

∫ ∞
S

e−s
2/2ds

= R3
√
d

√
π

2
erfc

(
S√
2

)
≤ R3

√
dπ

2
e−

S2

2 .

= R3

√
dπ

2
e−

T2

8R6d .

We will upper-bound this by δT :

R3

√
dπ

2
e−

T2

8R6d ≤ δT

Equivalently,
R3

δ

√
dπ

2
≤ Te

T2

8R6d
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Consider setting T = 2
√

2R3
√
d
√

log(1/δ). The right-hand side of this inequality becomes

2
√

2R3
√
d
√

log(1/δ) · 1

δ
,

which is greater than the left-hand side for any δ < 1.
Using (18), this gives us the following upper bound:

n∑
i=1

E[Zi] ≤ 2R2αεn+ 4
√

2R3
√
dnδ

√
log(1/δ)

On the other hand, (17) gives us a lower bound on this quantity, and thus we require that the following
inequality is satisfied:

dR2

12
≤ n

(
R2αε+ 2

√
2R3
√
dδ
√

log(1/δ)
)

Our goal is to find conditions on δ such that the product involving this term is at most dR
2

24 . If this
holds, the corresponding term can be moved to the left-hand side, and we are left with the following
inequality:

dR2

24
≤ nR2αε,

which is satisfied when
n ≥ d

24αε
,

as we desired.
Thus, it remains to find conditions on δ which satisfy the following inequality:

2
√

2R3
√
dδ
√

log(1/δ) ≤ dR2

24n
.

Rearranging, we get:

δ
√

log(1/δ) ≤
√
d

48
√

2Rn
, φ.

Consider setting δ = φ

2
√

log(1/φ)
. This results in

δ
√

log(1/δ) ≤ φ

2
√

log(1/φ)
·
√

log(1/φ) + log(2
√

log(1/φ))

=
φ

2
·

√
1 +

log(2
√

log(1/φ))

log(1/φ)

≤ φ,

where the last inequality is because
√

1 + 2
√
x

x ≤ 2 for all x ≥ 0.
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E.3. Privately Learning Gaussian Distributions with Unknown Covariance

In this section, we prove lower bounds for privately learning a Gaussian with unknown covariance.

Theorem 60 For any α ≤ 1 smaller than some absolute constant, any ε-DP mechanism which
estimates a Gaussian distribution to accuracy ≤ α in total variation distance with probability ≥ 2/3

requires n = Ω
(
d2

αε

)
samples.

Proof The proof is again similar to that of Theorem 52, and we sketch the differences. The primary
difference is that instead of considering algorithms which estimate the covariance matrix of the
distribution in Frobenius norm, we consider algorithms which estimate the inverse of the covariance
matrix. The reason is the following theorem of Devroye et al. (2018), which states that if one fails
to estimate the inverse of the covariance matrix of a Gaussian in Frobenius norm, then one fails to
estimate the Gaussian in total variation distance:

Theorem 61 (Theorem 3.8 of Devroye et al. (2018)) Suppose there are two mean-zero Gaussian
distributions N1 and N2, with covariance matrices Σ1 and Σ2, respectively. Furthermore, suppose
that Σ−1

1 − I and Σ−1
2 − I are both zero-diagonal and have Frobenius norm smaller than some

absolute constant. Then the total variation distance between N1 and N2 is at least c1‖Σ−1
1 −

Σ−1
2 ‖F − c2(‖Σ−1

1 − I‖2F + ‖Σ−1
2 − I‖2F ), for constants c1, c2 > 0.

Therefore, it suffices to show that there does not exist an algorithm which estimates the inverse of the
covariance in Frobenius norm with probability ≥ 2/3, where the inverse of the covariance matrix
obeys the conditions of Theorem 61. As before, an algorithm which is accurate in expectation would
imply the existence of such an algorithm, so we show that such an algorithm does not exist. We do
this by applying a modification of Lemma 62. While this lemma is stated in terms of estimating the
covariance matrix, we can obtain an identical statement for estimating the inverse of a covariance
matrix by repeating the argument, with Σ replaced by Σ−1 at all points. Note that the construction
in Lemma 62 obeys the conditions of Theorem 61. Furthermore, the Frobenius norm diameter of
the construction is Θ(α) (rather than poly(d) as in Theorem 52), we do not lose an O(log d) factor
when converting to an algorithm which is accurate in expectation. Therefore, the application of this
modification completes the proof.

Lemma 62 If M : Rn×d → S is ε-DP (where S is the space of all d × d symmetric positive
semi-definite matrices), and for every N (0,Σ) over Rd such that 1

2I � Σ � 3
2I,

E
X∼N (0,Σ)⊗n

[
‖M(X)− Σ‖2F

]
≤ α2/64,

then n ≥ Ω
(
d2

αε

)
.

Proof Let P be the uniform distribution over the set of d × d symmetric matrices with 0 on the
diagonal, where the d2−d non-zero entries are

{
± α

2d

}
. Note that there are (d2−d)/2 free parameters,

and thus 2(d2−d)/2 matrices. For each v ∈ supp(P ), we will define Σ(v) = I + v. It is easy to
check that for all v ∈ supp(P ), that 1

2I � Σ � 3
2I, and furthermore, that for any v, v′ ∈ supp(P ),

dTV(N (0,Σ(v)),N (0,Σ(v′)) ≤ O(α) (Lemma 21). We assume that our algorithm is aware of
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this construction, and thus will always output a symmetric matrix with 1’s on the diagonal and
off-diagonal entries bounded in magnitude by α/2d.

Define the random variables Z and Z ′, which are sampled according to the following process.
Let V and V ′ be independently sampled accordingly to P . X is a set of n samples fromN (0,Σ(V )),
and similarly, X ′ is a set of n independent samples from N (0,Σ(V ′)). Then, M(X) and M(X ′)
are computed with their own (independent) randomness. We then define:

Z = 〈M(X), V 〉 = 2
∑
i<j

Mij(X) · Vij ,

Z ′ = 〈M(X ′), V 〉 = 2
∑
i<j

Mij(X
′) · Vij .

We start with the following claim which lower bounds the expectation of Z.

Claim 63 E[Z] ≥ α2

16 −
1
2‖M(X)− Σ(V )‖2F ≥

7α2

128 .

Proof

E
[
2Z + ‖M(X)− Σ(V )‖2F

]
=
∑
i<j

E
[
4Mij(X)Vij + 2(Mij(X)− Σij(V ))2

]
=
∑
i<j

E
[
2M2

ij(X) + 2Σ2
ij(V )

]
≥
∑
i<j

E
[
2Σ2

ij(V )
]

=
∑
i<j

α2

2d2

=
α2

2
· d

2 − d
2d2

≥ α2

8
,

where the last inequality holds for any d ≥ 2. The claimed statement follows by rearrangement, and
the second inequality by the assumption on ‖M(X)− Σ(V )‖2F .

Next, we show that Z ′ will not be too large, with high probability.

Claim 64 P
[
Z ′ > α2/32

]
≤ exp(−Ω(d2)).

We begin by observing M(X ′) and V are independent. Condition on any realization of M(X ′).
Then Z ′ |M(X ′) is the sum of (d2− d)/2 independent summands, each with contained in the range
[−α2/4d2, α2/4d2] and with expectation 0 (since E[Vij ] = 0). By Hoeffding’s inequality, we have
that

P
[
Z ′ > α2/32 |M(X ′)

]
≤ exp

(
−

2 α4

1024
d2−d

2 · α4

4d4

)
≤ exp

(
−Ω(d2)

)
.

The claim follows by noting that value of M(X ′) which we conditioned on was arbitrary.
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Claim 65 P
[
Z > α2/32

]
≤ exp(O(αεn)) · P

[
Z ′ > α2/32

]
.

Proof We start by proving the following lemma:

Lemma 66 Let M : Rn×d → A be an ε-DP mechanism. Suppose that D,D′ are probability
distributions over Rd such that dTV(D,D′) = α. Then for S ⊆ A,

P
M,X∼Dn

[M(X) ∈ S] ≤ exp(O(εαn)) P
M,X′∼D′n

[
M(X ′) ∈ S

]
.

Proof By the definition of D and D′, this implies that there exists distributions A,B,C such that

D = αB + (1− α)A

D′ = αC + (1− α)A

We will actually prove the following for any subset S ⊆ A:

P
M,X∼Dn

[M(X) ∈ S] ≤ exp(O(εαn)) P
M,X′∼An

[
M(X ′) ∈ S

]
.

A symmetric argument, with D′ in place of D, and using the other direction of the definition of
differential privacy will give the lemma statement (with an extra factor of 2 in the exponent).

We will draw X,X ′ from a coupling of (D,A). In particular, let W ∈ {0, 1}n be a random
vector, where each entry is independently set to be 1 with probability α and 0 otherwise. Note that
Y (w) ,

∑
iwi is distributed as Bin(n, α). Then there exists a coupling C of (D,A) such that

X ′ ∼ An, and Xi is equal to X ′i when Wi = 1, and is an independent draw from B otherwise.

P
X∼Dn
M

[M(X) ∈ S] =
∑
w

P[W = w] P
(X,X′)∼C

M

[M(X) ∈ S | w]

≤
∑
w

P[W = w] exp(εY (w)) P
(X,X′)∼C

M

[
M(X ′) ∈ S | w

]
= P

X′∼An
M

[
M(X ′) ∈ S

]∑
w

P[W = w] exp(εY (w))

= P
X′∼An
M

[
M(X ′) ∈ S

]
E[exp(εY (w))]

= (1− α+ αeε)n P
X′∼An
M

[
M(X ′) ∈ S

]
≤ exp(α(eε − 1)n) P

X′∼An
M

[
M(X ′) ∈ S

]
≤ exp(O(αεn)) P

X′∼An
M

[
M(X ′) ∈ S

]
,

as desired. The first inequality uses the definition of differential privacy. We also used the moment
generating function of the binomial distribution, and the fact that eε − 1 = O(ε) for ε < 1.
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With this in hand, the proof is as follows:

P
V,V ′∼P

X∼N (0,Σ(V ))
M

[
Z > α2/32

]
=
∑
v,v′

P
V,V ′∼P

[
V = v, V ′ = v′

]
P

X∼N (0,Σ(V ))
M

[
Z > α2/32 | V, V ′

]
≤ exp(O(αεn))

∑
v,v′

P
V,V ′∼P

[
V = v, V ′ = v′

]
P

X∼N (0,Σ(V ′))
M

[
Z ′ > α2/32 | V, V ′

]
= exp(O(αεn)) P

V,V ′∼P
X∼N (0,Σ(V ′))

M

[
Z ′ > α2/32

]

The inequality follows using the lemma above, and noting that for any v, v′ ∈ supp(P ), that
dTV(N (0,Σ(V )),N (0,Σ(V ′))) ≤ O(α).

With this in hand, we make the following observations. Claim 63 implies that Ω(1) ≤
P
[
Z > α2/32

]
. Claim 64 states that P

[
Z ′ > α2/32

]
≤ exp(−Ω(d2)). Using these together with

Claim 65 gives us that Ω(1) ≤ exp(O(αεn)−Ω(d2)), which implies that we require n ≥ Ω(d2/αε)
to avoid a contradiction.
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