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Abstract
Gibbs-ERM is a natural idealized model of learning with stochastic optimization algorithms (such
as Stochastic Gradient Langevin Dynamics and —to some extent— Stochastic Gradient Descent)
which also appears in other contexts, including PAC-Bayesian theory, and sampling mechanisms. In
this work we study the excess risk suffered by the Gibbs-ERM learner with non-convex, regularized
empirical risk. Our goal is to understand the interplay between the data-generating distribution and
the problem of learning in large hypothesis spaces. Our main results are distribution-dependent
upper bounds on several notions of excess risk. We show that, in all cases, the distribution-dependent
excess risk is essentially controlled by the effective dimension tr

(
H?(H? + λI)−1

)
of the problem,

whereH? is the Hessian matrix of the risk at a local minimum. This is a well-established notion of
effective dimension appearing in the analyses of several previous algorithms, including SGD and
ridge regression. Ours is the first work that brings this notion of dimension to the analysis of learning
via Gibbs densities. The distribution-dependent view we advocate here improves upon earlier results
of Raginsky et al. (2017), and can yield much tighter bounds depending on the interplay between
the data-generating distribution and the loss function. The first part of our analysis focuses on the
localized excess risk in the vicinity of a fixed local minimizer. This result is then extended to bounds
on the global excess risk, by characterizing probabilities of local minima (and their complement)
under Gibbs densities, a result which might be of independent interest.

1. Introduction

In the parametric setting of statistical learning, the learner is given a tuple S = (z1, . . . , zm)
of training examples, drawn independently of each other from a fixed and unknown probability
distribution D supported on an example space Z . Based on the training examples S the learner
selects a model w from a parameter space Rd. The learner’s goal is to minimize the statistical risk
R(w) = Ez[`(w, z)] of the selected model, where z is drawn from D and ` : Rd ×Z → [0,M ] is
a known loss function, which we assume to be non-negative, bounded, and twice differentiable.
A learner following the Empirical Risk Minimization (ERM) principle selects a model with the
smallest empirical risk. Often, learners also incorporate a penalty, leading to the selection of a model
from the set

arg min
w∈Rd

{
R̂S(w) + λ‖w‖2

}
, λ > 0 , (1)
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where R̂S(w) is the empirical risk of w, defined by

R̂S(w) =
1

m

m∑
i=1

`(w, zi) .

We abbreviate the regularized empirical risk by R̂S,λ and its population counterpart, E[R̂S,λ], by
Rλ. In this paper we study a randomized version of ERM known as Gibbs-ERM. A Gibbs algorithm
outputs a model w ∈ Rd sampled from the Gibbs density

p̂S,γ(w) =
1

Z
e−γ(R̂S(w)+λ‖w‖2) , γ > 0 , (2)

where Z =
∫
Rd e

−γ(R̂S(w)+λ‖w‖2) dw is the normalization constant and R̂S is assumed to be such
that Z <∞ (for instance, this is the case when ‖·‖ is any norm and R̂S is nonnegative). It is not hard
to see that we obtain ERM as a special case of (2) for γ →∞. In the following expectations E[·] are
taken with respect to the joint distribution over the sample space Zm × Rd (i.e., the product of the
example space and the parameter space) unless explicitly stated otherwise, for instance Ew∼p̂S,γ [·].
Gibbs-ERM reveals its usefulness when the regularized empirical risk is non-convex and (1) becomes
intractable. This scenario brings out the connections between Gibbs-ERM and stochastic optimization
algorithms, for instance Stochastic Gradient Langevin Dynamics (SGLD) —see below, along with
a number of other settings in which Gibbs-ERM arises naturally. One tantalizing related line of
research lies in understanding theoretical properties of learning in overparameterized problems,
such as deep neural networks, through the prism of stochastic optimization, since in these settings
Stochastic Gradient Descent (SGD) and its variants become de facto the method of choice. We believe
that Gibbs-ERM principle provides an opportunity for explaining some of the learning-theoretic
phenomena in this area.
In this paper we focus on the statistical properties of the Gibbs-ERM by analyzing distribution-
dependent excess risk bounds. In particular, we give upper bounds on the excess risk that can be much
smaller compared to the previous literature, for instance SGLD (Raginsky et al., 2017), depending
on the interplay between the data-generating distribution and the loss function.

SGLD algorithm. The recent interest in stochastic gradient descent algorithms for non-convex
optimization led to the study of a variant called SGLD. Apart from its simplicity, SGLD has amenable
theoretical properties, such as asymptotic convergence to global minima and polynomial saddle-point
escape times (Ge et al., 2015). The update rule of plain SGLD is

ŵt+1 = ŵt − η∇R̂S,λ(ŵt) +

√
2η

γ
ξt t = 0, 1, 2, . . .

where ŵ1 is sampled from a fixed distribution, ξt is a standard Gaussian “noise” vector (independent
from the choice of ŵ1), and η is a step size. The SGLD algorithm is known to approximate the
continuous-time Langevin diffusion equation

dw(t) = −∇R̂S,λ(w(t)) dt+

√
2

γ
db(t), t ≥ 0 (3)

where b(t) is the standard Brownian motion. Indeed, under appropriate assumptions on the empirical
risk, one can show that the solution to (3) admits (2) as a stationary distribution (Raginsky et al.,
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2017; Tzen et al., 2018). While convergence in the limit is reassuring, the best known bound on the
mixing time is of order polylog(1/ε) eÕ(d) for non-convex empirical risks assuming that objective is
smooth and dissipative (roughly speaking, assuring that the process (3) on average moves towards the
origin) (Raginsky et al., 2017; Xu et al., 2018), and it is not clear whether the exponential dependence
on the parameters can be eliminated.

Information Risk Minimization. Gibbs-ERM naturally arises when introducing a relative entropy
regularization in the so-called Information Risk Minimization framework (Zhang, 2006; Xu and
Raginsky, 2017). Indeed p̂S,γ in (2) can be equivalently defined as the solution to the following
convex optimization problem

arg inf
p̂∈M1

{
E

w∼p̂

[
R̂S(w)

]
+

1

γ
KL
(
p̂ || N (0, λ−1I)

)}
, (4)

whereM1 is the set of all sample-dependent probability densities on Rd, with sample drawn from
D, and KL-divergence is defined between densities that are absolutely continuous with respect to
some measure over Rd. Problem (4) can be also motivated from the perspective of PAC-Bayesian
analysis (McAllester, 1998; Seeger, 2002), where (2) is the density minimizing the bound on
the expected risk. Another instance of (4) is the well-known Maximum Entropy Discrimination
framework of Jaakkola et al. (1999).

Sampling from (2). Markov chain Monte Carlo (MCMC) algorithms can be used to sample
directly from (2). Unfortunately, this is often known to be computationally inefficient (Andrieu
et al., 2003). On the other hand, there is a number of cases where MCMC demonstrates amenable
computational properties, for instance when sampling from log-concave densities (Andrieu et al.,
2003). Recent works have also showed that for a particular class of densities (such as smooth
and strongly concave densities) variations of MCMC algorithms can sometimes achieve linear
convergence (Cheng et al., 2018b). For certain non-log-concave densities MCMC variants can
achieve polynomial convergence in the dimension (Cheng et al., 2018a), or ever achieve faster
convergence than optimization algorithms (Ma et al., 2018). Another popular line of research is a
variational approximations of the Gibbs density, such as Variational Bayes (Wang and Blei, 2018)
where one resorts to the variational approximation of a target density.

1.1. Our Contribution

The algorithms discussed above perform randomized empirical risk minimization. However, min-
imizing empirical risk does not always lead to minimization of the risk. Hence, the quality of
the solution A(S) generated by the randomized algorithm A given the training set S is typically
analyzed through the notion of excess risk ES,A [R(A(S))]−R(w?), where w? is one of the mini-
mizers of the risk. This is decomposed into the generalization error R(A(S))− R̂S(A(S)) and the
term R̂S(A(S))− R(w?). Similarly to Raginsky et al. (2017), we follow instead a Gibbs-centric
decomposition of the excess risk

E
S,A

[R(A(S))]−R(w?) = E
S,A,w∼p̂S,γ

[R(A(S))−R(w)]︸ ︷︷ ︸
Computational excess risk

+ E
w∼p̂S,γ

[R(w)]−R(w?)︸ ︷︷ ︸
Statistical excess risk

.

The first term is due solely to the dynamics of the algorithm, be it SGLD or a sampling procedure,
while the second one is a purely learning-theoretic quantity. Raginsky et al. (2017) mainly focused
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on the finite-time analysis of the first term for SGLD while showing convergence for non-convex
objective functions. Their analysis of the second term —the statistical excess risk— provides a bound
of order (ignoring logarithmic factors)

(γ + d)2

λ?m
+
d

γ
(5)

where λ? is a positive spectral gap characterizing the exponential convergence rate of the Langevin
diffusion to the stationary point. They conservatively bounded the reciprocal of λ? as

1

λ?
= Õ

(
1

γ(d+ γ)

)
+

(
1 +

d

γ

)
eÕ(γ+d) . (6)

This results in a statistical excess risk bound with a rather pessimistic exponential dependence on
the ambient dimension d. Therefore, a natural question to ask is whether the dependence on d can
be improved by taking into account specific properties of the learning problem, and whether the
dependence on λ? can be avoided altogether (since the statistical excess risk does not really depend
on the convergence properties of SGLD). We believe that λ? (which has exponential dependence on
the dimension) can be avoided in the analysis of Raginsky et al. (2017), although in their case this
would not have improved the final result due to the contribution of the computational excess risk.
In this paper we consider the statistical excess risk, while we forego computational aspects of concrete
algorithms. In particular, we focus on the distribution-dependent analysis of statistical excess risk
(or, simply, excess risk). In the following we show upper bounds on the statistical excess risk that
can be much smaller than (5) depending on the interplay between the data-generating distribution
and the loss function.
The notion of excess risk considered in this paper is defined with respect to the regularized minimizer
of the risk

w?
λ ∈ arg min

w∈Rd

{
R(w) + λ‖w‖2

}
. (7)

Note that this is not a limitation because we can always recover the regularizer-free analysis by
looking at the asymptotic behavior λ→ 0. In the following, we assume that both risk and empirical
risk are bounded and twice differentiable, and the Hessian matrix of the risk is locally-Lipschitz
(in a sense precisely defined later on). Therefore, the objective function of (7) (as well as the one
of (1)) can have more than one minimum. However we assume that local minima are isolated,
meaning that a sufficiently small neighborhood ofw?

λ contains a unique minimum. One compelling
example is a large family of non-convex strict-saddle ERM problems (Ge et al., 2015; Gonen and
Shalev-Shwartz, 2017), such as matrix completion, tensor decomposition, PCA, ICA, and others.
Another example of such is the empirical risk of a ReLU neural network with weight decay, or L2
regularization, (Milne, 2018, Theorem 1) where minima resulting in a sufficiently small empirical
risk are locally strongly-convex. Even though the theorem holds for empirical measures, we suspect
that it could be extended to the population risk through the uniform convergence argument.

Localized excess risk. Before delving into the global analysis of the excess risk, we look at the
local approximation properties of the Gibbs-ERM principle, which will also be instrumental in the
forthcoming global analysis. We begin by looking at the localized excess risk with respect to a fixed
minimizer w?

λ. Specifically, we consider the excess risk of a parameter w generated by Gibbs-ERM
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within a certain neighborhood around w?
λ. This is defined as

∆(w?
λ) = E

S

[
E

w∼p̂S,γ
[R(w)−R(w?

λ) | w ∈ E? (r)]

]
,

where conditioning is taken on the event that w lies in the ellipsoid E? (r) of radius r centered at the
minimizer w?

λ and aligned with the curvature of the risk at that minimum. We prove (Theorem 4)
that the local excess risk behaves as1

∆(w?
λ) .

1

γ
tr
(
H?H?−1

λ

)
+ ε(r) +

√
γε(r) +

γ√
m

(8)

where H? is the Hessian matrix ∇2R(w?
λ), H?

λ = H? + 2λI , and ε(r) is a local approximation
error that vanishes as r → 0 (defined precisely in Section 4). The trace term in (8), a distribution-
dependent quantity known as the effective dimension of minimizer w?

λ, can be also expressed as
λ1/(λ1 + λ) + · · ·+ λd/(λd + λ) where λ1, . . . , λd are the eigenvalues ofH?. This can be viewed
as a “soft” version of the rank ofH?. Note that tr

(
H?H?−1

λ

)
≤ d always, and tr

(
H?H?−1

λ

)
� d

whenever the spectrum of the Hessian matrix is light-tailed. This notion of effective dimension
occasionally appears in the analysis of ridge regression (Audibert and Catoni, 2011; Neu and Rosasco,
2018).
Next, to get a sense of the strength of the bound and as a sanity check, one may look at limiting cases
with respect to parameters λ and γ. When λ→ 0, corresponding to the unregularized Gibbs-ERM
principle, our bound becomes

∆(w?) .
1

γ
rank(H?) + poly(m, γ, r, λmin(H?))

where λmin(H?) denotes the smallest non-zero eigenvalue of H?. Assuming the radius is set to
r = γ−

1+p
3 for some p > 0, the polynomial term in the right-hand side of the above bound vanishes

as γ,m→∞, even for singular H?. On the other hand, for λ > 0 and γ,m→∞ the right-hand
side of (8) tends to zero, and the bound backs up the intuition that the Gibbs-ERM principle should
exactly recover the ERM solution. This observation also serves as a sanity check that the bound is
reasonably tight, at least with respect to γ.
Finally, in cases when the Hessian matrix of the risk is constant, for instance in Regularized Least
Squares (RLS) problems, ε(r) = 0 and our bound specializes to

∆(w?
λ) .

1

γ
tr
(
H?H?−1

λ

)
+

γ√
m
.

When γ is tuned optimally the above bound becomes ∆(w?
λ) . m−

1
4

√
tr
(
H?H?−1

λ

)
. Note that,

for the square loss, the best known dependence on m that can be achieved is m−
1
2 . The worse

exponent in our bound is the price we pay for the generality of our approach. Although our results
are never worse in terms of the dimension, the dependence on the sample size in our bounds is worse
than in those of (Raginsky et al., 2017, (3.27)). This is because we are stating bounds in terms of the
distribution-dependent effective dimension.

1. Throughout this paper, we use f . g to say that there exists a universal constant C > 0 such that f ≤ Cg holds
uniformly over all arguments.
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Global excess risk. Next, we consider a global notion of excess risk,

∆(π) = E
S

[
E

w∼p̂S,γ
[R(w)]

]
− E
I∼π

[
R(w?

λ,I)
]
.

Here, in the second term π is a distribution over the countable set I of all minima (recall that minima
are isolated). In this setting, all minima, Hessian matrices, approximation errors, and ellipsoids gain
a corresponding subscript i ∈ I: w?

λ,i,H
?
λ,i, εi(r), and E?i (r).

We first focus on the finite-temperature distribution over minima of the regularized risk

πγ,r(i) =
Pγ(E?i (r))∑
j∈I Pγ(E?j (r))

, i ∈ I , (9)

where probabilities are taken with respect to the population Gibbs density pγ(w) ∝ e−γRλ(w). For
this distribution we prove that

∆(πγ,r) .
1

γ
E
[
tr
(
H?

IH
?−1
λ,I

)]
+

γ√
m

+ E[εI(r)] +
√
γ E[εI(r)] + Pγ(C?(r)) , (10)

for any r < r0 where the radius r0 is chosen such that all ellipsoids in the set
{
E?i (r) : i ∈ I

}
are

disjoint, C?(r) is the complement of the union of the ellipsoids in this set (i.e., the volume outside of
minima), and the expectation is taken with respect to I ∼ πγ,r.
Note that there is a trade-off in (10) between the first term, which is essentially a bound on the
expected excess risk in the neighborhood of a minimum drawn according to πγ,r, and the last term,
which is the probability of sampling outside of the neighborhood of any minimum. This means that
we can obtain an oracle inequality by choosing r ∈ [0, r0] such that it minimizes the right-hand side
of (10).
Now we focus on the probability of the complement, which behaves as

Pγ(C?(r)) ≤ 1−
(

1− de−r2γαd/2
)∑
i∈I

e−
1
3
γεi(r) , (11)

where αd/2 depends only on d. So, as long as r2γ is increasing and γεi(r) is non-increasing, the

probability of generating a solution outside of the minima decreases. For example, when r = γ
p−1
2

for p ∈ (0, 1/3] (as discussed in Section 4.2) the right-hand side of (11) vanishes as γ →∞.

Asymptotic pseudo excess risk. It is also natural to ask what happens in the zero-temperature
regime γ → ∞, when the Gibbs-ERM principle reduces to a rule for selecting empirical risk
minimizers. We can study this by observing that (10) vanishes when the radius is set to r = γ

p−1
2

—as we previously discussed— and γ is set to m
1
4 , which is a meaningful result. Indeed, whenever

m = ∞, then γ = ∞ and the risk of Gibbs-ERM should not differ from the risk of a minimum
drawn from the limiting distribution π∞ = limγ→∞ πγ,r. Interestingly, the distribution π∞ has the
following analytic form (this is shown in Lemma 5 assuming the tuning r = γ

p−1
2 ):

π∞(i) =
1∑

j∈IGLOB

√
det(H?

λ,i)

det(H?
λ,j)

, i ∈ IGLOB (12)

6



DISTRIBUTION-DEPENDENT ANALYSIS OF GIBBS-ERM PRINCIPLE

where IGLOB is a countable set enumerating global minima of the regularized risk. Hence, the
probability of a minimum w?

λ,i is proportional to the reciprocal of the normalized volume of the
ellipsoid defined by the eigenvalues of the Hessian at that minimum. In particular, this implies that
the probability of choosing a global minimum with larger volume is higher. Note that all suboptimal
minima have zero probability under π∞. At the same time, in this asymptotic regime it is also
rather clear that Gibbs-ERM generates models outside of the neighborhoods of the minima with zero
probability. These two observations show how to strike a middle ground between the nonasymptotic
bound of (10) and the asymptotic distribution (12). This is captured by the global asymptotic pseudo
excess risk

∆∞r = E
I∼π∞

[
E
S

[
E

w∼p̂S,γ
[R(w) | w ∈ E?I (r)]

]
−R(w?

λ,I)

]
, r > 0 ,

which bounds the localized excess risk at finite temperature γ > 0 when minima are drawn from the
global limiting distribution π∞. For any r ≥ 0 we have

∆∞r .
1

γ
E
[
tr
(
H?

IH
?−1
λ,I

)]
+ E [εI(r)] +

√
γ E [εI(r)] +

γ√
m
. (13)

Observe that whereas the local excess risk (8) is essentially controlled by the soft rank of the
minimum, the bound (13) implies that globally this is not necessarily the case, since low-rank minima
have smaller probability under distribution π∞.

1.2. Additional Related Work

Generalization bounds for the Gibbs-ERM principle have been extensively studied in a number
of works over the past years. One prolific thread of research in this direction is PAC-Bayesian
analysis, starting from the seminal works of McAllester (1998); Langford and Shawe-Taylor (2003)
—see, for instance, (Germain et al., 2015; Grünwald and Mehta, 2017) for the latest developments.
PAC-Bayesian analysis follows from uniform convergence arguments (over the class of densities),
where —as pointed out earlier— Gibbs density is minimizing the bound on the risk (Information Risk
Minimization). In this paper we focus on excess risk bounds (rather than generalization bounds) that
manifest distribution-dependent properties of a potentially non-convex risk function. PAC-Bayesian
excess risk bounds have also been studied in a number of contexts (Alquier et al., 2016; Audibert and
Catoni, 2011; Grünwald and Mehta, 2017). However, these typically assume convex risk (e.g. least-
squares), or focus on the properties of the hypothesis class (sometimes distribution-dependent) rather
than those of the objective function (Grünwald and Mehta, 2017). Distribution-dependent arguments
have been exploited to develop sharper generalization bounds (Lever et al., 2013), and data-dependent
PAC-Bayesian bounds were shown to be numerically non-vacuous as shown by Dziugaite and Roy
(2018).
A number of works have also analyzed generalization and approximation properties of Gibbs-
ERM from the algorithmic point of view. A heuristic approach to the analysis of SGLD algorithm
was given by Welling and Teh (2011); Mandt et al. (2016) while recent works have also argued
that its generalization ability is controlled by the “width” (or the notion of pseudo-rank) at the
minimum of the empirical risk (Keskar et al., 2017; Chaudhari and Soatto, 2018; Liang et al.,
2019), which is reminiscent of the effective dimension studied in this paper. Mou et al. (2018)
developed generalization bounds for SGLD from PAC-Bayesian and algorithmic stability point of
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view (Bousquet and Elisseeff, 2002). Apart from excess risk bounds, Raginsky et al. (2017) also
showed Gibbs-ERM specific generalization bounds through the algorithmic stability framework. In
this paper we also analyze generalization and stability of the Gibbs-ERM principle, however we
present a simpler proof technique similar in spirit to Xu and Raginsky (2017). Finally, Sheth and
Khardon (2017) analyzed a slightly different notion of excess risk bounds for variational inference
assuming the use of latent Gaussian models (such as generalized linear models and Gaussian
processes).

2. Preliminaries

Throughout this paper, we use f . g to indicate that there exists a universal constant C > 0 such
that f ≤ Cg holds uniformly over all arguments. Let Br(z) ⊂ Rd be the ball of center z and radius
r > 0 and let Br = Br(0). Given a positive definite d× d matrixM , define ‖x‖2M = x>Mx for
x ∈ Rd. Then, for any positive semi-definite d× d matrixA and r > 0 the corresponding ellipsoid
centered at x0 ∈ Rd is defined as E(x0,A, r) ≡

{
x ∈ Rd : ‖x0 − x‖A ≤ r

}
.

If p and q are densities that are absolutely continuous with respect to a measure µ over Rd, the
Kullback-Liebler (KL) divergence between p and q is defined as

KL(p, q) = E
w∼p

[
ln
(
p(w)

)
− ln

(
q(w)

)]
.

3. Sketch of the Analysis

In this section we briefly explain the main arguments at the basis of our analysis. We start from the
analysis of the localized excess risk, which is decomposed into the generalization error (i.e., the
difference between the risk and empirical risk) and the gap between the empirical risk and the risk of
the minimizer w?

λ,

E [R(w)−R(w?
λ) | w ∈ E?(r)] = E

[
R(w)− R̂S(w) | w ∈ E?(r)

]
(14)

+ E
[
R̂S(w)−R(w?

λ) | w ∈ E?(r)
]

(15)

where the expectation is taken with respect to the empirical Gibbs density (2). This decomposition
is similar to the one of (Raginsky et al., 2017, last two terms in (1.5)), however, in our case it is
done with respect tow?

λ instead ofw?. For brevity we omit the indices corresponding to the minima,
as in the localized setting we consider a local minimum at the time. The generalization error of
Gibbs-ERM is captured by Theorem 1 below (whose proof can be found in Section A.2).

Theorem 1 (Generalization bound) Consider any loss function f : Rd × Z → R that is σ-sub-
Gaussian in the first argument with respect to the Gibbs density

p̂S,γ(w) ∝ e−
γ
m

∑m
i=1 f(w,zi) γ > 0 (16)

conditioned on a measurable A ⊆ Rd. Then the generalization error of Gibbs-ERM satisfies

E
S

[
E

w∼p̂S,γ

[
R(w)− R̂S(w)

∣∣∣w ∈ A]] ≤ 4σ2γ

m
.
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Assuming that f is everywhere bounded by M , Hoeffding Lemma implies the bound M2γ
2m . Under

the same boundedness assumption, a bound with similar rates was also shown by Xu and Raginsky
(2017) within the mutual information framework. Our proof works by showing that the Gibbs density
is on-average replace-one stable in the sense of (Shalev-Shwartz and Ben-David, 2014, Section 13)
(we include it here for completeness).
The second quantity (15) is less straightforward to control in a distribution-dependent setting. Ragin-
sky et al. (2017) give a global upper bound R̂S(w)−R(w?

λ) = Õ
(
d/γ

)
by further decomposing (15)

as follows
E

w∼p̂S,γ
[R̂S(w)]− min

u∈Rd
R̂S(u) + min

u∈Rd
R̂S(u)− E

S
[R̂(w?

λ)] .

The second term is bounded trivially, while the analysis of the first term follows the so called “almost
ERM” argument. In other words, understanding how “close” the solutions generated by Gibbs-ERM
are to the solutions of ERM.
In our distribution-dependent setting we follow a different route: consider the case of RLS, where the
empirical risk is an average of square-regularized losses. A rather straightforward argument (based
on Gaussian integration) gives the following identity in an “almost ERM” style:

E
w∼p̂S,γ

[
R̂S(w)

]
− min

u∈Rd
R̂S(u) =

1

γ
tr

(
∇2R̂S(ŵλ)

(
∇2R̂S(ŵλ) + λI

)−1
)

where ŵλ is a minimizer of the RLS problem. Observe that in the above identity we obtain an
empirical counterpart of the effective dimension introduced in (8). Since our goal is a distribution-
dependent result, one possibility is to consider the concentration of Hessian eigenvalues. However,
we follow a more direct approach. As we said earlier, the “almost ERM” analysis of RLS is
relatively easy using Gaussian integration (since p̂S,γ is a Gaussian density). Since we deal instead
with general smooth densities, our idea is to quantify the gap between the density at hand and the
Gaussian density. This is nicely handled by the transportation lemma (Boucheron et al., 2013,
Lemma 4.18), characterizing the difference between the expectations of different densities in terms
of the KL-divergence between them. As a comparison we choose the Gaussian density qγ ∝
exp

(
− γ

2‖w −w
?
λ‖2H?

λ

)
, which only depends on distribution-related quantities. An “almost ERM”

style analysis applied to qγ will give us exactly a distribution-dependent effective dimension. So, the
only issue is the actual gap between densities. By expanding the KL-divergence we observe that the
critical terms are

−γ E
S

[
E
p̂S,γ

[
R̂S,λ(w) | w ∈ E? (r)

]]
+
γ

2
E
S

[
E
p̂S,γ

[
‖w −w?

λ‖2H?
λ
| w ∈ E? (r)

]]
. −γ E

S

[
E
p̂S,γ

[Rλ(w) | w ∈ E? (r)]

]
+
γ2

m
+
γ

2
E
S

[
E
p̂S,γ

[
‖w −w?

λ‖2H?
λ
| w ∈ E? (r)

]]
(17)

. γε(r) +
γ2

m
. (18)

To obtain (17), instead of using concentration, we resort to the generalization bound of Theorem 1,
whereas (18) is obtained by Taylor expansion of the regularized risk around its minimizer. This is
formally shown in Lemma 3, while the decomposition (14) is bounded in Theorem 4. Hence, the gap
is quantified by the approximation error at the radius r plus a sample-dependent term due to the use
of empirical Gibbs density. These terms appear in excess risk bounds (8), (10), and (13).

9
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3.1. Global Analysis

Starting from the conditional local excess risk in the form given by the left-hand side of (14), we
analyze a notion of global risk by bounding the probability of individual ellipsoids (i.e., neighbor-
hoods of minima) and that of the complement of their union. Since for γ →∞ the probability of a
complement approaches zero (as discussed in Remark 7), in order to obtain an asymptotic bound it
is enough to focus on the relative probability of ellipsoids. In Lemma 5 we derive upper and lower
bounds on this probability via Laplace approximation (Lemma 12), and then analyze their limit for
γ →∞. Combining the local excess risk bound and the bound on the asymptotic relative probability
of ellipsoids allows us to control the asymptotic global pseudo excess risk (13) —see Corollary 1.
Finally, using a nonasymptotic bound on the probability of a complement —see the proof of
Theorem 6— we can apply the law of total expectation to get also a nonasymptotic bound on the
global excess risk.

4. Main results

4.1. Local analysis

We first turn our attention to the local analysis considering a fixed minimizer2

w?
λ ∈ arg min

{
R(w) + λ‖w‖2

}
. (19)

Specifically, we prove that the risk of Gibbs-ERM in a neighborhood ofw?
λ is controlled by the local

effective dimension tr
(
H?H?−1

λ

)
, defined in terms of the HessianH? = ∇2R(w?

λ) of the risk of
the minimizer, whereH?

λ = H? + 2λI . We require that Hessians do not change “too quickly” by
assuming that Hessian of the risk is Lipschitz in an ellipsoid E?(r) = E(w?

λ,H
?
λ, r) centered at the

minimizer and aligned with the local curvature. Formally the local Lipschitzness of the Hessian is
defined as follows.

Definition 2 (Locally-Lipschitz Hessian) The Hessian ∇2R is locally Lipschitz around a mini-
mizer w?

λ if there exists a function L? : R+ → R+ such that

‖∇2R(w?
λ)−∇2R(w)‖2 ≤ L?(r)‖w?

λ −w‖ for all w ∈ E?(r) . (20)

Note that local Lipschitzness of the risk Hessian implies local Lipschitzness of the regularized risk
Hessian for the same function L?.
Local Lipschitzness of Hessians plays an important role in bounding the gap between the Gibbs
density and the Gaussian density, as discussed in Section 3. In particular, the approximation error
introduced by taking a Taylor expansion of the regularized risk up to the third term is

ε(r) = L? (r)

(
r√

λmin + λ

)3

r ≥ 0 (21)

where λmin is the smallest non-zero eigenvalue of H?. Observe that ε(r) = 0 for any constant
Hessian matrices (e.g., in the case of RLS). Lemma 3 below here establishes a result needed to prove
our bound on the local excess risk.

2. We will drop subscript indexing of minima in this section.

10
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Lemma 3 Recall that H? = ∇2R(w?
λ), H?

λ = H? + 2λI , and ε(r) is a local approximation
error defined in (21). For any minimizer w?

λ of the regularized risk we have

E
S

[
E

w∼p̂S,γ

[
R̂S(w)

∣∣∣w ∈ E? (r)
]]
−R(w?

λ) ≤ 1

γ
tr
(
H?H?−1

λ

)
+
ε(r)

6
+
M

2

√
γε(r)

3
+
M2γ2

2m
.

(The proof of Lemma 3, along with that of all remaining statements in this section, can be found in
Section A.3.) This lemma, combined with the bound on the generalization error (Theorem 1), gives
the desired result.

Theorem 4 (Localized Excess Risk Bound) Assume the same as in Lemma 3. Then,

∆(w?
λ) ≤ 1

γ
tr
(
H?H?−1

λ

)
+
ε(r)

6
+
M

2

√
γε(r)

3
+
M2γ2

2m
+
M2γ

2m
.

4.2. Global analysis

We now turn our attention to the global analysis of the excess risk. Since we deal with a countable
set of local minima (indexed by I), we add a subscript to all minima-dependent quantities, such as
w?
λ,i,H

?
λ,i, E?i (r). In particular, the approximation error is now defined as

εi(r) = L?i (r)

(
r√

λmin,i + λ

)3

r > 0, i ∈ I (22)

where L?i is the local Lipschitz constant with respect to the minimumw?
λ,i, and λmin,i is the smallest

non-zero eigenvalue of the Hessian matrixH?
λ,i.

Next, we introduce an important assumption on the geometry of the regularized risk around its
minimizers.

Assumption 1 All local minima w?
λ ∈ arg minw∈Rd Rλ(w) satisfy ∇Rλ(w?

λ) = 0 and are such
that ∇2Rλ(w?

λ) is positive definite. In other words all local minima are isolated.

The above assumption implies that there exists a number r0 > 0 such that

r0 = max

{
r > 0 :

⋂
i∈I
E?i (r) ≡ ∅

}
.

In other words, ellipsoids centered at minimizers and aligned with the local curvature of Rλ are
non-overlapping. In addition to the set I, indexing minima of the regularized risk, let IGLOB ⊆ I
index the global minima and denote its complement by ISUBOPT ≡ I \ IGLOB. Finally, introduce the
complement of the ellipsoids centered at the minima (later called, with some abuse of terminology,
complement of the minima),

C?(r) ≡ Rd \
⋃
i∈I
E?i (r) r ≤ r0 .

The first result in this section concerns the distribution of local minima. In particular, we give an
upper bound on the relative probability πγ,r(i) of the i-th minimum, and then derive the analytic
form of the asymptotic distribution π∞.

11
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Lemma 5 (Distribution of Minima) For all r > 0,

πγ,r(i) ≤
e
γ
3

maxk∈I εk(r)∑
j∈I e

γ(Rλ(w?
λ,i)−Rλ(w?

λ,j))
√

det(H?
λ,i)

det(H?
λ,j)

i ∈ I .

Moreover, assuming without loss of generality that Rλ(w?
λ,i) = 0 for all i ∈ IGLOB, and setting

r = γ−p for p > 0, we have

lim
γ→∞

πγ,r(i) =


1∑

j∈IGLOB

√
det(H?

λ,i
)

det(H?
λ,j

)

i ∈ IGLOB

0 i ∈ ISUBOPT .

The non-asymptotic bound in Lemma (5) follows by upper and lower Taylor expansion around
minima. The asymptotic result (a zero-temperature distribution) is a direct consequence of the
non-asymptotic bound. We are now ready to state the main result of this section.

Theorem 6 (Global Excess Risk Bound) Assume the same as in Lemma 3. Then for any r ∈ [0, r0]
the global excess risk satisfies

∆(πγ,r) .
1

γ
E
[
tr
(
H?

IH
?−1
λ,I

)]
+

γ√
m

+ E[εI(r)] +
√
γ E[εI(r)] + Pγ(C?(r))

where the expectation is taken with respect to I ∼ πγ,r and the probability of the complement of the
minima is bounded as

Pγ(C?(r)) ≤ 1−
(

1− de−r2γαd/2
)∑
i∈I

e−
1
3
γεi(r) (23)

with

αd/2 =

{
1 d = 1

Γ
(
1 + d

2

)− 2
d otherwise .

(24)

Remark 7 We compute the value of r approximately minimizing the right-hand side in Theorem 6.
Note that the probability of the complement of the minima decreases if we ensure that r2γ increases
in γ and γεi(r) ∝ r3γ is non-increasing. For instance we may set r2γ = γp for p > 0 so that
r3γ = γ1+ 3

2
(p−1). Hence we require 1 + 3

2(p− 1) ≤ 0 which is satisfied for any p ∈ (0, 1/3]. This

implies that when r = γ
p−1
2 and p ∈ (0, 1/3] the probability of the complement of the minima and

the approximation terms γεi(r), εi(r) all vanish as γ →∞.

Finally, combining the localized excess risk bound in Theorem 4 with Lemma 5 allows us to prove
the following result about the asymptotic pseudo excess risk.

Corollary 1 Assume the same as in Lemma 3. Then, for any r > 0, the global asymptotic pseudo-
excess risk satisfies

∆∞r .
1

γ
E
[
tr
(
H?

IH
?−1
λ,I

)]
+ E [εI(r)] +

√
γ E [εI(r)] +

γ2

m
+
γ

m

where I is distributed according to

π∞(i) =
1∑

j∈IGLOB

√
det(H?

λ,i)

det(H?
λ,j)

.
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Appendix A. Proofs

A.1. Common Tools

We compute the Taylor expansion ofRλ(w) forw ∈ E(w?
λ,∇2Rλ(w?

λ), r), wherew?
λ is a minimizer

of the regularized risk,

Rλ(w) ≥ Rλ(w?
λ) +

1

2
‖w −w?

λ‖2H?
λ
− L?(r)

6
‖w −w?

λ‖3

≥ Rλ(w?
λ) +

1

2
‖w −w?

λ‖2H?
λ
− L?(r)

6

(
r√

λmin + λ

)3

(25)

= Rλ(w?
λ) +

1

2
‖w −w?

λ‖2H?
λ
− 1

6
ε(r) (26)

where ε(r) is defined in (21), and (25) follows because
√
λmin + λ‖w −w?

λ‖ ≤ r where λmin is
the smallest non-zero eigenvalue of∇2R(w?

λ). In a similar way we have the upper expansion

Rλ(w) ≤ Rλ(w?
λ) +

1

2
‖w −w?

λ‖2H?
λ

+
1

6
ε(r) . (27)

We now introduce a crucial transportation lemma which is instrumental in the following proofs.

Lemma 8 ((Boucheron et al., 2013, Lemma 4.18)) Let Z be a real-valued integrable random
variable with distribution P such that

lnE
[
eα(Z−E[Z])

]
≤ α2σ2

2
α > 0

for some σ > 0 and let Z ′ be another random variable with distribution Q. If Q is absolutely contin-
uous with respect to P and such that KL(Q || P ) <∞, then E[Z ′]− E[Z] ≤

√
2σ2KL (Q || P ).
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Next, we prove a helpful lemma about the log-ratio of Gibbs integrals.

Lemma 9 Let fA, fB : X → R such that

ZA =

∫
B
e−γfA(x) dx

is finite for all γ > 0,B ⊆ X and let

pA(x) =
1

ZA
e−γfA(x) γ > 0, x ∈ B

where fB is similarly defined. Whenever ZA > 0 we have that

− ln

(
ZA
ZB

)
≤ γ

∫
B
pB(x) (fA(x)− fB(x)) dx .

Proof Observe that

ZA
ZB

=

∫
B e
−γfA(x) dx∫

B e
−γfB(x) dx

=

∫
B e
−γfA(x)eγ(fB(x)−fB(x)) dx∫

B e
−γfB(x) dx

=

∫
B
pB(x)eγ(fB(x)−fA(x)) dx .

Since − ln() is a convex function, by Jensen’s inequality we obtain the desired result.

A.2. Generalization Bound for Gibbs-ERM

We start by proving a generalization bound for Gibbs-ERM.

Theorem 1 (restated) Consider any loss function f : Rd ×Z → R that is σ-sub-Gaussian in the
first argument with respect to the Gibbs density

p̂S,γ(w) ∝ e−
γ
m

∑m
i=1 f(w,zi) γ > 0

conditioned on a measurable A ⊆ Rd. Then the generalization error of Gibbs-ERM satisfies

E
S

[
E

w∼p̂S,γ

[
R(w)− R̂S(w)

∣∣∣w ∈ A]] ≤ 4σ2γ

m
.

Proof Consider the training examples S drawn i.i.d. from D and, for i = 1, . . . ,m, denote by
S(i) = {z1, . . . , zi−1, z, zi+1, . . . , zm} a replace-one training data, where z is independently drawn
from D. Throughout the proof, we drop γ from the notation for the Gibbs density p̂S,γ . Introduce
the conditional Gibbs densities p̂S|A(w) and p̂S(i)|A(w). We denote by Ep̂S|A [·] and Ep̂

S(i)|A
[·]

expectations with respect to p̂S|A and p̂S(i)|A. We start by rewriting the expected generalization error

16
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as

E
S
E
p̂S

[
R(w)− R̂S(w) | w ∈ A

]
= E

S

[
E
p̂S|A

[
R(w)− R̂S(w)

]]
(28)

= E
S,z

[
E
p̂S|A

[f(w, z)]

]
− 1

m

m∑
i=1

E
S

[
E
p̂S|A

[f(w, zi)]

]
(29)

=
1

m

m∑
i=1

(
E
S,z

[
E

p̂
S(i)|A

[f(w, zi)]

]
− E

S

[
E
p̂S|A

[f(w, zi)]

])
(switch z and zi in the first term)

=
1

m

m∑
i=1

(
E
S,z

[
E

p̂
S(i)|A

[f(w, zi)]− E
p̂S|A

[f(w, zi)]

])
. (30)

Now we bound (30) showing the average replace-one stability of Gibbs distribution. We use the
transportation Lemma 8 with Q = p̂S|A and P = p̂S(i)|A we get that

E
p̂
S(i)|A

[f(w, zi)]− E
p̂S|A

[f(w, zi)] ≤
√

2σ2KL
(
p̂S(i)|A || p̂S|A

)
. (31)

Next, we focus on KL-divergence,

KL
(
p̂S(i)|A || p̂S|A

)
= γ E

p̂
S(i)|A

[
R̂S(w)− R̂S(i)(w)

]
− ln

(
ZS(i)

ZS

Pp̂
S(i)

(A)

Pp̂S (A)

)
(32)

= γ E
p̂
S(i)|A

[
R̂S(w)− R̂S(i)(w)

]
− ln

∫A e−γR̂S(i) (w) dw∫
A e
−γR̂S(w) dw

 (33)

≤ γ E
p̂
S(i)|A

[
R̂S(w)− R̂S(i)(w)

]
+ γ E

p̂S|A

[
R̂S(i)(w)− R̂S(w)

]
(by Lemma 9)

=
γ

m
E

p̂
S(i)|A

[f(w, zi)− f(w, z)] +
γ

m
E
p̂S|A

[f(w, z)− f(w, zi)] (34)

=
γ

m

(
E

p̂
S(i)|A

[f(w, zi)]− E
p̂S|A

[f(w, zi)]

)
(35)

+
γ

m

(
E
p̂S|A

[f(w, z)]− E
p̂
S(i)|A

[f(w, z)]

)
.

By taking expectation with respect to S and z on both sides, we get that the term (35) can be
expressed as

E
S,z

[
E

p̂
S(i)|A

[f(w, zi)]− E
p̂S|A

[f(w, zi)]

]
= E

S,z

[
E
p̂S|A

[f(w, z)]− E
p̂
S(i)|A

[f(w, z)]

]
(36)
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where we could switch zi and z on the right-hand side because their are both independently drawn
from D. Thus, the expectation of (31) with respect to S and z is upper-bounded as

E
S,z

[
E

p̂
S(i)|A

[f(w, zi)]− E
p̂S|A

[f(w, zi)]

]
≤ E

S,z

√
2σ2KL

(
p̂S(i)|A || p̂S|A

)
(37)

≤
√

2σ2 E
S,z

[
KL
(
p̂S(i)|A || p̂S|A

)]
(Jensen’s inequality)

≤ 2

√√√√σ2γ

m
E
S,z

[
E

p̂
S(i)|A

[f(w, zi)]− E
p̂S|A

[f(w, zi)]

]
.

(38)

Solving the above with respect to the term on the left-hand side we get that for any i = 1, . . . ,m,

E
S,z

[
E

p̂
S(i)|A

[f(w, zi)]− E
p̂S|A

[f(w, zi)]

]
≤ 4σ2γ

m
. (39)

Substituting the above into (29) gives the desired generalization bound.

A.3. Localized Excess Risk Bounds

First, we prove a key lemma about the conditional expectation of quadratic forms.

Lemma 10 Suppose that x ∼ N (0,M). Then for the ellipsoid

E(r) ≡
{
x ∈ Rd : ‖x‖M−1 ≤ r

}
r > 0

and for any Positive Semi-Definite (PSD) d× d matrixA we have that

E
[
x>Ax

∣∣∣x ∈ E(r)
]

=
Fd+2(r2)

Fd(r2)
tr (AM) ≤ tr (AM) .

where Fk is the CDF of a X 2-distribution with k degrees of freedom.
Moreover the above implies that

lim
r→0

E
[
x>Ax

∣∣∣x ∈ E(r)
]

= 0 . (40)

Proof Observe that

E
[
x>Ax

∣∣∣x ∈ E(r)
]

= E
[
tr
(
Axx>

) ∣∣∣x ∈ E(r)
]

(41)

= tr
(
AE

[
xx>

∣∣∣x ∈ E(r)
])

(by linearity of trace)

= tr
(
AM̃

)
(42)
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where M̃ is the covariance matrix of the Gaussian density N (0,M) conditioned on E(r). Next, we
apply a result about moments of multivariate Gaussian densities under elliptical truncation (Tallis,
1963, p. 941) to get that

M̃ =
Fd+2(r2)− Fd+2(0)

Fd(r2)− Fd(0)
M =

Fd+2(r2)

Fd(r2)
M . (43)

This proves the first identity.
The inequality is proven by expanding M̃ further in terms of the Gamma function Γ(·) and the
incomplete Gamma function γ(·, ·):

M̃ =
Γ
(
d
2

)
Γ
(
1 + d

2

) γ
(

1 + d
2 ,

r2

2

)
γ
(
d
2 ,

r2

2

) M =
2

d

γ
(

1 + d
2 ,

r2

2

)
γ
(
d
2 ,

r2

2

) M �M .

Finally, we look at the limit of the ratio in the right-hand side of (43) as r → 0. By L’Hôpital’s rule,

lim
r→0

Fd+2(r2)

Fd(r2)
= lim

r→0

X 2
d+2(r2)

X 2
d (r2)

= lim
r→0

rde−
r2

2

21+ d
2 Γ
(
1 + d

2

) 2
d
2 Γ
(
d
2

)
rd−2e−

r2

2

= lim
r→0

rde−
r2

2

21+ d
2 Γ
(
1 + d

2

) 2
d
2 Γ
(
d
2

)
rd−2e−

r2

2

= lim
r→0

r2

d
= 0

concluding the proof.

Recall that E? (r) ≡ E(w?
λ,H

?
λ, r) is the ellipsoid of radius r centered at w?

λ.

Lemma 3 (restated) For any minimizer w?
λ of the regularized risk we have

E
S

[
E

w∼p̂S,γ

[
R̂S(w) | w ∈ E? (r)

]]
−R(w?

λ) ≤ 1

γ
tr
(
H?H?−1

λ

)
+
ε(r)

6
+
M

2

√
γε(r)

3
+
M2γ2

2m
.

Proof We abbreviate the regularized empirical risk by R̂S,λ(w) = R̂S(w) + λ‖w‖2 and recall that
the regularized risk is denoted by Rλ(w) = R(w) + λ‖w‖2. Throughout the proof, we drop γ
from the notation for the Gibbs densities p̂S,γ . Let p̂S|E? be the Gibbs density (2) conditioned on the
ellipsoid E? (r). Similarly, let q|E? be the the Gaussian density

q(w) =
1

Zq
e
− γ

2
‖w−ŵλ‖2H?

λ w ∈ Rd

conditioned on E? (r).
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We begin by observing that R̂S is trivially M2/8-sub-Gaussian since the loss function is bounded by
M . Hence, by the transportation Lemma 8,

E
S

[
E
p̂S

[
R̂S(w)

∣∣∣w ∈ E? (r)
]
− E

q

[
R̂S(w)

∣∣∣w ∈ E? (r)
]]

= E
S

[
E

p̂S|E?

[
R̂S(w)

]
− E
q|E?

[
R̂S(w)

]]
(44)

≤ M

2
E
S

[√
KL
(
p̂S|E? || q|E?

)]
≤ M

2

√
E
S

[
KL
(
p̂S|E? || q|E?

)]
(45)

where the last inequality is obtained by Jensen’s inequality. The KL term can be written as follows

E
S

[
KL
(
p̂S|E? || q|E?

)]
=E

S
E

p̂S|E?

[
ln

(
p̂S|E?(w)

q|E?(w)

)]
=E

S
E
p̂S

[
ln
(
p̂S|E?(w)

)]
− E

S
E
p̂S

[
ln
(
q|E?(w)

)]
=− γ E

S
E
p̂S

[
R̂S,λ(w)

∣∣∣w ∈ E? (r)
]
− E

S

[
ln(Pp̂S (E? (r))Zp̂S )

]
+
γ

2
E
S
E
p̂S

[
‖w −w?

λ‖2H?
λ

∣∣∣w ∈ E? (r)
]

+ E
S

[ln(Pq(E? (r))Zq)] . (46)

Now we relate the regularized empirical risk (46) to the regularized risk. By applying Theorem 1
with A ≡ E?(r) we get

E
S
E
p̂S

[
Rλ(w)− R̂S,λ(w)

∣∣∣w ∈ E? (r)
]

= E
S
E
p̂S

[
R(w)− R̂S(w)

∣∣∣w ∈ E? (r)
]
≤ M2γ

2m
.

Using this result we can write

E
S

[
KL
(
p̂S|E? || q|E?

)]
≤− γ E

S
E
p̂S

[
Rλ(w)

∣∣w ∈ E? (r)
]

+
M2γ2

2m

+
γ

2
E
S
E
p̂S

[
‖w −w?

λ‖2H?
λ

∣∣w ∈ E? (r)
]

− E
S

[
ln

(
Pp̂S (E? (r))Zp̂S
Pq(E? (r))Zq

)]
≤− γR?λ +

γε(r)

6
+
M2γ2

2m
(47)

− E
S

[
ln

(
Pp̂S (E? (r))Zp̂S
Pq(E? (r))Zq

)]
(48)
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where (47) is obtained by applying the lower Taylor expansion (26) to w ∈ E? (r) . Now we bound
the expected log-ratio term in (48) as

−E
S

[
ln

(
Pp̂S (E? (r))Zp̂S
Pq(E? (r))Zq

)]
= −E

S

ln

 ∫
E?(r) e

−γR̂S,λ(w)∫
E?(r) e

− γ
2
‖w−w?

λ‖
2
H?
λ


 (49)

≤ γ E
S
E
q

[
R̂S,λ(w)− 1

2
‖w −w?

λ‖2H?
λ
| w ∈ E? (r)

]
(by Lemma 9)

= γ E
q

[
Rλ(w)− 1

2
‖w −w?

λ‖2H?
λ
| w ∈ E? (r)

]
(Since ES [R̂S,λ(w)] = Rλ(w))

≤ γR?λ +
γε(r)

6
. (50)

where the last inequality is derived from the upper Taylor expansion (27). Substituting the above
into (48) gives

E
S

[
KL
(
p̂S|E? || q|E?

)]
≤ γε(r)

3
+
M2γ2

2m
. (51)

Now we go back to (44) and, using the upper Taylor expansion (27), we get

E
S

E
q|E?

[
R̂S(w)

]
= E

q|E?
[R(w)] (since ES [R̂S(w)] = R(w))

≤ R(w?
λ)

+∇R(w?
λ)>

(
E
q

[
w −w?

λ

∣∣∣w ∈ E? (r)
])

(52)

+ E
q

[
‖w −w?

λ‖2H?

∣∣∣w ∈ E? (r)
]

+
1

6
L?(r)E

q

[
‖w −w?

λ‖3
∣∣∣w ∈ E? (r)

]
≤ R(w?

λ)

+ E
q

[
‖w −w?

λ‖2H?

∣∣∣w ∈ E? (r)
]

+
ε(r)

6
. (53)

where (52) vanishes since the first moment of elliptically-truncated Gaussian is zero (Tallis, 1963).
Finally, we bound the first term in (53) by invoking Lemma 10. By taking M = γH?

λ, A = H?,
and x = w −w?

λ, and using Lemma 10 we get

E? (r) ≡
{
w ∈ Rd :

√
γ(w −w?

λ)>H?
λ(w −w?

λ) ≤ r
}

and

E
q

[
‖w −w?

λ‖2H?

∣∣∣w ∈ E? (r)
]
≤ 1

γ
tr
(
H?H?−1

λ

)
.

Now, combining these results with the bound on KL-divergence (51), and substituting into (45),
gives the stated result.
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Theorem 4 (restated) Assume the same as in Lemma 3. Then,

∆(w?
λ) ≤ 1

γ
tr
(
H?H?−1

λ

)
+
ε(r)

6
+
M

2

√
γε(r)

3
+
M2γ2

2m
+
M2γ

2m
.

Proof From the definition of local generalization error,

∆(w?
λ) = E

S

[
E

w∼p̂S,γ
[R(w) | w ∈ E? (r)]

]
−R(w?

λ)

= E
S

[
E

w∼p̂S,γ

[
R(w)− R̂S(w) | w ∈ E? (r)

]]
+ E

S

[
E

w∼p̂S,γ

[
R̂S(w) | w ∈ E? (r)

]]
−R(w?

λ)

≤ M2γ

2m
+

1

γ
tr
(
H?H?−1

λ

)
+
ε(r)

6
+
M

2

√
γε(r)

3
+
M2γ2

2m

where the last inequality is derived from Theorem 1 and Lemma 3.

A.4. Statements about Probability Mass of Ellipsoids

Before we prove our bound on the global excess risk, we introduce some necessary technical notions
about the regularized gamma function, which can be interpreted as the probability of an Euclidean
ball of radius z under a Gaussian density with covariance matrix I .

Theorem 11 ((NIST, 2018, Regularized Gamma Function)) Denote the regularized gamma func-
tion by

P (a, z) =
Γ(a)− Γ(a, z)

Γ(a)

where Γ(a, z) is the upper incomplete Gamma function given by

Γ(a, z) =

∫ ∞
z

ta−1e−t dt .

Then, for all z ≥ 0 and a > 0, (
1− e−αaz

)a ≤ P (a, z) (54)

where

αa =

1 0 < a < 1
1

Γ(1+a)
1
a

a > 1 .
(55)

with equality in (54) only when a = 1.

Proposition 1 (Truncated Gaussian Integrals) For any γ, r > 0,∫
B(r)

e−
γ
2
‖u‖2 du =

(
2π

γ

) d
2

P

(
d

2
,
r2γ

2

)
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where B(r) is the d-dimensional Euclidean ball. In addition, for any d× d semi-definite matrixA,∫
E(0,A,r)

e−
γ
2
‖u‖2A du =

1√
det(A)

(
2π

γ

) d
2

P

(
d

2
,
r2γ

2

)
.

Proof By the integration of radial functions∫
B(r)

e−
γ
2
‖u‖2 du = 2

π
d
2

Γ
(
d
2

) ∫ r

0
e−

γ
2
x2xd−1 dx

=

(
2π

γ

) d
2 Γ

(
d
2

)
− Γ

(
d
2 ,

r2γ
2

)
Γ
(
d
2

)
=

(
2π

γ

) d
2

P

(
d

2
,
r2γ

2

)
.

In addition we have∫
E(0,A,r)

e−
γ
2
‖u‖2A du =

∫
‖u‖A≤r

e−
γ
2
‖u‖2A du

=
1√

det(A)

∫
‖v‖≤r

e−
γ
2
‖v‖2 dv

=
1√

det(A)

(
2π

γ

) d
2

P

(
d

2
,
r2γ

2

)
.

where the third step is obtained through the change of variables dA
1
2u = dv.

Recall that E?(r) ≡ E(w?
λ,H

?
λ, r), whereH?

λ = ∇2Rλ(w?
λ).

Lemma 12 (Bounds on the Ellipsoid probability mass.) Let w?
λ be any minimizer of Rλ. Then

the following results hold for probabilities of ellipsoids under the density e−γRλ(w)/Z,

P
(
E?(r)

)
≤ 1

Z
e−γRλ(w?

λ)+ γ
6
ε(r) 1√

det(H?
λ)

(
2π

γ

) d
2

P

(
d

2
,
r2γ

2

)

P
(
E?(r)

)
≥ 1

Z
e−γRλ(w?

λ)− γ
6
ε(r) 1√

det(H?
λ)

(
2π

γ

) d
2

P

(
d

2
,
r2γ

2

)
P
(
E?(r)

)
≥ e−

γ
3
ε(r)P

(
d

2
,
r2γ

2

)
.
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Proof By applying the lower Taylor expansion (26) in the exponent of the Gibbs density we get

P
(
E?(r)

)
=

1

Z

∫
E?(r)

e−γRλ(w) dw

≤ 1

Z
e−γRλ(w?

λ)+ γ
6
ε(r)

∫
E?(r)

e
− γ

2
‖w−w?

λ‖
2
H?
λ dw

=
1

Z
e−γRλ(w?

λ)+ γ
6
ε(r) 1√

det(H?
λ)

∫
B(r)

e−
γ
2
‖u‖2 du (56)

=
1

Z
e−γRλ(w?

λ)+ γ
6
ε(r) 1√

det(H?
λ)

(
2π

γ

) d
2

P

(
d

2
,
r2γ

2

)
(57)

where (56) is obtained via the change of variables u = H
? 1
2
λ (w −w?

λ) and (57) via Proposition 1.
This shows the first result. The second result follows in a similar way exploiting the upper Taylor
expansion (27),

P
(
E?(r)

)
≥ 1

Z
e−γRλ(w?

λ)− γ
6
ε(r)

∫
E?(r)

e
− γ

2
‖w−w?

λ‖
2
H?
λ dw

=
1

Z
e−γRλ(w?

λ)− γ
6
ε(r) 1√

det(H?
λ)

∫
B(r)

e−
γ
2
‖u‖2 du

=
1

Z
e−γRλ(w?

λ)− γ
6
ε(r) 1√

det(H?
λ)

(
2π

γ

) d
2

P

(
d

2
,
r2γ

2

)
. (58)

Finally, we give a lower bound on the probability of E?(r). We start by upper bounding the
normalization constant using the lower Taylor expansion (26),

Z =

∫
Rd
e−γRλ(w) dw

≤ e−γRλ(w?
λ)+ γ

6
ε(r)

∫
Rd
e
− γ

2
‖w−w?

λ‖
2
H?
λ dw

≤ e−γRλ(w?
λ)+ γ

6
ε(r) 1√

det(H?
λ)

(
2π

γ

) d
2

.

Combining the above with (58) gives P
(
E?(r)

)
≥ e−

γ
3
ε(r)P

(
d
2 ,

r2γ
2

)
thus completing the proof.

Lemma 5 (restated) For all r > 0,

πγ,r(i) ≤
e
γ
3

maxk∈I εk(r)∑
j∈I e

γ(Rλ(w?
λ,i)−Rλ(w?

λ,j))
√

det(H?
λ,i)

det(H?
λ,j)

i ∈ I .

Moreover, assuming without loss of generality that Rλ(w?
λ,i) = 0 for all i ∈ IGLOB, and setting

r = γ−p for p > 0, we have

lim
γ→∞

πγ,r(i) =


1∑

j∈IGLOB

√
det(H?

λ,i
)

det(H?
λ,j

)

i ∈ IGLOB

0 i ∈ ISUBOPT .
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Proof Throughout this proof we consider probabilities of ellipsoids under the density e−γRλ(w)/Z,
and we abbreviate R?λ,i = Rλ(w?

λ,i). Applying Lemma 12 with w?
λ = w?

λ,i readily gives

πγ,r(i) =
P(w ∈ E?i (r))∑
j∈I P(w ∈ E?j (r))

≤ e
γ
6
εi(r)∑

j∈I e
γ(R?λ,i−R

?
λ,j)−

γ
6
εj(r)

√
det(H?

λ,i)

det(H?
λ,j)

≤ e
γ
6

maxk∈I εk(r)∑
j∈I e

γ(R?λ,i−R
?
λ,j)−

γ
6

maxk∈I εk(r)

√
det(H?

λ,i)

det(H?
λ,j)

=
e
γ
3

maxk∈I εk(r)∑
j∈I e

γ(R?λ,i−R
?
λ,j)
√

det(H?
λ,i)

det(H?
λ,j)

. (59)

This proves the first statement.
Now we look at the asymptotics of πγ,r(i) as γ → ∞ assuming that r = γ−p for p > 0. First,
observe that for any i ∈ I

lim
γ→∞

εi(γ
−p) = lim

γ→∞
L?i (γ

−p)

(
1

γp
√
λmin,i + λ

)3

= 0

because limγ→∞ L
?
i (γ
−p) = O(1) and λmin,i + λ > 0. Thus, the numerator of (59) approaches

1. Now, we turn our attention to the denominator. First, we consider global minimizers recalling
our assumption that R?λ,i = 0. Denoting δi,j(γ) = eγ(R

?
λ,i−R

?
λ,j), we observe that for all γ ≥ 0 and

i ∈ IGLOB,

lim
γ→∞

δi,j(γ) =

{
1 j ∈ IGLOB

0 j ∈ ISUBOPT

where the second case holds because the exponent in δi,j(γ) is negative. This implies

lim
γ→∞

πγ,r(i) ≤
1∑

j∈IGLOB

√
det(H?

λ,i)

det(H?
λ,j)

i ∈ IGLOB.

Next, we consider the local minima, and observe that for all γ ≥ 0 and i ∈ ISUBOPT,

lim
γ→∞

δi,j(γ) =

{
0 if R?λ,i ≤ R?λ,j
∞ otherwise.

Therefore, for all i ∈ ISUBOPT, limγ→∞ πγ,r(i) = 0. This proves the second statement and completes
the proof.
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A.5. Global Excess Risk Bounds

We first show a nonasymptotic (i.e., finite γ) global excess risk bound.

Theorem 6 (restated) Assume the same as in Lemma 3. Then for any r ∈ [0, r0] the global excess
risk satisfies

∆(πγ,r) .
1

γ
E
[
tr
(
H?

IH
?−1
λ,I

)]
+

γ√
m

+ E[εI(r)] +
√
γ E[εI(r)] + Pγ(C?(r))

where the expectation is taken with respect to I ∼ πγ,r and the probability of the complement of the
minima is bounded as

Pγ(C?(r)) ≤ 1−
(

1− de−r2γαd/2
)∑
i∈I

e−
1
3
γεi(r) (60)

with αd/2 defined in (55).
Proof Denote the sample-dependent global excess risk by

∆S(πγ,r) = E
w∼p̂S,γ

[R(w)]− E
I∼πγ,r

[
R(w?

λ,I)
]

and let the probabilities P
(
E?i (r)

)
and P

(
C?(r)

)
be defined with respect to the population Gibbs

distribution pγ(w) ∝ e−γRλ(w) with γ > 0.
We first focus on the first term on the right-hand side of ∆S(πγ,r). By the law of total expectation,
for any r ∈ [0, r0],

E
w∼p̂S,γ

[R(w)] =
∑
i∈I

P
(
E?i (r)

)
E
[
R(w)

∣∣w ∈ E?i (r)
]

+ P
(
C?(r)

)
E
[
R(w)

∣∣w ∈ C?(r)]
≤
∑
i∈I

P
(
E?i (r)

)∑
j∈I P

(
E?j (r)

) E
[
R(w)

∣∣w ∈ E?i (r)
]

(ellipsoids are disjoint by Assumption 1)

+ P
(
C?(r)

)
M (risk is bounded)

=
∑
i∈I

πγ,r(I = i)E
[
R(w)

∣∣w ∈ E?i (r)
]

(by definition of πγ,r)

+ P
(
C?(r)

)
M . (61)

An upper bound on E
[
R(w)

∣∣w ∈ E?i (r)
]

is given by Theorem 4, thus all that is left to show is that
the probability of the complement is small. Since the ellipsoids are disjoint

P
(
C?(r)

)
= 1−

∑
i∈I

P
(
E?i (r)

)
.
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To upper bound P
(
C?(r)

)
we need a lower bound on P

(
E?(r)

)
. This is provided by the last inequality

in Lemma 12, that is, ∑
i∈I

P
(
E?i (r)

)
≥ P

(
d

2
,
r2γ

2

)∑
i∈I

e−
γεi(r)

3

≥
(

1− e−r2γαd/2
) d

2
∑
i∈I

e−
γεi(r)

3 (62)

≥
(

1− de−r2γαd/2
)∑
i∈I

e−
γεi(r)

3

where (62) is derived from the lower bound on the regularized Gamma function (54), and the last
inequality is obtained from the Bernoulli inequality

(1 + x)
d
2 ≥ (1 + x)d ≥ 1 + dx d ∈ N, x ≥ −1 .

Thus,

P
(
C?(r)

)
≤ 1−

(
1− de−r2γαd/2

)∑
i∈I

e−
1
3
γεi(r) . (63)

Taking expectation with respect to S, and combining Theorem 4 with (61) and Jensen’s inequality,
we obtain

∆(πγ,r) ≤ E
I∼πγ,r

[
E
S

[
E
[
R(w)

∣∣w ∈ E?i (r)
] ]
−R(w?

λ,I)

]
+M P

(
C?(r)

)
≤ 1

γ
E

I∼πγ,r

[
tr
(
H?

IH
?−1
λ,I

)]
+

1

6
E

I∼πγ,r
[εI(r)] +

M

2

√
γ

3
E

I∼πγ,r
[εI(r)] +

M2γ2

2m
+
M2γ

2m

+M P
(
C?(r)

)
.

The proof is concluded by stating the above with respect to radius r ∈ [0, r0] —recall that the radius
cannot exceed r0, the largest radius ensuring that ellipsoids remain disjoint.

Corollary 1 (restated) Assume the same as in Lemma 3. Then, for any r > 0, the global
asymptotic pseudo-excess risk satisfies

∆∞r .
1

γ
E
[
tr
(
H?

IH
?−1
λ,I

)]
+ E [εI(r)] +

√
γ E [εI(r)] +

γ2

m
+
γ

m

where I is distributed according to

π∞(i) =
1∑

j∈IGLOB

√
det(H?

λ,i)

det(H?
λ,j)

.

Proof Recall that the global asymptotic pseudo-excess risk is defined as

∆∞r = E
I∼π∞

[
E
S

[
E

w∼p̂S,γ

[
R(w)

∣∣w ∈ E?I (r)
]]
−R(w?

λ,I)

]
.

Distribution π∞ is given by Lemma 5, while the local excess risk centered at w?
λ,I is bounded by

Theorem 4. This immediately yields the statement.
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