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Abstract
We study the problem of mean estimation for high-dimensional distributions given access to a
statistical query oracle. For a normed space X = (Rd, ‖ · ‖X) and a distribution supported on
vectors x ∈ Rd with ‖x‖X ≤ 1, the task is to output an estimate µ̂ ∈ Rd which is ε-close in
the distance induced by ‖ · ‖X to the true mean of the distribution. We obtain sharp upper and
lower bounds for the statistical query complexity of this problem when the the underlying norm is
symmetric as well as for Schatten-p norms, answering two questions raised by Feldman, Guzmán,
and Vempala (SODA 2017).
Keywords: statistical queries, mean estimation, normed spaces

1. Introduction

LetD be a distribution over Rd. Informally speaking, in the statistical query model (SQ), one learns
about D as follows. Given a query h : Rd → [−1; 1], the SQ oracle with tolerance τ > 0 reports
Ex∼D[h(x)] perturbed by error of scale roughly τ . The SQ model was introduced in Kearns (1998)
as a way to capture “learning algorithms that construct a hypothesis based on statistical properties
of large samples rather than on the idiosyncrasies of a particular sample.”

The original motivation for the SQ framework was to provide an evidence of computational
hardness of various learning problems (beyond sample complexity) by proving lower bounds on
their SQ complexity. Indeed, many learning algorithms (see Feldman (2016b) for an overview)
can be captured by the SQ framework, and, furthermore, the only known technique that gives a
polynomial-time algorithm for a learning problem with exponential SQ complexity Kearns (1998)
is Gaussian elimination over finite fields, whose utility for learning is currently extremely limited.
This reasoning suggests the following heuristic:

If solving a learning problem to accuracy ε > 0 requires dω(1) SQ queries with tolerance
εO(1)/dO(1), then it is unlikely to be doable in time dO(1) using any algorithm.

This heuristic together with the respective SQ lower bounds provided strong evidence of hardness
of many problems such as: learning parity with noise Kearns (1998), learning intersection of half-
spaces Klivans and Sherstov (2007), the planted clique problem Feldman et al. (2013b), robust
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estimation of high-dimensional Gaussians and non-Gaussian component analysis Diakonikolas et al.
(2017), learning a small neural network Song et al. (2017), adversarial learning Bubeck et al. (2018),
robust linear regression Diakonikolas et al. (2019), among others.

However, over time, the SQ model has generated significant intrinsic interest Feldman (2016a),
in part due to the connections to distributed learning Steinhardt et al. (2016) and local differential
privacy Kasiviswanathan et al. (2011). In particular, the new goal is to understand the trade-off
between the number and the tolerance of SQ queries, and the accuracy of the resulting solution for
various learning problems, which is more nuanced than what is necessary for the above “crude”
heuristic. In a paper by Feldman, Guzman, and Vempala Feldman et al. (2017), this was done for
perhaps the most basic learning problem, mean estimation, which is formulated as follows.

Problem 1 (Mean estimation using statistical queries) Let D be a distribution over the unit ball
BX of a normed space X = (Rd, ‖ · ‖X), and suppose we are allowed dO(1) statistical queries with
tolerance ε > 0. What is the smallest ε′ > 0, for which we can always recover a point x̂ such that
‖x̂−Ex∼D[x]‖ ≤ ε′ holds with high probability over the randomness of the estimation algorithm.

Clearly, ε′ ≥ ε, and, as Feldman et al. (2017) showed, ε′ ≤ O(ε
√
d) for every norm. The goal of

this paper is to understand which properties of the underlying normed spaceX = (Rd, ‖·‖X) admit
efficient SQ algorithms with ε′/ε as small as possible. Thus, we will refer to a norm ‖ · ‖ over Rd
as tractable if one can achieve ε′ ≤ ε · poly(log d, log(1/ε)) (with poly(d) queries of tolerance ε).
The main result of Feldman et al. (2017) can be stated as follows.

Theorem 1 (Feldman et al. (2017)) The `p norm over Rd is tractable if and only if p ≥ 2.

The fact that the `∞ norm is tractable is trivial, since we can estimate each coordinate of the mean
separately. However, the corresponding algorithm for `p norms for 2 ≤ p <∞ is more delicate and
is based on random rotations, while the naı̈ve coordinate-by-coordinate estimator merely gives ε′ =
εdΘp(1). Feldman et al. (2017) raise several intriguing open problems, among them the following
two: (1) Characterize tractable norms beyond `p; (2) Solve Problem 1 for the spectral norm and other
Schatten-p norms of matrices. In this paper, we make progress towards solving the first problem
and completely resolve the second one.

1.1. Our results

Symmetric norms. Our first result gives a complete characterization of symmetric tractable norms.
A norm is symmetric if it is invariant under all permutations of coordinates and sign flips (for many
examples beyond `p norms, see Andoni et al. (2017)). Recently there has been substantial progress
in understanding various algorithmic tasks for general symmetric norms Błasiok et al. (2017); An-
doni et al. (2017); Song et al. (2018); Andoni et al. (2018). In this paper, we significantly extend
Theorem 1 to all the symmetric norms. To formulate our result, we need to define the type-2 con-
stant of a normed space, which is one of the standard bi-Lipschitz invariants (Wojtaszczyk (1996)).

Definition 2 For a normed space X = (Rd, ‖ · ‖X), the type-2 constant of X , denoted by T2(X),
is defined as the smallest T > 0 such that the following holds. For every sequence of vectors
x1, x2, . . . , xn ∈ X and for uniformly random ε ∼ {−1, 1}n, one has: E

ε∼{−1,1}n

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2

X

1/2

≤ T ·

(
n∑
i=1

‖xi‖2X

)1/2

. (1)
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We are now ready to state our result.

Theorem 3 A symmetric normed space X = (Rd, ‖ · ‖X) is tractable iff T2(X) ≤ poly(log d).

Theorem 3 easily implies Theorem 1, since for 1 ≤ p < 2, T2(`p) = dΩp(1), while for 2 ≤ p < ∞
one has T2(`p) ≤

√
p− 1 and T2(`∞) ≤ O(

√
log d) (Ball et al. (1994)). For a quantitative version

of Theorem 3, see Theorem 12 and Theorem 13. We note in passing that type-p is also known
to characterize the performance of the empirical mean estimator for infinite-dimensional Banach
spaces, see Chapter 9 of Ledoux and Talagrand (2011).

Schatten-p norms. Recall that for a matrix M , the Schatten-p norm of M is the `p norm of the
singular values of M . In particular, the Schatten-∞ norm of M is simply the spectral norm of M ,
and the Schatten-2 norm corresponds to the Frobenius norm. Such norms are very well-studied
and arise naturally in many applications in learning and probability theory. Our second main result
settles the tractability of Schatten-p norms, resolving a question of Feldman et al. (2017).

Theorem 4 The Schatten-p norm is tractable iff p = 2.

For a quantitative version of Theorem 4, see Theorem 20. Theorem 4 shows that one cannot remove
“symmetric” from Theorem 3, since type-2 constants of Schatten-p spaces are essentially the same
as for the corresponding `p spaces (Ball et al. (1994)). Specifically, for p > 2, Schatten-p spaces
have small type-2 constant, but are intractable. In particular, we show that the best mean estimation
algorithm for Schatten-p can be obtained by embedding the space into `2 (via the identity map) and
then using the `2 estimation algorithm from Feldman et al. (2017).

1.2. Techniques

The main technical tool underlying the algorithm for mean estimation in symmetric norms is the
following geometric statement. For any symmetric norm (Rd, ‖ · ‖X), consider the set Rj ⊂ BX
consisting of the level-j ring, i.e., all points x ∈ BX whose non-zero coordinates have absolute
value between 2−(j+1) and 2−j , and consider the smallest radius r > 0 where Rj ⊂ rB`2 . Then,

Rj ⊂ rB`2 ∩ 2−jB`∞ ⊂ (5T2(X) log2 d)BX . (2)

Given the above geometric statement, which generalizes the similar statement for `p norms from
Feldman et al. (2017), we generalize the algorithm from Feldman et al. (2017) to the symmetric
norms setting. The resulting algorithm partitions vectors into levels and uses `2 and `∞ subroutines
from Feldman et al. (2017).

The lower bound for norms with large type-2 constants is a generalization of the result in Feld-
man et al. (2017); in particular, the hard distributions for `p from Feldman et al. (2017) are supported
on basis vectors, which are exactly those achieving T2(`p) in (1). For general norms X , we con-
sider the analogous distributions supported on an arbitrary set of vectors achieving T2(X) in (1);
however, the fact that we have much less control on the vectors necessitates additional care.

The Schatten-p norms, for p > 2, do satisfy T2(Sp) ≤
√

log d, so new ideas are required in
proving the lower bound. We show the lower bound for carefully crafted hard distributions, using
hypercontractivity to show concentration of the result of an arbitrary statistical query.
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2. Preliminaries

Here we introduce some basic notions about normed spaces and statistical algorithms. We will use
boldfaced letters for random variables, and the notation ε ∼ {−1, 1}n will mean that ε is a random
vector chosen uniformly from {−1, 1}n.

Definition 5 For any vector x ∈ Rd, we let |x| be the vector x with each coordinate replaced by
its absolute value, and let x∗ = P |x| be the vector obtained by applying the permutation matrix
P to |x| which sorts coordinates of |x| by order of non-increasing value. A normed space X =
(Rd, ‖ · ‖X) is symmetric if ‖x‖X = ‖x∗‖X holds for every x ∈ Rd.

We recall that `dp is the normed space over Rd with the norm of a vector x given by ‖x‖p =

(|x1|p + . . . + |xd|p)1/p. The Schatten-p space Sdp = (Rd
2
, ‖ · ‖Sp) is defined over d × d matrices

with real entries, and the norm of a matrix is defined as the `dp norm of its singular values. We omit
the superscript d and just write `p and Sp when this does not cause confusion.

For a normed space X = (Rd, ‖ · ‖X), let BX = {x ∈ Rd : ‖x‖X ≤ 1} be the unit ball of the
norm X . Furthermore, for p ∈ [1,∞), we let Lp(X) = (Rdn, ‖ · ‖Lp(X)) be the normed space over
sequences of vectors x = (x1, . . . , xn) ∈ Rdn where ‖x‖Lp(X) = (

∑n
i=1 ‖xi‖

p
X)1/p.

Next we define the type of a normed space.

Definition 6 Let X = (Rd, ‖ · ‖X) be a normed space, n ∈ N, and p ∈ [1, 2]. Let Tp(X,n) be the
infimum over T > 0 such that: E

ε∼{−1,1}n

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2

X

1/2

≤ T

(
n∑
i=1

‖xi‖pX

)1/p

,

for all x1, . . . , xn ∈ Rd. We let Tp(X) = supn∈N Tp(X,n), and say X has type p with constant
Tp(X).

Note that, by the parallelogram identity, the Euclidean space (Rd, ‖ · ‖2) has type 2 with constant
1, and in fact the inequality becomes an equality. Together with John’s theorem (John (1948)), this
implies that any d-dimensional normed space has type 2 with constant at most

√
d. However, we are

typically interested in spaces that have type p with constant independent of dimension. It follows
from the results in Ball et al. (1994) that for p ≥ 2, `dp has type 2 with constant

√
p− 1, and for

1 ≤ p < 2, `dp has type p with constant 1; at the same time, considering the standard basis of Rd

shows that for 1 ≤ p < q ≤ 2, the type q constant of `dp goes to infinity with the dimension d.
Moreover, these results also hold for Schatten-p spaces.

Finally, we define formally statistical algorithms and the STAT and VSTAT oracles. We follow
the definitions from Feldman et al. (2013a).

Definition 7 Let D be a distribution supported on Ω. For a tolerance parameter τ > 0, the oracle
STAT(τ) takes a query function h : Ω → [−1, 1], and returns some value v ∈ R satisfying |v −
Ex∼D[h(x)]| ≤ τ . For a sample size parameter t > 0, the VSTAT(t) oracle takes a query function
h : Ω → [0, 1] and returns some value v ∈ R such that |v − p| ≤ τ , for p = Ex∼D[h(x)], and
τ = max{1/t,

√
p(1− p)/t}.

We call an algorithm that accesses the distribution D only via one of the above oracles a statis-
tical algorithm.
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Clearly, VSTAT(t) is at least as strong as STAT(1/2
√
t) and no stronger than STAT(1/t). The

lower bounds presented will follow the framework of Feldman et al. (2018).

Definition 8 The discrimination norm κ2(D,D) for a distribution D supported on Ω and a set D
of distributions supported on Ω is given by:

κ2(D,D) = max
h : Ω→R
‖h‖D=1

{
E

D∼D

[∣∣∣∣ E
x∼D

[h(x)]− E
x∼D

[h(x)]

∣∣∣∣]} ,
where D ∼ D is sampled uniformly at random, and ‖h‖2D = Ey∼D[h(y)2]. The decision problem
B(D,D) is the problem of distinguishing whether an unknown distribution H = D or is sampled
uniformly from D. The statistical dimension with discrimination norm κ, SDN(B(D,D), κ), is the
largest integer t such that for a finite subset DD ⊂ D, any subset D′ ⊂ DD of size at least |DD|/t
satisfies κ2(D′, D) ≤ κ.

Theorem 9 (Theorem 7.1 in Feldman et al. (2018)) For κ > 0, let t = SDN(B(D,D), κ) for
a distribution D and set of distributions D supported on a domain Ω. Any randomized statistical
algorithm that solves B(D,D) with probability at least 2/3 requires t/3 calls to VSTAT(1/(3κ2)).

3. Symmetric norms

3.1. Mean estimation using SQ for type-2 symmetric norms

Definition 10 Let X = (Rd, ‖ · ‖X) be any symmetric norm with ‖e1‖X = 1. Let `X : (0, 1] →
{0, 1, . . . , d} be the maximum number of nonzero coordinates set to t in a vector within the unit ball
of X , i.e.,

`X(t) = max

k : ‖(t, . . . , t︸ ︷︷ ︸
k

, 0, . . . , 0)‖X ≤ 1

 ,

and mX : (0, 1]→ R≥0 be the maximum `2 norm of a vector within the unit ball of X with nonzero
coordinates set to t, i.e.,

mX(t) = max {‖x‖2 : x = (t, . . . , t, 0, . . . , 0) ∈ BX} .

The following is the main lemma needed for the statistical query algorithm for type-2 symmetric
norms. The lemma is a generalization of Lemma 3.12 from Feldman et al. (2017) from `p norms
(with p > 2) to arbitrary type-2 symmetric norms. The lemma bounds the norm inX of an arbitrary
vector x, given corresponding bounds on the ‖x‖∞ and ‖x‖2.

Lemma 11 Let d ∈ N be large enough, and X = (Rd, ‖ · ‖X) be a symmetric norm with type-2
constant T2(X) ∈ [1,∞). Fix any t ∈ (0, 1], and let x ∈ Rd satisfy ‖x‖∞ ≤ t and ‖x‖2 ≤ mX(t).
Then, ‖x‖X ≤ T2(X) · 5 log2 d.

Proof Given the vector x ∈ Rd, consider the sets Bj(x) ⊂ [d] for j ∈ {0, . . . , 2 log2(d)} given by

Bj(x) =
{
i ∈ [d] : t · 2−j−1 < |xi| ≤ t · 2−j

}
,

5
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and let x(j) ∈ Rd be the vector given by letting the first |Bj(x)| coordinates be t · 2−j , and
the remaining coordinates be 0. Because X is symmetric with respect to changing the sign of
any coordinate of x, the triangle inequality easily implies that ‖x‖X is monotone with respect
to |xi| for any i ∈ [d]. Then, by the triangle inequality and the fact that X is symmetric with
‖e1‖X = 1, ‖x‖X ≤

∑2 log2 d
j=0 ‖x(j)‖X + t/d; thus, it remains to bound ‖x(j)‖X for every

j ∈ {0, . . . , 2 log2(d)}.
We then have

√
|Bj(x)|·t·2−j = ‖x(j)‖2 ≤ 2mX(t) ≤ 2t

√
`X(t), where, in the first inequality,

we used the fact that ‖x(j)‖2 ≤ 2‖x‖2 ≤ 2mX(t), and, in the second inequality, we used the
definition of `X(t). As a result, we have |Bj(x)| ≤ 4`X(t) · 22j . Consider partitioning the non-zero
coordinates of x(j) into at most s = 4·22j groups, each of size at most `X(t), and let v1, . . . , vs ∈ Rd
be the coordinate projections of x(j) onto each respective part, so that x(j) =

∑s
i=1 vs. We have

‖x(j)‖2X = E
ε∼{−1,1}s

∥∥∥∥∥
s∑
i=1

εivi

∥∥∥∥∥
2

X

 (a)

≤ T2(X)2
s∑
i=1

‖vi‖2X
(b)

≤ 4T2(X)2,

where the equality uses the symmetry of X with respect to changing signs of coordinates, (a) uses
the definition of type constants, and (b) follows from the definition of `X(t). We obtain the desired
lemma by summing over all ‖x(j)‖X , for j ∈ {0, . . . , 2 log2(d)}.

With this structural result, we now show:

Theorem 12 Let X = (Rd, ‖ · ‖) be a symmetric norm with type-2 constant T2(X) ∈ [1,∞) nor-
malized so ‖e1‖X = 1. There exists an algorithm for mean estimation overX makingO(d log2(d/ε))

queries to STAT(α), where the accuracy α satisfies α = Ω
(

ε
T2(X)·log d·log(d/ε))

)
.

Proof For j ∈ {0, . . . , 2 log2(d/ε)}, and w ∈ Rd, let Rj(w) be the level j vector of w, i.e.,
Rj(w) =

∑d
i=1 eiwi1{wi ∈ (2−j−1, 2−j ]}. For any fixed distribution D supported on the unit ball

of X , we may consider the distribution Dj of Rj(x) where x ∼ D. Denote µ = Ex∼D[x] and
µj = Ex∼Dj [x], so that distributions Dj satisfy ‖µ −

∑
j µj‖X ≤ ε2/d. As a result, the sum of

ε/(3 log2(d/ε))-approximations of µj would result in an ε-approximation of µ.
The algorithm proceeds by estimating the mean of each distribution Dj and then taking the sum

of all estimates:
1. For each j ∈ {0, . . . , 2 log2(d/ε)}, we consider H(j)

∞ as the distribution given by x/2−j where
x ∼ Dj , andH(j)

2 as the distribution given by x/(2mX(2−j)). Note thatH(j)
∞ is supported onB`∞ ,

andH(j)
2 is supported on B`2 .

• Perform the mean estimation algorithms for H(j)
∞ and H(j)

2 as given in Theorem 3.4 and 3.9 of
Feldman et al. (2017) (which makes d queries and 2d queries, respectively) with error parameter
εγ where1 γ & 1/(T2(X) log d log(d/ε)) to obtain vectors v(j)

∞ , v
(j)
2 ∈ Rd, and let w(j)

∞ =

2−jv
(j)
∞ and w(j)

2 = 2mX(2−j)v
(j)
2 , where∥∥∥µj − w(j)

∞

∥∥∥
∞
≤ εγ · 2−j and

∥∥∥µj − w(j)
2

∥∥∥
2
≤ 2εγ ·mX(2−j). (3)

1. Here and in the rest of the paper we use A & B to mean that there exists an absolute constant C > 0, independent of
all other parameters, such that A ≥ B/C, and, analogously, A . B to mean A ≤ CB

6
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• Find a vectorw(j) ∈ Rd for which ‖w(j)−w(j)
∞ ‖∞ ≤ εγ2−j and ‖w(j)−w(j)

2 ‖2 ≤ 2εγmX(2−j),
and return w(j) as an estimate for µj .

2. Given estimates w(j) ∈ Rd for all j ∈ {0, . . . , 2 log2(d/ε)}, output
∑

j w
(j).

We note that the inequalities in (3) follow from the fact that v(j)
∞ and v(j)

2 are εγ-approximations
for E

x∼H(j)
∞

[x] (in `∞) and E
x∼H(j)

2

[x] (in `2), respectively, and that

2−j E
x∼H(j)

∞

[x] = 2mX(2−j) E
x∼H(2)

2

[x] = µj .

In order to see that w(j) is a good estimate for µj , let yj = µj − w(j) be the error vector in
the approximation. From the triangle inequality, and the definition of w(j), we have ‖y‖∞ ≤
2εγ · 2−j and ‖y‖2 ≤ 4εγ ·mX(2−j), so that Lemma 11 implies ‖y‖X ≤ 20εγ · T2(X) log2 d ≤
ε/(3 log2(d/ε)), for small enough γ and large enough d.

3.2. Lower bounds for normed spaces with large type-2 constants

We now give a lower bound for normed spaces which have large type-2 constant.

Theorem 13 Let X = (Rd, ‖ · ‖X) be a normed space with type-2 constant T2(X) ∈ [1,∞).
There exists an ε > 0 such that any statistical algorithm for mean estimation in X with error ε
making queries to VSTAT(1/(3κ2)) must make exp

(
Ω
(
T2(X)2κ2

ε2 log d

))
such queries.

The immediate corollary of Theorem 13 shows the upper bound from Theorem 12 is tight up to
poly-logarithmic factors.

Corollary 14 Let X = (Rd, ‖ · ‖X) be a normed space with type-2 constant T2(X) ∈ [1,∞).
Any algorithm for mean estimation in X making dO(1)-queries to VSTAT(α) must have α =

O
(
ε log d
T2(X)

)
.

We set up some notation and basic observations leading to a proof of Theorem 13. The proof of the
next lemma, which shows that we may assume the vectors that certify a large type-2 constant to be
of almost equal size, appears in the appendix.

Lemma 15 Let X = (Rd, ‖ · ‖X) be a normed space with type-2 constant T2(X) ∈ [1,∞). Then,
for any t < T2(X), there exists some n ∈ N, as well as a sequence of vectors x = (x1, . . . , xn) ∈
(Rd)n, where 1 ≤ ‖xi‖X ≤ 2 for every i ∈ [n], and E

ε∼{−1,1}n

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2

X

1/2

≥ t2(x)

(
n∑
i=1

‖xi‖2X

)1/2

(4)

with t2(x) > t/C for an absolute constant C.

7
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Description of the lower bound instance In this section we describe the instance which achieves
the lower bound in Theorem 13.

Fix a sequence x = (x1, . . . , xn) ∈ (Rd)n satisfying (4) guaranteed to exists by Lemma 15,
and let the sequence x̂ = (x̂1, . . . , x̂n) ∈ (BX)n be defined by x̂i = xi/‖xi‖X . In the language
of Feldman et al. (2017), let D be the reference distribution supported on BX given by sampling
y ∼ D where for all i ∈ [n],

Pr
y∼D

[y = x̂i] = Pr
y∼D

[y = −x̂i] =
1

2
· ‖xi‖X
‖x‖L1(X)

, (5)

so that µ0 = Ey∼D[y] = 0 ∈ Rd. We will let ε0 be so that ε0 ≤ t2(x) · ‖x‖L2(X)/‖x‖L1(X). For
z ∈ {−1, 1}n, let Dz be the distribution supported on BX given by sampling y ∼ Dz where for all
i ∈ [n],

Pr
y∼Dz

[y = x̂i] =
‖xi‖X
‖x‖L1(X)

·
(

1

2
+

ziε0

2 · t2(x)
·
‖x‖L1(X)

‖x‖L2(X)

)
Pr
y∼Dz

[y = −x̂i] =
‖xi‖X
‖x‖L1(X)

·
(

1

2
− ziε0

2 · t2(x)
·
‖x‖L1(X)

‖x‖L2(X)

)
. (6)

Then,

µz
def
= E

y∼Dz
[y] =

ε0

t2(x)‖x‖L2(X)

n∑
i=1

zixi. (7)

Consider the distribution D on distributions which is uniform over all Dz where z ∈ {−1, 1}n.
Then, we have:

E
z∼{−1,1}n

[‖µz‖X ] =
ε0

t2(x)‖x‖L2(X)
E

ε∼{−1,1}n

[∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
X

]
(8)

&
ε0

t2(x)‖x‖L2(X)

 E
ε∼{−1,1}n

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2

X

1/2

= ε0, (9)

E
z∼{−1,1}n

[
‖µz‖2X

]
= ε2

0. (10)

where (9) follows from the Khintchine-Kahane inequalities and the definition of t2(x). By the
Paley-Zygmund inequality, Prz∼{−1,1}n [‖µz‖X ≥ ε] = Ω(1), for some ε = Ω(ε0). We thus
conclude the following lemma, which follows from the preceding discussion.

Lemma 16 Suppose there exists a statistical algorithm for mean estimation over X with error ε
making q(ε) queries to VSTAT(α(ε)), then for distributionD as in (5) and setD as in (6), B(D,D)
has a statistical algorithm making q(ε) queries of accuracy VSTAT(α(ε)) which succeeds with
constant probability.

We now turn to computing the statistical dimension of B(D,D), as described in Definition 8.

Lemma 17 Let D andD be the distribution and the set over BX defined in (5) and (6). For κ > 0,
SDN(B(D,D), κ) ≥ exp(Ω(κ

2t2(x)2

ε2
)).

8



ON MEAN ESTIMATION FOR GENERAL NORMS WITH STATISTICAL QUERIES

Proof Let h : BX → R be any function with ‖h‖D = 1. Note that

E
y∼Dz

[h(y)]− E
y∼D

[h(y)] =
ε0

2t2(x) · ‖x‖L2(X)

n∑
i=1

zi‖xi‖X (h(x̂i)− h(−x̂i)) ,

so that by the Hoeffding inequality, any α > 0 satisfies

Pr
z∼{−1,1}n

[∣∣∣∣ E
y∼Dz

[h(y)]− E
y∼D

[h(y)]

∣∣∣∣ ≥ α] ≤ exp

(
−

2α2t2(x)2‖x‖2L2(X)

ε2
0

∑n
i=1 ‖xi‖2X(h(x̂i)− h(−x̂i))2

)
.

≤ exp

(
−Ω

(
α2t2(x)2

ε2
0

))
,

where we used the fact that 1 ≤ ‖xi‖ ≤ 2, as well as the fact that ‖h‖D = 1 to say that ‖x‖2L2(X) &∑n
i=1 ‖xi‖2X(h(x̂i) − h(−x̂i))2. Let Z ⊂ {−1, 1}n be any subset of size |Z| ≥ 2d/r, and let

DZ = {Dz : z ∈ Z} ⊂ D be the corresponding set of distributions, and so, similarly to the proof
of Lemma 3.21 in Feldman et al. (2017),

Pr
z∼Z

[∣∣∣∣ E
y∼D

[h(y)]− E
y∼Dz

[h(y)]

∣∣∣∣ ≥ α] ≤ r exp

(
−Ω

(
α2t2(x)2

ε2
0

))
,

which implies Ez∼Z [|Ey∼D[h(y)]−Ey∼Dz [h(y)]|] . ε0
√

ln r
t2(x) . Then, for any ε ≤ ε0, any sub-

set of D containing at least exp(−O(κ2t2(x)2/ε2))-fraction of distributions will have expectation
within κ of Ey∼D[h(y)].

Combining Lemma 17, Lemma 16, and Theorem 9, we obtain a proof of Theorem 13.

4. Lower bounds for Schatten-p norms

For the remainder of the section, Sp = (Rd×d, ‖ · ‖Sp) is the Schatten-p normed space, defined over
the vector space of d×dmatrices, and ‖x‖Sp = (

∑d
i=1 |σi(x)|p)1/p where σi(x) is the i-th singular

value of x. By a straightforward calculation, the following upper bound holds by embedding into
`d×d2 via the identity map, and applying SQ mean estimation algorithm for `2:

Corollary 18 There exists a statistical algorithm for mean estimation in Sp making dO(1)-queries

to STAT(α) with α = Ω
(

ε
d1/2−1/p

)
.

The rest of this section is dedicated to showing the following lower bound, which yields the corre-
sponding lower bound to Corollary 18.

Theorem 19 There exists an ε > 0 such that any SQ algorithm for mean estimation in Sp with
error ε making queries to VSTAT(1/(3κ2)) must make exp(Ω(min{κ2d1−2/p

ε2
, d+log κ})) queries.

Similarly to Theorem 13, we obtain the following, which shows that Corollary 18 is optimal.

Corollary 20 Any statistical algorithm for mean estimation in Sp making dO(1)-queries to STAT(α)

must have α = O
(

ε
d1/2−1/p

)
.

9
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Description of the lower bound instance We now describe the instance which achieves the lower
bound in Theorem 19. Consider the distribution D supported on d × d matrices generated by the
following process: 1) let π ∼ Sd be a uniformly random permutation on [d], 2) independently
sample z ∼ {−1, 1}d, and output the matrix y = y(π, z) = (y(π, z)ij) ∈ Rd×d where

y(π, z)ij =

{
zi/d

1/p j = π(i)
0 o.w

.

Note that y ∼ D always satisfies |σ1(y)| = · · · = |σd(y)| = 1/d1/p, so that ‖y‖Sp = 1, and that
Ey∼D[y] = 0.

Let 0 < ε ≤ γd1/p be a parameter for a sufficiently small constant γ > 0. For a, b ∈ {−1, 1}d,
let Da,b be the distribution supported on d × d matrices generated by the following process: 1) let
π ∼ Sd be a uniformly random permutation on [d], 2) sample z ∼ {−1, 1}d where each i ∈ [d] is
independently distributed with Pr[zi = aibπ(i)] = 1

2 + εd1/p

2 , and output the matrix y = y(π, z).
Similarly to the case with D, y ∼ Da,b always satisfies |σ1(y)| = · · · = |σd(y)| = 1/d1/p, so that
‖y‖Sp = 1. Furthermore, in this case, we have µa,b = Ey∼Da,b [y] = ε

d · ab
ᵀ, and ‖µa,b‖Sp = ε.

Finally, we let D be the set of distributions given by Da,b where a, b ∈ {−1, 1}d. Since every
distribution in D has mean with Sp norm at least ε, we obtain the following lemma.

Lemma 21 Suppose there is a statistical algorithm for mean estimation with error ε for making
q(ε) queries of accuracy α(ε), then B(D,D) has a randomized statistical algorithm making q(ε)
queries of accuracy α(ε) succeeding with the same probability.

Similarly to the case in Section 3.2, we obtain lower bounds on algorithms using statistical queries
by giving a lower bound on the statistical dimension of B(D,D). Theorem 19 is implied by
Lemma 22 below.

Lemma 22 Let D and D be the distribution and the set over BSp defined above. For κ > 0,

SDN(B(D,D), κ) ≥ exp(Ω(min{κ2d1−2/p

ε2
, d+ log κ})).

Proof Let h : BSp → R be any function with ‖h‖D = 1, and denote the Boolean function
Hh : {−1, 1}d × {−1, 1}d → R by:

Hh(a, b) = E
y∼Da,b

[h(y)]− E
y∼D

[h(y)]

=
1

d!

∑
π∈Sd

1

2d

∑
z∈{−1,1}d

h(y(π, z))

(
d∏
i=1

(1 + εd1/pziaibπ(i))− 1

)

=
1

d!

∑
π∈Sd

∑
S⊂[d]

(εd1/p)|S| · χS(abπ) · ĥπ(S), (11)

where we write hπ : {−1, 1}d → [0, 1] to denote hπ(z) = h(y(π, z)), for S ⊂ [d], χS : {−1, 1}d →
{−1, 1} is given by χS(z) =

∏
i∈S zi, and abπ ∈ {−1, 1}d denotes the vector where (abπ)i =

aibπ(i). Further consolidating terms, we can write

Hh(a, b) =
1

d!

d∑
t=1

(εd1/p)t
∑

S,T⊆[d]
|S|=|T |=t

ΓS,T · χS(a)χT (b) where ΓS,T =
∑
π∈Sd:
π(S)=T

ĥπ(S).

(12)

10
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Similarly to the proof of Lemma 17, we will use a concentration bound on H(a, b) when a, b ∼
{−1, 1}d to derive a bound on the statistical dimension. Specifically, Lemma 23 (which we state
and prove next), as well as a union bound, implies that for any 2 ≤ q ≤ d/(2e), and any set of pairs
Z ⊂ {−1, 1}d × {−1, 1}d of size at least 22d/r, and DZ = {Da,b : (a, b) ∈ Z},

Pr
(a,b)∼Z

[
|Hh(a, b)| ≥

4e
√
q · ε

d1/2−1/p

]
≤ r2−q.

We may also apply Cauchy-Schwartz inequality to (11) to say that for every a, b ∈ {−1, 1}d,

Hh(a, b) ≤

 1

d!

∑
π∈Sd

∑
S⊂[d]

(εd1/p)2|S|

1/2 1

d!

∑
π∈Sd

∑
S⊂[d]

ĥπ(S)2

1/2

≤ (1 + ε2d2/p)d/2 · ‖h‖D = (1 + ε2d2/p)d/2.

This, in turn, implies

E
(a,b)∼Z

[|Hh(a, b)|] .
√

log r · ε
d1/2−1/p

+
(

1 + ε2d2/p
)d/2

· r2−d/(2e) .
√

log r · ε
d1/2−1/p

+ r · 2−d/6

when ε is a small constant times d−1/p. Therefore, we have EZ [|Hh(a, b)|] ≤ κ for all subsets
containing at least 22d/r distributions, where r = exp(Ω(min{κ2d1−2/p

ε2
, d+ log κ})).

We now prove the concentration inequality for Hh(a, b) used in the proof of Lemma 22.

Lemma 23 Let h : BSp → R satisfy ‖h‖D = 1, and let Hh : {−1, 1}d × {−1, 1}d → R be the

function in (12). Then, for any 2 ≤ q ≤ d/(2e), Pra,b∼{−1,1}d [|Hh(a, b)| > 4e
√
qε

d1/2−1/p ] ≤ 2−q.

To prove this lemma, we set up additional technical machinery. Recall that for any ρ ∈ [−1,∞)
the noise operator Tρ is the linear operator on Boolean functions, defined so that for any Boolean
function f : {−1, 1}m → R with Fourier expansion f(x) =

∑
S⊆[m] f̂(S)χS(x) where χS(x) =∏

i∈S xi, we have Tρf(x) =
∑

S⊆[m] ρ
|S|f̂(S)χS(x).2 We will use the following version of the

hypercontractivity theorem, which will allow us to bound moments of random Boolean functions.

Theorem 24 ((2, q)-Hypercontractivity, Chapter 9 in O’Donnell (2014)) Let f : {−1, 1}m →
R, and let 2 ≤ q ≤ ∞. Then for ρ = 1/

√
q − 1, Ex∼{−1,1}m [|Tρf(x)|q] ≤ Ex∼{−1,1}m

[
f(x)2

]q/2.

Proof [Proof of Lemma 23] Define the auxiliary Boolean function g : {−1, 1}d × {−1, 1}d → R

by

g(a, b) =
1

d!

d∑
t=1

∑
S,T⊆[d]
|S|=|T |=t

ΓS,T · χS(a)χT (b),

2. The operator Tρ is typically only defined for ρ ∈ [−1, 1], but one may naturally extend this definition to ρ > 1, see
e.g. O’Donnell (2014).
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for ΓS,T as in (12). Note that for σ =
√
εd1/p(q − 1) and ρ = 1/

√
q − 1,Hh(a, b) = TρTσg(a, b).

For all 2 ≤ q ≤ ∞, we have

Pr
a,b∼{−1,1}d

[|Hh(a, b)| > α] ≤
Ea,b∼{−1,1}d [|Hh(a, b)|q]

αq

≤
Ea,b∼{−1,1}d

[
Tσg(a, b)2

]q/2
αq

, (13)

where the first inequality follows from Markov’s inequality, and the second from (2, q)-hypercontractivity
(Theorem 24). By Parseval’s identity, observe that

E
a,b∼{−1,1}d

[
Tσg(a, b)2

]
≤ ε2d2/p

(
1

d!

)2 d∑
t=1

qt
∑

S,T⊆[d]
|S|=|T |=t

Γ2
S,T .

For any fixed 1 ≤ t ≤ d, recall from (12) that

∑
S,T⊆[d]
|S|=|T |=t

Γ2
S,T =

∑
S,T⊆[d]
|S|=|T |=t

 ∑
π∈Sd
π(S)=T

ĥπ(S)


2

(a)

≤ (d− t)!
∑

S,T⊆[d]
|S|=|T |=t

∑
π∈Sd
π(S)=T

ĥπ(S)2

= (d− t)!
∑
π∈Sd

∑
S⊆[d]
|S|=t

ĥπ(S)2
(b)

≤ (d− t)!d! ,

where (a) follows by Cauchy-Schwarz, and (b) follows since 1
d!

∑
π∈Sd

∑
S⊂[d] ĥπ(S)2 = 1, as

‖h‖D = 1. Summing over all t ∈ [d], we have

E
a,b∼{−1,1}d

[
Tσg(a, b)2

]
≤ ε2d2/p

(
1

d!

)2 d∑
t=1

qt(d− t)!d! = ε2d2/p
d∑
t=1

qt(d− t)!
d!

= qε2d2/p−1
d−1∑
t=0

qt(d− t− 1)!

(d− 1)!
, (14)

and using Stirling’s approximation,

d−1∑
t=0

qt(d− t− 1)!

(d− 1)!
≤

d−1∑
t=0

eqt
√
d− t− 1

d− 1

(
(d− t− 1)

e

)d−t−1( e

d− 1

)d−1

≤ e
d−1∑
t=0

(eq
d

)t
≤ 2e ,

for all q ≤ d/(2e). Therefore (14) simplifies to give Ea,b∼{−1,1}d
[
Tσg(a, b)2

]
≤ 2eqε2d2/p−1,

for all q ≤ d/(2e), and plugging this bound into (13) while letting α = 4e
√
q · ε/d1/2−1/p, we

obtain the desired concentration bound.
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Appendix A. Omitted Proofs

Proof [Proof of Lemma 15] Since t < T2(X), there exists a sequence x′ = (x′1, . . . , x
′
m) such that

E
ε∼{−1,1}m

[∥∥∥∥ m∑
i=1

εix
′
i

∥∥∥∥2

X

]
≥ t

m∑
i=1

‖x′i‖2X .

Lemma 4.5 in Ledoux and Talagrand (2011) gives that we can replace the Rademacher random
variables with Gaussians, i.e. for a sequence of independent standard Gaussian random variables
we have g1, . . . , gm,

E
ε

[∥∥∥∥ m∑
i=1

εix
′
i

∥∥∥∥2

X

]
≤ π

2
E
g

[∥∥∥∥ m∑
i=1

gix
′
i

∥∥∥∥2

X

]
.

Let us assume, without loss of generality, that ‖x′i‖X ≥ 1 for every i ∈ [n]. For any x′i, define the
sequence x′i,1, . . . , x

′
i,mi

to consist of b‖x′i‖2Xc − 1 copies of x′i/‖x′i‖X and a single copy of

(1 + ‖x′i‖2X − b‖x′i‖2Xc)1/2 · x′i
‖x′i‖X

.

14
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This guarantees that 1 ≤ ‖x′i,j‖X ≤ 2 for every i ∈ [n] and j ∈ mi. Observe also that,
if gi,1, . . . , gi,mi are independent standard Gaussian random variables, then

∑mi
j=1 gi,jx

′
i,j is dis-

tributed identically to gix
′
i, and, moreover,

∑mi
j=1 ‖x′i,j‖2X = ‖x′i‖2X . Therefore, we have

E
g

[∥∥∥∥ m∑
i=1

mi∑
j=1

gi,jx
′
i,j

∥∥∥∥2

X

]
≥ 2t

π

m∑
i=1

mi∑
j=1

‖x′i,j‖2X .

By the Gaussian version of the Khintchine-Kahane inequalities (Corollary 3.2. in Ledoux and Tala-
grand (2011)) and the Paley-Zygmund inequality, we have that for some absolute constant C ′,

Pr

[∥∥∥∥ m∑
i=1

mi∑
j=1

gi,jx
′
i,j

∥∥∥∥2

X

≥ t

C ′

m∑
i=1

mi∑
j=1

‖x′i,j‖2X

]
≥ 1

2
.

We define the sequence x = (x1, . . . , xn) to contain N copies of each vector xi,j , for some large
enough integer N . By the central limit theorem, as N →∞, 1√

N

∑n
i=1 εixi converges in probabil-

ity to
∑m

i=1

∑mi
j=1 gi,jx

′
i,j . Since ‖ · ‖X is continuous, this means that, for a large enough N ,

Pr

[∥∥∥∥ m∑
i=1

mi∑
j=1

gi,jx
′
i,j −

n∑
i=1

εixi

∥∥∥∥2

X

>
t

4C ′

m∑
i=1

mi∑
j=1

‖x′i,j‖X

]
≤ 1

4
.

Then, by the triangle inequality,

Pr

[∥∥∥∥ n∑
i=1

εixi

∥∥∥∥2

X

≥ t

4C ′

n∑
i=1

‖xi‖2X

]
≥ 1

4
,

and the lemma follows with C = 4C ′.
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