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Abstract
A common challenge in nonparametric inference is its high computational complexity when data
volume is large. In this paper, we develop computationally efficient nonparametric testing by
employing a random projection strategy. In the specific kernel ridge regression setup, a simple
distance-based test statistic is proposed. Notably, we derive the minimum number of random pro-
jections that is sufficient for achieving testing optimality in terms of the minimax rate. As a by-
product, the lower bound of projection dimension for minimax optimal estimation derived in [40]
is proven to be sharp. One technical contribution is to establish upper bounds for a range of tail
sums of empirical kernel eigenvalues.
Keywords: Computational limit, kernel ridge regression, minimax optimality, nonparametric test-
ing, random projection.

1. Introduction

Computationally efficient statistical methods have been proposed for analyzing massive data sets.
Examples include divide-and-conquer ([41; 19; 10; 32]); random projection ([25; 23; 40; 17]); sub-
sampling ([20; 24; 2]); Nyström approximations ([14; 27]); and online learning ([5; 29; 12]). In
particular, [40] studied minimax optimal estimation of kernel ridge regression (KRR) under ran-
dom projections, which dramatically reduces computational and storage costs compared to ordinary
KRR. An interesting question arising from this new method is the minimal computational cost re-
quired for obtaining statistically optimal results. This might be viewed as a type of “computational
limit” from statistical perspective. This paper targets on this problem. We will develop computa-
tional limits for the projected KRR estimation and a relating hypothesis testing procedure. Our test-
ing procedure has potential applications in massive data. Traditional nonparametric testing methods
such as locally most powerful test, generalized/penalized likelihood ratio test and distance-based
test [11; 22; 13; 31; 3] may not apply to massive data due to their high computational costs.

We consider the following nonparametric model

yi = f(xi) + εi, i = 1, · · · , n, (1.1)

where xi ∈ X ⊆ Ra for a fixed a ≥ 1 are i.i.d. random design points, and εi are i.i.d. random noise
with mean zero and variance σ2. The regression function f is assumed to belong to a reproducing
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kernel Hilbert space (RKHS) H. Traditional kernel ridge regression (KRR) method estimates f
through the following penalized least squares:

f̂n := argmin
f∈H

{
1

n

n∑
i=1

(yi − f(xi))
2 + λ‖f‖2H

}
, (1.2)

where ‖f‖2H = 〈f, f〉H with 〈·, ·〉H the inner product ofH, λ > 0 is a smoothing parameter. When
n is large, (1.2) is computationally complex due to the enormous dimension of the kernel matrix;
computational and storage costs of f̂n are of orders O(n3) and O(n2), respectively. Recently, [40]
proposed a projected KRR estimator, denoted f̂R, in which KRR is fitted based on a randomly pro-
jected kernel matrix rather than the original one. Their method successfully reduces computational
and storage costs to O(s3) and O(s2), respectively, when s(� n) random projections are being
used. The problem of computational limit amounts to characterizing the minimal choice of s such
that the projected KRR method maintains statistical optimality.

1.1. Our Contributions

We consider the following nonparametric testing problem

H0 : f = f0 vs. H1 : f ∈ H \ {f0}, (1.3)

where f0 is a hypothesized function. We construct a test statistic Tn,λ = ‖f̂R−f0‖2n, i.e., the squared
empirical distance between f̂R and f0, and derive a lower bound for s, denoted s∗, such that Tn,λ
achieves optimal testing rate. As a by-product, we also derive a lower bound for s, denoted s†, such
that f̂R achieves optimal estimation rate. Table 1 summarizes the values of of s† and s∗ under both
polynomially decaying kernel (PDK) and exponentially decaying kernel (EDK). We further prove
the sharpness of s† and s∗ in the following sense:

(1) if s = o(s†), there exist s random projections (satisfying Assumption A3) such that f̂R is
sub-optimal for some f0;

(2) if s = o(s∗), there exist s random projections (satisfying Assumption A3) such that Tn,λ fails
to achieve high power even though the local alternatives are separated from some f0 by optimal
testing rate.

s† s∗

m-order PDK n
1

2m+1 n
2

4m+1

p-order EDK (log n)1/p (log n)1/p

Table 1: Values of s† and s∗ for PDK and EDK. Results summarized from Section 4.4.

We illustrate our main findings in Figure 1.1, where the strength of the weakest detectable signals
(SWDS (see Section 4.3 for detailed definition)) is characterized given any choice of s and λ. In
general, we require s ≥ sλ for any λ > 0, where sλ is the number of kernel eigenvalues above λ.
An important observation is that the smallest SWDS can be achieved at λ = λ∗ and s ≥ sλ∗ := s∗,
where λ∗ represents an optimal choice of λ for testing. Even when s � s∗, our testing procedure
under a proper λ still demonstrates some power as long as SWDS becomes sufficiently large.
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Figure 1: Phase transition in (λ, s) for signal detection. The horizontal axis is the smoothing param-
eter λ, and the vertical axis is the projection dimension s. The shade indicates the values
of SWDS: dark red corresponds to greater values of SWDS than light blue. The vertical
line labeled by “optimal” indicates the choices of λ that achieve the smallest SWDS.

One technical contribution of this paper is the generalized local Radermacher complexity (Sec-
tion 3) which allows a unified treatment for nonparametric estimation and testing. The classic local
Radermacher complexity developed by [4] is a special case (with unit variance-to-bias ratio) which
only works for nonparametric estimation. This new technique is obtained by flexibly adjusting the
size of the function class defining the Rademacher average. Our results hold for a general class of
random projection matrix, such as the sub-Gaussian matrix or certain data-dependent matrix. The
procedure can be generalized for composite hypothesis testing (see Section 4.2).

1.2. Related Literature

Computational limits have been addressed in other situations. For divide-and-conquer, [32] derived
a sharp upper bound for the number of distributed computing units in smoothing splines, while [36]
estimated the quantile regression process under an additional sharp lower bound on the number of
quantile levels. For random projection methods, the literature nonetheless only focused on paramet-
ric cases such as compressed sensing, see [9]. For example, [9] showed that the minimum number
of random projections is s log n for signal recovery, where n is the number of measurements and s
is the number of nonzero components in the true signal. Relevant results in nonparametric setting
are still missing.

Notation: Denote δjk the Kronecker delta: δjk = 1 if j = k and δjk = 0 if j 6= k. For
positive sequences an and bn, put an . bn if there exists a constant c > 0 such that an ≤ cbn for
all n ∈ N; an & bn if there exists a constant c > 0 such that an ≤ cbn. Put an � bn if an . bn
and an & bn. Frequently, we use an . bn and an = O(bn) interchangeably. Pf2 ≡ E f(X)2,
‖f‖2n ≡ Pnf

2 ≡ 1
n

∑n
i=1 f(Xi)

2. For a matrix A ∈ Rm×n, its operator norm is defined as
||A||op = maxx∈Rn\{0}

‖Ax‖2
‖x‖2 . A random variable X is said to be sub-Gaussian if there exists a

constant σ2 > 0 such that for any t ≥ 0, P[|X| ≥ t] ≤ 2 exp(−t2/(2σ2)). The sub-Gaussian norm
of X is defined as ‖X‖ψ2 = inf{t > 0 : E exp(X2/t2) ≤ 2}. We will use c, c1, c2, C to denote
generic absolute constants, whose values may vary from line to line.
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2. Kernel Ridge Regression via Random Projection

In this section, we review kernel ridge regression and its variant based on random projection. Sup-
pose that we have n i.i.d. observations {(xi, yi)}ni=1 from (1.1). Throughout assume that f ∈ H,
whereH ⊂ L2(PX) is a reproducing kernel Hilbert space (RKHS) associated with an inner product
〈·, ·〉H and a reproducing kernel function K(·, ·) : X × X → R. By Mercer’s theorem, K has the
following spectral expansion:

K(x, x′) =

∞∑
i=1

µiφi(x)φi(x
′), x, x′ ∈ X , (2.1)

where µ1 ≥ µ2 ≥ · · · ≥ 0 is a sequence of ordered eigenvalues and the eigenfunctions {φi}∞i=1

form a basis in L2(PX). Moreover, for any i, j ∈ N,

〈φi, φj〉L2(PX) = δij and 〈φi, φj〉H = δij/µi.

Throughout this paper, assume that φi’s are uniformly bounded, a common condition in litera-
ture, e.g., [16], and µi’s satisfy certain tail sum property.

Assumption A1 cK := supi≥1 ‖φi‖sup <∞ and supk≥1

∑∞
i=k+1 µi
kµk

<∞.

Assumption A1 is satisfied in two types of commonly used kernels, categorized by the eigen-
value decay rates. The first is µi � i−2m for a constant m > 0, called as polynomial decay kernel
(PDK) of order m. The second is µi � exp(−γip) for constants γ, p > 0, called as exponential
decay kernel (EDK) of order p. Verification of Assumption A1 is deferred to Section B.7 in the
Appendix. Examples of PDK include kernels of Sobolev space and periodic Sobolev space (see
[37]). Examples of EDK include Gaussian kernel K(x1, x2) = exp(−(x1 − x2)2/2) (see [30]).

Recall the KRR estimator f̂n from (1.2). By representer theorem, it has an expression f̂n(·) =∑n
i=1 ω̂iK(·, xi), where ω̂ = (ω̂1, . . . , ω̂n)> is a real vector determined by

ω̂ = argmin
ω∈Rn

{
ω>K2ω − 2

n
ω>Ky + λω>Kω

}
=

1

n
(K + λI)−1y, (2.2)

y = (y1, · · · , yn)>, K = [n−1K(xi, xj)]1≤i,j≤n, and I ∈ Rn×n is identity. This standard proce-
dure requires storing (K2,K,Ky) and inverting K + λI , which requires O(n2) memory usage
and O(n3) floating operations.

The above computational and storage constraints become severe for a large sample size, and thus
motivate the random projection approach proposed by [40]. Specifically, ω in (2.2) is substituted
with S>β, where β ∈ Rs and S is an s× n real-valued random matrix; see Section 4.1. Then, β is
solved as:

β̂ = argmin
β∈Rs

{
β>(SK)(KS>)β − 2

n
β>SKy + λβ>SKS>β

}
, (2.3)

=
1

n
(SK2S> + λSKS)−1SKy.
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Hence, the resulting estimator of f becomes

f̂R(·) =
n∑
i=1

(S>β̂)iK(·, xi), (2.4)

which requires computing and storing (SK2S>, SKS>, SKy), along with inverting an s × s
matrix. The cost in the pre-processing step to compute the kernel approximation normally takes
O(sn2), and can be easily reduced to O(n2(log s)) for suitably chosen random matrices (see Ailon
and Chazelle [1]), which can be further reduced to O(n2(log s)/t) by using t clusters in a parallel
fashion. Furthermore, the memory usage and floating operations are reduced to O(s2) and O(s3),
respectively, when s = o(n). On the other hand, s cannot be too small in order to maintain sufficient
data information for achieving statistical optimality. Critical lower bounds for s will be derived in
Section 4.5.

3. Tail Sum of Empirical Eigenvalues

An accurate upper bound for the tail sum of empirical eigenvalues is needed for studying nonpara-
metric testing and estimation. However, this bound was often assumed to hold in the kernel learning
literature, e.g., [7; 39]. And, the application of concentration inequalities of individual eigenvalues
([33; 8]) only provides a loose bound due to accumulative errors. Recently, the local Rademacher
complexity (LRC) theory ([4]) was employed by [40] to derive a more accurate upper bound that is
useful in studying nonparametric estimation. However, this upper bound no longer works for testing
problems, due to the improper size of the function class defining Rademacher average.

In this section, we establish upper bounds, i.e., Lemma 3.1, for a range of tail sums of empirical
eigenvalues that can be applied to both nonparametric estimation and testing. This result may be of
independent interest. Consider the singular value decomposition K = UDU>, where UU> = In
and D = diag(µ̂1, µ̂2, . . . , µ̂n) with µ̂1 ≥ µ̂2 ≥ · · · µ̂n ≥ 0. For any λ > 0, define ŝλ (or sλ) to be
the number of µ̂i’s (or µi’s) greater than λ, i.e.,

ŝλ = argmin{i : µ̂i ≤ λ} − 1, sλ = argmin{i : µi ≤ λ} − 1. (3.1)

We have the following assumption on the population eigenvalues through sλ.

Assumption A2 sλ diverges as λ→ 0.

Assumption A2 is satisfied in various classes of kernels, including PDK and EDK introduced in
Section 4.4.

For a range of λ, Lemma 3.1 below provides an upper bound for the tail sum of µ̂i in terms of
population quantities sλ and µsλ , with known orders.

Lemma 3.1 If 1/n < λ → 0, then with probability at least 1 − 4e−sλ ,
∑n

i=ŝλ+1
µ̂i ≤ Csλµsλ ,

where C > 0 is an absolute constant.

Clearly, Lemma 3.1 is a sample analog to the tail sum assumption for µi in Assumption A1.
Lemma 3.1 is crucial in the verification of “K-satisfiable” property of random projection matrices
introduced in Section 4. The proof of Lemma 3.1 is based on an adaptation of the classical LRC
theory as explained below.

5



SHARP NONPARAMETRIC TESTING UNDER RANDOM PROJECTION

In Section 4.4, it will be shown that λ and sλ/n correspond to (squared-)bias and variance of
f̂R, respectively. We then define the variance-to-bias ratio as

κλ =
sλ
nλ
, (3.2)

for any λ > 0. Consider a bundle of function classes indexed by κλ:

Fλ = {f ∈ H : f maps X to [−1, 1], ‖f‖2H ≤ κλ}, λ > 0.

To characterize the complexity of Fλ, we introduce a generalized version of local Rademacher
complexity function:

Ψλ(r) = E
{

sup
f∈Fλ
Pf2≤r

1

n

n∑
i=1

σif(xi)
}
, r ≥ 0, (3.3)

where σ1, . . . , σn are independent Rademacher random variables, i.e., P(σi = 1) = P(σi = −1) =
1/2. Let Ψ̂λ(·) be an empirical version of Ψλ(·) defined as

Ψ̂λ(r) = E
{

sup
f∈Fλ
Pnf2≤r

1

n

n∑
i=1

σif(xi)

∣∣∣∣x1, · · · , xn
}
, r ≥ 0. (3.4)

When κλ � 1, Ψλ(·) and Ψ̂λ(·) become the original LRC functions introduced in [4]. Note
that κλ � 1 actually corresponds to the optimal bias vs. variance trade-off required for estimation.
Rather, a different type of trade-off is needed for optimal testing as revealed by [18; 31], which
corresponds to a different choice of κλ in Fλ as demonstrated later in Section 4.4.

Lemma 3.2 says that both Ψλ and Ψ̂λ possess unique (positive) fixed points. This fixed point
property is crucial in proving Lemma 3.1. Interestingly, we find that the fixed points turn out to be
proportional to the estimation variance asymptotically.

Lemma 3.2 There exist uniquely positive rλ and r̂λ such that Ψλ(rλ) = rλ and Ψ̂λ(r̂λ) = r̂λ.
Furthermore, if λ > 1/n, then rλ � sλ/n, and there exists an absolute constant c > 0 such that,
with probability at least 1− e−csλ , r̂λ � sλ/n.

We are now ready to sketch the proof of Lemma 3.1. Detailed proofs are deferred to Appendix
A.1. First, note that

n∑
i=ŝλ+1

µ̂i =
n∑

i=ŝλ+1

min{λ, µ̂i} ≤
n∑
i=1

min{λ, µ̂i}.

By Lemma 3.2, we have r̂λ/κλ � λ with high probability. Then,
n∑
i=1

min
{
λ, µ̂i

}
�

n∑
i=1

min
{ r̂λ
κλ
, µ̂i
}
� n

κλ
Ψ̂λ(r̂λ)2 =

nr̂2
λ

κλ
� λsλ ≤ sλµsλ ,

where the second step is by Lemma B.1 that

Ψ̂λ(r̂λ) �

√√√√κλ
n

n∑
i=1

min{ r̂λ
κλ
, µ̂i},

the third step follows from the fixed point property stated in Lemma 3.2, and the last step follows
from the definition of µsλ given in (3.1).
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4. Main Results

Consider the nonparametric testing problem (1.3). For convenience, assume f0 = 0, i.e., we will
test

H0 : f = 0 vs. H1 : f ∈ H \ {0}. (4.1)

In general, testing f = f0 (for an arbitrary known f0) is equivalent to testing f∗ ≡ f − f0 = 0. So,
(4.1) has no loss of generality. Based on f̂R, we propose the following distance-based test statistic:

Tn,λ = ‖f̂R‖2n. (4.2)

In the subsequent sections, we will derive the null limit distribution of Tn,λ (Theorems 4.2 and 4.4),
and further provide a sufficient and necessary condition in terms of s such that Tn,λ is minimax
optimal (Section 4.5). As a byproduct, we derive a critical bound in terms of s such that f̂R is
minimax optimal. Proof of such results rely on an exact analysis on the kernel and projection
matrices which requires an accurate estimate of the tail sum of the empirical eigenvalues by Lemma
3.1. Our results hold for a general choice of projection matrix (see Section 4.1 for discussion).

4.1. Choice of Projection Matrix

Recall the singular value decomposition K = UDU>. Put U = (U1, U2) with U1 consisting of
the first ŝλ columns of U and U2 consisting of the rest n − ŝλ columns; D = diag(D1, D2), with
D1 = diag(µ̂1, . . . , µ̂ŝλ), D2 = diag(µ̂ŝλ+1, . . . , µ̂n).

The following definition of “K-satisfiability” describes a class of matrices that preserve the
principal components of the kernel matrix.

Definition 1 (K-satisfiability) A matrix S ∈ Rs×n is said to be K-satisfiable if there exists a
constant c > 0 such that

||(SU1)>SU1 − Iŝλ ||op ≤ 1/2, ||SU2D
1/2
2 ||op ≤ cλ1/2.

By Definition 1, a K-satisfiable S will make (SU1)>SU1 “nearly” identity as well as down-
weight the tail eigenvalues. Such a matrix will be able to extract the principle information from
the kernel matrix. A special case of the above “K-satisfiability” condition was studied in [40] by
fixing λ as the optimal estimation rate. However, by choosing a range of λ as threshold to select the
leading eigenvalues, our general form of “K-satisfiability” condition allows us to study estimation
and testing in a unified framework.

Besides, we need the following definition to simplify the statement of our assumptions.

Definition 2 An event E is said to be of (a, b)-type for a, b ∈ (0,∞], if P(P(E|x1, · · · , xn) ≥
1− exp(−a)) ≥ 1− exp(−b).

Definition 2 describes events whose probabilities have exponential type lower bounds. It is easy to
see that, if E is of (a, b)-type, then P(E) ≥ (1 − exp(−a))(1 − exp(−b)). In particular, E is of
(∞,∞)-type if and only if E occurs almost surely.

Throughout the rest of this paper, assume the following condition on S.

Assumption A3

7
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(a) s ≥ dsλ for a sufficiently large constant d > 0.

(b) There exist c1, c2 ∈ (0,∞] such that the event “S is K-satisfiable” is of (c1s, c2sλ)-type.

Assumption A3 (a) requires a sufficient amount of random projections to preserve data informa-
tion. Assumption A3 (b) requires S to be K-satisfiable with high probability which holds in a broad
range of situations such as matrix of sub-Gaussian entries (Example 1) and certain data dependent
matrix (Example 2).

Example 1 Let S be an s×n random matrix of entries Sij/
√
s, i = 1, . . . , s, j = 1, . . . , n, where

Sij are independent (not necessarily identically distributed) sub-Gaussian variables. Examples
of such sub-Gaussian variables include Gaussian variables, bounded variables such as Bernoulli,
multinomial, uniform, variables with strongly log-concave density (see [28]), or mixtures of sub-
Gaussian variables. The following lemma shows that Assumption A3 (b) holds in all these situations.

Lemma 4.1 Let Sij : 1 ≤ i ≤ s, 1 ≤ j ≤ n be independent sub-Gaussian of mean zero and
variance one, and λ ∈ (1/n, 1). If s ≥ dsλ for a sufficiently large constant d, then Assumption A3
(b) holds for S = [Sij/

√
s]1≤i≤s,1≤j≤n.

In the proof of Lemma 4.1, the operator norm of SU2

√
D2 is concentrated on the empirical tail

sums of eigenvalues, which can be further bounded by the population version based on Lemma 3.1.

Example 2 Let S = U>s , where Us is an n× s matrix consisting of the first s columns of U . Then
it trivially holds that, almost surely, (SU1)>SU1 = Iŝλ and ||SU2D

1/2
2 ||op = 0, i.e., Assumption A3

(b) holds.

The eigen-decomposition in Example 2 is as burdensome as computing the matrix inverse, which
is not preferred in practice. The purpose of this example is to illustrate one situation that satisfies
Assumption A3, also useful for deriving computational limits (see Section 4.5).

4.2. Testing Consistency

In this section, we derive the null limit distribution of (standardized) Tn,λ as standard Gaussian, and
then extend our result to the case of composite hypothesis testing.

Theorem 4.2 Suppose that λ → 0 and s → ∞ as n → ∞. Suppose Assumption A2 is satisfied.
Then under H0, we have

Tn,λ − µn,λ
σn,λ

d−→ N(0, 1), as n→∞.

Here, µn,λ := EH0{Tn,λ|x, S} = tr(∆2)/n, σ2
n,λ := VarH0{Tn,λ|x, S} = 2 tr(∆4)/n2 with

x = (x1, · · · , xn) and ∆ = KS>(SK2S> + λSKS>)−1SK.

Theorem 4.2 holds once s diverges (no matter how slowly). Theorem 4.2 implies the following
testing rule at significance level α:

φn,λ = I(|Tn,λ − µn,λ| ≥ z1−α/2σn,λ) (4.3)

where z1−α/2 is the 100× (1− α/2)th percentile of N(0, 1).
As an important consequence of Theorem 4.2, we comment that the optimal estimation rate in

[40] can also be obtained as a by-product; see the following Corollary 4.3 with proof in B.5.
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Corollary 4.3 Suppose that 1/n < λ < 1 and Assumption A1-A3 holds. Then with probability
approaching one, it holds that

‖f̂R − f0‖2n ≤ Crn,λ,

where rn,λ = λ+ µn,λ and C is an absolute constant.

From Corollary 4.3, the best upper bound can be obtained through balancing λ and µn,λ. Denote
λ† the optimizer. This in turn provides a lower bound s† for s according to (3.1), i.e., s† = sλ† . In
Section 4.4, we will show that the upper bound under λ† is minimax optimal, and further provide
explicit orders for s† in concrete settings.

In practice, it is often of interest to test certain structure of f , e.g., linearity,

H linear
0 : f ∈ L(X ) vs. H linear

1 : f /∈ L(X ),

where L(X ) is the class of linear functions over X ⊆ Ra. Testing H linear
0 can be easily converted

into simple hypothesis testing problem as follows. Suppose that f0(x) = β0 + β>1 x is the “true”
function under H linear

0 . The corresponding MLE is f̂0(x) = β̂0 + β̂>1 x, where β̂ = (XX>)−1Xy ≡
(β̂0, β̂1). By defining f∗ = f − f̂0, it amounts to testing f∗ = 0. Correspondingly, we define
y∗ = y − ŷ0, where ŷ0 = (f̂0(x1), . . . , f̂0(xn))> = Hy and H = X>(XX>)−1X. This leads to
the randomly projected KRR estimator f̂∗R and T ∗n,λ = ‖f̂∗R‖2n, whose null limit distribution is given
in the following theorem.

Theorem 4.4 Suppose that λ → 0 and s → ∞ as n → ∞. Suppose Assumption A2 is satisfied.
Under H linear

0 , we have
T ∗n,λ − µ∗n,λ

σ∗n,λ

d−→ N(0, 1), as n→∞,

where µ∗n,λ = EH linear
0
{T ∗n,λ|x, S} = tr((I−H)∆2(I−H))/n and {σ∗n,λ}2 = VarH linear

0
(T ∗n,λ|x, S) =

2 tr((I −H)∆4(I −H))/n2.

Clearly, our testing procedure and theory can be easily generalized to polynomial testing such
as Hpoly

0 : f is polynomial of order q.

4.3. Power Analysis

In this section, we investigate the power of Tn,λ under a sequence of local alternatives. The follow-
ing result shows that Tn,λ can achieve high power provided that s diverges fast enough and the local
alternative is separated from the null by at least an amount of dn,λ. Here we call dn,λ as the weakest
detectable signals (SWDS) or separation rate.

Theorem 4.5 Suppose that 1/n < λ → 0 as n → ∞, Assumption A1-A2 are satisfied, and
Assumption A3 holds for c1, c2 ∈ (0,∞]. Then for any ε > 0, there exist positive constants Cε and
Nε such that, with probability greater than 1− e−c1s − e−c2sλ ,

inf
n≥Nε

inf
f∈B

‖f‖n≥Cεdn,λ

Pf (φn,λ = 1|x, S) ≥ 1− ε,

where dn,λ :=
√
λ+ σn,λ and B = {f ∈ H : ‖f‖H ≤ C} for a constant C and Pf (·|x, S) is the

conditional probability measure under f given x, S.

9
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In view of Theorem 4.5, to maximize the power of Tn,λ, one needs to minimize dn,λ =
√
λ+ σn,λ

through balancing λ and σn,λ. Denote λ∗ the optimizer. The lower bound s∗ for s is obtained via
(3.1), i.e., s∗ = sλ∗ . The explicit forms of λ∗ and s∗ varies for different reproducing kernels, and
lead to specific optimal testing rate, depending on their eigendecay rate.

4.4. Examples

Next, we derive the lower bounds for s to achieve optimal estimation and testing in two featured
examples: PDK and EDK, based on the main results obtained in Corollary 4.3 and Theorem 4.5. It
is easy to check that Assumption A1 and A2 hold for these two examples; see Section B.7.

Theorem 4.6 For the two kinds of eigenvalue decaying rates, suppose Assumption A3 holds, we
have the following optimal estimation and testing rates by properly choosing the tuning parameters
and the lower bound of projection dimension:

• Polynomially decaying kernel (with µi � i−2m)

– When λ � n−
2m

2m+1 and s & n
1

2m+1 with m > 3/2, ‖f̂R − f0‖2n = OP (n−
2m

2m+1 ).

– When λ � n−
4m

4m+1 and s & n
2

4m+1 with m > 3/2, Tn,λ achieves the minimax optimal

rate of testing n−
2m

4m+1 .

• Exponentionally decaying kernel (with µi � exp(−γip))

– When λ � (log n)1/pn−1 and s & (log n)1/p, ‖f̂R − f0‖2n = OP (n−1(log n)1/p).

– When λ � (log n)1/(2p)n−1 and s & (log n)1/p, Tn,λ achieves the minimax optimal rate

of testing n−
1
2 (log n)

1
4p .

Based on Lemma 3.1, Lemma A.1 characterized the order of µn,λ and σn,λ as µn,λ � sλ/n and
σ2
n,λ � sλ/n2 with high probability. It follows from Corollary 4.3 that f̂R has the convergence rate

rn,λ = λ+ sλ/n. On the other hand, λ is the bias of f̂R by Lemma B.3, and sλ/n is the variance of
f̂R by (??) and Lemma A.1. Hence, the optimal estimation rate r†n,λ ([40]) is achieved as follows

r†n,λ = argmin
{
λ : λ > sλ/n

}
.

To find the lower bound for s in achieving optimal testing, by Theorem 4.5, dn,λ �
√
λ+
√
sλ/n,

then the optimal separation rate d∗n ([18], [38]) can be achieved by another type of trade-off, i.e., the
bias of f̂R v.s. the standard derivation of Tn,λ, as follows

d∗n
2 = argmin

{
λ : λ >

√
sλ/n

}
.

For PDK example, Theorem 4.6 can be directly achieved based on (3.1), µi � i−2m, and sλ �
λ−

1
2m . The results for EDK can be achieved similarly.
It is worth emphasizing that λ†, s† are different from λ∗, s∗, indicating a fundamental difference

between estimation and testing. A more explicit reason for such a difference in minimax rate is due
to two different types of trade-off, as illustrated in Figure 2. Table 1 summarizes our findings of this
section.

10
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(a) (b)

Figure 2: Trade-offs for achieving (a) optimal estimation rate; (b) optimal testing rate.

4.5. Sharpness of s† and s∗

In this section, we will show that s∗ and s† derived in PDK and EDK are actually sharp. For
technical convenience, define

δn =

{
n−

2
2m−1 , K is PDK

(log n)−2/p, K is EDK

Our first result is about the sharpness of s†. Theorem 4.7 shows that when s � s†, there exists
a true function f such that ‖f̂R − f‖2n is substantially slower than the optimal estimation rate.

Theorem 4.7 Suppose s = o(s†). Then there exists an s× n random matrix S satisfying Assump-
tion A3, such that with probability greater than 1− e−cnδn − e−c1s − e−c2sλ , it holds that

sup
f∈B
‖f̂R − f‖2n � r†n,λ,

where c is a constant independent of n, and c1, c2 ∈ (0,∞] are given in Assumption A3 (b).

We sketch the constructive proof as follows; detailed proof can be found in Appendix A.6. Note
that

‖f̂R − f‖2n = ‖Eε f̂R − f‖2n + ‖f̂R −Eε f̂R‖2n +
2

n

(
f̂R −Eε f̂R

)>(
Eε f̂R − f0

)
≡ T1 + T2 + T3,

where T1 ≡ ‖Eε f̂R − f‖2n = ‖UTKS>(SK2S> + λSKS>)−1SKf − UT f‖2n. Let S = Us,
where Us is the first s columns of U . Let f(·) =

∑n
i=1K(xi, ·)wi withw = (w1, · · · , wn)> = Uα,

α ∈ Rn satisfying

α2
i =

{
1
n
C
s µ̂
−1
i , for i = s+ 1, · · · , 2s;

0, otherwise.
(4.4)

Then ‖f‖2H = nα>Dα = n
∑2s

i=s+1 α
2
i µ̂i = C, and

‖Eε f̂R−f‖2n = n

s∑
i=1

α2
i (µ̂

2
i (µ̂i+λ)−1− µ̂i)2 +n

n∑
i=s+1

α2
i µ̂

2
i =

1

s

2s∑
i=s+1

µ̂i ≥ µ̂2s ≥
1

2
µ2s � λ†.

11
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The last inequality holds with probability greater than 1− e−nδn by Lemma B.2. Furthermore,
it can be shown that T1 = OP (λ), T2 = op(T1), and T3 = oP (T1) . Then with probability at least
1− e−nδn ,

sup
f0∈B
‖f̂R − f0‖2n & sup

f0∈B
‖Eε f̂R − f0‖2n � Cλ†.

Our second result is about the sharpness of s∗. Theorem 4.8 shows that when s � s∗, there
exists a local alternative f that is not detectable by Tn,λ even when it is separated from zero by d∗n.
In this case, the asymptotic testing power is actually smaller than the nominal level α.

Theorem 4.8 Suppose s = o(s∗). Then there exists an s × n projection matrix S satisfying
Assumption A3 and a positive nonrandom sequence βn,λ satisfying limn→∞ βn,λ = ∞ such that,
with probability at least 1− e−cnδn − e−c1s − e−c2sλ ,

lim sup
n→∞

inf
f∈B

‖f‖n≥βn,λd∗n

Pf (φn,λ = 1|x, S) ≤ α,

where c is a constant independent of n, and c1, c2 ∈ (0,∞] are given in Assumption A3 (b). Recall
1− α is the significance level.

The proof of Theorem 4.8 is similar as that of Theorem 4.7, except that a different true function
is constructed as f(·) =

∑n
i=1K(xi, ·)wi with w = (w1, · · · , wn)> = Uα, where α ∈ Rn satisfies

α2
i =

{
1
n

C
s−1 µ̂

−1
gs+k for i = (gs+ k) k = 1, 2, · · · , s− 1;

0 otherwise,
(4.5)

with g ≥ 1 as an integer satisfying (g + 1)s� s∗; see Appendix A.7 for detailed proof.
In view of Theorems 4.5 and 4.8, we observe a subtle phase transition phenomenon for testing

the existence of signals as shown in Figure 1.1. The precise order of s∗ in specific situations can be
found in Table 1.

We remark that Theorem 4.8 can hold for any K-satisfiable random matrix S, by constructing
the true function f with ‖f‖H ≤ C and ‖f‖2n ≥ µ̂s+1, such that under f , Tn,λ−µn,λ

σn,λ
is asymp-

totically standard normal. This implies that the power of the test will converge to α. Specifically,
we construct such f with an expression

∑n
i=1K(xi, ·)wi, where wi is selected from the orthogo-

nal complement of a subsapce properly generated by S and K. When s � s∗, we can show that
µ̂s+1 � d∗2n with high probability, which implies that even if the norm of f is greater than d∗n, our
test still cannot achieve high power. Theorem 4.7 can be generalized in a similar manner for any S
satisfying Assumption A3.
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Appendix A. Proof of Main Results

In this section, we present main proofs of Lemma 3.1, Theorem 4.2, Theorem 4.4, Theorem 4.5,
Theorem 4.6, Theorem 4.7 and Theorem 4.8 in the main text.

A.1. Proof of Lemma 3.1

Proof By Lemma 3.2, there exist fixed points rλ and r̂λ for Ψλ and Ψ̂λ, respectively. Plugging
these fixed points into (B.1) and (B.2) in Lemma B.1, we have

rλ �

√√√√ 1

n

∞∑
i=1

κλ min
{ rλ
κλ
, µi
}
, (A.1)

r̂λ �

√√√√ 1

n

n∑
i=1

κλ min
{ r̂λ
κλ
, µ̂i
}

+
c1δ

n
. (A.2)

Lemma 3.2 further shows that rλ � sλ/n, and rλ/κλ � λ; for the empirical version, let
δ = sλ, then with probability at least 1 − 4e−sλ , r̂λ � sλ/n leads to r̂λ/κλ � λ. Recall that
ŝλ = argmin{i : µ̂i ≤ λ} − 1. Then by (A.2), with probability at least 1− 4e−sλ ,

1

n

n∑
i=ŝλ+1

µ̂i ≤
1

n

n∑
i=1

min
{
λ, µ̂i

}
� 1

n

n∑
i=1

min
{ r̂λ
κλ
, µ̂i
}
. r̂2

λ/κλ � λsλ/n,
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where the last step is by κλ = sλ
nλ , and r̂λ � sλ/n. Therefore,

n∑
i=ŝλ+1

µ̂i . λsλ ≤ sλµsλ ,

based on the definition (3.1) that λ < µsλ .

A.2. Proof of Theorem 4.2

Proof Let ∆ = KS>(SK2S> + λSKS>)−1SK, under the null hypothesis, Tn,λ = 1
nε
>∆2ε.

We first derive the testing consistency of Tn,λ conditional on x = (x1, · · · , xn) and S. By the
Gaussian assumption of ε, we have µn,λ ≡ E

(
Tn,λ|x, S

)
= tr(∆2)

n and σ2
n,λ ≡ Var

(
Tn,λ|x, S

)
=

2 tr(∆4)/n2. Define U =
Tn,λ−µn,λ

σn,λ
, then for any t ∈ (−1/2, 1/2), we have

log Eε
(

exp(itU)
)

= log Eε
(

exp(itε>∆2ε/(nσn,λ))
)
− itµn,λ/(nσn,λ)

=− 1

2
log det(In − 2it∆2/(nσn,λ))− itµn,λ/(nσn,λ)

=it · tr(∆2)/(nσn,λ)− t2 tr(∆4)/(n2σ2
n,λ) +O(t3 tr(∆6)/(n3σ3

n,λ))− itµn,λ/(nσn,λ)

=− t2/2 +O(t3 tr(∆6)/(n3σ3
n,λ)),

where i =
√
−1, Eε is the expectation with respect to ε, and In is n× n identity matrix. Therefore,

to prove the normality of U , we need to show tr(∆6)/(n3σ3
n,λ) = o(1). Note that

tr(∆6)

(n3σ3
n,λ)
� tr(∆6)

tr(∆4)
· 1√

tr(∆4))

where tr(∆6) = tr
(
(I+λ(SK2S>)−1SKS>)−6

)
and tr(∆4) = tr

(
(I+λ(SK2S>)−1SKS>)−4

)
.

Since tr(∆6)/ tr(∆4) < 1, it is sufficient to prove 1
tr(∆4)

= o(1) as n→∞.

Let (SK2S>)−1SKS> = PΛP−1, where Λ is an s× s diagonal matrix, then

tr(∆4) = tr
(
(I + λΛ)−4

)
=

s∑
i=1

(1 + λΛi)
−4,

with Λi as the ith diagonal element in Λ. Next we show λΛ has at least min{s, ŝλ} bounded eigen-
values. Notice that (SK2S>)−1SKS> has the same non-zero eigenvalues as K1/2S>(SK2S>)−1SK1/2.
For K = UDU>, let U = (Us, Un−s), D = (Ds, Dn−s) with Ds = diag{µ̂1, · · · , µ̂s}, Dn−s =
diag{µ̂s+1, · · · , µ̂n}. Let S̃1 = SUs, S̃2 = SUn−s, K1/2S>(SK2S>)−1SK1/2 can be rewritten
as the block matrix:

K1/2S>(SK2S>)−1SK1/2 =

(
D

1/2
s S̃>1

D
1/2
n−sS̃

>
2

)
(SK2S>)−1

(
S̃1D

1/2
s S̃2D

1/2
n−s

)
=

(
A1 A2

A3 A4

)
,
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where A1 = D
1/2
s S̃>1 (SK2S>)−1S̃1D

1/2
s . By Lemma B.5 of the eigenvalue interlacing for princi-

pal submatrices theorem, we only need to prove λA1 has at least min{s, sλ} bounded eigenvalues.
Using Binomial Inverse Theorem,

(SK2S>)−1 = (S̃1D
2
s S̃

T
1 )−1 − (S̃1D

2
s S̃

T
1 )−1Γ(S̃1D

2
s S̃

T
1 )−1, (A.3)

where Γ is a symmetric matrix defined as

Γ = S̃2D
2
n−sS̃

>
2

(
S̃2D

2
n−sS̃

>
2 + S̃2D

2
n−sS̃

>
2 (S̃1D

2
1S̃

T
1 )−1S̃2D

2
n−sS̃

>
2

)−1
S̃2D

2
n−sS̃

>
2 .

Plugging (A.3) into A1, we have

D1/2
s S̃>1 (SK2S>)−1S̃1D

1/2
s = D−1

s −H,

where H is a semi-positive matrix. Based on Lemma B.6 of Weyl’s inequality, the ith eigenvalue
of D−1

s is greater than the ith eigenvalue of A1. Recall ŝλ = argmin{i : µ̂i ≤ λ} − 1, we have
λ/µ̂i ≤ 1 for i = 1, · · · , ŝλ. Hence, there exist at least min{s, ŝλ} bounded eigenvalues for λA1.
Finally, we have

tr(∆4) ≥ C min{s, ŝλ}, where C is some constant. (A.4)

When n→∞ and λ→ 0, we have s→∞ and sλ →∞ by Assumption A2. On the other hand, by
Lemma 3.2, with probability at least 1− e−csλ , sλ � ŝλ for 1/n < λ < 1. Therefore, ŝλ → ∞ as

n→∞ and λ→ 0. Then Eε(e
itU ) −→ e−

t2

2 with probability approaches 1 as n→∞ and λ→ 0.
We next consider Ex,S Eε(e

itU ) by taking expectation w.r.t x, S on Eε(e
itU ). We claim

Ex,S Eε(e
itU ) −→ e−

t2

2 for t ∈ (−1
2 ,

1
2). If not, there exists a subsequence of r.v {xnk , Sn′k}, such

that for ∀ε > 0, |Exnk ,Snk
Eε e

itU−e−
t2

2 | > ε. On the other hand, since Eε e
itU(xnk ,Snk ) P−→ e−

t2

2 ,
which is bounded, there exists a sub-sub sequence {xnkl , Snk′l

}, such that

Eε e
itU(xnkl

,Sn
k′
l

) a.s−→ e−
t2

2 .

Thus by dominate convergence theorem, Exnkl
,Sn

k′
l

Eε e
itU −→ e−

t2

2 , which is a contradiction.

Therefore, we have U =
Tn,λ−µn,λ

σn,λ
asymptotically converges to a standard normal distribution.

A.3. Proof of Theorem 4.4

Proof Under H linear
0 , it can be shown that

T ∗n,λ =
1

n
ε′(I −H)∆2(I −H)ε

with µ∗n,λ = tr
(
(I −H)∆2(I −H)

)
/n and σ∗n,λ =

√
2 tr

(
(I −H)∆4(I −H)

)
/n.

Similar to Theorem 4.2, we only need to prove tr
(
(I − H)∆2(I − H)

)
→ ∞ as n → ∞.

Notice that tr
(
(I −H)∆2(I −H)

)
= tr

(
∆2(I −H)

)
= tr(∆2) − tr(∆2H). For tr(∆2H), we

have tr(∆2H) = tr(∆2H2) = tr(H∆2H). Since rank(H∆2H) ≤ a+ 1, and λmax(H∆H) ≤ 1,
therefore tr(∆2H) ≤ a + 1. Recall a is the dimension of x. Finally we have tr

(
(I −H)∆2(I −

H)
)
≥ min{s, ŝλ} − a− 1. The last step is based on the proof of Theorem 4.2.
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A.4. Proof of Theorem 4.5

We prove the the testing is minimax optimal as stated in Theorem 4.5.
Proof

n‖f̂R‖2n =n‖KS>(SK2S> + λSKS>)−1SKf + KS>(SK2S>λSKS>)−1SKε‖2n
=n‖Eε f̂R‖2n + n‖KS>(SK2S> + λSKS>)−1SKε‖2n

+ 2(Eε f̂R)>KS>(SK2S> + λSKS>)−1SKε

:=T1 + T2 + T3. (A.5)

Lemma B.3 shows that ‖f−Eε f̂R‖2n ≤ Cλwith probability 1−e−c1s−e−c2sλ . SetC ′ =
√

2C.
Given the separation rate ‖f‖2n ≥ C

′2d2
n,λ = 2C(λ+ σn,λ), we have

T1 =n‖Eε f̂R‖2n ≥
n

2
‖f‖2n − n‖f − Eε f̂R‖2n ≥ nC(λ+ σn,λ)− nCλ ≥ nCσn,λ

with probability at least 1− e−c1s − e−c2sλ , where c1, c2 is specified in Assumption A3.
Next, notice that T3 = (Eε f̂R)>∆ε. Consider η>∆2η, where η = (η1, · · · , ηn) ∈ Rn is an

arbitrary vector. Since η>∆2η ≤ λmax(∆2)η>η, where ∆2 has the same non-zero eigenvalue as

∆̃2 =(SK2S> + λSKS>)−1SK2S>(SK2S> + λSKS>)−1SK2S> = (I + λ(SK2S>)−1SKS)−2,

then we have ||∆̃2||op ≤ 1, and λmax(∆2) ≤ 1. Therefore,

Eε T
2
3 = (Eε f̂R)>∆2(Eε f̂R) ≤ (Eε f̂R)>(Eε f̂R) = T1,

then

P
(
|T3| ≥ ε−

1
2T

1/2
1 |x, S

)
≤ Eε T

2
3

ε−1T1
≤ ε

Define E1 = {T1 ≥ Cnσn,λ}, E2 = {T2/n−µn,λσn,λ
≤ Cε}, where Cε satisfies P(E2) ≥ 1 − ε,

E3 = {T3 ≥ −ε−1/2T
1/2
1 }. Finally, with probability at least 1− e−c1s − e−c2sλ ,

Pf
( 1
n(T1 + T2 + T3)− µn,λ

σn,λ
≥ z1−α/2

∣∣∣∣x, S)
≥Pf

(T1 + T2

nσn,λ
+

1
nT2 − µn,λ

σn,λ
≥ z1−α/2, E1 ∩ E2 ∩ E3

∣∣∣∣x, S)
≥Pf

(T1(1− ε−1/2T
−1/2
1 )

nσn,λ
− Cε ≥ z1−α/2, E1 ∩ E2 ∩ E3

∣∣∣∣x, S)
≥Pf

(
C(1− 1√

Cnσn,λε
)− Cε ≥ z1−α/2, E1 ∩ E2 ∩ E3

)
=Pf (E1 ∩ E2 ∩ E3) ≥ 1− 3ε

The second to the last equality is achieved by choosing C to satisfy
1√

Cnσn,λε
<

1

2
and

1

2
C − Cε ≥ z1−α/2.

18
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A.5. Proof of Theorem 4.6

To prove Theorem 4.6, we only need to prove the orders of µn,λ and σ2
n,λ. Suppose that H is

generated by an m-order PDK or γ-order EDK. The following Lemma characterizes the orders of
µn,λ and σ2

n,λ for PDK and EDK.

Lemma A.1

(a) (PDK) Suppose that 1/n < λ→ 0 as n→∞. Meanwhile, Assumption A3 holds with c1, c2 ∈
(0,∞] and m > 3/2. Then with probability at least 1− e−cmn(2m−3)/(2m−1) − e−c1s − e−c2sλ ,
it holds that µn,λ � sλ/n and σ2

n,λ � sλ/n
2, where cm is an absolute constant depending on

m only.

(b) (EDK) Suppose that H is generated by EDK with γ > 0, p ≥ 1. Suppose that Assumption A3
holds with c1, c2 ∈ (0,∞]. Then with probability at least 1−e−cγ,pn(logn)−2/p−e−c1s−e−c2sλ ,
it holds that µn,λ � sλ/n and σ2

n,λ � sλ/n
2, where cγ,p is an absolute constant depending on

γ, p.

Proof We first analyze the orders of µn,λ and σn,λ for PDK, i.e., Lemma A.1 (a). Recall in (A.4),
we proved that tr(∆) & min{s, ŝλ}. Next we show with probability approaching 1,

tr(∆4) ≤ tr(∆2) ≤ tr(∆) . ŝλ. (A.6)

On the other hand, when λ ≥ 1/n, by Lemma B.2 (a), with probability at least 1−e−cmn(2m−3)/(2m−1)
,

ŝλ � sλ. Combining (A.4) with (A.6), we have σ2
n,λ � sλ/n

2 and µn,λ � sλ/n with probability
approaching 1.

Note that tr(∆) = tr(∆̃), where ∆̃ = DU>(SK2S> + λSKS>)−1SUD. ∆̃ can be written
as

∆̃ =

(
∆̃1 ∆̃2

∆̃3 ∆̃4

)

with ∆̃1 = DsS̃
>
1 (SK2S>+λSKS>)−1S̃1Ds, and ∆̃4 = Dn−sS̃

>
2 (SK2S>+λSKS>)−1S̃2Dn−s.

Here Ds = diag{µ̂1, · · · , µ̂s}, Dn−s = diag{µ̂s+1, · · · , µ̂n}, S̃1 = SUs, and S̃2 = SUn−s, where
Us is the first s column of U and Un−s is the last n− s column of U .

Let Λ = diag{Λ1,Λ2} = diag{D2
s + λDs, D

2
n−s + λDn−s}. Then ∆̃1 can be expressed as

∆̃1 = DsS̃
>
1 (S̃1Λ1S̃

>
1 + S̃2Λ2S̃

>
2 )−1S̃1Ds

=D2
sΛ
−1
1 −DsS̃

T
1 (S̃1Λ1S̃

>
1 )−1

(
(S̃2Λ2S̃

>
2 )−1 + (S̃1Λ1S̃

>
1 )−1

)−1
(S̃1Λ1S̃

>
1 )−1S̃1Ds.

Therefore,
tr
(
D1S̃

>
1 (SK2S> + λSKS>)−1S̃1D1

)
≤ tr(D2

1Λ−1
1 ) ≤ sλ. (A.7)

The last inequality is deduced by the following step

tr(D2
1Λ−1

1 ) =

ŝλ∑
i=1

µ̂i
µ̂i + λ

+

s∑
i=ŝλ+1

µ̂i
µ̂i + λ

≤ ŝλ +
1

λ

s∑
i=ŝλ+1

µ̂i ≤ 2sλ
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with probability at least 1−e−cmn(2m−3)/(2m−1)−e−c1s−e−c2sλ by Lemma B.2(a) and Lemma 3.1.
Next, we consider ∆̃4. Note that

tr
(
Dn−sS̃

>
2 (SK2S> + λSKS>)−1S̃2Dn−s

)
≤ tr

(
Dn−sS̃

>
2 (λSKS>)−1S̃2Dn−s

)
≤ µ̂s
λ

tr
((

(S̃2Dn−sS̃
>
2 )−1S̃1DsS̃

>
1 + Is×s

)−1
)
≤ sµ̂s/λ. (A.8)

We show sµ̂s/(λsλ) ≤ C with probability approaching 1, where C is some absolute constant. Then
by (A.8), tr(∆̃4) . sλ. If dsλ ≤ s ≤ n1/(2m), then by Lemma B.2(a), we have µs/2 ≤ µ̂s ≤ 3µs/2

with probability at least 1− e−cmn(2m−3)/(2m−1)
, where m > 3/2. Then

sµ̂s
λsλ
≤ 3sµs

2λsλ
.
s1−2m

s1−2m
λ

= O(1).

If s� n1/(2m), based on the proof of Lemma B.2, in (B.3) and (B.4),

P
(
|µ̂i − µi| ≥ µiε̃+ r1−2m

)
≤ 1− exp

(
− c′mnε̃2/r2

)
.

Let ε̃ = n−
2m−1
2m s2m−1 and r = n

1
2m s

1
2m−1 , then

sµ̂s ≤ sµsε̃+ sr1−2m = n−
2m−1
2m ,

with probability at least 1 − e−c′n(2m−3)/(2m−1)
. The probability is obtained by calculating nε̃2/r2.

Based on the assumption 1/n ≤ λ ≤ 1, λsλ � λ1−1/(2m) ≥ n−
2m−1
2m . Finally we have sµ̂s

λsλ
≤ C,

i.e., sµ̂s/λ ≤ Csλ, where C is some bounded constant.
Combining with (A.7), we have

tr(∆) = tr(∆̃) ≤ tr(∆̃1) + tr(∆̃4) . sλ,

with probability at least 1 − e−c′n(2m−3)/(2m−1) − e−c1s − e−c2sλ , where c′ is a constant only de-
pending on m and c1, c2 > 0 are defined in Assumption A3.

Next, we prove Lemma A.1 (b). Following the same notation and strategy in the proof of Lemma
A.1 a, (A.7) also holds for EDK, with probability at least 1 − e−cγ,pn(logn)−2/p − e−c1s − e−c2sλ
by Lemma B.2 (a) and Lemma 3.1. For EDK, (A.8) also holds. Next we will prove that tr(∆̃2) ≤
sµ̂s/λ ≤ Csλ, where C is an absolute constant. If dsλ ≤ s . n1/2−ε , na for any 0 < ε < 1/2,
then by Lemma B.2 (b), µ̂s ≤ 3

2µs. Therefore

sµ̂s
λsλ

.
sµs
sλµsλ

≤ 1,

with probability at least 1 − e−cγ,pn(logn)−2/p
, where the last inequality is by the fact that sµs �

se−γs
p

is decreasing w.r.t s when γpsp − 1 > 0. When s ≥ n1/2, by Lemma B.2 (b),

sµ̂s
λsλ
≤ s2µs

λsλ
.
ns2

sλ
e−γs

p
= o(1),

with probability at least 1−e−n. Thus, we achieve tr
(
Dn−sS̃

>
2 (SK2S>+λSKS>)−1S̃2Dn−s

)
≤

sλ with probability at least 1−e−cγ,pn(logn)−2/p
. Combining with (A.4) and (A.7), we have tr(∆) .

sλ with probability at least 1− e−cγ,pn(logn)−2/p − e−c1s − e−c2sλ .
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A.6. Proof of Theorem 4.7

Proof Notice that

‖f̂R − f0‖2n = ‖Eε f̂R − f0‖2n + ‖f̂R − Eε f̂R‖2n +
2

n

(
f̂R − Eε f̂R

)>(
Eε f̂R − f0

)
≡ T1 + T2 + T3.

We first consider T1 as follows:

‖Eε f̂R − f0‖2n = ‖KS>(SK2S> + λSKS>)−1SKf0 − f0‖2n
= ‖UTKS>(SK2S> + λSKS>)−1SKf0 − UT f0‖2n.

Let S = Us, where Us is the first s columns of U . Let f0(·) =
∑n

i=1K(xi, ·)wi with w =
(w1, · · · , wn)> = Uα, where α ∈ Rn satisfies

α2
i =

{
1
n
C
s µ̂
−1
i , for i = s+ 1, · · · , 2s;

0, otherwise.
(A.9)

Then ‖f0‖2H = nα>Dα = n
∑2s

i=s+1 α
2
i µ̂i = C, and

‖Eε f̂R − f0‖2n = n

s∑
i=1

α2
i (µ̂

2
i (µ̂i + λ)−1 − µ̂i)2 + n

n∑
i=s+1

α2
i µ̂

2
i

=
1

s

2s∑
i=s+1

µ̂i ≥ µ̂2s ≥
1

2
µ2s � λ†. (A.10)

The last inequality holds with probability greater than 1−e−nδn by Lemma B.2. On the other hand,
there always exists λ� λ†, such that the corresponding sλ = s/d. Then by (A.10), with probability
greater than 1− e−nδn ,

‖Eε f̂R − f0‖2n ≤
3

2
µs ≤

3

2
µsλ � λ,

i.e., T1 = OP (λ), based on the definition (3.1) for sλ.
Furthermore, we have T2 = OP (µn,λ) = OP ( sλn ) by the proof of Corollary 4.3. Note that

λ† satisfies λ† � s†λ
n . Then for λ � λ†, we have T2 = op(T1). Therefore, T3 = oP (T1) due to

Cauchy-Schwarz inequality T3 ≤ T 1/2
1 T

1/2
2 . Finally, with probability at least 1− e−nδn ,

sup
f0∈B
‖f̂R − f0‖2n & sup

f0∈B
‖Eε f̂R − f0‖2n ≥ Cµ2s � Cλ†.

The last step is based on the definition of λ† and the fact that 2s� s†.

A.7. Proof of Theorem 4.8

Proof Without loss of generality, here we consider H0 : f = f0 with f0 = 0. We construct the true
f(·) =

∑n
i=1K(xi, ·)wi with w = (w1, · · · , wn)> = Uα, where α ∈ Rn satisfies
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α2
i =

{
1
n

C
s−1 µ̂

−1
gs+k for i = (gs+ k) k = 1, 2, · · · , s− 1;

0 otherwise.
(A.11)

Choose g ≥ 1 to be an integer satisfying (g + 1)s� s∗. By definition,

‖f‖2H = nα>Dα = n
s−1∑
k=1

α2
gs+kµ̂gs+k = C

and

‖f‖2n =nα>D2α = n
s−1∑
k=1

α2
gs+kµ̂

2
gs+k =

C

s− 1

s−1∑
k=1

µ̂gs+k.

Then by Lemma B.2, with probability at least 1− e−nδn ,

‖f‖2n ≥
C

2
µgs+s = β2

n,λd
∗2,

where β2
n,λ = C

2 µ(g+1)s/µs∗ , and β2
n,λ →∞ as n→∞, d∗2 = λ∗ � µs∗ .

Let S = Us, where Us is the first s columns of U . Then S satisfies Assumption A3 with c1 =
c2 = +∞, i.e., the K-satisfiability holds almost surely. SU = (S̃1 S̃2), where S̃1 = SUs = Is×s
and S̃2 = SUn−s = 0. Recall in eq. (A.5) for nTn,λ. Plugging S and f into T1, we have

T1 = f>KS>(SK2S> + λSKS>)−1SK2S>(SK2S> + λSKS>)−1SKf

= f>UDS̃>(S̃D2S̃> + λS̃DS̃>)−1S̃D2S̃>(S̃dS̃> + λS̃DS̃>)−1S̃DU>f

= n
s∑
i=1

α2
i

µ̂4
i

(µ̂i + λ)2
= 0,

where the last step is by the construction of α that α1 = αs = 0. T1 = 0 � nσn,λ. Furthermore,
|T3| = T

1/2
1 OPf (1) = oPf (nσn,λ). Therefore

Tn,λ − µn,λ
σn,λ

=
T1 + T3

nσn,λ
+
T2/n− µn,λ

σn,λ

=
T2/n− µn,λ

σn,λ
+ oPf (σn,λ)

d−→N(0, 1).

Then we have, as n→∞, with probability at least 1− e−cnδn − e−c1s − e−c2sλ ,

inf
f∈B,‖f‖n≥βn,λd∗

Pf
(
φn,λ = 1|x, S

)
≤ Pf

(
φn,λ = 1|x, S

)
→ α.
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Appendix B. Additional Proofs and Technical Lemmas

B.1. Some key lemmas

We first show that Ψλ(r) and Ψ̂λ(r) have an asymptotically equivalent expression in terms of µi’s
(µ̂i’s) for a wide-ranging α, where µ̂i’s are the eigenvalues of K (in a descending order µ̂1 ≥ µ̂2 ≥
· · · ≥ µ̂n ≥ 0). Recall that µi’s are eigenvalues of the kernel function K; see (2.1). Ψλ(r) and
Ψ̂λ(r) are defined in (3.3) and (3.4), respectively.

Lemma B.1

(a) Suppose µ1 > 1/n. For any λ > 1/n, it holds that

Ψλ(r) �

√√√√ 1

n

∞∑
i=1

κλ min{ r
κλ
, µi}. (B.1)

(b) For any λ > 0, it holds that

Ψ̂λ(r) �

√√√√ 1

n

n∑
i=1

κλ min{ r
κλ
, µ̂i}. (B.2)

Proof We first prove (B.2). Define x = (x1, · · · , xn). Let (K, 〈·, ·〉) be a RKHS H. Any f ∈ H
can be presented as f(·) =

∑n
i=1 ciK(xi, ·) + ξ(·) with ξ(·) ⊥ span{K(x1, ·), · · · ,K(xn, ·)}.

Therefore f(xj) =
∑n

i=1 ciK(xi, xj) for j = 1, · · · , n. Let f = (f(x1), · · · , f(xn))>, we have
f = nKc, where K is the kernel matrix, c = (c1, · · · , cn)>. Let K = ΦΦ> with Φ = UD1/2.
Then nKc = nΦΦ>c =

√
nΦβ with

√
nΦ>c ≡ β. Then we have

n∑
i=1

f2(xi) = n2c>K2c = nβ>Φ>Φβ = nβ>D1/2U>UD1/2β = n
n∑
i=1

β2
i µ̂i.

Note that Pnf2 = 1
n

∑n
i=1 f(xi)

2 ≤ r is equivalent to
∑n

i=1 β
2
i µ̂i ≤ r. Therefore,

sup
f∈Fλ
Pnf2≤r

|
n∑
i=1

σif(xi)|2 = sup
f∈Fλ
Pnf2≤r

n2|σ>Kc|2 = sup
β∈Rn,

∑n
i=1 β

2
i≤κλ∑n

i=1 β
2
i µ̂i≤r

n|σ>Φβ|2

Define F̂λ = {β ∈ Rn|
∑n

i=1 β
2
i ≤ κλ,

∑n
i=1 β

2
i µ̂i ≤ r}, and F̃λ = {β ∈ Rn|

∑n
i=1 d̂iβ

2
i ≤

1}, where d̂i = (κλ min{1, r/(κλµ̂i)})−1. So F̃λ ⊆ F̂λ ⊆
√

2F̃λ. Let Λ = diag{d̂1, · · · , d̂n}.
Then we have

E
(

sup
β∈Rn,

∑n
i=1 β

2
i≤κλ∑n

i=1 β
2
i µ̂i≤r

|σ>Φβ|2
∣∣∣∣x) � E

(
sup
β∈F̃λ

|σ>ΦΛ−1/2Λ1/2β|2
∣∣∣∣x)

= E
(

sup
d∈Rn
d′d≤1

|σ>ΦΛ−1/2d|2
∣∣∣∣x) = E

(
‖σ>ΦΛ−1/2‖22

∣∣∣∣x) = E
(
σ>ΦΛ−1Φ>σ

∣∣∣∣x)
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Note that

E
(
σ>ΦΛ−1Φ>σ

∣∣∣∣x) = tr
(
ΦΛ−1Φ>

)
= tr

(
Λ−1diag{µ̂1, · · · , µ̂n}

)
=

n∑
i=1

µ̂i

d̂i

Therefore, by Kahane-Khintchine inequality, we have

Ψ̂λ(r) �

√√√√ 1

n

n∑
i=1

µ̂i/d̂i =

√√√√ 1

n

n∑
i=1

κλ min{µ̂i,
r

κλ
}.

Similarily, we can achieve (B.1).

B.2. Properties of eigenvalues

Lemma B.2

(a) Suppose thatK has eigenvalues satisfying µi � i−2m withm > 3/2. Then for i = 1, · · · , n1/(2m),

P
(
|µ̂i − µi| ≤

1

2
µi

)
≥ 1− e−cmni−4m/(2m−1)

.

where cm is an universal constant depending only on m.

(b) Suppose that K has eigenvalues satisfying µi � exp(−γip) with γ > 0, p ≥ 1. Then for
i = o(n1/2),

P
(
|µ̂i − µi| ≤

1

2
µi
)
≥ 1− e−cγ,pni−2

,

where cγ,p is an universal constant depending only on γ and p.
For i = O(n1/2), we have

P (|µ̂i − µi| ≤ iµi) ≥ 1− e−c′γ,pn,

where c′γ,p is an universal constant depending only on γ and p.

Proof We apply the proof of Theorem 3 in [8] to deduce our results. Recall in Theorem 3 of [8],
for 1 ≤ i ≤ n, 1 ≤ r ≤ n,

|µ̂i − µi| ≤ µi‖Crn‖+ µr + Λ>r, (B.3)

where Λ>r =
∑∞

i=r+1 µi, and ‖Crn‖ satisfies

P
(
‖Crn‖ ≥ ε̃

)
≤ r(r + 1)e−

nε̃2

2M4r2 , (B.4)

based on Lemma 7 in [8]. M is an absolute constant here.
First we prove Lemma B.2 (a). Consider the polynomial decaying kernel with µi � i−2m.

Notice that

Λ>r �
∞∑

i=r+1

i−2m ≤
∫ ∞
r

x−2mdx =
r1−2m

2m− 1
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Consider i = 1, · · · , n
1

2m , let
r1−2m

2m− 1
=

1

4
µi,

then r = ami
2m/(2m−1), where am is a constant only depends on m. Let ε̃ = 1

4 . Plugging r into
(B.4), we have

P
(
‖Crn‖ ≥

1

4

)
≤ e−cmni−4m/(2m−1)

,

where cm = (64M4a2
m)−1 is an universal constant depends on m. Then we obtain that

P
(
|µ̂i − µi| ≤

1

2
µi

)
≥ 1− e−cmni−4m/(2m−1)

.

Next, we prove Lemma B.2 (b). Consider the exponential decaying kernel with µi � e−γi
p
. For

1 ≤ r ≤ n, when p = 1, then

Λ>r �
∞∑

i=r+1

e−γi ≤
∫ ∞
r

e−γxdx =
e−γr

γ
;

when p ≥ 2, using integration by parts, we have

Λ>r �
∞∑

i=r+1

e−γi
p ≤

∫ ∞
r

e−γx
p
dx

=
1

γprp−1
e−γr

p −
∫ ∞
r

p− 1

γpxp
e−γx

p
dx ≤ aγ,pe−γr

p
.

For i = o(n1/2), let µr + Λ>r ≤ (1 + aγ,p)e
−γrp = 1

4µi, we have r = bγ,pi, where bγ,p is a
constant only depends on γ, p. Then plugging ε̃ = 1

4 and r into (B.4), we have

P
(
‖Crn‖ ≥

1

4

)
≤ e−cγ,pni−2

.

where cγ,p = (64M4b2γ,p)
−1 is an absolute constant only depends on γ, p. Finally, by (B.3), we

have
P
(
|µ̂i − µi| ≤

1

2
µi

)
≥ 1− e−cγ,pni−2

.

When i ≥ n1/2, we do not need a very tight bound. Let ε̃ = i, r = i, then we have

P
(
|µ̂i − µi| ≤ iµi

)
≥ 1− e−c′γ,pn,

where c′γ,p is an absolute constant only depends on γ, p.
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B.3. Proof of Lemma 3.2

Proof We first observe that Fλ = star(Fλ, 0), the star-hull of Fλ at zero. Note that the supremum
in the definitions of Ψλ and Ψ̂λ is based on “quadratic type” constraints Pf2 ≤ r and Pnf2 ≤ r.
Then following [6], Ψλ and Ψ̂λ are both sub-root functions, and thus have unique nonzero fixed
points. Also refer to [21] for the definitions of star-hull and sub-root functions. Define

Ψ̂′λ(r) = Ψ̂λ(r) +
c1δ

n
= E

{
sup
f∈Fλ
Pnf2≤r

1

n

n∑
i=1

σif(xi)

∣∣∣∣x}+
c1δ

n
,

where c1 is a constant. Then by Theorem 4.2 in [4], the fixed points rλ and r̂λ of Ψλ(r) and Ψ̂′λ(r)
satisfy: rλ � r̂λ with probability at least 1− 4e−δ, provided that rλ ≥ c1δ/n.

Let r = rλ in Lemma B.1, we have

rλ �

√√√√ 1

n

∞∑
i=1

κλ min
{ rλ
κλ
, µi
}
. (B.5)

Define ηλ = argmin{i : µi ≤ rλ/κλ} − 1, then (B.5) implies

nr2
λ

κλ
� ηλ

rλ
κλ

+
∞∑

i=ηλ+1

µi. (B.6)

Note that ∑∞
i=k+1 µi

kµk+1
=

1

k
+
k + 1

k
·
∑∞

i=k+2 µi

(k + 1)µk+1
≤ 1 + 2C,

where C = supk≥1

∑∞
i=k+1 µi
kµk

< ∞ by Assumption A1. Therefore,
∑∞

i=ηλ+1 µi . ηλµηλ+1 ≤

ηλ
rλ
κλ

. Then by (B.6), we have nr2λ
κλ
� ηλ rλκλ , i.e., rλ � ηλ

n . Note

µηλ >
rλ
κλ
� ηλ
nκλ

=
ληλ
sλ

,

and recall sλ = argmin{i : µi ≤ λ} − 1 which implies µsλ+1 ≤ λ < µsλ . Then,

µηλ
ηλ

&
λ

sλ
≥ µsλ+1

sλ
≥ µsλ+1

sλ + 1
. (B.7)

Note that µk/k is a decreasing function of k, we thus have ηλ . sλ + 1 by (B.7), i.e., ηλ . sλ. On
the other hand,

µηλ+1 ≤
rλ
κλ
� ληλ

sλ
.
µsλ(ηλ + 1)

sλ
,

i.e.,
µηλ+1

ηλ+1 <
µsλ
sλ

, and we have ηλ + 1 & sλ, i.e., ηλ & sλ. Therefore, ηλ � sλ. Then, we achieve
that rλ � sλ

n . Suppose there exists an constant c2, such that rλ ≥ c2
sλ
n , let δ = c2sλ/c1, then with

probability greater than 1− e−csλ , r̂λ � rλ � sλ/n, where c = c2
2c1

.
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B.4. Bound of the bias term in rn,λ in Corollary 4.3

In this section, we show that the bound of the bias term in rn,λ in Corollary 4.3.

Lemma B.3 Suppose that 1/n < λ < 1 and Assumption A3 holds with c1, c2 ∈ (0,∞]. Then with
probability greater than 1− e−c1s − e−c2sλ ,

‖Eε f̂R − f0‖2n ≤ Cλ,

where C is a positive absolute constant.

Proof Suppose the true function is f0, then yi = f0(xi) + εi for i = 1, · · · , n. Notice that
Eε f̂R(·) =

∑n
i=1(Sβ†)iK(·, xi) with β† = 1

n(SK2S> + λSKS>)−1SKf0, where f0 =
(f0(x1), · · · , f0(xn))>. It is in fact the solution of a noiseless version of quadratic program:

β† = argmin
β∈Rs

{ 1

n
‖f0 − nKS>β‖22 + nλβ>SKS>β

}
. (B.8)

To prove ‖Eε f̂R− f0‖2n ≤ Cλ with probability approaching 1, we only need to find an β̃, such
that

1

n
‖f0 − nKS>β̃‖22 + nλβ̃>SKS>β̃ ≤ Cλ

with probability at least 1− e−c1s − e−c2sλ , where c1, c2 are defined in Assumption A3. Note that
K = UDU>. Setting z = 1√

n
U>f0, (B.8) is equivalent to (B.9) as follows:

β† = argmin
β∈Rs

{
‖z −

√
nDS̃>β‖22 + nλβ>S̃>DS̃β

}
. (B.9)

Let z = (z1, z2)>, where z1 ∈ Rŝλ , and z2 ∈ Rn−ŝλ . Correspondingly, divide D into D1, D2,
where D1 = diag{µ̂1, · · · , µ̂ŝλ} and D2 = diag{µ̂ŝλ+1, · · · , µ̂n}. Denote S̃ = SU = (S̃1, S̃2)

with S̃1 ∈ Rs×sλ as the left block and S̃2 ∈ Rs×(n−sλ) as the right block. We construct an β̃ as

β̃ =
1√
n
S̃1(S̃>1 S̃1)−1D−1

1 z1 ∈ Rs.

Plugging β̃ into (B.9), we see that

‖z −
√
nDS̃>β̃‖22 = ‖z1 −

√
nD1S̃

>
1 β̃‖22 + ‖z2 −D2S̃

>
2 S̃1(S̃>1 S̃1)−1D−1

1 z1‖22 = T 2
1 + T 2

2 .

It is obvious that T 2
1 = 0, and next we analyze T2.

Note that for any f0(·) ∈ H, there exists an n×1 vector ω, such that f0(·) =
∑n

i=1K(·, xi)ωi+
ξ(·), where ξ(·) ∈ H is orthogonal to the span of {K(·, xi), i = 1, · · · , n}. Then, ξ(xj) =
〈ξ,K(·, xj)〉 = 0, and f0(xj) =

∑n
i=1K(xi, xj)ωi. Therefore f0 = nKω, where K is the

empirical kernel matrix. Suppose ‖f0‖H ≤ 1, then

nω>Kω ≤ ‖f0‖H ≤ 1⇒ nω>KK−1Kω> ≤ 1⇒ 1

n
f0
>K−1f0 ≤ 1⇒ 1

n
f0
>UD−1U>f0 ≤ 1,
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which leads to the ellipse constrain that ‖D−1/2z‖2 ≤ 1, where z = 1√
n
U>f0. Obviously,

‖D−1/2
1 z1‖2 ≤ 1, ‖D−1/2

2 z2‖2 ≤ 1. Notice that 1
λf
>U2U

>
2 f ≤ f>U2D

−1
2 U>2 f < n, then

f>U2U
>
2 f ≤ nλ, and

T2 ≤ ‖z2‖2 + ||
√
D2||op||

√
D2S̃

>
2 ||op||S̃1||op||(S̃>1 S̃1)−1||op||D−1/2

1 ||op||D−1/2
1 z1||op ≤ (1 + 3c)

√
λ

with probability at least 1−e−c1s−e−c2sλ by Assumption A3. Therefore, we have ‖z−DS̃>β̃‖22 ≤
c′λ, where c′ = (1 + 3c)2. For the penalty term,

nβ̃>SKS>β̃ ≤z>1 D−1
1 z1 + ‖z>1 D

−1/2
1 ‖2||D−1/2

1 ||op||S̃2D
1/2
2 ||op||D1/2

2 S̃>||op||D−1/2
1 ||op||D−1/2

1 z1||op

≤1 + c2,

where c is constant from the definition 1. Finally, we can claim that

‖Eε f̂R − f0‖2n ≤ ‖z −
√
nDS̃>β̃‖22 + nλβ̃>S̃>DS̃β̃ ≤ Cλ

with probability at least 1 − e−c1s − e−c2sλ , where c is some constant, C = 2 + 10c2 + 6c is an
absolute constant.

B.5. Proof of Corollary 4.3

Proof Denote Eε f̂R as the the expectation of f̂R w.r.t ε. Note that

‖f̂R − f0‖2n ≤ 2‖f̂R − Eε f̂R‖2n + 2‖Eε f̂R − f0‖2n

and ‖f̂R − Eε f̂R‖2n = ε>√
n

∆2 ε√
n

, where ‖ ε√
n
‖ψ2 ≤ L√

n
and ||∆2||op ≤ 1. Recall ‖ · ‖ψ2 is the

sub-Gaussian norm. Here ‖ε‖ψ2 ≤ L, with L as an absolute constant. Then by Hanson-Wright
concentration inequality ([26]) (stated in Lemma B.4), with probability greater than 1 − e−c1s −
e−c2sλ ,

P
(
‖f̂R − Eε f̂R‖2n − Eε ‖f̂R − Eε f̂R‖2n ≥

tr(∆2)

2n

∣∣x, S)
=P
( 1

n
ε>∆2ε− tr(∆2)

n
≥ tr(∆2)

2n

∣∣x, S)
≤ exp

(
− cmin

( tr2(∆2)

4K4‖∆2‖2F
,
tr(∆2)

||∆2||op

))
≤ exp(−c tr(∆2)),

where ‖·‖F is the Frobenius norm. The last inequality holds by the fact that ‖∆2‖2F ≤ ||∆2||op tr(∆2)
and ||∆2||op ≤ 1. Lastly, by (A.4), tr(∆2) ≥ min{s, ŝλ} ≥ ŝλ, which goes to +∞ as n → ∞, we
have that, with probability approaching 1, ‖f̂R − Eε f̂R‖2n ≤ 3

2µn,λ.

Meanwhile, it follows from Lemma B.3 that ‖Eε f̂R−f0‖2n = OP (λ). This completes the proof
of Corollary 4.3.
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B.6. Proof of Lemma 4.1

In this section, we first prove the following (B.10) and (B.11):

P
( 1√

2
≤ λmin(SU1) ≤ λmax(SU1) ≤

√
3

2

∣∣∣∣x) ≥ 1− exp
(
− c1s

)
(B.10)

almost surely, where c1 > 0 is an absolute constant independent of n, s; λmin(SU1) (λmax(SU1))
is the smallest (largest) singular value of SU1.

P
(

P
(
||SU2D

1/2
2 ||op ≤ cλ

∣∣x) ≥ 1− e−c′1s
)
≥ 1− e−c2sλ , (B.11)

where c and c′1 are constants independent of n, s and c2 = 1/2. The result of Lemma 4.1 directly
follow from (B.10) and (B.11).
Proof For K = UDU>, let U = (U1, U2) with U1 ∈ Rn×ŝλ , and U2 ∈ Rn×(n−ŝλ). Recall
S = 1√

s
S∗, where S∗ is the random matrix with independent centered sub-Gaussian entries (with

variance as one), then each row S∗i is independent sub-Gaussian isotropic random vectors in Rn,
i.e., ES∗i S

∗>
i = In×n, i = 1, · · · , s. Let SU1 = 1√

s
(η1, · · · , ηs)>, where ηi ∈ Rŝλ×1 with each

entry ηij = S∗>i U1(j), U1(j) is the jth column of U1, j = 1, · · · , ŝλ.
Firstly, conditional on x, by the definition of sub-Gaussian random vector, each entry ηij is

sub-Gaussian, ηi and ηj(i 6= j) are independent, and ηi is isotropic sub-Gaussian random vector
due to the fact that E(ηiη

>
i |x) = U>1 (ES∗i S

∗>
i )U1 = Iŝλ×ŝλ . By Theorem 5.39 in [35], for any

t > 0,

P
(√s− C√sλ − t√

s
≤ λmin(SU1) ≤ λmax(SU1) ≤

√
s+ C

√
sλ + t√
s

∣∣x)
≥1− 2e−ct

2

almost surely. Let t =
√
s

5 , and d ≥ (0.02C)2, we have

P
( 1√

2
≤ λmin(SU1) ≤ λmax(SU1) ≤

√
3

2

∣∣x) ≥ 1− 2e−cs/25 (B.12)

almost surely. Here C, c > 0 only depend on the sub-Gaussian norm L := maxi ‖ηi‖ψ2 conditional
on x. Note that ηi = S∗i

>Ui,

‖U>i S∗i ‖ψ2 = sup
ν∈Ssλ−1

‖〈U>1 S∗i , ν〉‖ψ2 = sup
κ∈Sn−1

‖κ>S∗i ‖ψ2 and

sup
κ∈Sn−1

‖κ>S∗i ‖2ψ2
= ‖

n∑
j=1

κjS
∗
ij‖2ψ2

≤ C
n∑
j=1

κ2
j‖S∗ij‖2ψ2

≤ C max
1≤j≤n

‖S∗ij‖2ψ2

Therefore, L ≤ maxi,j ‖S∗ij‖ψ2 , which is bounded. Lastly, we have

P
(

P
( 1√

2
≤ λmin(SU1) ≤ λmax(SU1) ≤

√
3

2

∣∣∣∣x) ≥ 1− 2e−cs/25
)

= 1.

Set c̃1 = c/32. Then (B.10) has been proved.
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Next, we prove (B.11). Define A = {x : x satisfies
∑n

i=ŝλ+1 µ̂i ≤ Csλµsλ}. Then P(x ∈
A) ≥ 1− 4e−sλ by Lemma 3.1.

Since (SU2D
1/2
2 )>(SU2D

1/2
2 ) has the same non-zero eigenvalues as SU2D2U

>
2 S
>, it is equiv-

alent to prove λmax(SU2D2U
>
2 S
>) . λ, where λmax(·) refers to the maximum singular value. For

every ν ∈ Ss−1, ν = κ + w, where κ belongs to the 1/2-net N = {µ1, · · · , µM} of the set Ss−1,
here M ≤ e2s; and ‖w‖ ≤ 1/2, where ‖ · ‖ is the Euclidean norm. Then

||SU2D2U
>
2 S
>||op = sup

‖ν‖=1,ν∈Ss−1

‖SU2D2U
>
2 S
>ν‖

≤ sup
κ∈Ss−1

‖SU2D2U
>
2 S
>κ‖+ sup

w∈Ss−1

‖SU2D2U
>
2 S
>w‖

≤ max
κ∈Ss−1

‖SU2D2U
>
2 S
>κ‖+

1

2
||SU2D2U

>
2 S
>||op,

therefore

||SU2D2U
>
2 S
>||op ≤ 2 max

κ∈Ss−1
‖SU2D2U

>
2 S
>κ‖ = 2 max

κ∈Ss−1
|〈SU2D2U

>
2 S
>κ, κ〉|

= 2 max
κ∈Ss−1

|κ′SU2D2U
>
2 S
>κ| = 2

s
max
κ∈Ss−1

|κ′S∗U2D2U
>
2 S
∗>κ|,

where the last equality is by the definition that S = S∗/
√
s.

Note that η = S∗>κ ∈ Rn is a sub-Gaussian vector, and ηi =
∑s

j=1 κjS
∗
ji is independent with

ηj for i, j ∈ {1, · · · , n}, i 6= j; also, E(ηi) = 0,

Var
( s∑
j=1

κjS
∗
ji

)
=

s∑
j=1

κ2
j Var(S∗ji) ≤ C,

where the last inequality is due to the fact that
∑s

j=1 κ
2
j = 1. Let Q = 1

sU2D2U
>
2 . By Hanson-

Wright inequality (stated in Lemma B.4), we have

P(
∣∣η′Qη − tr(Q)| ≥ t

∣∣x ∈ A) ≤ 2e
−cmin{ t2

K4‖Q‖2F
, t
K2||Q||op

}
. (B.13)

Conditional on x ∈ A, tr(Q) = 1
s tr(D2U

>
2 U2) = 1

s

∑n
i=ŝλ+1 µ̂i ≤

sλλ
s ≤ Lλ, where L is some

absolute constant by the assumption that s ≥ dsλ. The penultimate inequality is based on Lemma
3.1 and the definition of sλ in eq. (3.1). Also, note that

‖Q‖2F =
1

s2
tr(D2

2) ≤ 1

s2
µ̂sλ+1

n∑
i=ŝλ+1

µ̂i ≤
sλ
s2
µ̂sλ+1λ

the last step is based on Lemma 3.1 for x ∈ A. Let t = Lλ/2, then

t2

‖Q‖2F
≥ λs

µ̂sλ+1
=

λ

||Q||op

.

Therefore, (B.13) can be further stated as

P(|η′Qη − tr(Q)| ≥ Lλ/2|x ∈ A) ≤ 2e−cLλs/(2µ̂sλ+1) ≤ 2e−c
′Ls,
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where the last inequality is by the definition of µ̂sλ+1. Finally, taking union bound over all µ ∈ N ,
we have

P
(

P
(
||SU2D2U

>
2 S
>||op ≤ 3Lλ|x

)
≥ 1− e−(c′L−2)s

)
≥P
(

P
(
||SU2D2U

>
2 S
>||op ≤ 3Lλ|x ∈ A

)
≥ 1− e−(c′L−2)s

)
· P
(
x ∈ A

)
≥ 1− 4e−sλ .

Let c = 3L, c′1 = c′L − 2 > 0 and c2 = 1/2. Then, we have proved (B.11). Finally, taking
c1 = min{c̃1, c

′
1}, where c̃1 refers to (B.10) and c′1 refers to (B.11), Lemma 4.1 have been proved.

B.7. Verification of Assumption A1

Let us verify Assumption A1 in PDK and EDK.
First consider PDK with µi � i−2m for a constant m > 1/2 which includes kernels of Sobolev

space and Besov Space. An m-th order Sobolev space, denotedHm([0, 1]), is defined as

Hm([0, 1]) ={f : [0, 1]→ R|f (j) is abs. cont for j = 0, 1, · · · ,m− 1,

and fm ∈ L2([0, 1])}.

An m-order periodic Sobolev space, denoted Hm
0 (I), is a proper subspace of Hm([0, 1]) whose

element fulfills an additional constraint g(j)(0) = g(j)(1) for j = 0, . . . ,m−1. The basis functions
φi’s of Hm

0 (I) are

φi(z) =


σ, i = 0,√

2σ cos(2πkz), i = 2k, k = 1, 2, . . . ,√
2σ sin(2πkz), i = 2k − 1, k = 1, 2, . . . .

The corresponding eigenvalues are µ2k = µ2k−1 = σ2(2πk)−2m for k ≥ 1 and µ0 = ∞. In this
case, supi≥1 ‖φ‖sup <∞. For any k ≥ 1,

∞∑
i=k+1

µi .
∫ ∞
k

x−2mdx =
k1−2m

2m− 1
.

kµk
2m− 1

.

Therefore, there exists a constant C <∞, such that

sup
k≥1

∑∞
i=k+1 µi

kµk
= C <∞.

Hence, Assumption A1 holds true. Verification of Assumption A1 on the eigenfunctions for Sobolev
space kernel can be found in [31].

Next, let us consider EDK with µi � exp(−γip) for constants γ > 0 and p > 0. Gaussian kernel
K(x, x′) = exp

(
−(x− x′)2/σ2

)
is an EDK of order p = 2, with eigenvalues µi � exp(−πi2) as

i→∞, and the corresponding eigenfunctions

φi(x) = (
√

5/4)1/4(2i−1i!)−1/2e−(
√

5−1)x2/4Hi((
√

5/2)1/2x),
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where Hi(·) is the i-th Hermite polynomial; see [34] for more details. Then supi≥1 ‖φi‖sup < ∞
trivially holds. For any k ≥ 1,

∞∑
i=k+1

µi .
∫ ∞
k

e−γx
p
dx =

1

γpkp−1
e−γk

p −
∫ ∞
k

p− 1

γpxp
e−γx

p
dx ≤ 1

γpkp−1
e−γk

p
.

Therefore,

sup
k≥1

∑∞
i=k+1 µi

kµk
<∞.

Hence, Assumption A1 holds.

B.8. Auxiliary lemmas

Lemma B.4 (Hanson-Wright inequality [26]) Let X = (X1, · · · , Xn) ∈ Rn be a random vector
with independent components Xi which satisfy EXi = 0 and ‖Xi‖ψ2 ≤ K. Let A be an n × n
matrix. Then, for every t ≥ 0,

P
(
|X>AX − EX>AX| > t

)
≤ 2 exp

(
− cmin

( t2

K4‖A‖2HS
,

t

K2||A||
))

Here ‖A‖HS is the Hilbert-Schmidt (or Frobenius) norm of A.

Lemma B.5 (Eigenvalue interlacing theorem) Suppose A ∈ Rn×n is symmetric. Let B ∈ Rm×m
with m < n be a principal submatrix (obtained by deleting both i−th row and i−th column for
some values of i). Suppose A has eigenvalues λ1 ≤ · · ·λn and B has eigenvalues β1 ≤ · · · ≤ βm.
Then

λk ≤ βk ≤ λk+n−m for k = 1, · · · ,m.

And if m = n− 1,
λ1 ≤ β1 ≤ λ2 ≤ β2 ≤ · · · ≤ βn−1 ≤ λn.

Lemma B.6 (Weyl’s inequality) Let M,H and P are n×n Hermitian matrices with M = H +P ,
where M has eigenvalues µ1 ≥ · · · ≥ µn, and H has eigenvalues ν1 ≥ · · · ≥ νn, and P has
eigenvalues ρ1geq · · · ρn. Then the following inequalities hold for i = 1, · · · , n:

νi + ρn ≤ µi ≤ νi + ρ1

If P is positive definite, then this implies

µi > νi, ∀i = 1, · · · , n.

Appendix C. Simulation Study

In this section, we examine the performance of the proposed testing procedure through simulation
studies in Sections C.1 and C.2.
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C.1. Simulation Study I: PDK

Data were generated from the regression model (1.1) with f(x) = c(3β30,17(x)+2β3,11(x)), where

βa,b is the density function for Beta(a, b), xi
iid∼ Unif[0, 1], εi

iid∼ N(0, 1) and c is a constant. To fit
the model, we consider the periodic Sobolev kernel with eigenvalues µ2i = µ2i−1 = (2πi)−2m for
i ≥ 1; see [15] for details. Set n = 29, 210, 211, 212, and H0 : f = 0. The significance level was
chosen as 0.05 and the Gaussian random projection matrix was applied in this setting.

We examined the empirical performance of the distance-based test Tn,λ The projection dimen-
sion s was chosen as 2nγ for γ = 1/(4m+1), 2/(4m+1), 3/(4m+1), withm = 2 corresponding
to cubic splines. The smoothing parameter λ was chosen by a projection version of Wahba’s GCV
score ([37]) based on f̂R. Specifically, our new GCV score is defined as follows

VS(λ) =
1
nY
>(I −AS(λ))2Y(

1
n tr(I −AS(λ))

)2 , λ > 0,

where AS = KS>(SK2S> + λSKS>)−1SK is a projection version of the classical smoothing
matrix. Our new GCV score enjoys much computational advantage than the classical one in our
empirical study.

Empirical size was evaluated at c = 0, and power was evaluated at c = 0.01, 0.02, 0.03. Both
size and power were calculated based on 500 independent replications. Figure 3 (a) shows that the
size of our testing rule approach the nominal level 0.05 under various choices of (s, n), demonstrat-
ing the validity of the proposed testing procedure. Figure 3 (b), (c), (d) displays the power of Tn,λ.
Under various choices of c and γ, it is not surprising to see from Figure 3 (b), (c), and (d) that the
power approaches one as n or c increases. Rather, a key observation is that the power cannot be
further improved as γ grows beyond the critical point 2/(4m+1) when c ≥ 0.02. This is consistent
with our theoretical result; see Theorem 4.8.

C.2. Simulation Study II: EDK

In this section, we consider a multivariate case and test H0 : f = 0. Data were generated from

yi = c(x2
i1 + 2xi1xi2 + 4xi1xi2xi3) + εi, i = 1, · · · , n,

where (xi1, xi2, xi3) follows fromN(µ, I3) with µ = (0, 0, 0), εi ∼ N(0, 1), and c ∈ {0, 0.05, 0.1, 0.15}.
Specifically, we chose the Gaussian kernel

K(x,x′) = e−
1
2

∑3
i=1(xi−x′i)2 .

We considered sample sizes n = 29 to n = 212 and sketch dimensions s = 1.2 log(n), 1.2(log n)3/2,
1.2(log n)2. For each pair (n, s), experiments were independently repeated 500 times for calculat-
ing the size and power.

Interpretations for Figure 4 about the size and power are similar to those for Figures 3. Interest-
ingly, we observe that the power increases dramatically as γ increases from 1 to 1.5, while becomes
stable near one as γ ≥ 1.5. This is consistent with Theorem 4.6. Figure 5 demonstrates the signifi-
cant computational advantage of our test statistics (corresponding to γ < 1 for PDK, and γ ≤ 2 for
EDK) over the testing procedure based on standard KRR.
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Figure 3: Size and power for Tn,λ with projection dimension and signal strength varies.
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Figure 4: Size and power for Tn,λ with varying projection dimensions. Signal strength c = 0 for
(a); c = 0.05 for (b); c = 0.1 for (c); c = 0.15 for (d).
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Figure 5: Computing time for our testing rule with varying projection dimensions: (a) is polyno-
mially decay kernels; (b) is exponentially decay kernels.
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