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Abstract
The Langevin Markov chain algorithms are widely deployed methods to sample from distribu-

tions in challenging high-dimensional and non-convex statistics and machine learning applications.
Despite this, current bounds for the Langevin algorithms are worse than those of competing algo-
rithms in many important situations, for instance when sampling from weakly log-concave distri-
butions, or when sampling or optimizing non-convex log-densities. We obtain improved bounds
in many of these situations, showing that the Metropolis-adjusted Langevin algorithm (MALA)
is faster than the best bounds for its competitor algorithms when the target distribution satisfies
weak third- and fourth- order regularity properties associated with the input data. In many settings,
our regularity conditions are weaker than the usual Euclidean operator norm regularity properties,
allowing us to show faster bounds for a much larger class of distributions than would be possi-
ble with the usual Euclidean operator norm approach, including in statistics and machine learn-
ing applications where the data satisfy a certain incoherence condition. In particular, we show
that using our regularity conditions one can obtain faster bounds for applications which include
sampling problems in Bayesian logistic regression with weakly convex priors, and the nonconvex
optimization problem of learning linear classifiers with zero-one loss functions. Our main techni-
cal contribution is an analysis of the Metropolis acceptance probability of MALA in terms of its
“energy-conservation error,” and a bound for this error in terms of third- and fourth- order regu-
larity conditions. The combination of this higher-order analysis of the energy conservation error
with the conductance method is key to obtaining bounds which have a sub-linear dependence on
the dimension d in the non-strongly logconcave setting.

1. Introduction

Sampling from a probability distribution is a fundamental algorithmic problem that arises in sev-
eral areas including machine learning, statistics, optimization, theoretical computer science, and
molecular dynamics. In many situations, for instance when the dimension d is large or the tar-
get distribution is nonconvex, sampling problems become computationally difficult, and MCMC
algorithms are among the most popular methods used to solve them.

Formally, we consider the problem of sampling from a distribution π(x) ∝ e−U(x), where one
is given access to a function U : Rd → R and its gradient∇U .

Problem 1 Given access to a function U : Rd → R and its gradient ∇U , an initial point X0, and
ε > 0, generate a sample with total variation error ε from the distribution π(x) ∝ e−U(x).

We also consider the problem of optimizing a function U . Any generic sampling method can also
be used as an optimization technique: if one samples from the distribution ∝ e−T

−1U(x) for a low
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NONCONVEX MALA

enough temperature parameter T > 0 then the samples will concentrate near the global optima.
Specifically, we consider the problem of optimizing a function U(x) on S ⊆ Rd, where one is given
access to a function U : Rd → R, its gradient∇U , and a membership oracle for S:

Problem 2 Given access to a function U : Rd → R and its gradient ∇U , a membership oracle
for S ⊆ Rd, an initial point X0 ∈ S, and ε > 0, generate an approximate minimizer x̂? such that
U(x̂?)− infx∈S U(x) ≤ ε.
The Langevin Monte Carlo algorithms can be thought of as discretizations of the Langevin diffu-
sion with invariant measure π. The Langevin algorithms without Metropolis adjustment work by
approximating a particular outcome of this diffusion. For instance, each step of the unadjusted
Langevin algorithm (ULA) Markov chain X̃ is given as X̃i+1 = X̃i + ηVi − η2/2∇U(X̃i), where
Vi ∼ N(0, Id) is a Gaussian “velocity” term, and η > 0 is a step-size. At each step, the unadjusted
Langevin algorithm chain accumulates some error in its approximation of the Langevin diffusion.
To sample with accuracy ε, the step size η should be small enough that the total error accumulated
by the time the Langevin diffusion reaches a new roughly independent point is no more than ε.

The Metropolis-adjusted Langevin algorithm (MALA, Algorithm 1) avoids the accumulation of
error by introducing a Metropolis correction step. The Metropolis correction step ensures that the
MALA Markov chain has the correct stationary distribution. For this reason, MALA does not need
to approximate a particular outcome of the Langevin diffusion process in order to sample from the
correct stationary distribution. Instead, η only needs to be set small enough that each individual step
of the MALA Markov chain has a high enough (in practice, Ω(1)) acceptance probability. In many
situations, this lack of error accumulation is thought to allow MALA to take longer steps than ULA
while still sampling from the correct stationary distribution (Roberts and Rosenthal (1998)).

Another advantage of the Metropolis correction is that it allows the MALA Markov chain to
converge exponentially quickly to the target distribution, meaning that MALA can sample with
accuracy ε in a number of steps that depends logarithmically on ε−1. ULA, on the other hand,
requires a step size that is polynomial in ε−1 to approximate the Langevin diffusion with accuracy
ε. This logarithmic dependence on ε−1 was shown in Dwivedi et al. (2018) to hold in the special
case when the target distribution is strongly logconcave.

In the case of MALA, the proposal step is X̂i+1 = Xi+ηVi− η2/2∇U(Xi), and the Metropolis
correction step is min(eH(X̂i+1,V̂i+1)−H(Xi,Vi), 1), where V̂i+1 = Vi + η/2∇U(Xi)− η/2∇U(X̂i+1).
The Hamiltonian functionalH is defined asH(x, v) := U(x) +K(v), where U(x) is the “potential
energy” of a particle and K(v) = 1/2‖v‖2 is its “kinetic energy” (see for instance Neal (2011)).
The pair (X̂i+1, V̂i+1) approximates the position and velocity of a particle in classical mechanics
with initial position Xi and initial velocity Vi; this approximation is referred to as the “leapfrog
integrator” and is known to be a second-order method (that is, the error scales as η3 in the limit
as η ↓ 0). The acceptance probability for MALA therefore measures the extent to which our
approximation of the particle’s trajectory conserves the Hamiltonian.

Our contributions. In this paper we obtain improved mixing time bounds for MALA. In par-
ticular, to obtain faster bounds, we use the fact that the velocity term Vi in the MALA algorithm
points in a random direction. Since the Hamiltonian changes much more quickly when the velocity
term points in a worst-case direction than in a typical random direction, bounding the change in the
Hamiltonian for this “average-case” velocity in many cases allows us to use a much larger step size
than would be possible using a worst-case analysis, while still having an Ω(1) acceptance probabil-
ity. This is in contrast to previous analyses of Langevin-based algorithms (Raginsky et al. (2017);
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Zhang et al. (2017); Mangoubi and Vishnoi (2018a); Dwivedi et al. (2018); Cheng and Bartlett
(2018)), whose bounds are obtained by assuming Vi travels in the worst-case direction at every step.

We bound the change in the Hamiltonian as a function of the third and fourth derivatives of
U . Our bounds rely on the fact that in many applications the third derivative ∇3U(x)[Vi, Vi, Vi]
and fourth derivative∇4U(x)[Vi, Vi, Vi, Vi] are much larger if Vi points in the worst-case directions
than if it points in a typical random direction. We obtain bounds in terms of regularity constants
C3 and C4 (Assumption 1), which, roughly speaking, bound these derivatives of U as a function
of ‖X>Vi‖∞. The columns of the matrix X represent the “bad” directions in which the potential
function has larger higher-order derivatives. For instance, in Bayesian logistic regression, these
directions correspond to the independent variable data vectors. Since Vi ∼ N(0, Id), the velocity
Vi is unlikely to have a large component in any of these bad directions, meaning that ‖X>Vi‖∞ in
many cases is much smaller than the Euclidean norm ‖Vi‖2.

The regularity condition for the third derivative is similar to the condition introduced in Man-
goubi and Vishnoi (2018b) to analyze the Hamiltonian Monte Carlo algorithm in the special case
when the log-density U is strongly convex. However, in this paper, we prove bounds for the more
general case when U may be weakly convex or even non-convex. To obtain these bounds in this
more general case, we use the conductance method. This allows us to bound the mixing time of
MALA as a function of the Cheeger constant ψπ (as defined in (1)) of the (possibly nonconvex)
target log-density. For many distributions, our bounds are faster than the current best bounds for
the problem of sampling from these distributions. For instance, when π is weakly log-concave
with identity covariance matrix, the log-density has M -Lipschitz gradient with M = O(1), third-
order smoothness 1 C3 = O(

√
d), and fourth-order smoothness C4 = O(d), we show that MALA

can sample with TV accuracy ε in d7/6 log(β/ε) gradient evaluations given a β-warm start 2 (Section
5.1), improving in this setting on the previous best bound of d2.5 log(1/ε) function evaluations which
were obtained for the Random walk Metropolis (RWM) algorithm (Lee and Vempala (2017)). As
one concrete application, we show that MALA can sample in d7/6 log(β/ε) gradient evaluations for
a class of Bayesian logistic regression problems with weakly convex priors, obtaining the fastest
bounds for this class of problems (Theorem 3, Section 5.2). More generally, for these values of
M , C3, and C4, we show that the number of gradient evaluations required to sample from possibly
nonconvex targets is d2/3ψ−2

π log(β/ε) (Theorem 1). For this setting our bounds for MALA are faster
than the ψ−10

π d10 log5(1/ε) bounds of Raginsky et al. (2017) for the Stochastic gradient Langevin
dynamics algorithm, as well as the best current bound of d2ψ−2

π log(1/ε) for RWM (Algorithm 3) in
this setting, which we formally prove in Section J.

We also prove related bounds (Theorem 2) when MALA is used as an optimization technique
(Algorithm 2). Our bounds for the optimization problem are given in terms of the restricted Cheeger
constant (as defined in (2)), first introduced in Zhang et al. (2017). As one application, we obtain
the fastest running time bounds for the zero-one loss minimization problem analyzed in Awasthi
et al. (2015) and Zhang et al. (2017) (Theorem 4, Section 5.2).

2. Previous results

Previous results for sampling. In the setting where U is (weakly) convex (Table 1), Lee and
Vempala (2017) show that one can sample with TV error ε in O(d2.5 log(β/ε)) function evaluations

1. See Assumption 1 for a detailed definition of the smoothness constants C3 and C4.
2. We say X0 is a β-warm start if it is sampled from a distribution µ0 where supS⊆Rd

µ0(S)/π(S) ≤ β.
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# of (stochastic) gradient
or function calls

Hit-and-run, Lovász and Vempala (2003, 2006a,b) d3 log(β/ε)
Ball walk or RWM, Lee and Vempala (2017) d2.5 log(β/ε)
ULA, Durmus et al. (2017), Dalalyan (2017) d3ε−4 log(β/ε)
MALA, Dwivedi et al. (2018) d3ε−1.5 log(β/ε)

MALA, this paper max(C
2/3
3 d5/6, d7/6, C

1/2
4 d1/2) log(β/ε)

Table 1: Number of gradient or function evaluations to sample from a weakly log-concave distri-
bution with TV error ε, with β-warm start, if target density has identity covariance matrix. For
simplicity, we assume that π has exponential tails with decay rate Ω(1/

√
d), and that M,ν = O(1).

from a β-warm start if the target distribution π is in isotropic position (that is, it has covariance ma-
trix where the ratio of the largest to smallest eigenvalue isO(1)). Durmus et al. (2017) and Dalalyan
(2017) show that one can sample from a weakly log-concave distribution with d3ε−4 log(β/ε) gradi-
ent evaluations with the unadjusted Langevin algorithm (ULA) (see also Cheng and Bartlett (2018)
3). Dwivedi et al. (2018) also analyze MALA in the weakly log-concave setting, and obtain a bound
of O(d3ε−1.5) log(β/ε), if M = O(1) and the fourth moments of U are bounded by ν = O(d2).

In the setting where U is non-convex (Table 2), Raginsky et al. (2017) show that the stochastic
gradient Langevin dynamics algorithm can sample with Wasserstein error ε in Õ([λ−1

π
M
m d((b +

d)M2 +
√
σM
√
b+ d)ε−4 log(1/β)]5) stochastic gradient evaluations from a β-warm start, where

λπ is the spectral gap of the Langevin diffusion on U , if U is (m, b)-dissipative 4 and the variance of
the stochastic gradient is bounded by σ2M2‖x‖22. Raginsky et al. (2017) show that λ−1

π is bounded
above by the Poincaré constant. Since the Poincaré constant is bounded above by ψ−2

π , this gives
λ−1
π ≤ ψ−2

π (Ledoux (2000)). Therefore, in terms of the Cheeger constant, their bound gives
Õ([ψ−2

π
M
m d((b + d)M2 +

√
σM
√
b+ d)ε−4 log(1/β)]5). See also Bou-Rabee and Hairer (2013)

for geometric ergodicity results for MALA, and Eberle et al. (2014) for an analysis of MALA on
logdensities which are strongly convex outside a ball centered at the minimizer of the logdensity.

Previous results for nonconvex optimization. One can also consider the problem of optimizing
a function U : Rd → R on some subset S ⊆ Rd. Raginsky et al. (2017) show that they can obtain
an Õ((ε+

√
σ)d2/ψ2

π + d)-approximate minimizer in Õ(d/(ψ2
π
M
m
ε4)) stochastic gradient evaluations.

Zhang et al. (2017) show that, under certain assumptions on the constraint set S, given a β-
warm start, the stochastic gradient Langevin dynamics algorithm can be used to obtain an ap-
proximate minimizer x̂? such that U(x̂?) − minx∈S U(x) ≤ ε with probability at least 1 − δ in
d4ψ̂−4(G4 + M2) log(β/δ) stochastic gradient evaluations. The quantity ψ̂ ≡ ψ̂e−U (S\U), is the
“restricted” version of the Cheeger constant for the log-density U , restricted to the set S\U , where
U is a set consisting of only ε-approximate minimizers of U , and G2 is a bound on the variance of
the stochastic gradient.

3. Cheng and Bartlett (2018) show that ULA can sample in dM2β̂4
/ε6 gradient evaluations, if given a “Wasserstein

warm start” µ0 such thatW2(µ0, π) ≤ β̂, and U isM -smooth. If the target density is in isotropic position, and given
a β-warm start and exponential tails with a = Ω(1), we have β̂ = O(

√
d log(β)), meaning that the bound in Cheng

and Bartlett (2018) gives O(d3ε−6 log4(β)) gradient evaluations for the usual warm start if M = O(1).
4. U is (m, b)-dissipative if∇U(x)>x ≥ m‖x‖22 − b.
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# of (stochastic) gradient # Markov chain mode of
or function calls steps convergence

ULA Raginsky et al. (2017) ψ−10
π m−5d10 log5(β/ε) same Wasserstein

SGLD Raginsky et al. (2017) ψ−10
π m−5d10 log5(1/β)×(1+

√
σ/d) same Wasserstein

RWM, this paper d2ψ−2
π log(β/ε) same TV

MALA, this paper min(C
2/3
3 d1/3, d2/3, C

1/2
4 )ψ−2

π log(βε ) same TV
RHMC Markov chain Not an algorithm in this setting d

1
2 ψ̃−2

π R log(βε ) TV
Lee and Vempala (2018)

Table 2: Number of gradient (or stochastic gradient) evaluations to sample with TV error ε, from
a possibly nonconvex target distribution with Cheeger isoperimetric constant ψπ, given a β-warm
start. R is a regularity parameter for U with respect to the Riemmannian metric used by RHMC,
and ψ̃π is an isoperimetric constant for the target π with respect to this Riemmannian metric; note
that ψ̃π is equal to ψπ when RHMC uses the Euclidean metric. For simplicity, we assume in this
table that M = O(1) and that π has exponential tails with decay rate Ω(1/

√
d) (that is, a = Ω(1) in

Assumption 2. For ULA and SGLD, we assume that π is (m, b)-dissipative with b = O(d).).

3. Algorithms

3.1. Sampling algorithm

We now state the usual version of the MALA algorithm which is used for sampling:

Algorithm 1 MALA for sampling
input: First-order oracle for gradient∇U , step size η > 0, imax > 0, Initial point X0 ∈ Rd
output: Markov chain X0, X1, . . . , Ximax with stationary distribution π ∝ e−U
for i = 0 to imax − 1 do

Sample Vi ∼ N(0, Id)

Set X̂i+1 = Xi + ηVi − 1
2η

2∇U(Xi) and V̂i+1 = Vi − η∇U(Xi)− 1
2η

2∇U(X̂i+1)−∇U(Xi)
η

Set Xi+1 = X̂i+1 with probability min(1, eH(X̂i,V̂i)−H(Xi,Vi)), and Xi+1 = Xi otherwise
end

Every time a proposal X̂i+1 is made, the MALA algorithm accepts the proposal with probability
min(1, eH(X̂i+1,V̂i+1)−H(Xi,Vi)). One way to view this rule is that it is simply the Metropolis rule for
this proposal, which causes the Markov chain’s transition kernel K to satisfy the detailed balance
equations K(x, y)π(x) = K(y, x)π(y), ensuring MALA has stationary distribution π.

One can also interpret the Metropolis acceptance rule in a different way, inspired by classical
mechanics, which is the approach we use to obtain our bounds in this paper. In this viewH(x, v) :=
U(x) + K(v) gives the energy of a particle with position x and velocity v, where U(x) is the
“potential energy” of the particle and K(v) = 1/2‖v‖2 is its “kinetic energy”. The values of X̂i+1

and V̂i+1 can be viewed as a second-order numerical approximation to the position and velocity of a
particle in classical mechanics, with initial position and velocity (Xi, Vi). The continuous dynamics,
determined by Hamilton’s equations, conserve the Hamiltonian. If (X̂i+1, V̂i+1) approximate the
outcome of the continuous dynamics with low error, the acceptance probability will be Ω(1). The
goal is to choose η as large as possible while still having an Ω(1) acceptance probability.
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3.2. Constrained optimization algorithm

One can also use MALA for constrained optimization, which we do in Algorithm 2:

Algorithm 2 MALA for constrained optimization
input: zeroth-order oracle for U : Rd → R, first-order oracle for gradient ∇U , membership oracle
for a constraint set S ⊆ Rd, step size η > 0, Initial point X0 ∈ Rd
output: An approximate global minimizer x̂? ∈ S
for i = 0 to imax − 1 do

Sample Vi ∼ N(0, Id)

Set X̂i+1 = Xi + ηVi − 1
2η

2∇U(Xi) and V̂i+1 = Vi − η∇U(Xi)− 1
2η

2∇U(X̂i+1)−∇U(Xi)
η

Set Zi+1 = X̂i+1 with probability min(1, eH(X̂i,V̂i)−H(Xi,Vi)), and Zi+1 = Xi otherwise
Set Xi+1 = Zi+1 if Zi+1 ∈ S, and Xi+1 = Xi otherwise

end
Set x̂? = Xi? , where i? = argmini∈{0,...,imax}U(Xi)

4. Assumptions and notation

4.1. Smoothness and tail bound assumptions

In our main result (Th. 1) we show that, under certain regularity conditions, MALA (Alg. 1) can
sample in O(d2/3ψ−2

π log(β/ε)) gradient evaluations. In this section we explain why these regularity
conditions are needed to obtain bounds for MALA with dimension dependence smaller than d1.

We start by noting that if one attempts to bound the number of gradient evaluations required
by MALA using a conventional Euclidean operator norm bound on the higher derivatives of U ,
then the bounds that one obtains in terms of the Cheeger constant (Equation (1)) are no faster
than dψ−2

π gradient evaluations. Recall that X̂i+1, V̂i+1 can be viewed as a second-order numerical
approximation to the position x̂ and velocity v̂ of a particle in classical mechanics after time η, which
has initial position and velocity (Xi, Vi). Bounding the numerical error X̂i+1− x̂ and V̂i+1− v̂ gives
us a bound on the Hamiltonian error. In particular, for the kinetic energy error we have:

|K(v̂)−K(V̂i+1)|≈ |(V̂i+1 − v̂)>∇K(v̂)| = |(V̂i+1 − v̂)>v̂|
≈ |
∫ η

0

∫ r
0 V

>
i [∇2U(Xi)−∇2U(Xi + Viτ)]Vidτdr|

≈
∣∣η3∇3U(Xi)[Vi, Vi, Vi] + η4∇4U(Xi)[Vi, Vi, Vi, Vi]

∣∣.
If we assume the usual “operator norm” Euclidean bound on∇3U and ∇4U , we have
η3∇3U(Xi)[Vi, Vi, Vi] ≤ L3η

3‖Vi‖32 and η4∇4U(Xi)[Vi, Vi, Vi, Vi] ≤ η4L4‖Vi‖42 for some num-
bers L3, L4 > 0. Since Vi ∼ N(0, Id), we have ‖Vi‖2 = Õ(

√
d) with high probability. Hence, to

obtain anO(1) bound on the kinetic energy error, we require η = d−1/2 if L3, L4 = Θ(1). Since the
distance traveled by the MALA Markov chain after i steps is roughly proportional to η

√
d
√
i, the

number of steps to explore a distribution with most of the probability measure in a ball of diameter√
d is roughly i = d for this choice of η if ψ−1

π = 1 (for instance, this is the case when π is a
standard Gaussian, and ψ−1

π = 1 by the Gaussian isoperimetric inequality).
To obtain an O(1) energy error for a larger step size η, we need to control ∇3U(Xi)[Vi, Vi, Vi]

and ∇4U(Xi)[Vi, Vi, Vi, Vi] with respect to a norm which does not grow as quickly with the di-
mension as the Euclidean norm for a random N(0, Id) velocity vector Vi. One way to do so
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would be to replace these bounds with an infinity-norm condition∇3U(Xi)[Vi, Vi, Vi] ≤ C3‖Vi‖3∞
and ∇4U(Xi)[Vi, Vi, Vi, Vi] ≤ C4‖Vi‖4∞. For this norm, ‖Vi‖∞ = O(log(d)) with high prob-
ability since Vi ∼ N(0, Id), implying that η3∇3U(Xi)[Vi, Vi, Vi] ≤ C3η

3 log3(d) rather than
η3∇3U(Xi)[Vi, Vi, Vi] ≤ L3η

3d3/2, and η4∇4U(Xi)[Vi, Vi, Vi, Vi] ≤ C4η
4 log4(d) rather than

η4∇4U(Xi)[Vi, Vi, Vi, Vi] ≤ L4η
4d2. Since for many distributions of interest this condition does

not hold for small values of C3 and C4, we use a more general condition, to obtain smaller C3 and
C4 constants for a wider class of distributions. Specifically, we replace the norm ‖Vi‖∞ with a more
general norm ‖X>Vi‖∞ for some matrix X. Roughly speaking, this regularity condition allows the
third and fourth derivatives to be large in r > 0 “bad” directions X1, . . . ,Xr, as long as they are
small in a typical random direction. More specifically, we assume that

Assumption 1 (C3, C4 > 0,X = [X1, . . . ,Xr] where ‖Xi‖2 = 1 ∀i ∈ [r]) For all x, u, v, w ∈ Rd,
we have |∇3U(x)[u, v, w]| ≤ C3‖X>u‖∞‖X>v‖∞‖w‖2 and |∇4U(x)[u, u, u, u]| ≤ C4‖X>u‖4∞.

We expect this assumption to hold with relatively small values ofC3 andC4 when the target function
U is of the form U(x) =

∑r
i=1 fi(u

>
i x) for functions fi : R→ R with uniformly bounded third and

fourth derivatives. In particular, this class includes the target functions used in logistic regression as
well as smoothed versions of the nonconvex target functions used when learning linear classifiers
with zero-one loss. Finally, we note that our assumption on ∇3U includes both infinity norms and
a Euclidean norm, since our rough approximation of the error in this section ignores higher-order
terms which are best bounded with a slightly different assumption that incorporates both norms. 5

We also assume the target π has exponential tails6 (here x? is a global minimizer of U on Rd):

Assumption 2 (Exponential tails (a > 0)) Suppose X ∼ π. Then P(‖X − x?‖2 > s) ≤ e−
a√
d
s.

We also assume that U has Lipschitz gradient:

Assumption 3 (Lipschitz gradient (M ≥ 0)) For all x ∈ Rd we have ‖∇U(x)‖2 ≤M .

For the constrained optimization problem on a subset S ⊆ Rd, we assume the following about S:

Assumption 4 (Constraint set exit probability) For any z ∈ S, let γz := z + ηv − η2/2∇U(x)
where v ∼ N(0, Id). We assume that P(γz ∈ S) ≥ 1/10 ∀z ∈ S.

4.2. Cheeger constants

For any set A ⊂ Rd, define Aε := {x ∈ Rd : infy∈A ‖x − y‖2 ≤ ε}. We define the Cheeger
constant ψπ of a distribution π with support S ⊆ Rd as follows:

ψπ := lim infε↓0 infS⊆S : 0<π(S)<1/2
π(Sε)−π(S)

επ(S) . (1)

For any Markov chain with transition kernel K and stationary distribution π, we define the conduc-
tance ΨK of the Markov chain to be: ΨK := infS⊆S : 0<π(S)<1/2

K(S,S\S)
π(S) . Next, for any V ⊆ Rd

we define the “restricted Cheeger constant,” originally introduced in Zhang et al. (2017), as

ψ̂π(V ) := lim infε↓0 infS⊆V :π(S)>0
π(Sε)−π(S)

επ(S) , (2)

and the restricted conductance Ψ̂K := infS⊆V :π(S)>0
K(S,S\S)
π(S) .

5. Assumption 1 has two infinity-norms on the right hand side, and one Euclidean norm. One could instead make a
strictly stronger assumption which instead has three infinity norms. It is an interesting open question whether this
stronger assumption would lead to an even stronger bound on the number of gradient evaluations in special cases.

6. We note that Assumption 2 always holds for some value of a > 0 if the target distribution is logconcave.
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4.3. Other Notation

We say X0 is a β-warm start if it is sampled from a distribution µ0 where supS⊆Rd µ0(S)/π(S) ≤ β.
For any probability measure µ : Rd → R denote its covariance matrix by Σµ and its total variation
norm by ‖µ‖TV := supS⊆Rd µ(S). We denote the d × d identity matrix by Id. For any subset
U ⊆ Rd and ∆ > 0, we define the ∆-thickening of U by U∆ := {x ∈ Rd : infy∈U ‖y − x‖2 ≤ ∆}.
For any random variable Z, let L(Z) denote the distribution of this random variable.

5. Main results

5.1. Main Theorems for sampling and optimization

Theorem 1 (Sampling) Suppose that U satisfies Assumptions 1 and 2, and has M -Lipschitz gra-
dient on Rd. Then given a β-warm start, for any step-size parameter
η ≤ Õ(min(C

−1/3
3 d−1/6, d−1/3, C

−1/4
4 ) min(1,M−1/2)[log log(1/a)]−1) there exists I = O(((η−1 +

ηM)ψπ)−2 log(β/ε)) for which Xi of Algorithm 1 satisfies ‖L(Xi)− π‖TV ≤ ε for all i ≥ I.

Theorem 1 states that, from a β-warm start, the MALA Markov chain generates a sample from π
with TV error ε in O(((η−1 + ηM)ψπ)−2 log(β/ε)) gradient evaluations if U = − log(π) satis-
fies Assumptions 1 and 2 and has M -Lipschitz gradient (Assumption 3). Recall from Section 4.2
that ψπ is the Cheeger constant of π. In particular, when π is weakly log-concave with identity
covariance matrix, we have that ψπ = Ω(d−1/4) by Theorem 7 in Lee and Vempala (2017). If we
also have that the log-density has M -Lipschitz gradient with M = O(1), third-order smoothness
C3 = O(

√
d), and fourth-order smoothness C4 = O(d), then MALA can sample with TV accuracy

ε in d7/6 log(β/ε) gradient evaluations given a β-warm start.
Next, we state our main theorem for the problem of optimizing a function on a subset S ⊂ Rd:

Theorem 2 (Optimization) Suppose that U : Rd → R satisfies Assumptions 1 and 2, and has
M -Lipschitz gradient on Rd, and that S ⊆ Rd satisfies Assumption 4. Choose a step-size η ≤
Õ(min(C

−1/3
3 d−1/6, d−1/3, C

−1/4
4 ) min(1,M−1/2)[log log(1/a)]−1) in Alg. 2. Let π(x) ∝ e−U(x)

1S

and let U ⊆ S. Then given an initial point which is β-warm with respect to π, for any δ > 0

we have inf{i : Xi ∈ U∆} ≤ I with probability at least 1 − δ, where I =
4 log(β

δ
)

∆2ψ̂2
π(S\U)

and

∆ = 1
100(1

2η
−1 + 1

4ηM)−1.

Theorem 2 states that, if U satisfies the higher-order smoothness Assumptions 1 and 2, has M -
Lipschitz gradient (Assumption 3), and the constraint set S satisfies Assumption 4, then, roughly
speaking, one can find an approximate minimizer for U on a subset S. More specifically, if U(x)
is R-Lipschitz on S, and we take U to be the sublevel set U = {x ∈ S : U(x) ≤ ε infy∈S U(y)}
consisting of ε-minimizers of U on S and one chooses η small enough that ∆ ≤ ε/R, then Theorem 2

says the number of gradient evaluations to obtain a 2ε-minimizer of U is bounded byO(
4 log(β

δ
)

∆2ψ̂2
π(S\U)

).
In Section 5.2 we apply Theorem 2 to obtain improved bounds on the number of gradient evaluations
for a class of non-convex optimization problems for linear classifiers with binary loss (Theorem 4).

5.2. Applications

Applications to Bayesian regression. In Bayesian regression, one would like to sample from the
target log-density U(θ) = F0(θ)−

∑r
i=1Yiϕ(θ>Xi) + (1−Yi)ϕ(−θ>Xi), where the data vectors

8
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X1, . . .Xr ∈ Rd are thought of as independent variables, the binary data Y1, . . . ,Yr ∈ {0, 1} are de-
pendent variables, ϕ : R→ R is the loss function, and F0 is the Bayesian log-prior. We will assume
that ϕ has its first four derivatives uniformly bounded by 1. Two smooth loss functions of interest
in applications are the (convex) logistic loss function ϕ(s) = − log(e−s + 1)−1 used in logistic
regression, and the non-convex sigmoid loss function ϕ(s) = (e−s + 1)−1 which is more robust to
outliers. We define the incoherence of the data as inc(X1, . . .Xr) := maxi∈[r]

∑r
j=1 |X>i Xj |. We

bound the value of the constant C3 in terms of the incoherence:

Theorem 3 (Empirical function regularity bounds, Th. 2 of Mangoubi and Vishnoi (2018b))
Let U(x) = F0(x) +

∑r
i=1Yiϕ̂(θ>Xi) + (1− Yi)ϕ̂(−θ>Xi), where ϕ : R → R is a function that

satisfies |ϕ′′′(x)| ≤ 1, and F0 is a quadratic function. Let inc(X1, . . . ,Xr) ≤ Φ for some Φ > 0.
Then Ass. 1 is satisfied with C3 =

√
r
√

Φ and “bad” directions Xi = Xi/‖Xi‖2, and with C4 ≤ r.

The proof of Theorem 3 for the bound on C3 is given in the arXiv version of Mangoubi and Vishnoi
(2018b); see Appendix H for the bound on C4.

As an example, consider the case when all r = Θ(d2 log(d/δ)) unit vectors are isotropically dis-
tributed, and we have an improper prior, that is, F0 = 0. Since F0 = 0, the target distribution is not
strongly log-concave; it is only weakly log-concave. Suppose that ‖θ?‖2 = O(1). Since the vectors
are isotropically distributed, with probability 1 − δ the covariance matrix Σπ of the distribution π
satisfies c1

d
r Id 4 Σπ 4 c2

d
r Id for some universal constants c1, c2 (see for instance the Matrix Cher-

noff inequality in Tropp (2012) for the upper bound on the eigenvalues, and Lemma 9.4 of Lee et al.
(2019) for the lower bound on the eigenvalues). We can precondition π by replacing U(x) with the
log-density U(x) ← U(

√
r√
d
x) and sampling from the distribution π(x) ← e−U(x)∫

Rd e
−U(x)dx

; the covari-

ance matrix of this preconditioned π now satisfies c1Id 4 Σπ 4 c2Id, implying that ψπ = Ω(d−1/4)
by Theorem 7 in Lee and Vempala (2017). For this preconditioned U , we have C3 = O(1) and
C4 = O(1), implying that by Theorem 1 we require at mostO(d2/3ψ−2

π log(β/ε)) = O(d7/6 log(β/ε))
gradient evaluations to sample with TV error ε. In this case we therefore have an improvement on
the previous best bound for the non-strongly logconcave setting,7 proved for the ball walk or RWM
Markov chain, which requires O(d2ψ−2

π log(β/ε)) = O(d2.5 log(β/ε)) gradient evaluations (Lee and
Vempala (2017)) (note, however, that this bound for the ball walk holds more generally for any
log-concave distribution with identity covariance matrix). 8

Linear classifiers with binary loss. In Awasthi et al. (2015) and Zhang et al. (2017) the authors
study the problem of learning linear classifiers with zero-one loss functions. The goal is to estimate
an unknown parameter θ?, from data vectors X1, . . .Xr ∈ Rd thought of as independent variables,
and binary response data Y1, . . . ,Yr ∈ {−1, 1}. Here (Xi,Yi) are drawn i.i.d. from some probabil-
ity distributionP . More specifically, the response variable in their model satisfies Yi = sign(X>i θ?)
with probability (1+q(Xi))/2 and Yi = −sign(X>i θ?) otherwise, where q : Rd → [0, 1]. Here q is
assumed to satisfy q(x) ≥ q0|x>θ?| for some q0 > 0. Awasthi et al. (2015) and Zhang et al. (2017)
assume the r data vectors are i.i.d. uniformly distributed on the unit sphere, with r ≥ d4/(q20ε

4).

7. Whenever one bounds the Cheeger constant of π(x) ∝ e−U(x), the same bound holds, up to an Ω(1) factor, for a
(possibly nonconvex) perturbation π̂(x) ∝ e−U(x)+φ(x) if the perturbation φ : Rd → R is uniformly bounded by
some b = Θ(1) (Applegate and Kannan, 1991).

8. In this example one must compute the gradients of r = Θ(d2 log( d
δ
)) component functions ϕ((

√
r√
d
x)>Xi) in order

to compute∇U(x). Therefore, it may be possible to improve on our dependence on d by using a stochastic gradient-
based method. However, if one uses a stochastic gradient method, which lacks a Metropolis step, the dependence of
the gradient evaluation bounds on ε−1 would no longer be logarithmic and would instead be polynomial.

9
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The goal is to find an estimate for θ? which (approximately) minimizes the following popu-
lation expected loss function: F (x) := E(a,b)∼P`(x; (a, b)). To find this estimate, Zhang et al.
(2017) employ a stochastic gradient Langevin dynamics method, to obtain an approximate mini-
mizer θ̂ such that F (θ̂) − F (θ?) < ε with probability at least 1 − δ in Õ(d13.5/ε16 log(β/δ)) in-
ner product evaluations, and Õ(d14.5/ε16 log(β/δ)) arithmetic operations given a β-warm start, if
q0 = O(1) 9. We instead use Algorithm 2, and show that one can use this algorithm to obtain
an approximate minimizer in Õ

(
d25/6+4ε−22/3−4 log(β/δ) log(1/δ)

)
inner-product evaluations and

Õ
(
d25/6+5ε−22/3−4 log(β/δ) log(1/δ)

)
≤ Õ

(
d9.2ε−11.4 log(β/δ) log(1/δ)

)
operations. This improves

on the dependence of the previous best bound on d and ε, at the expense of a log(1/δ) factor.
To obtain their result, Zhang et al. (2017) attempt to find an approximate minimizer for the zero-

one empirical risk function f(x) :=
∑r

i=1 `(x; (Xi,Yi)). Although this empirical function is not
smooth, they use a stochastic gradient which acts as a smoothing operator, and they then use SGLD
to find an approximate minimizer for the smoothed empirical function.

In our approach we instead obtain a smoothed version of F by approximating the zero-one
loss with a very steep logistic loss, and show that minimizing this smoothed function gives an
approximate minimizer for the zero-one population loss function f̃(x) := 1/r

∑r
i=1

ˆ̀(λx; (Xi,Yi))
for some scaling constant λ > 0, where ˆ̀(a; (s, b)) := bϕ(θ>a)− (1− b)ϕ(−θ>a).

Towards this end, we consider the problem of optimizing the function F(x) := F (x/λ) on the set
S := T 1/2λ[B\1/2B], where B is the unit ball. To find an approximate global minimizer of F , we
run the MALA chain with stationary distribution ∝ e−U(x), where U(x) := T −1f̃(x/(d

1/4λ)) at the
inverse temperature T −1 = c1d

3
2/(q0ε2), with λ = 100

√
d/(T log(T )). We show the following bound on

the number of gradient evaluations required to find an ε-approximate global minimizer for F :

Theorem 4 (Zero-one loss minimization) Suppose that ε < 1/10. Let U(x) := T −1f̃(x/(d
1/4λ)).

Then for any δ > 0 with probability at least 1 − δ Algorithm 2 generates a point x̂? such that
F (x̂?)− infx∈S F (x) ≤ ε in I = Õ(d25/6q

11/3
0 ε−22/3 log(1/δ) log(β/δ)) evaluations of U and ∇U .

6. Technical overview

6.1. Proof for sampling

To prove Theorem 1, we use the conductance approach (see Vempala (2005) for a survey): We first
bound the chain’s conductance in terms of the Cheeger constant, then bound its mixing time in terms
of its conductance.

Bounding the conductance. To bound the conductance, we can use a result from Lee and Vem-
pala (2018) (reproduced here as Lemma 7) which says that if for any x, y with ‖x − y‖2 ≤ ∆ we
have ‖K(x, ·) −K(y, ·)‖TV ≤ 0.97, then the Markov chain with transition kernel K has conduc-
tance ΨK = Ω(∆ψπ). The bulk of our proof involves showing that if K is the transition kernel of
MALA with step size roughly

η ≤ Õ(min(C
−1/3
3 d−1/6, d−1/3, C

−1/4
4 ) min(1,M−1/2)[log log(1/a)]−1),

then ‖K(x, ·)−K(y, ·)‖TV ≤ 0.97 whenever ‖x− y‖2 ≤ ∆, for ∆ = 1
100(1

2η
−1 + 1

4ηM)−1.

9. Each inner product takes d arithmetic operations to perform.

10
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There are two steps in showing the conditions of Lemma 7 hold: We first show that if η is small
enough that the acceptance probability is at least 0.99, then ‖K(x, ·)−K(y, ·)‖TV ≤ 0.97 whenever
‖x− y‖2 ≤ ∆ for ∆ = 1

100(1
2η
−1 + 1

4ηM)−1 (Lemma 12). We then show that, for our choice of η,
MALA’s proposals have a 0.99 acceptance probability whenever the position Xi, and velocity Vi,
stay inside a certain “good set” G containing most of the probability measure ∝ π(x)× e−‖v‖2 .

Bounding the acceptance probability using Hamiltonian dynamics. To bound the acceptance
probability, we consider each step of the MALA Markov chain as an approximation to a particle
trajectory in classical mechanics. Each proposed step X̂i+1 of the MALA chain approximates the
trajectory of a particle with initial positionXi and initial velocity Vi. The total energy of this particle
isH(x, v) := U(x)+K(v), whereU(x) is the “potential energy” of the particle andK(v) = 1/2‖v‖2
is its “kinetic energy”. The Hamiltonian is conserved for the continuous dynamics of this particle.

Recall that each step in MALA can be thought of as originating from one iteration of the leapfrog
integrator, which approximates the position and velocity of this particle after time η

X̂i+1= Xi + ηVi − η2/2∇U(Xi), (3)

V̂i+1= Vi − η∇U(Xi)− 1
2η

2∇U(X̂i+1)−∇U(Xi)
η ≈ Vi − η∇U(Xi)− 1

2η
2∇2U(Xi)Vi.

The algorithm accepts the proposed step X̂i+1 with probability min(eH(X̂i+1,V̂i+1)−H(Xi,Vi), 1). The
velocity component V̂i+1 is discarded after the accept-reject step and serves only to compute the ac-
ceptance probability. To bound the acceptance probability eH(X̂i+1,V̂i+1)−H(Xi,Vi) we would like to
bound the error H(X̂i+1, V̂i) − H(Xi, Vi) in the energy conservation for one step of the leapfrog
integrator. To do so, we use the fact that the continuous Hamiltonian dynamics conserves the Hamil-
tonian H exactly. Let x̂, v̂ be the position and velocity of the particle with continuous Hamiltonian
dynamics after time η. That is, (x̂, v̂) = (qη, pη) are the solutions to Hamilton’s equations

dqt
dt = pt and dpt

dt = −∇U(qt),

evaluated at t = η, with initial conditions (q0, p0) = (Xi, Vi). Since Hamilton’s equations conserve
the Hamiltonian, we haveH(X̂i+1, V̂i)−H(Xi, Vi) = H(X̂i+1, V̂i))−H(x̂, v̂).

To bound H(X̂i+1, V̂i) − H(x̂, v̂), we separately bound the error X̂i+1 − Xi in the position
and the error V̂i − v̂ in the velocity. To get tight bounds on these terms, we cannot simply bound
their Euclidean norms, since the error in the Hamiltonian H(X̂i+1, V̂i) is much larger when the
position and momentum errors point in the worst-case direction where the Hamiltonian changes
most quickly, than in a typical random direction (worst-case direction is roughly ∇U(X̂i+1) for
position error and V̂i for momentum, since the Hamiltonian’s gradient is

∇H(X̂i+1, V̂i) = [∇U(X̂i+1); V̂i]).

Bounding the kinetic energy error. We start by describing how to bound the kinetic energy error,
since that is the most difficult task (Lemma 17). Since∇K(v̂) = v̂, we have

|K(v̂)−K(V̂i+1)|≈ |(V̂i+1 − v̂)>∇K(v̂)| = |(V̂i+1 − v̂)>v̂| (4)

≈
∣∣∫ η

0

∫ r
0 V

>
i [∇2U(Xi)−∇2U(Xi + Viτ)]Vidτdr

∣∣,
where the last step is due to our approximation for V̂i+1 in terms of the Hessian-vector product
∇2U(Xi)Vi, and the fact that d2pt

dt2
= ∇2U(qt) ≈ ∇2U(Xi + Vit) (Equation (3)).

11
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Next, we bound the quantity in the integrand:

|V >i [∇2U(Xi)−∇2U(Xi + Viτ)]Vi| (5)

=
∣∣τ∇3U(Xi)[Vi, Vi, Vi] + τ

∫ τ
0 ∇

3U(Xi + sVi)[Vi, Vi, Vi]−∇3U(Xi)[Vi, Vi, Vi]ds
∣∣

≈
∣∣τ∇3U(Xi)[Vi, Vi, Vi] + τ2∇4U(Xi)[Vi, Vi, Vi, Vi]

∣∣
≤ τC3‖X>Vi‖2∞‖X>Vi‖2 + τ2C4‖X>Vi‖4∞,

where the inequality holds by Assumption 1. Combining Inequalitites (4) and (5), we have

|K(v̂)−K(V̂i+1)| ≤ η3C3‖X>Vi‖2∞‖X>Vi‖2 + η4C4‖X>Vi‖4∞. (6)

We show that the Kinetic energy error is O(1) as long as the Markov chain Xi and the velocity
variable Vi stay inside the “good set” G. Roughly, we define G to be the subset of R2d where
‖X>Vi‖∞ ≤ O(log(dδ )), ‖Vi‖2 ≤ O(

√
d log(1

δ )), and ‖Xi − x?‖2 ≤ O(
√
d

M log(1
δ )). Thus, when-

ever (Xi, Vi) are in the good set, the first term on the right-hand side of Inequality (6) is O(1) if
roughly η ≤ Õ(C

−1/3
3 d−1/6M−1/2 log−1(d/δ)). The second term is O(1) if η ≤ O(C

−1/4
4 ).

Bounding the potential energy error. To bound the potential energy error (Lemma 16), we ob-
serve that X̂i+1 − x̂ ≈

∫ η
0

∫ t
0 ∇U(qτ )−∇U(Xi)dτdt and hence that

|U(X̂i+1)−U(x̂)|≈
∣∣∣∫ η0 ∫ t0 [∇U(qτ )−∇U(Xi)]

>∇U(Xi)dτdt
∣∣∣

≈
∣∣∣∫ η0 ∫ t0 [∇U(Xi + τVi)−∇U(Xi)]

>∇U(Xi)dτdt
∣∣∣≈ ∣∣η2[∇2U(Xi)ηVi]

>∇U(Xi)
∣∣

≤
∣∣η3M2‖Xi‖2g1

∣∣ ,
for some g1 ∼ N(0, 1). Hence, if we choose η ≤ d

1
3 min(1,M−

1
2 ) log(1

δ ) the potential energy
error is O(1) with probability at least 1− δ.

Bounding the probability of escaping the “good set”. Finally, we show that, since our Markov
chain is given a warm start, and π has exponential tails, the Markov chain Xi stays inside the good
set G with probability at least 1− δ (Lemmas 11 and 15).

6.2. Proof for optimization

The proof for optimization is similar to the proof for sampling, except that we bound the restricted
Cheeger constant and restricted conductance, in place of the usual Cheeger constant and conduc-
tance. We then apply a result from Zhang et al. (2017) (reproduced here as Lemma 10) to bound the
hitting time to the set U as a function of the restricted conductance Ψ̂K(S\U).

The acceptance probability is bounded in the same way as in the proof for sampling, using
the same choice of step size η. The main difference is that we prove an analogue of Lemma 7
which allows us to bound the restricted conductance in terms of the restricted Cheeger constant.
Specifically we show that if for any x, y ∈ S with ‖x− y‖2 ≤ ∆ we have ‖K(x, ·)−K(y, ·)‖TV ≤
0.99, then the restricted conductance of our Markov chain is Ψ̂K(V ) = Ω(∆ψ̂π(V∆)) (Lemma 8).
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Appendix A. Defining the “good set” and warm start.

Definition 5 (β ≥ 0) We say that X0 ∼ µ0 is a β-warm start if

sup
A⊂Rd

(
µ0(A)

π(A)

)
≤ β.

In this case, there exists an event E with π(E) ≥ 1
β such that µ0 = π|E.
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Definition 6 For α >
√

2, R > 0, define the “good set” G as follows:

G =

{
(x, v) ∈ Rd s.t. ‖X>pt(x, v)‖∞ ≤ α for t ∈ [0, T ], ‖qt(x, v)− x?‖2 ≤

3√
2

R√
M
, ‖v‖ ≤ R

}
.

We set the step size as follows:

η ≤ O
(

min

(
C
− 1

3
3 R−

1
3 , R−

2
3 , C

− 1
4

4

)
min(M−

1
2 , 1)α−1

)
,

where α > 0 will be fixed later in Section F.

Appendix B. Bounding conductance in terms of Cheeger constants

We recall the following bound for the conductance:

Lemma 7 (Lemma 13 in Lee and Vempala (2018)) Let X be a time-reversible Markov chain
with transition kernelK and stationary distribution π. Suppose that for any x, y with ‖x−y‖2 ≤ ∆
we have ‖K(x, ·)−K(y, ·)‖TV ≤ 0.9. Then the conductance of X is ΨK = Ω(∆ψπ).

Next, we show a related bound on the restricted conductance:

Lemma 8 (Restricted conductance) Let π be a probability distribution on S ⊆ Rd, let V ⊆ S,
and let X be a time-reversible Markov chain with transition Kernel K and stationary distribution
π. Suppose that for any x, y ∈ S with ‖x− y‖2 ≤ ∆ we have ‖K(x, ·)−K(y, ·)‖TV ≤ 0.99. Then
the restricted conductance of X is Ψ̂π(V ) = Ω(∆ψ̂π(V∆)).

Proof Let ρx = K(x, ·) be the transition distribution at x. For any S ⊆ S, let

S(1) = {x ∈ S : ρx(S\S) < 0.05},
S(2) = {x ∈ S\S : ρx(S) < 0.05},
S(3) = S\(S(1) ∪ S(2)).

Then the Euclidean distance between S1 and S2 is at least ∆.
Without loss of generality, we may assume that π(S1) ≥ 1

2π(S), since otherwise we would have∫
S ρx(S\S)dπ(x) = Ω(1), implying a conductance of Ω(1).

π(S(3)) ≥ π(S
(1)
∆ )− π(S(1)) ≥ ∆× ψ̂π(V∆)× π(S(1)).

We can now bound the restricted conductance:∫
S
ρx(S\S)dπ(x)

Reversibility
=

1

2

(∫
S
ρx(S\S)dπ(x) +

∫
S\S

ρx(S)dπ(x)

)

≥ 1

2

∫
S(3)

0.05dπ(x)

= 0.025π(S(3))

≥ 0.025∆× ψ̂π(V∆)× π(S(1))
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≥ 0.0125∆× ψ̂π(V∆)× π(S).

Hence, we have

Ψ̂K(S) = inf
S⊆S

∫
S ρx(S\S)dπ(x)

π(S)
≥ 0.0125∆× ψ̂π(V∆).

Appendix C. Bounding the mixing and hitting times as a function of conductance

Lemma 9 (Theorem 1.4 in Lovász and Simonovits (1993)) Let X be a Markov chain with tran-
sition kernel K and stationary distribution π and initial distribution µ0. Suppose that X is given a
β-warm start (that is, µ0(x) ≤ βπ(x) for every x ∈ Rd). Then for any ε̂ > 0 we have

‖L(Xi)− π‖TV ≤ ε̂+

√
β

ε̂

(
1− 1

4
Ψ2
K

)i
∀i ∈ N.

Lemma 10 (Lemma 11 in Zhang et al. (2017)) Let X be a time-reversible lazy Markov chain on
S ⊆ Rd with stationary distribution π with initial distribution µ0. Let U ⊆ S. Suppose that X is
given a β-warm start on S\U (that is, µ0(x) ≤ βπ(x) for every x ∈ S\U). Then for any δ > 0, the
hitting time of X to the set U is

inf{i : Xi ∈ U} ≤
4 log(βδ )

Ψ̂2
K(S\U)

,

with probability at least 1− δ.

Appendix D. Exit probability from good set

Lemma 11 Let x ∼ π, v ∼ N(0, Id). Then P ((x, v) ∈ G) ≥ 1 − Nre−
16α2−1

8 − e−
R2−d

8 −
Ne
− a√

d

R√
M , where N = 50d(R+ 1)M

1
2 ηe.

Proof
Let I := { ηN , 2

η
N , . . . , N

η
N }, where N = dRM

1
2 ηe. Then pt(x, v) ∼ N(0, Id) for all t ∈ I.

Therefore by the Hanson-wright inequality we have that

P(‖X>pt(x, v)‖∞ ≤ γ) ≤ re−
γ2−1

8 for γ >
√

2,

and hence that

P(max
t∈I
‖X>pt(x, v)‖∞ ≤ γ) ≤ Nre−

γ2−1
8 for γ >

√
2. (7)

By the Hanson-Wright inequality,

P[‖v‖ > ξ] ≤ e−
ξ2−d

8 for ξ >
√

2d.
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Suppose that ‖qt(x, v) − x?‖2 ≤ R√
M

for all t ∈ I (by Assumption 2, this occurs with probability

at least 1−Ne−
a√
d

R√
M ).

ThenH(x, v) = U(x)+ 1
2‖v‖

2
2 ≤ pi2M‖x−x?‖22 + 1

2R
2 ≤ 11R2. Thus, ‖pt(x, v)‖2 ≤

√
22R

for all t ∈ R. Thus,

‖qt(x, v)− x?‖2 ≤
R√
M

+
η

N

√
22R ≤ 2

R√
M

∀t ∈ R.

Therefore, by the conservation of the Hamiltonian, with probability at least 1−e−
R2−d

8 −Ne−
a√
d

R√
M ,

for all t ∈ R we have ‖qt(x, v)− x?‖2 ≤ 2 R√
M

, and hence that ‖∇U(qt)‖2 ≤ 2M R√
M

.

Thus, since ‖pt+ 1

M
1
2
√
2d

− pt‖2 ≤ ‖∇U(qt)‖2× 1

RM
1
2
≤ 2M R√

M
× 1

RM
1
2
≤ 2, by equation (7)

we have

P( max
t∈[0,η]

‖X>pt(x, v)‖∞ ≤ γ + 2) ≤ Nre−
γ2−1

8 for γ >
√

2. (8)

Thus, P((x, v) ∈ G) ≥ 1−Nre−
16α2−1

8 − e−
R2−d

8 − e−
a√
d

R√
M .

Appendix E. Conductance bounds

Let âz,v : Rd → [0, 1], and let az = Ev∼ N(0, Id)[az,v]. Let V0, V1, . . . ∼ N(0, Id) i.i.d. and
consider the following Markov chain:

Zi+1 =

{
Zi + ηVi − 1

2η
2∇U(Zi) with probability âZi,Vi

Zi otherwise,

and let KZ denote the probability transition Kernel of Z. Let ρz be the probability distribution of
the next point in this Markov chain given that the current point is z ∈ Rd, that is, ρz = KZ(z, ·).

Lemma 12 Suppose that for some η > 0 and x, y ∈ Rd we have ax, ay ≥ 0.99 and ‖x − y‖2 ≤
1

100(1
2η
−1 + 1

4ηM)−1. Then we have ‖ρx − ρy‖TV < 3
100 .

Proof
For any z ∈ Rd, let γz := z + ηv − 1

2η
2∇U(x) where v ∼ N(0, Id).

Then γz ∼ N(z − 1
2η

2∇U(z), η2Id).
Therefore, by Theorem 1.3 in Devroye et al. (2018), we have

‖L(γx)− L(γy)‖TV ≤
‖x− y − 1

2η
2(∇U(x)−∇U(y))‖2

2η

≤
‖x− y‖2 + 1

2η
2‖∇U(x)−∇U(y)‖2

2η

≤
‖x− y‖2 + 1

2η
2M‖x− y‖2

2η

17
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= (
1

2
η−1 +

1

4
ηM)‖x− y‖2.

Hence, since ‖x− y‖2 ≤ 1
100(1

2η
−1 + 1

4ηM)−1, we have

‖L(γx)− L(γy)‖TV ≤
1

100
.

Thus, since ax, ay ≥ 0.99, we have

‖ρx − ρy‖TV ≤
1

100
+

2

100
<

3

100
.

Lemma 13 Let π be the distribution π(x) ∝ e−U(x). Suppose that for some η > 0 and any
x, y ∈ Rd the acceptance probability from both x and y is ax, ay ≥ 0.97. Then the conductance
ΨKZ

is Ω((1
2η
−1 + 1

4ηM)−1ψπ).

Proof This follows by applying Lemma 12 to Lemma 7.

Now consider the Markov chain Ẑ defined by the recursion

Z̃i+1 =

{
Ẑi + ηVi − 1

2η
2∇U(Ẑi) with probability âẐi,Vi

Ẑi otherwise,

Ẑi+1 =

{
Z̃i if Z̃i ∈ S

Ẑi otherwise.

and let KZ̃ denote the probability transition Kernel of Z̃.

Lemma 14 Let π be the distribution π(x) ∝ e−U(x) × 1S(x). Suppose that for some η > 0 and
any x, y ∈ Rd that ax, ay ≥ 0.99. Let v ∼ N(0, Id), and suppose that x + ηv − 1

2η
2∇U(x) ∈ S

with probability at least 1
10 . Then for any subset V ⊆ S, the restricted conductance is Ψ̂KZ̃

(V ) =

Ω(∆ψ̂π(V∆)), where ∆ = 1
100(1

2η
−1 + 1

4ηM)−1.

Proof First, we note that for v1, v2 ∼ N(0, Id) we have x+ ηv1− 1
2η

2∇U(x) ∈ S with probability
at least 1

10 and y + ηv2 − 1
2η

2∇U(y) ∈ S with probability at least 1
10 .

By Lemma 12, we have ‖ρx− ρy‖TV < 3
100 whenever ‖x− y‖2 ≤ ∆, where ∆ = 1

100(1
2η
−1 +

1
4ηM)−1. Hence, whenever ‖x− y‖2 ≤ ∆ we have

‖K(x, ·)−K(y, ·)‖TV ≤ 1− (
1

10
− ‖ρx − ρy‖TV) ≤ 1− 7

100
≤ 0.99.

Thus by Lemma 8, we have that for any subset V ⊆ S, the restricted conductance is Ψ̂KZ̃
(V ) =

Ω(∆ψ̂π(V∆)).
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Lemma 15 Consider any Markov chain Z on Rd and denote by K(·, ·) its transition kernel, and
by π its stationary distribution. Suppose that K satisfies the detailed balance equations, that is,
π(x)K(x, y) = π(y)K(y, x) for all x, y ∈ Rd. Then for every k ∈ Z?,

sup
A⊂Rd,π(A)6=0

(
µk(A)

π(A)

)
≤ β.

Proof
We will prove this by induction. Suppose (towards an induction) that for some k ∈ Z∗ we have

µk(y)

π(y)
≤ β ∀y ∈ Rd s.t. π(y) 6= 0. (9)

Since we have a β-warm start, Inequality (9) is satisfied for k = 0. Now we will show that if our
inductive assumption (9) is satisfied for some k ∈ Z∗, it is also satisfied for k + 1.

The proof follows from the fact that the Markov chain satisfies the detailed balance equations:

π(x)K(x, y) = π(y)K(y, x) ∀x, y ∈ Rd. (10)

Then

µk+1(x)

π(x)
=

∫
Rd

K(y, x)

π(x)
µk(y)dy

Eq.10
=

∫
Rd

K(x, y)

π(y)
µk(y)dy

Eq.9
≤
∫
Rd
K(x, y)βdy = β

∫
Rd
K(x, y)dy = β.

Appendix F. Proof of main theorem for sampling

Proof [Proof of Theorem 1]
Without loss of generality, we may assume that U has a global minimizer x? at x? = 0 (since

we assume that the initial pointX0 has a β-warm start with respect to U but do not assume anything
about the location of X0 with respect to the origin).

Set I = 104((η−1 + ηL)ψ)−2 log(βε ).

Choose α = log(IβNε ) and R =
√
d log(1

ε max(1,
√
M

aIβN )), where N = dRM
1
2 ηe.

By Lemmas 11 and 15, we have that,

P((Xi, Vi) ∈ G ∀ 0 ≤ i ≤ I − 1) ≥ 1− I × β × [Nre−
16α2−1

8 − e−
R2−d

8 − e−
a√
d

R√
M ] ≥ 1− ε.

Therefore, by Lemmas 16 and 17 with probability at least 1− ε
I , the acceptance probability is

min(1, eH(X̂i,V̂i)−H(Xi,Vi)) ≥ e−
2
10 > 0.8.

Let i? = min{i : (Xi, Vi) /∈ G}. Then with probability at least 1 − I × ε
I = 1 − ε, we have that

I ≤ i?. Consider the toy Markov chain X†, where

X†i =

{
Xi if i < i?

Yi if i ≥ i?,
,
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and where Y1, Y2 . . . ∼ π are i.i.d. and independent of X0, . . . , Xi?−1. Denote the transition kernel
of X† by K†.

Then by Lemma 13 we have that the conductance ΨK† of theX† chain is Ω((1
2η
−1+1

4ηL)−1ψπ).
Then by Theorem 11 in Lee and Vempala (2018), we have

‖L(X†i )− π‖TV ≤ ε+

√
1

ε
β

(
1− 1

2
Ψ2
K†

)i
.

Hence,

‖L(X†i )− π‖TV ≤ 2ε ∀i ≥ Ω

(
Ψ−2
K†

log(
β

ε
)

)
.

Therefore, since with probability at least 1− ε we have Xi = X†i , it must be that

‖L(XI)− π‖TV ≤ 3ε.

F.1. Bounding the potential energy error

For every t > 0, define

q̂t := q0 + tp0 −
1

2
t2∇U(q0)

p̂t := p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0.

Lemma 16 (Potential energy error) If (Xi, Vi) ∈ G, then with probability at least 1− ε
I we have

|U(X̂i)− U(Xi)| ≤ 1
10 .

Proof First, we note that

qt = q0 + tp0 −
∫ t

0

∫ r

0
∇U(qr)dτdr

= q0 + tp0 −
[

1

2
t2∇U(q0) +

∫ t

0

∫ r

0
∇U(qτ )−∇U(q0)dτdr

]
,

q̂t = q0 + tp0 −
1

2
t2∇U(q0) ∀t > 0.

Thus,

U(qt)−U(q̂t) =

∫ 1

0
(qt − q̂t)>∇U(s(qt − q̂t) + q̂t)ds

=

∫ 1

0
(qt − q̂t)>∇U(q0)ds+

∫ 1

0
(qt − q̂t)>[∇U(s(qt − q̂t) + q̂t)−∇U(q0)]ds
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= −
(∫ t

0

∫ r

0
∇U(qτ )−∇U(q0)dτdr

)>
∇U(q0)

+

∫ 1

0

(∫ t

0

∫ r

0
∇U(qτ )−∇U(q0)dτ

)>
[∇U(s(qt − q̂t) + q̂t)−∇U(q0)]ds

= −
∫ t

0

∫ r

0
[∇U(qτ )−∇U(q0)]>∇U(q0)︸ ︷︷ ︸

(1)

dτdr

+

∫ 1

0

∫ t

0

∫ r

0
[∇U(qτ )−∇U(q0)]>[∇U(s(qt − q̂t) + q̂t)−∇U(q0)]︸ ︷︷ ︸

(2)

dτdrds.

We start by bounding term (1):

|(1)| =
∣∣∣∇U(q0)>[∇U(qτ )−∇U(q0)]

∣∣∣
=

∣∣∣∣∇U(q0)>
[
∇2U(q0)τp0 + τ

∫ τ

0

(
∇2U(qs)−∇2U(q0)

)
p0ds

]∣∣∣∣
≤ τM‖∇U(q0)‖|g1|+ τ2‖∇U(q0)‖2 × τ sup

0≤s≤τ
‖ps‖2 × C3‖g‖2

≤ τM2‖q0‖2|g1|+ τ2M‖q0‖2 × τ sup
0≤s≤τ

‖ps‖2 × C3‖g‖2.

for some g ∼ N(0, Id), since the random vector p0 is probabilistically independent of the row-
vector∇U(q0)>∇2U(q0).

Next, we bound term (2):

|(2)| = [∇U(qτ )−∇U(q0)]>[∇U(s(qt − q̂t) + q̂t)−∇U(q0)]

= [∇U(qτ )−∇U(q0)]>[(∇U(qt)−∇U(q0))

+ (∇U(s(qt − q̂t) + q̂t)−∇U(qt))]

≤M‖qt − q0‖ ×M(‖qt − q0‖+ ‖qt − q̂t‖)

≤M‖qt − q0‖ ×M
(
‖qt − q0‖+

∫ t

0
‖∇U(qτ )−∇U(q0)‖dτ

)
≤M‖qt − q0‖ ×M

(
‖qt − q0‖+ t sup

0≤τ≤t
‖∇U(qτ )−∇U(q0)‖

)
≤Mt sup

0≤τ≤t
‖pτ‖ ×M

(
t sup

0≤τ≤t
‖pτ‖+Mt2 sup

0≤τ≤t
‖pτ‖

)
.

Therefore,

|U(qt)− U(q̂t)| ≤ t3M2‖q0‖2|g1|+ t4M‖q0‖2 × τ sup
0≤s≤τ

‖ps‖2 × C3‖g‖2

+Mt sup
0≤τ≤t

‖pτ‖ ×M
(
t sup

0≤τ≤t
‖pτ‖+Mt2 sup

0≤τ≤t
‖pτ‖

)
≤ 1

100
.
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with probability at least 1− ε
I whenever (q0, p0) ∈ G.

F.2. Bounding the kinetic energy error

Lemma 17 (Kinetic energy error) If (Xi, Vi) ∈ G, then with probability at least 1 − ε
I we have

|12‖X̂i‖22 − 1
2‖Xi‖22| ≤ 1

10 .

Proof Recall that K(p) := 1
2‖p‖

2
2 denotes the kinetic energy. Then

K(pt)−K(p̂t) =

∫ 1

0
(pt − p̂t)>∇K(s(pt − p̂t) + p̂t)ds (11)

=

∫ 1

0
(pt − p̂t)>(s(pt − p̂t) + p̂t)ds

= (pt − p̂t)>p̂t +

∫ 1

0
s‖pt − p̂t‖2ds

= (pt − p̂t)>p̂t +
1

2
‖pt − p̂t‖2

= (pt − [p− t∇U(q0)− 1

2
t2∇2U(q0)p0])>p̂t

+ [
1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0]>p̂t +

1

2
‖pt − p̂t‖2

= (pt − [p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0])>[p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0]

− (pt − [p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0])>[

1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0]

+ [
1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0]>p̂t +

1

2
‖pt − p̂t‖2

= (

∫ t

0

∫ r

0
[∇2U(q0)−∇2U(qτ )]p0drdτ)>[p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0]

− (pt − [p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0])>[

1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0]

+ [
1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0]>p̂t +

1

2
‖pt − p̂t‖2

=

(∫ t

0

∫ r

0
[∇2U(q0)−∇2U(q0 + p0τ)]p0drdτ

)>
[p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0]

− (

∫ t

0

∫ r

0
[(∇2U(qτ )−∇2U(q0 + p0τ))]p0drdτ)>[p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0]

− (pt − [p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0])>[

1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0]

+ [
1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0]>p̂t +

1

2
‖pt − p̂t‖2

=

∫ t

0

∫ r

0
p>0 [∇2U(q0)−∇2U(q0 + p0τ)]p0︸ ︷︷ ︸

(4)

dτdr
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+

∫ t

0

∫ r

0
[∇2U(q0)−∇2U(q0 + p0τ)]p0︸ ︷︷ ︸

(5a)

dτdr


>

[−t∇U(q0)− 1

2
t2∇2U(q0)p0]︸ ︷︷ ︸

(5b)

− (

∫ t

0

∫ r

0
[∇2U(qτ )−∇2U(q0 + p0τ)]p0︸ ︷︷ ︸

(6a)

dτdr)> [p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0]︸ ︷︷ ︸

(6b)

− (pt − [p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0]︸ ︷︷ ︸

(7a)

)> [
1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0]︸ ︷︷ ︸

(7b)

+ [
1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0]>p̂t︸ ︷︷ ︸

(8)

+
1

2
‖pt − p̂t‖22︸ ︷︷ ︸

(9)

.

We now bound (1)-(9)

1. We start by bounding term (4):

|(4)| = |p>0 [∇2U(q0)−∇2U(q0 + τp0)]p0|

=

∣∣∣∣τ∇3U(q0)[p0, p0, p0] + τ

∫ τ

0
∇3U(q0 + sp0)[p0, p0, p0]−∇3U(q0)[p0, p0, p0]ds

∣∣∣∣
≤ τ |∇3U(q0)[p0, p0, p0]|+ τ2Ex∼Unif([q0,q0+sp0])

∣∣∇4U(q0)[p0, p0, p0, p0]
∣∣

≤ τC3‖X>p0‖2∞‖X>p0‖2 + τ2C4‖X>p0‖4∞,

where Unif([q0, q0 + sp0]) is the uniform distribution on the line segment connecting q0 and
q0 + sp0.

2. Next, we bound term (5a). For any v ∈ Rd we have

|v>(5a)| = |z>[∇2U(q0)−∇2U(q0 + p0τ)]p0| = |
∫ τ

0
∇3U(q0 + p0s)[p0, p0, v]ds|

≤
∫ τ

0
|∇3U(q0 + p0s)[p0, p0, v]|ds ≤ τC3‖X>p0‖2∞‖v‖2.

3. Next, we bound term (5b)

‖(5b)‖2 = t‖∇U(q0)‖2 +
1

2
t2‖∇2U(q0)p0‖2

≤ tM‖q0‖2 +
1

2
t2M‖p0‖2.

4. Next, we bound term (6a). First, observe that

‖qτ − (q0 + p0)τ‖2 ≤ ‖
∫ τ

0

∫ s

0
∇U(qr)drds‖2 ≤ τ2M sup

s∈[0,τ ]
‖qs‖2. (12)
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For any v ∈ Rd we have

|v>(6a)| = |v>[∇2U(qτ )−∇2U(q0 + p0τ)]p0|

=

∫ 1

0
∇3U

(
(1− s)qτ + s(q0 + p0τ)

)
[p0, p0, v]ds

≤ C3‖qτ − (q0 + p0)τ‖2‖X>p0‖2∞‖X>v‖∞
Eq. 12
≤ C3τ

2M sup
s∈[0,τ ]

‖qs‖2 × ‖X>p0‖2∞‖v‖2.

5. Next, we bound term (6b)

‖X>(6b)‖2 =

∥∥∥∥X>[p0 − t∇U(q0)− 1

2
t2∇2U(q0)p0]

∥∥∥∥
2

≤ ‖p0‖2 + t‖q0‖2M +
1

2
t2M‖p0‖2.

6. Next, we bound term (7a). By the proof of Lemma 9.1 in the arXiv version of Mangoubi and
Vishnoi (2018c), we have

max
(
‖(7a)‖2, ‖(7b)‖2,

√
(9)
)
≤ 1

3
t3

[
C3 sup

t∈[0,η]
‖X>pt‖2∞ + (M)2 sup

t∈[0,η]
‖qt‖2

]
, (13)

and finally, that ‖p̂t‖2 ≤ ‖(6b)‖2 + ‖(7b)‖2 ≤ ‖p0‖2 + t‖q0‖2M + 1
2 t

2M‖p0‖2 + ‖(7b)‖2.

7. Next, we bound term (8)

First, we note that

‖p̂t − p0‖2 =

∥∥∥∥∥t∇U(q0)− 1

2
t2
∇U(q0 + tp0 − 1

2 t
2∇U(q0))−∇U(q0)

t

∥∥∥∥∥
2

(14)

≤ t‖∇U(q0)‖2 +
1

2
t2M‖p0 −

1

2
t∇U(q0)‖2

≤ t‖∇U(q0)‖2 +
1

2
t2M‖p0‖2 +

1

2
t3M‖∇U(q0)‖2

≤ 2t‖∇U(q0)‖2 +
1

2
t2M‖p0‖2

≤ 2tM‖q0‖2 +
1

2
t2M‖p0‖2.

Hence,

(8) =

[
1

2
t2
∇U(q̂t)−∇U(q0)

t
− 1

2
t2∇2U(q0)p0

]>
p̂t

=

[
1

2
t(∇U(q0 + tp0)−∇U(q0))− 1

2
t2∇2U(q0)p0

]>
p̂t

+
1

2
t[∇U(q0 + tp0)−∇U(q̂t)]

>p̂t
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=

[
1

2
t(∇U(q0 + tp0)−∇U(q0))− 1

2
t2∇2U(q0)p0

]>
p0

+

[
1

2
t(∇U(q0 + tp0)−∇U(q0))− 1

2
t2∇2U(q0)p0

]>
(p̂t − p0)

+
1

2
t[∇U(q0 + tp0)−∇U(q̂t)]

>p0

+
1

2
t[∇U(q0 + tp0)−∇U(q̂t)]

>(p̂t − p0)

=
1

2
t2
∫ t

0
∇3U(q0 + sp0)[p0, p0, p0]ds

+
1

2
t2
∫ t

0
∇3U(q0 + sp0)[p0, p0, p̂t − p0]ds

+
1

2
t[∇U(q0 + tp0)−∇U(q0 + tp0 −

1

2
t2∇U(q0))]>p0

+
1

2
t[∇U(q0 + tp0)−∇U(q̂t)]

>(p̂t − p0)

≤ 1

6
t3C3‖X>p0‖∞‖p0‖2 +

1

6
t3C3‖X>p0‖2∞‖p̂t − p0‖2

+
1

2
t

[∫ 1

0
[
1

2
t2∇U(q0))]>∇2U(q0 + tp0 − s

1

2
t2∇U(q0))ds

]>
p0

+
1

2
t[∇U(q0 + tp0)−∇U(q̂t)]

>(p̂t − p0)

≤ 1

6
t3C3‖X>p0‖2∞‖X>p0‖2 +

1

6
t3C3‖X>p0‖2∞‖p̂t − p0‖2

+
1

4
t3
∫ 1

0
p>0 ∇2U(q0)×∇U(q0)ds

+
1

4
t3
∫ 1

0
p>0

[
∇2U(q0 + tp0 − s

1

2
t2∇U(q0))−∇2U(q0)

]
×∇U(q0)ds

+
1

2
t[∇U(q0 + tp0)−∇U(q̂t)]

>(p̂t − p0)

≤ 1

6
t3C3‖X>p0‖2∞‖p0‖2 +

1

6
t3C3‖X>p0‖2∞‖p̂t − p0‖2

+
1

4
t3M‖∇U(q0)‖2|g|

+
1

4
t3C3‖X>p0‖∞

(
‖X>tp0‖∞ + ‖1

2
t2∇U(q0)‖2

)
‖∇U(q0)‖2

+
1

2
t× ‖1

2
t2∇U(q0)‖2M × ‖p̂t − p0‖2

Eq. 14
≤ 1

6
t3C3‖X>p0‖2∞‖p0‖2 +

1

6
t3C3‖X>p0‖2∞ × (2tM‖q0‖2 +

1

2
t2M‖p0‖2)

+
1

4
t3M2‖q0‖ × |g|

+
1

4
t3C3‖X>p0‖∞

(
‖X>tp0‖∞ +

1

2
t2M‖q0‖2

)
M‖q0‖2

25



NONCONVEX MALA

+
1

2
t× 1

2
t2‖q0‖2M2 × (2tM‖q0‖2 +

1

2
t2M‖p0‖2)

≤ 1

100
,

with probability at least 1− ε
I , whenever (q0, p0) ∈ G, where g ∼ N(0, 1). The last inequality

holds because of our choice of η and by the Hanson-Wright inequality.

Combining terms. We now combine our bounds for the individual terms to bound the error in the
Kinetic energy:

K(pt)−K(p̂t) ≤
1

6
t3C3‖X>p0‖2∞‖p0‖2 +

1

8
t4C4‖X>p0‖4∞

+
1

6
t3C3‖X>p0‖2∞ ×

(
tM‖q0‖2 +

1

2
t2M‖p0‖2

)
+

1

6
C3t

4M sup
s∈[0,τ ]

‖qs‖2 × ‖X>p0‖2∞
(
‖X>p0‖∞ + t‖q0‖2M +

1

2
t2M‖p0‖2

)

+
5

2

(
1

3
t3

[
C3 sup

t∈[0,η]
‖X>pt‖2∞ + (M)2 sup

t∈[0,η]
‖qt‖2

])2

+
1

3
t3

[
C3 sup

t∈[0,η]
‖X>pt‖2∞ + (M)2 sup

t∈[0,η]
‖qt‖2

]
×
[
‖p0‖2 + t‖q0‖2M +

1

2
t2M‖p0‖2

]
+

1

100

≤ 2

100
,

with probability at least 1− ε
I , whenever (q0, p0) ∈ G.

Appendix G. Proof of main theorem for optimization

Proof [Proof of Theorem 2]
Without loss of generality, we may assume that U has a global minimizer x? at x? = 0 (see

comment at the beginning of the proof of Theorem 1).
We define the following lazy Markov chain X̂:
Let V1, V2 . . . ∼ N(0, Id), and let X̂0 = X0. For every i, let

X̂i+1 = Xi + ηVi −
1

2
η2∇U(X̃i),

V̂i+1 = Vi − η∇U(Xi)−
1

2
η2∇U(X̂i+1)−∇U(Xi)

η
,

Zi+1 =

{
X̂i+1 with probability min(1, eH(X̂i,V̂i)−H(Xi,Vi))

Xi otherwise,

Z̃i+1 =

{
Zi+1 if Zi+1 ∈ S

Xi otherwise,

X̃i+1 =

{
Z̃i+1 with probability 1

2

Xi otherwise.
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Note that this Markov chain is lazy and satisfies the detailed balance equations for its stationary
distribution π(x) ∝ e−U(x)1S(x).

Set I =
4 log(β

δ
)

(∆Ψ̂π(S\U))2
.

Choose α = log(IβNδ ) and R =
√
d log(1

δ max(1,
√
M

aIβN )), where N = dRM
1
2 ηe.

By Lemma 15, we have that

P((X̃i, Vi) ∈ G ∀ 0 ≤ i ≤ I − 1) ≥ 1− I × β × [Nre−
16α2−1

8 − e−
R2−d

8 − e−
a√
d

R√
M ] ≥ 1− δ.

Therefore, by Lemmas 16 and 17 with probability at least 1− δ
I , the acceptance probability is

min(1, eH(X̂i,V̂i)−H(Xi,Vi)) ≥ e−10 > 0.99.

Let i? = min{i : (X̃i, Vi) /∈ G}. Then with probability at least 1 − I × δ
I = 1 − δ, we have that

I ≤ i?. Consider the toy Markov chain X̃†, where

X̃†i =

{
X̃i if i < i?

Yi if i ≥ i?,

where Y1, Y2 . . . ∼ π are i.i.d. and each Yi is independent of X̃0, . . . , X̃i−1. Denote the transition
kernel of X̃† by K̃†.

Then by Lemma 14 we have that the restricted conductance Ψ̂K̃†(S\[U∆])) of the X̃† chain is
Ω(∆ψ̂π(S\U)), where ∆ = 1

100(1
2η
−1 + 1

4ηM)−1.
Thus, by Lemma 10, we have:

inf{i : X̃†i ∈ U∆} ≤
4 log(βδ )

Ψ̂2
K̃†

(S\[U∆])
.

Hence,

inf{i : X̃†i ∈ U∆} ≤
4 log(βδ )

∆2ψ̂2
π(S\U)

.

Therefore, since with probability at least 1− δ we have X̃i = X†i , it must be that

inf{i : X̃i ∈ U∆} ≤
4 log(βδ )

∆2ψ̂2
π(S\U)

, (15)

with probability at least 1− 2δ.
Since X̃ is the lazy version of the Markov chain X , and both chains start at the same initial

point, inequality (15) implies that

inf{i : Xi ∈ U∆} ≤
4 log(βδ )

∆2ψ̂2
π(S\U)

,

with probability at least 1− 2δ.
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Appendix H. Proof of Theorem 3

Proof The proof of this theorem for C3 for general loss functions ϕ is identical to the proof of
Theorem 2 of Mangoubi and Vishnoi (2018b), which was stated for the special case where ϕ is the
logistic loss function.

To bound C4, we note that

|∇4U(x)[u, u, u, u]| ≤
r∑
i=1

|F (4)(X>i x)| × |X>i u|4 ≤
r∑
i=1

1× ‖X>u‖4∞ = r‖X>u‖4∞.

Appendix I. Proof of Theorem 4

Without loss of generality, we may assume thatU has a global minimizer x? at x? = 0 (see comment
at the beginning of the proof of Theorem 1).

Let B = {x ∈ Rd : ‖x‖2 ≤ 1} be the unit ball.

Lemma 18 Let ν > 0 and suppose that λ ≥ 100
√
d

ν log(ν) . Then we have

|f̃(x)− f(x)| ≤ 2ν ∀x ∈ B\1

2
B.

Proof From Lemma 8 in Zhang et al. (2017), we have that F is 6-Lipschitz on S = B\1
2B. Let z

be a point uniformly distributed on the unit sphere ∂B.
Then for any unit vector u, we have P(|u>z| ≤ ν

10
√
d
) ≤ ν. Moreover, since we chose λ ≥

100
√
d

ν log(ν) , we have that 1− ϕ(λs) ≤ ν whenever s ≥ ν
10
√
d

.
Therefore,

E[|f̃(z)− f(z)|] =
1

r

∑r
i=1E[ˆ̀(λz; (Xi,Yi))− `(z; (Xi,Yi))]

≤ P((|X>i z| ≤
ν

10
√
d

) + ν

≤ 2ν.

Fix some α0 ∈ [0, π4 ]. For the rest of Appendix I, let S = B\(1
2B) where B is the unit ball, and

let

U =

{
x ∈ S :

〈
x

‖x‖
, θ?
〉
≥ cos(α0)

}
.

We restate Lemma 8 and 9 in Zhang et al. (2017) for convenience:

Lemma 19 (Lemma 9 in Zhang et al. (2017)) There is a universal constant c1 such that for in-

verse temperature T −1 ≥ c1d
3
2

q0 sin2(α0)
, the restricted Cheeger constant ψ̂π̂(S\U) of π̂ ∝ e−T −1F (x)

1S(x)

is at least ψ̂π̂(S\U) ≥ 1
3d.
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Lemma 20 (Lemma 8 in Zhang et al. (2017)) F is 3-Lipschitz on 5
4B\

1
4B.

For any ν, δ > 0 if the sample size r satisfies r ≥ d
ν2

polylog(d, 1
ν ,

1
δ ), then with probability at

least 1− δ we have supRd\{0} |f(x)− F (x)| ≤ ν.

Proof The proof follows directly from Lemma 8 in Zhang et al. (2017), since f(x) = f( x
‖x‖) and

F (x) = F ( x
‖x‖) for all x ∈ Rd\{0}.

We can now prove Theorem 4:
Proof [Proof of Theorem 4.]

Bounding the derivatives of the objective function.
First, we bound the derivatives of f̃. By the Hanson-wright inequality, there is a universal

constant c ≥ 1 such that |X>i Xj | ≤ c√
d

log( r
2

δ ) for every i, j ∈ [r] with probability at least 1−δ (for
convenience, we will use the same universal constant throughout the proof). Hence, with probability
at least 1− δ, the incoherence Φ satisfies

Φ := max
i∈[r]

r∑
j=1

|X>i Xj | ≤ c
r√
d
.

Thus, by Theorem 3 we have that Assumption 1 is satisfied with constants
C3 = d

3
4 × 1

rT
−1√r

√
Φ ≤ d

3
4 × cT

−1

r rd−
1
4 = d

1
2T −1, and C4 = d

4
4 × T −1

r r = dT −1.
Moreover, we have ∇2U(x) 4 1

r

∑r
i=1 T −1d−

2
4XiX>i for all x ∈ Rd. Hence, by the Matrix

Chernoff inequality (Tropp, 2012), we have λmax(∇2U(x)) ≤ d−
1
2λmax(1

r

∑r
i=1 T −1XiX>i ) ≤

d−
1
2 log( cδ )1

dT
−1 = log( cδ ) 1

d
3
2
T −1 for all x ∈ Rd with probability at least 1− δ. Hence, we can set

M = log( cδ ) 1

d
3
2
T −1 = log( cδ ) 2c1

q0 sin2(α0)
with probability at least 1− δ.

Bounding the magnitude of the gradient. Since F is continuous and uniformly bounded on
S, and F (x) = F ( x

‖x‖) for all x 6= 0, we have that F attains a global minimum x?F on S. Without

loss of generality we may assume that ‖x?F ‖2 = 3
4d

3
4 , so that B(x?F ,

1
4d

3
4 ) ⊆ S.

Suppose (towards a contradiction) that ‖∇U(z)‖2 ≥ 8d
3
4M for some z ∈ S with probability at

least δ. Then since any two points in S can be connected by a path in S of length less that pi× d
3
4 ,

we would have that ‖∇U(z)−∇U(x)‖2 ≤ 4d
3
4M for all x ∈ S.

Thus, with probability at least δ, there would exist a point y? ∈ B(x?F ,
1
4d

3
4 ) ⊆ S such that

U(y?) ≤ U(x?F )− 4d
3
4M × 1

4d
3
4 = U(x?F )− d

3
2M = U(x?F )− log( cδ )T −1 ≤ U(x?F )−T −110ν.

But by Lemmas 18 and 20, with probability at least 1−δ we have |T −1F (x)−U(x)| ≤ T −13ν,
which is a contradiction.

Hence, by contradiction we have that

‖∇U(z)‖2 < 8d
3
4M (16)

= 8d
3
4 log(

c

δ
)

2c1

q0 sin2(α0)
,

for all z ∈ S with probability at least 1− δ.
Bounding the probability of proposal falling outside S.
Let z ∈ S be the current point in the Markov chain, and let γz := z + ηv − 1

2η
2∇U(x) where

v ∼ N(0, Id) be the proposed step. Without loss of generality, we may assume that our coordinate
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basis is such that z
‖z‖2 = e1 and z[1] > 0 (otherwise we can just rotate the coordinate axis about the

origin, and apply the same rotation to the argument of the potential function U ). First, we note that

S =

x ∈ Rd :
1

2
d

3
4 ≤

√√√√ d∑
i=1

x[i]2 ≤ d
3
4


=

{
x ∈ Rd :

1

4
d

6
4 −

d∑
i=2

x[i]2 ≤ x2[1] ≤ d
6
4 −

d∑
i=2

x[i]2

}
.

Without loss of generality, we may assume that z[1] ≥ 0 (otherwise, we can rotate the coordinate
basis to make z[1] ≥ 0).

Case 1: First, consider the case where z[1] ≥ 3
4 .

Let E0 be the event that ‖v‖22 ≤ d log( cd) and let E1 be the event that −1 ≤ v[1] ≤ −1
3 and

‖v‖22 ≤ d log( cd). Then P(E1 ∩ E0) ≥ 1
10 .

We have

γz[1] := z[1] + ηv[1]− 1

2
η2∇U(x)>e1

Eq.16
≤ d

3
4 + ηv[1] +

1

2
η2 × 8d

3
4M

≤ d
3
4 − 1

3
η +

1

2
η2 × 8d

3
4M

≤ d
3
4 − 1

3
η +

1

2
η2 × 8d

3
4 log(

c

δ
)

2c1

q0 sin2(α0)

≤ d
3
4 − 1

6
η,

if we choose η ≤ [1
2 × 8d

3
4 log( cδ ) 2c1

q0 sin2(α0)
]−1.

Hence,

(γz[1])2 ≤ d
6
4 − 1

3
d

6
4 η +

1

36
η2. (17)

But if E0 occurs we also have,

d
6
4 −

d∑
i=2

γz[i]
2 ≥ d

6
4 − ‖γz − z‖22 (18)

≥ d
6
4 − ‖ηv − 1

2
η2∇U(x)‖22

≥ d
6
4 − η2‖v‖22 −

1

4
η4‖∇U(x)‖2

≥ d
6
4 − η2‖v‖22 −

1

4
η4[8d

3
4 log(

c

δ
)

2c1

q0 sin2(α0)
]2

≥ d
6
4 − η2d log(

c

d
)− 1

4
η4[8d

3
4 log(

c

δ
)

2c1

q0 sin2(α0)
]2.
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Therefore, inequalities (17) and (18), together with our choice of η, imply that

(γz[1])2 ≤ d
6
4 −

d∑
i=2

γz[i]
2, (19)

if the event E1 occurs.
We now show a lower bound:

γz[1] := z[1] + ηv[1]− 1

2
η2∇U(x)>e1 (20)

Eq.16
≥ d

3
4 + ηv[1]− 1

2
η2 × 8d

3
4M

≥ 3

4
d

3
4 − η − 1

2
η2 × 8d

3
4M

≥ 3

4
d

3
4 − η − 1

2
η2 × 8d

3
4 log(

c

δ
)

2c1

q0 sin2(α0)

≥ 3

4
d

3
4 − 3

6
η

≥ 1

2
d

3
4

≥

√√√√1

2
d

3
4 −

d∑
i=2

γz[i]2,

where the second-to-last inequality holds because of our choice of η.
Therefore, Inequalities 19 and 20 together imply that

γz ∈ S if the event E1 ∩ E0 occurs and z[1] ≥ 3

4
d

3
4 . (21)

Case 2: Now consider the case where 1
2d

3
4 ≤ z[1] ≤ 3

4d
3
4 . The proof for this case is similar to

the proof for case 1:
Let E2 be the event that 1

3 ≤ v[1] ≤ 1, and recall that E0 is the event that ‖v‖22 ≤ d log( cd).
Then P(E2) = P(E1 ∩ E0) ≥ 1

10 .
We have

γz[1] := z[1] + ηv[1]− 1

2
η2∇U(x)>e1

Eq.16
≥ 1

2
d

3
4 + ηv[1]− 1

2
η2 × 8d

3
4M

≥ 1

2
d

3
4 +

1

3
η − 1

2
η2 × 8d

3
4M

≥ 1

2
d

3
4 +

1

3
η − 1

2
η2 × 8d

3
4 log(

c

δ
)

2c1

q0 sin2(α0)

≥ 1

2
d

3
4 +

1

6
η,

if we choose η ≤ [1
2 × 8d

3
4 log( cδ ) 2c1

q0 sin2(α0)
]−1.
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Hence, we have

1

4
d

6
4 −

d∑
i=2

γz[i]
2 ≤ 1

4
d

6
4 ≤ (γz[1])2. (22)

We also have that

γz[1] := z[1] + ηv[1]− 1

2
η2∇U(x)>e1 (23)

Eq.16
≤ 1

2
d

3
4 + ηv[1] +

1

2
η2 × 8d

3
4M

≤ 1

2
d

3
4 + η +

1

2
η2 × 8d

3
4M

≤ 1

2
d

3
4 +

1

3
η +

1

2
η2 × 8d

3
4 log(

c

δ
)

2c1

q0 sin2(α0)

≤ 7

8
d

3
4 ,

where the last inequality holds because of our choice of η.
But if E0 occurs we have from Inequality (18) that

d∑
i=2

γz[i]
2 ≤ η2d log(

c

d
) +

1

4
η4[8d

3
4 log(

c

δ
)

2c1

q0 sin2(α0)
]2 ≤ 1

100
d

3
4 . (24)

Therefore, by Inequalities (23) and (24) we have that

‖γz‖22 ≤
7

8
d

3
4 +

1

100
d

3
4 ≤ d

3
4 . (25)

Therefore, Inequalities 25 and 22 together imply that

γz ∈ S, (26)

if the event E1 ∩ E0 occurs and 1
2d

3
4 ≤ z[1] ≤ 3

4d
3
4 .

Therefore, from Equations (21) and (26), we have that γz ∈ S with probability at least 1
10

whenever z ∈ S.
Bounding the hitting time. Let X = X0, X1, . . . be the Markov chain generated by Algorithm

2. Let U :=
{
x ∈ S :

〈
x
‖x‖ , θ

?
〉
≥ cos(α0)

}
, where α0 = ε.

Choose η ≤ Õ

(
min

(
C
− 1

3
3 d−

1
6 , d−

1
3 , C

− 1
4

4

)
min(1,M−

1
2 )

)
. Let π2 ∝ e−U1S. Then by

Theorem 2 we have

inf{i : Xi ∈ U∆} ≤ I,

with probability at least 1− δ, where I =
4 log(β

δ
)

∆2ψ̂2
π2

(S\U)
and ∆ = 1

100(1
2η
−1 + 1

4ηM)−1.

But by Lemma 19 we have ψ̂π1(S\U) ≥ 1
3d ×

1

T
1
2×d

1
4 λ

= 1
300d

1
4 ν log(ν), where π1(x) ∝

e−T
−1F (x)

1S. Therefore, by Lemmas 20 and 18 we have |T −1F (x)− U(x)| ≤ 3T −1ν and hence
that

ψ̂π2(S\U) ≥ ψ̂π1(S\U)e−6T −1ν ≥ 1

300
d

1
4 ν log(ν)e−6T −1ν .
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Choosing, ν = T gives

ψ̂π2(S\U) ≥ 1

300
d

1
4 ν log(ν).

For our choice of η we have ∆ = 1
100(1

2η
−1 + 1

4ηM)−1 = Ω(η), and

η = C
− 1

3
3 d−

1
6M−

1
2 = d

5
12T

5
6 log−

1
2 (

c

δ
)

= Θ

(
d

5
12 × [

q0 sin2(α0)

d
3
2

]
5
6 × log−

1
2 (

c

δ
)

)
= Θ

(
d−

10
12 × [q0 sin2(α0)]

5
6 × log−

1
2 (

c

δ
)
)
.

Therefore,

I = O

(
log(βδ )

η2ψ̂2
π2(S\U)

)

= Õ

(
log(βδ )

η2d
1
2 ν2

)

= Õ

(
log(βδ )

η2d
1
2T 2

)

= Õ

(
d

25
6 q

11
3

0 sin−
22
3 (α0) log(

c

δ
) log(

β

δ
)

)
.

Appendix J. Simple bound for Random Walk Metropolis

In this section we obtain a simple bound for the Random Walk Metropolis algorithm.

Algorithm 3 Random Walk Metropolis
input: Zeroth-order oracle for U : Rd → R, step size η > 0, Initial point Z0 ∈ Rd
output: Markov chain Z0, Z1, . . . , Zimax with stationary distribution π ∝ e−U
for i = 0 to imax − 1 do

Sample Vi ∼ N(0, Id)
Set Ẑi+1 = Xi + ηVi
Set

Zi+1 =

{
Ẑi+1 with probability min(1, eU(Ẑi)−U(Zi))

Xi otherwise

end
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Theorem 21 (RWM) Suppose that U has M -Lipschitz gradient on Rd and satisfies Assumption
2. Then given a β-warm start, for any step-size parameter η ≤ Õ( a

dM log−1(4β
ε )) there exists

I = O(η−2ψ−2
π log(βε )) for which Zi satisfies ‖L(Zi)− π‖TV ≤ ε for all i ≥ I.

Proof Since Z0 has a β-warm start, by Lemma 15 and Assumption 2, for every s > 0 have

P

(
sup
i≤I
‖Zi − x?‖2 > s

)
≤ I × β × e−

a√
d
s
.

Thus, setting s =
√
d
a log(2Iβ

ε ) we have:

P

(
sup
i≤I
‖Zi − x?‖2 >

√
d

a
log(

4Iβ
ε

)

)
≤ 1

4
ε.

Moreover, by the Hanson-wright inequality,

P[sup
i≤I
‖Vi‖ > ξ] ≤ Ie−

ξ2−d
8 for ξ >

√
2d.

Thus, setting ξ = 5
√
d log(Iε) we have:

P[sup
i≤I
‖Vi‖ > 5

√
d] ≤ 1

4
ε.

Let i? = inf{i ∈ Z? : ‖Zi − x?‖2 >
√
d
a or ‖Vi‖ > 5

√
d}. Then with probability at least 1 − 1

2ε,
we have i? > I.

Let Y0, Y1, . . . ∼ π i.i.d. and independent of Z0, Z1, . . ., and define the toy Markov chain Z̃ as
follows:

Z̃i = Zi ∀i ≤ i?,
Z̃i = Yi ∀i > I.

Let az,v := min(1, eU(z+ηv)−U(z)) be the acceptance probability for the toy chain from any z ∈ Rd

with velocity v. If ‖z − x?‖2 ≤
√
d
a and ‖Vi‖ ≥ 5

√
d, then

az,v = min(1, eU(z+ηv)−U(z)) ≥ exp

(
−η‖v‖2 × sup

x∈[z,z+ηv]
‖∇U(x)‖2)

)
(27)

≥ exp

(
−η‖v‖2 × sup

x∈[z,z+ηv]
M‖x‖2

)
≥ exp (−η‖v‖2 ×M(‖z‖2 + η‖v‖2))

≥ exp

(
−η5
√
d×M

(√
d

a
log(

4Iβ
ε

) + η5
√
d

))

≥ exp

(
−η30d×M 1

a
log(

4Iβ
ε

)

)
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≥ 1

3
.

Let x, y ∈ Rd, and v, w ∼ N(0, Id). Therefore, by Theorem 1.3 in Devroye et al. (2018), we have

‖L(x+ ηv)− L(y + ηv)‖TV ≤
‖x− y‖2

2η
. (28)

LetKtoyRWM be the transition kernel of Z̃. Then by inequalities 27 and 28, whenever ‖x−y‖2 ≤ ∆
for ∆ = η, we have

‖KtoyRWM(x, ·)−KtoyRWM(y, ·)‖TV ≤ 1− 1

3
× ‖x− y‖2

2η
≤ 5

6
.

Then by Lemma 7 we have ΨKtoyRWM
= Ω(∆ψπ). Moreover, by Lemma 7 there is an I =

O(Ψ−2
KtoyRWM

log(βε )) such that

‖L(Z̃i)− π‖TV ≤
1

2
ε ∀i ≥ I.

But

Z̃i = Zi ∀i ≤ i?,

and i? > I with probability at least 1− 1
2ε. Therefore,

‖L(Zi)− π‖TV ≤
1

2
ε+

1

2
ε = ε ∀i ≥ I,

where I = O(Ψ−2
KtoyRWM

log(βε )) = O(η−2ψ−2
π log(βε )).

Appendix K. Hanson-wright inequality

In this Appendix we recall the Hanson-Wright inequality Hanson and Wright (1971), for the special
case of Gaussian random vectors.

Lemma 22 (Hanson-Wright inequality) Let Z ∼ N(0, Id) be a standard Gaussian random vec-
tor. Then

P[‖Z‖2 > ξ] ≤ e−
ξ2−d

8 for ξ >
√

2d.
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