
Proceedings of Machine Learning Research vol 99:1–22, 2019 32nd Annual Conference on Learning Theory

Lipschitz Adaptivity with Multiple Learning Rates in Online Learning

Zakaria Mhammedi ZAK.MHAMMEDI@ANU.EDU.AU

School of Engineering and Computer Science
The Australian National University and Data61
Wouter M. Koolen WMKOOLEN@CWI.NL

Centrum Wiskunde & Informatica
Amsterdam, the Netherlands
Tim van Erven TIM@TIMVANERVEN.NL

Statistics Department
Leiden University, the Netherlands

Editors: Alina Beygelzimer and Daniel Hsu

Abstract
We aim to design adaptive online learning algorithms that take advantage of any special structure
that might be present in the learning task at hand, with as little manual tuning by the user as possible.
A fundamental obstacle that comes up in the design of such adaptive algorithms is to calibrate
a so-called step-size or learning rate hyperparameter depending on variance, gradient norms, etc.
A recent technique promises to overcome this difficulty by maintaining multiple learning rates in
parallel. This technique has been applied in the MetaGrad algorithm for online convex optimization
and the Squint algorithm for prediction with expert advice. However, in both cases the user still has
to provide in advance a Lipschitz hyperparameter that bounds the norm of the gradients. Although
this hyperparameter is typically not available in advance, tuning it correctly is crucial: if it is set
too small, the methods may fail completely; but if it is taken too large, performance deteriorates
significantly. In the present work we remove this Lipschitz hyperparameter by designing new
versions of MetaGrad and Squint that adapt to its optimal value automatically. We achieve this
by dynamically updating the set of active learning rates. For MetaGrad, we further improve the
computational efficiency of handling constraints on the domain of prediction, and we remove the
need to specify the number of rounds in advance.

1. Introduction

We consider online convex optimization (OCO) of a sequence of convex functions `1, . . . , `T over
a given bounded convex domain, which become available one by one over the course of T rounds
(Shalev-Shwartz, 2011; Hazan, 2016). Typically `t(u) = LOSS(u,xt, yt) represents the loss of
predicting with parameters u on the t-th data point (xt, yt) in a machine learning task. At the start
of each round t, a learner has to predict the best parameters ût for the function `t before finding
out what `t is, and the goal is to minimize the regret, which is the difference in the sum of function
values between the learner’s predictions û1, . . . , ûT and the best fixed oracle parameters u that
could have been chosen if all the functions had been given in advance. A special case of OCO is
prediction with expert advice (Cesa-Bianchi and Lugosi, 2006), where the functions `t(u) = 〈u, lt〉
are convex combinations of the losses lt = (lt,1, . . . , lt,K) of K expert predictors and the domain is
the probability simplex.

© 2019 Z. Mhammedi, W. M. Koolen & T. van Erven.

LIPSCHITZ ADAPTIVITY

Central results in these settings show that it is possible to control the regret with virtually no prior
knowledge about the functions. For instance, knowing only a ‖·‖2-upper-bound G on the gradients
gt = ∇`t(ût), the online gradient descent (OGD) algorithm guarantees O(G

√
T) regret by tuning

its learning rate hyperparameter ηt proportional to 1/(G
√
t) (Zinkevich, 2003), and in the case of

prediction with expert advice the Hedge algorithm achieves regret O(L
√
T lnK) knowing only an

upper-bound L on the range maxk lt,k −mink lt,k of the expert losses (Freund and Schapire, 1997).
Here G is the ‖·‖2-Lipschitz constant of the learning task1, and L/2 is the ‖·‖1-Lipschitz constant
over the probability simplex.

The above guarantees are tight if we make no further assumptions about the functions (`t)
(Hazan, 2016; Cesa-Bianchi et al., 1997), but they can be significantly improved if the functions
have additional special structure that makes the learning task easier. The literature on online learning
explores multiple orthogonal dimensions in which tasks may be significantly easier in practice (see
‘related work’ below). Here, we focus on the following refined data-dependent regret guarantees,
which are known to exploit multiple types of easiness at the same time:

OCO: O
(√

V u
T d log T

)
for all u, with V u

T =

T∑
t=1

〈ût − u, gt〉2, (1)

Experts: O
(√

Eρ(k)[V
k
T] KL(ρ‖π)

)
for all ρ, with V k

T =

T∑
t=1

〈ût − ek, lt〉2, (2)

where d is the number of parameters and KL(ρ‖π) =
∑K

k=1 ρ(k) ln ρ(k)/π(k) is the Kullback-
Leibler divergence from a fixed prior distribution π over experts to any (data-dependent) comparator
distribution ρ; for instance, ρ is allowed here to be a point-mass on the best expert k∗ in hindsight, in
which case we would have KL(ρ‖π) = − lnπ(k∗).

The OCO guarantee is achieved by the METAGRAD algorithm (Van Erven and Koolen, 2016),
and implies regret that grows at most logarithmically in T both in case the losses are curved (exp-
concave, strongly convex) and in the stochastic case whenever the losses are independent, identically
distributed samples with variance controlled by a Bernstein condition (Koolen et al., 2016). The
guarantee for the expert case is achieved by the SQUINT algorithm (Koolen and Van Erven, 2015;
Koolen, 2015). It simultaneously exploits two types of structures: in many cases the V k

T term is
much smaller than L2T (Gaillard et al., 2014; Koolen et al., 2016) and the so-called quantile bound
KL(ρ‖π) is much smaller than the worst case lnK when multiple experts make good predictions
(Chaudhuri et al., 2009; Chernov and Vovk, 2010). SQUINT and METAGRAD are both based on the
same technique of tracking the empirical performance of multiple learning rates in parallel over
quadratic approximations of the original losses. A computational difference though is that SQUINT

is able to do this by a continuous integral that can be evaluated in closed form, whereas METAGRAD

uses a discrete grid of learning rates.
Unfortunately, to achieve (1) and (2), both METAGRAD and SQUINT need knowledge of the

Lipschitz constant (G or L, respectively). Overestimating G or L by a factor of c > 1 has the effect
of reducing the effective amount of available data by the same factor c, but underestimating the
Lipschitz constant is even worse since it can make the methods fail completely. In fact, the ability
to adapt to G has been credited (Ward et al., 2018) as one of the main reasons for the practical

1. We slightly abuse terminology here, because the standard definition of a Lipschitz constant requires an upper-bound
on the gradient norms for any parameters u, not just for u = ût, and may therefore be larger.

2

LIPSCHITZ ADAPTIVITY

success of the AdaGrad algorithm (Duchi et al., 2011; McMahan and Streeter, 2010). Thus getting
the Lipschitz constant right makes the difference between having practical algorithms and having
promising theoretical results.

For OCO, an important first step towards combining Lipschitz adaptivity to G with regret bounds
of the form (1) was taken by Cutkosky and Boahen (2017b), who aimed for (1) but had to settle for
a weaker result with G

∑T
t=1 ‖gt‖2‖ût − u‖22 instead of V u

T . Although not sufficient to adapt to
a Bernstein condition, they do provide a series of stochastic examples where their bound already
leads to a fast O(ln4 T) rates. For the expert setting, Wintenberger (2017) has made significant
progress towards a version of (2) without the quantile bound improvement, but he is left with having
to specify an initial guess Lguess for L that enters as O(ln ln(L/Lguess)) in his bound, which may yet
be arbitrarily large when the initial guess is on the wrong scale.

Main Contributions. Our main contributions are that we complete the process began by Cutkosky
and Boahen (2017b) and Wintenberger (2017) by showing that it is indeed possible to achieve (1)
and (2) without prior knowledge of G or L. In fact, for the expert setting we are able to adapt to
the tighter quantity B ≥ maxk |〈ût − ek, lt〉|. We achieve these results by dynamically updating
the set of active learning rates in METAGRAD and SQUINT depending on the observed Lipschitz
constants. In both cases, we encounter a similar tuning issue as Wintenberger (2017), but we avoid
the need to specify any initial guess using a new restarting scheme, which restarts the algorithm
when the observed Lipschitz constant increases too much. Interestingly, the scheme and its analysis
are different from the well-known doubling trick (Cesa-Bianchi and Lugosi, 2006), and the regret
bound is dominated by the regret incurred over the last two epochs instead of just the last epoch.
Adding up the regret bounds over the last two epochs leads to at most an extra

√
2 factor multiplying

the final bound, and so this is the overhead we incur for Lipschitz adaptivity. In addition to these
main results, we remove the need to specify the number of rounds T in advance for METAGRAD

by adding learning rates as T gets larger, and we improve the computational efficiency of how it
handles constraints on the domain of prediction: by a minor extension of the black-box reduction for
projections of Cutkosky and Orabona (2018), we incur only the computational cost of projecting on
the domain of interest in Euclidean distance. This should be contrasted with the usual projections in
time-varying Mahalanobis distance for second-order methods like METAGRAD.

Related Work. We build on several lines of work that achieve subsets of Lipschitz, variance
and quantile adaptivity. Lipschitz adaptivity in OCO is achieved by OGD with learning rate ηt ∝
1/
√∑t

s=1 ‖gs‖22, which leads to O(
√∑T

t=1 ‖gt‖22) = O(G
√
T) regret. This is the approach taken

by AdaGrad (for each dimension separately) (Duchi et al., 2011; McMahan and Streeter, 2010).
Lipschitz adaptive methods for prediction with expert advice (sometimes called scale-free) were
obtained by Cesa-Bianchi et al. (2007) and De Rooij et al. (2014). These include a data-dependent
variance term (though different from V k

T in (2)), but no quantiles.
Dropping Lipschitz adaptivity, we find that bounds with V k

T from (2) have previously been
obtained by Gaillard et al. (2014) and Wintenberger (2014) without quantile bounds. Quantile
adaptivity was achieved by Chaudhuri et al. (2009) and Chernov and Vovk (2010) without variance
adaptivity, and with a slightly weaker notion of variance by Luo and Schapire (2015). In OCO, the
analogue of quantile adaptivity is to adapt to the norm of u, which has been achieved in various
different ways, see for instance (McMahan and Abernethy, 2013; Cutkosky and Orabona, 2018).

Several other important (and related) criteria of easiness are actively considered in the literature.
These include curvature of the loss functions, where earlier results achieve fast rates assuming that

3

LIPSCHITZ ADAPTIVITY

the degree of curvature is known (Hazan et al., 2007), measured online (Bartlett et al., 2007; Do et al.,
2009) or entirely unknown (Van Erven and Koolen, 2016; Cutkosky and Orabona, 2018). Fast rates
are also possible for slowly-varying linear functions and, more generally, optimistically predictable
gradient sequences (Hazan and Kale, 2010; Chiang et al., 2012; Rakhlin and Sridharan, 2013).

We view our results as a step towards developing algorithms that automatically adapt to multiple
relevant measures of difficulty at the same time. It is not a given that such combinations are always
possible. For example, Cutkosky and Boahen (2017a) show that Lipschitz adaptivity and adapting
to the comparator complexity in OCO, although both achievable independently, cannot both be
realized at the same time (at least not without further assumptions). A general framework to study
which notions of task difficulty do combine into achievable bounds is provided by Foster et al.
(2015). Foster et al. (2017) characterize the achievability of general data-dependent regret bounds for
domains that are balls in general Banach spaces.

Outline. We add Lipschitz adaptivity to SQUINT for the expert setting in Section 2. Then, in
Section 3, we do the same for METAGRAD in the OCO setting. The developments are analogous at
a high level but differ in the details for computational reasons. We highlight the differences along
the way. Section 3 further describes how to avoid specifying T in advance for METAGRAD. Then,
in Section 4, we add efficient projections for METAGRAD, and finally Section 5 concludes with a
discussion of directions for future work.

Problem Setting and Notation. In OCO, a learner repeatedly chooses actions ût from a closed
convex set U ⊆ Rd during rounds t = 1, . . . , T , and suffers losses `t(ût), where `t : U → R is a
convex function. The learner’s goal is to achieve small regret Ru

T =
∑T

t=1 `t(ût)−
∑T

t=1 `t(u) with
respect to any comparator action u ∈ U , which measures the difference between the cumulative loss
of the learner and the cumulative loss they could have achieved by playing the oracle action u from
the start. A special case of OCO is prediction with expert advice, where `t(u) = 〈u, lt〉 for lt ∈ RK
and the domain U is the probability simplex 4K = {(u1, . . . , uK) : ui ≥ 0,

∑
i ui = 1}. In this

context we will further write p instead of u for the parameters to emphasize that they represent a
probability distribution. We further define [K] = {1, . . . ,K}.

2. An Adaptive Second-order Quantile Method for Experts

In this section, we present an extension of the SQUINT algorithm that adapts automatically to the
loss range in the setting of prediction with expert advice.

Throughout this section, we denote the instantaneous regret of expert k ∈ [K] in round t by
rkt := 〈p̂t − ek, lt〉, where p̂t ∈ 4K is the weight vector played by the algorithm and lt ∈ RK is
the observed loss vector. The cumulative regret with respect to expert k is given by Rkt :=

∑t
s=1 r

k
s .

The cumulative ‘variance’ with respect to expert k is measured by V k
t :=

∑t
s=1 v

k
s for vkt := (rkt)2.

In the next subsection, we review the SQUINT algorithm.

2.1. The SQUINT Algorithm

We first describe the original SQUINT algorithm as introduced by Koolen and Van Erven (2015).
Let π and γ be prior distributions with supports on k ∈ [K] and η ∈]0, 1/2], respectively. After t

4

LIPSCHITZ ADAPTIVITY

rounds, SQUINT outputs predictions

p̂t+1 ∝ E
π(k)γ(η)

[
ηe−

∑t
s=1 fs(k,η)ek

]
, (3)

where ft(k, η) are quadratic surrogate losses defined by

ft(k, η) := −η〈p̂t − ek, lt〉+ η2〈p̂t − ek, lt〉2.

Koolen and Van Erven (2015) propose to use the improper prior γ(η) = 1/η which does not integrate
to a finite value over its domain, but because of the weighting by η in (3) the predictions p̂t+1 are
still well-defined. The benefit of the improper prior is that it allows calculating p̂t+1 in closed
form (Koolen and Van Erven, 2015). It is also the natural candidate for Lipschitz adaptivity, as it
is scale-invariant: the density of an interval only depends on the ratio of its endpoints, not on their
location. For any distribution ρ ∈ 4K , SQUINT achieves the following bound:

RρT = O

(√
V ρ
T (KL(ρ||π) + ln lnT)

)
,

where RρT = Eρ(k)

[
RkT
]

and V ρ
T = Eρ(k)

[
V k
T

]
. This version of SQUINT assumes the loss range

maxk lt,k − mink lt,k is at most 1, and can fail otherwise. In the next subsection, we present an
extension of SQUINT which does not need to know the Lipschitz constant.

2.2. Lipschitz Adaptive SQUINT

We first design a version of SQUINT, called SQUINT+C, that still requires an initial estimate B
of the Lipschitz constant. We then present SQUINT+L which tunes this parameter online. For
now, we consider a fixed B > 0. In addition to this, the algorithm takes a prior distribution
π ∈ 4K . We denote the observed Lipschitz constant in round t at the algorithm’s prediction p̂t by
bt := maxk|rkt | = maxk |〈p̂t − ek, lt〉|, and denote its running maximum by Bt := B ∨maxs≤t bs,
with the convention that B0 = B. We will also require a clipped version of the loss vector
l̄t = lt · Bt−1/Bt, and denote by r̄kt = 〈p̂t − ek, l̄t〉 the clipped instantaneous regret; we will use
that |r̄kt | ≤ Bt−1. Following Cutkosky (2019), it suffices to control the regret for the clipped loss,
because the cumulative difference is of the order of one round (i.e. a negligible lower-order constant):

RkT − R̄kT :=
T∑
t=1

(
rkt − r̄kt

)
=

T∑
t=1

(Bt −Bt−1)
rkt
Bt
≤ BT −B0. (4)

This means we can focus on the regret for l̄t, for which the range bound |r̄kt | ≤ Bt−1 is available
ahead of each round t. To motivate SQUINT+C, we define the potential function after T rounds by

ΦT :=
∑
k

πk

∫ 1
2BT−1

0

eηR̄
k
T−η

2V̄ kT − 1

η
dη where R̄kT :=

T∑
t=1

r̄kt and V̄ k
T :=

T∑
t=1

(r̄kt)2. (5)

We also define Φ0 = 0 (due to the integrand being zero), even though it involves the meaningless
B−1 in the upper limit. The algorithm is now derived from the desire of keeping this potential under
control. As we will see in the analysis, this requirement uniquely forces the choice of weights

p̂kT+1 ∝ πk

∫ 1
2BT

0
eηR̄

k
T−η

2V̄ kT dη. (6)

5

LIPSCHITZ ADAPTIVITY

Algorithm 1 Restarts to make SQUINT+C or METAGRAD+C scale-free.
Require: ALG is either SQUINT+C or METAGRAD+C, taking as input parameter an initial scale B;

1: Play 0 for OCO or π for experts until the first time t = τ1 that bt 6= 0;

2: Run ALG with input B = Bτ1 until the first time t = τ2 that
Bt
Bτ1

>
t∑

s=1

bs
Bs

;

3: Set τ1 = τ2 and goto line 2;

The predictions p̂t+1 take the same functional form as the original SQUINT, and can hence be
evaluated in closed form (i.e. in terms of the Gaussian CDF). The regret analysis consists of two
parts. First, we show that the algorithm keeps the potential small:

Lemma 1 Given parameter B > 0, SQUINT+C ensures ΦT ≤ ln
BT−1

B .

The next step of the argument is to show that a small potential ΦT is useful. The argument here
follows from (Koolen and Van Erven, 2015), specifically the version by Koolen (2015). We have:

Lemma 2 For any comparator distribution ρ ∈ 4K the regret of SQUINT+C is at most

R̄ρT ≤
√

2V̄ ρ
T

(
1 +

√
2CρT

)
+ 5BT−1

(
CρT + ln 2

)
, where

CρT := KL (ρ‖π) + ln

(
ΦT +

1

2
+ ln

(
2 +

T−1∑
t=1

bt
Bt

))
.

Keeping only the dominant terms, this reads R̄ρT = O
(√

V̄ ρ
T (KL (ρ‖π) + ln (ΦT + lnT))

)
. Com-

bining with (4), and Lemmas 1 and 2, we obtain a bound of the form

RρT = O

(√
V ρ
T

(
KL (ρ‖π) + ln ln

TBT−1

B

)
+ 5BT

(
KL (ρ‖π) + ln ln

TBT−1

B

))
. (7)

However, there does not seem to be any safe a-priori way to tune B = B0. If we set it too small, the
factor ln ln(BT−1/B) explodes. If we set it too large, with B much larger than the effective range of
the data, then BT = B and the term outside the square-root on the RHS of (7) blows up. It does not
appear possible to bypass this tuning dilemma directly within the current construction. Instead, we
solve this problem using a new type of restarts that are different from the well-known doubling trick.
For this, we present Algorithm 1, which applies to both SQUINT+C and METAGRAD+C (presented
in the next section). It monitors a condition on the sequences (bt) and (Bt) to trigger restarts.

Theorem 3 Let SQUINT+L be the result of applying Algorithm 1 with SQUINT+C as ALG.
SQUINT+L guarantees, for any comparator ρ ∈ 4K ,

RρT ≤ 2
√
V ρ
T

(
1 +

√
2ΓρT

)
+ 10BT

(
ΓρT + ln 2

)
+ 4BT ,

where ΓρT := KL (ρ‖π) + ln
(

ln
(∑T−1

t=1 bt/Bt

)
+ ln

(
2 +

∑T−1
t=1 bt/Bt

))
+ 1/2.

6

LIPSCHITZ ADAPTIVITY

Note that ΓρT in Theorem 3 is equal to KL (ρ‖π) + O (ln lnT). Importantly, this theorem and
Algorithm 1 do not depend on any initial guess B anymore. Instead, Algorithm 1 plays the starting
parameters until the first time a non-zero loss is observed, and then monitors a data-dependent
criterion that measures whether the loss range has increased by more than a factor that is roughly t,
to decide when to trigger a restart. For most types of data, such large increases in the loss range
should be rare after a few start-up rounds, so restarts should quickly stop occurring.

3. An Adaptive Method for Online Convex Optimization

We now present an extension of the METAGRAD algorithm which adapts automatically to the gradient
norm in online convex optimization — we call this Lipschitz adaptive version METAGRAD+L. Recall
that in the OCO setting, at each round t, the learner predicts a vector ût in a closed convex set
U ⊂ Rd, then suffers loss `t(ût), where `t : U → R is a convex function. The goal of the learner
is to minimize the regret Ru

T :=
∑T

t=1 `t(ût) −
∑T

t=1 `t(u) with respect to the single best action
u ∈ U in hindsight. In this case, convexity of the losses implies that `t(ût)− `t(u) ≤ 〈ût − u, gt〉,
where gt := ∇`t(ût), and so it suffices to control the pseudo-regret R̃u

T :=
∑T

t=1〈ût − u, gt〉. We
will assume that the set U is bounded, and denote its diameter by

D := sup
u,v∈U

‖u− v‖2. (8)

Without loss of generality, we will also assume that the set U is centered at 0. The proofs for this
section are deferred to Appendix B. We now review the METAGRAD algorithm.

3.1. The METAGRAD Algorithm

The METAGRAD algorithm runs several sub-algorithms at each round: namely, a set of slave
algorithms, which learn the best action in U given a learning rate η in some pre-defined grid G, and
a master algorithm, which learns the best learning rate. Through this, the METAGRAD algorithm
controls the sum of surrogate losses

∑T
t=1 ft(u, η) over all η ∈ G and u ∈ U simultaneously, where

ft(u, η) := −η〈ût − u, gt〉+ η2〈ût − u, gt〉2, (9)

and ût is the master’s prediction at round t ∈ [T]. Each slave algorithm takes as input a learning rate
from a finite grid G (with d1/2 log2 T e points) in the form of a geometric progression and within the
interval [1/(5DG

√
T), 1/(5DG)], where G is an upper-bound on the norms of the gradients. In this

case, G must be known in advance to construct the grid; in the proof of METAGRAD’s regret bound,
it is crucial for the learning rates to be in the right interval in order to invoke a certain Gaussian
exp-concavity result due to Van Erven and Koolen (2016) for the surrogate losses in (9). In what
follows, we let St :=

∑t
s=1 gsg

ᵀ
s , for t ≥ 0.

Slaves’ Predictions. Each slave η ∈ G starts with ûη1 = 0 ∈ U , and at the end of round t ≥ 1, it
receives the master’s prediction ût and updates its own prediction in two steps:

uηt+1 := ûηt − ηΣ
η
t+1gt

(
1 + 2η (ûηt − ût)

ᵀ
gt
)
, where Ση

t+1 :=
(

I
D2 + 2η2St

)−1
, (10)

and ûηt+1 = argmin
u∈U

(
uηt+1 − u

)ᵀ (
Ση
t+1

)−1 (
uηt+1 − u

)
.

7

LIPSCHITZ ADAPTIVITY

Master’s Predictions. After receiving the slaves’ predictions, (ûηt)η∈G , at round t ≥ 1, the master
algorithm aggregates them and outputs ût ∈ U according to:

ût :=

∑
η∈G ηw

η
t û

η
t∑

η∈G ηw
η
t

; wηt := e−
∑t−1
s=1 fs(û

η
s ,η).

Van Erven and Koolen (2016) showed that METAGRAD has regret bounded by (1). In the next
subsection, we present an extension of METAGRAD which does not require knowledge of either the
horizon T or the Lipschitz constant (i.e. a bound on the norms of the gradients).

3.2. Lipschitz Adaptive METAGRAD

Similar to the SQUINT case, we first design a version of METAGRAD, called METAGRAD+C, which
still requires an input B > 0 (in this case, B/D is the initial estimate of the Lipschitz bound).
We then present METAGRAD+L which sets this parameter online. For now, we consider a fixed
B > 0. We define bt := D‖∇`t(ût)‖2 = D‖gt‖2, for t ≥ 1, and b0 := B. We denote the running
maximum of (bt) by Bt := max0≤s≤t bs. We will also require a clipped version of the gradient
vector ḡt = gt ·Bt−1/Bt, and denote by r̄ut = 〈ût − u, ḡt〉 the clipped instantaneous pseudo-regret
with respect to u ∈ U . In addition, it will be useful to define

f̄t(u, η) := −ηr̄ut + (ηr̄ut)2 and S̄t :=

t∑
s=1

ḡsḡ
ᵀ
s . (11)

Recall that in the original METAGRAD, the horizon T and the Lipschitz constant G were required to
construct the grid of learning rates. We circumvent this by defining an infinite grid G in which, at any
given round t ≥ 1, only a finite number of (active) slaves — up to log2 t many — output a non-zero
prediction. Each slave η in this grid receives a prior weight π(η) ∈ [0, 1], where

∑
η∈G π(η) = 1.

Given input B > 0 to METAGRAD+C, the grid G and the prior π are defined by

G :=

{
ηi :=

1

5B2i
: i ∈ N ∪ {0}

}
; π(ηi) :=

1

(i+ 1)(i+ 2)
, i ∈ N ∪ {0}. (12)

The subset of active slaves At at a round t ≥ 1 is given by

At :=
{
η ∈ G ∩

[
0, 1

5Bt−1

]
: sη < t

}
, with sη := min

{
t ≥ 0 :

1

η
≤ D

t∑
s=1

‖ḡs‖2 +Bt

}
. (13)

We note that restricting the slaves (or learning rates) to the set Gt := G ∩ [0, 1/(5Bt−1)] is similar in
principle to clipping the upper integral range in the SQUINT+C case.

Slaves’ Predictions. A slave η ∈ G ∩ [0, 1/(5Bt−1)] issues predictions ûηt = 0 in all rounds
t ≤ sη + 1. From then on (i.e. at the end of round t ≥ sη + 1), it receives the master’s prediction ût
as input and updates its own prediction in two steps:

uηt+1 := ûηt − ηΣ
η
t+1ḡt

(
1 + 2η (ûηt − ût)

ᵀ
ḡt
)
, where Ση

t+1 :=
(

I
D2 + 2η2

(
S̄t − S̄sη

))−1
,

and ûηt+1 = argmin
u∈U

(
uηt+1 − u

)ᵀ (
Ση
t+1

)−1 (
uηt+1 − u

)
.

8

LIPSCHITZ ADAPTIVITY

Master’s Predictions. At each round t ≥ 1, the master algorithm receives the slaves’ predictions
(ûηt)t∈At and outputs

ût =

∑
η∈At ηw

η
t û

η
t∑

η∈At ηw
η
t

, where wηt := π(η)e
−
∑t−1
s=sη+1 f̄s(û

η
s ,η)

. (14)

Remark 4 (Number of Active Slaves) At any round t ≥ 1, the number of active slaves is at most
dlog2 te. In fact, if η ∈ At, then by definition η ≥ 1/(D

∑sη
s=1‖gs‖2 + Bsη) ≥ 1/(tBt−1) (since

sη ≤ t− 1), and thus At ⊂ [1/(tBt−1), 1/(5Bt−1)]. Since At is a grid in the form of a geometric
progression with common ratio 2, there are at most dlog2 te slaves in At.

To motivate METAGRAD+C, we define the potential function after t ≥ 0 rounds by

Φt := π(Gt \ At) +
∑
η∈At

π(η)e
−
∑t
s=sη+1 f̄s(û

η
s ,η)

, where Gt := G ∩
[
0, 1

5Bt−1

]
. (15)

Let u ∈ U . Recall that the pseudo-regret is defined by R̃u
T :=

∑T
t=1〈ût − u, gt〉. We now defined

its clipped version by R̄u
T :=

∑T
t=1〈ût − u, ḡt〉. For rut := 〈ût − u, gt〉, we have, similarily to (4),

R̃u
T − R̄u

T =

T∑
t=1

(rut − r̄ut) =

T∑
t=1

(Bt −Bt−1)
rut
Bt
≤ BT −B0, (16)

where the last inequality follows from the Cauchy-Schwarz inequality and the fact that U has diameter
D, which together imply that |rut | ≤ Bt. Using the inequality ex−x

2 − 1 ≤ x, which holds for all
x ≥ −1/2, one can shown that the potential is a decreasing function of the number of rounds:

Lemma 5 METAGRAD+C guarantees that ΦT ≤ · · · ≤ Φ0 = 1, for all T ∈ N.

We now give an upper-bound on R̄u
T in terms of the clipped ‘variance’ V̄ u

T :=
∑T

t=1(r̄ut)2;

Theorem 6 Given input B > 0, the clipped pseudo-regret for METAGRAD+C is bounded by

R̄u
T ≤ 3

√
V̄ u
T CT + 15BTCT , for any u ∈ U ,

where CT := d ln
(

1 +
2
∑T−1
t=0 b2t

25dB2
T−1

)
+ 2 ln

(
log+

2

√∑T
t=1 b

2
t

B + 3

)
+ 2 and log+

2 = 0 ∨ log2.

Remark 7 For u ∈ U , we can relate the clipped pseudo-regret to the ordinary regret via Ru
T ≤

R̃u
T ≤ R̄u

T +BT (see (16)) and on the right-hand side we can also use that V̄ u
T ≤ V u

T .

An important aspect to note from Theorem 6 is that the ratio
√∑T

t=1 b
2
t /B, could in principle be

arbitrarily large if the input B is too small compared to the actual norms of the gradients (for SQUINT

it was the ratio BT−1/B which was problematic). To resolve this issue, we use the same restart
approach as in the SQUINT case:

9

LIPSCHITZ ADAPTIVITY

Theorem 8 Let METAGRAD+L be the result of applying Algorithm 1 to METAGRAD+C. Then the
actual and linearised regrets for METAGRAD+L are both bounded by

Ru
t ≤ R̃u

T ≤ 3
√
V u
T ΓT + 15BTΓT + 4BT for all u ∈ U ,

where ΓT := 2d ln
(

1 + 2
25d

∑T
t=1

b2t
B2
t

)
+ 4 ln

(
log+

2

√∑T
t=1(

∑t
s=1

bs
Bs

)2 + 3
)

+ 4 = O(d lnT).

Theorem 8 replaces the ratio
√∑T

t=1 b
2
t /B appearing in the (clipped) pseudo-regret bound of

METAGRAD+C by σT :=
√∑T

t=1(
∑t

s=1 bs/Bs)
2. The latter is independent of the input B and is

always smaller than T 3/2; this is perfectly affordable since σT appears inside a ln ln. Our reason
for including the linearised regret R̃u

T in Theorem 8 is that a bound on it in terms of V u
T is the

precondition for fast rate results in individual-sequence settings based on curvature (Van Erven and
Koolen, 2016) and in statistical settings under certain (Bernstein type) conditions (Koolen et al.,
2016).

4. Efficient Implementation Through a Reduction to the Ball

Using METAGRAD (+C or +L), the computation of each slave prediction ûηt requires a projection
onto an arbitrary convex set U in Mahalanobis distance. Numerically, this typically requires O(dp)
floating point operations (flops), for some p ∈ N which depends on the geometry of the set U . Since
p can be large in many applications, evaluating ûηt for each slave η can become computationally
prohibitive, especially when the number of slaves grows with T ; for the METAGRAD versions
discussed in this paper, there can be up to dlog2 T e slaves at round T ≥ 1 (see Remark 4).

The goal of this section is to streamline these computations, which we will do in two steps. In
Section 4.1, we will describe an efficient implementation of METAGRAD on the ball. The main idea
here is that the Mahalanobis projections onto the ball, which are performed by the slaves, can reuse a
common matrix decomposition. In Section 4.2, we will then obtain an algorithm for any bounded
convex set U by applying the black-box reduction of Cutkosky and Orabona (2018) to METAGRAD

on the ball enclosing U . We show (Theorem 10) that the reduction also transports variance bounds.
The techniques discussed here also apply to the versions of METAGRAD presented in the previous
section. However, to simplify the presentation, we will only focus on the original METAGRAD. The
proofs for this section are deferred to Appendix C.

4.1. Efficient Implementation of METAGRAD on the Ball

Suppose that U is the ball of diameter D: U = BD :=
{
u ∈ Rd : ‖u‖2 ≤ D/2

}
. To compute the

slave’s prediction ûηt+1, the following quadratic program needs to be solved for each η:

ûηt+1 = argmin
u∈U

(
uηt+1 − u

)ᵀ (
Ση
t+1

)−1 (
uηt+1 − u

)
, (17)

where uηt+1 (the unprojected prediction) and Ση
t+1 = (I/D2 + 2η2St)

−1 (the co-variance matrix)
are defined in (10). Since U is a ball and Ση

t+1 is symmetric positive-definite, (17) can be solved in
O(d3) by performing a singular value decomposition of Ση

t+1. Instead of doing this singular value
decomposition separately for each η, we can be a little more efficient by doing a singular value
decomposition of St once and then using the following lemma:

10

LIPSCHITZ ADAPTIVITY

Algorithm 2 Reducing an OCO problem on U ⊂ Rd to one on a ball.
Require: A bounded convex set U ⊂ Rd with diameter D > 0, a Lipschitz bound G > 0.

We write METAGRAD(D) for METAGRAD applied to the ball BD enclosing U .
for t = 1 to T do

Get ût from METAGRAD(D) ; //The initial input to METAGRAD is B = DG.
Predict ŵt = ΠU (ût) and receive g̊t = ∇`t(ŵt);
Set gt ∈ 1

2 (g̊t + ‖g̊t‖∂ dU (ût));
Send gt to METAGRAD(D) ;

end for

Lemma 9 Let Λt := diag((λit)i∈[d]) and Qt be the matrices of eigenvalues and eigenvectors of St,
respectively, such that QtStQ

ᵀ
t = Λt and QtQ

ᵀ
t = I.2 Then the solution of (17) is

ûηt+1 =

{
uηt+1, if uηt+1 ∈ U ,
Qᵀ
t (x

η
t I + 2η2Λt)

−1Qtv
η
t+1, otherwise,

where vηt+1 :=
(
I/D2 + 2η2St

)
uηt+1 and the scalar xηt is the unique solution of

ρηt (x) :=
d∑
i=1

〈ei,Qtv
η
t+1〉2

(x+ 2η2λit)
2

=
D2

4
. (18)

Since ρηt in (18) is strictly convex and decreasing, ρηt (x) = D2/4 can be solved using Newton’s
method in linear time.

A further improvement leverages the rank-one update St = St−1 + gtg
ᵀ
t to update Λt−1 and

Qt−1. It is possible to compute the new matrices Λt and Qt in, respectively, O(d2) and O(d3) flops,
where the latter cost for computing Qt is only due to matrix multiplication (rather than a full singular
value decomposition) (Bunch et al., 1978), and thus admits an efficient parallel implementation.

4.2. A Reduction to the Ball

In this subsection, we extend the black-box technique of Cutkosky and Orabona (2018) to reduce an
OCO problem on an arbitrary bounded convex set U ⊂ Rd to one on a ball, where the implementation
of METAGRAD from the previous subsection can be applied.

Let D be the diameter of a closed bounded convex set U ⊂ Rd as in (8), so that the ball BD of
radius D/2 encloses U . As in the previous section, we again assume, without loss of generality, that
U is centered at 0. For u ∈ U , we denote dU (u) = minw∈U‖u−w‖2 the distance function from
the set U , and we define ΠU (u) := {w ∈ U : ‖w − u‖2 = dU (u)}. Algorithm 2 reduces the OCO
problem on the set U to one on the ball BD, where the METAGRAD algorithm is used as a black-box
to solve it. We note that Algorithm 2 (including its METAGRAD subroutine) only performs a single
projection (applied to the output of METAGRAD) onto the set U in Euclidean distance — as opposed
the time-varying Mahalanobis distance (17); the METAGRAD subroutine only performs projections
onto the ball BD, which can be done efficiently as described in the previous subsection.

2. The existence of such a Qt and Λt is guaranteed due to St being symmetric positive-definite.

11

LIPSCHITZ ADAPTIVITY

In the next theorem, we assume that a Lipschitz bound G > 0 is known in advance3, and we
let R̊u

T :=
∑T

t=1〈ŵt − u, g̊t〉 and V̊ u
T :=

∑T
t=1〈ŵt − u, g̊t〉2 be the pseudo-regret and ‘variance’

corresponding to Algorithm 2. We now show that the (pseudo) regret guarantee of METAGRAD

readily transfers to Algorithm 2 with almost no overhead:

Theorem 10 Let D > 0, and suppose that the METAGRAD(D) subroutine of Algorithm 2 achieves
a pseudo-regret bound of the form

R̃u
T ≤

√
V u
T ΓT +BΓT , for all u ∈ BD,

where R̃u
t :=

∑T
t=1〈ût − u, gt〉, V u

t :=
∑T

t=1〈ût − u, gt〉2, and ΓT = O(d ln(T/d)). Then,
Algorithm 2 guarantees:

T∑
t=1

(`t(ŵt)− `t(u)) ≤ R̊u
T ≤

√
V̊ u
T ΓT + 4BΓT , for all u ∈ U .

From the standard black-box reduction of Cutkosky and Orabona (2018), we would obtain an
unsatisfactory result in which V̊ u

T would be measured in terms of the fake gradients gt that are
supplied internally to METAGRAD(D) instead of the actual gradients g̊t. As this would not be
sufficient to adapt to the easiness conditions described in the introduction, the proof of Theorem 10
involves an extra step to relate the variance term back to the actual gradients.

5. Conclusion

We present algorithms that adapt to the Lipschitz constant of the loss for OCO and experts, with
hardly any overhead in terms of regret or computation compared to their previous counterparts that
had to know the Lipschitz constant up-front. This fits into a larger picture of understanding which
types of adaptivity are possible at which price in terms of additional regret and additional run time.

One surprising conclusion from our work is the following observation: for OCO, Cutkosky and
Boahen (2017a) show that in general it is not possible to be adaptive to both the Lipschitz constant
and the norm of the comparator ‖u‖ at the same time. Since the analogue of ‖u‖ in the expert setting
is the complexity measure KL(ρ‖π), we might therefore conjecture that Lipschitz adaptivity would
also be incompatible with a quantile regret bound in terms of KL(ρ‖π). However, our results show
this conjecture to be false: for experts there is no conflict. This holds even in cases where the prior
π is not uniform, and our results can easily be extended to a countably infinite number of experts
where KL(ρ‖π) cannot even be uniformly bounded.

A final and very interesting question is when is it possible to exploit scenarios with large Lipschitz
constants or loss ranges that occur only very infrequently. An example of this is found in statistical
learning with heavy-tailed loss distributions. For such scenarios, martingale methods (related to our
potential functions) suggest that it may be necessary to replace in ft(u, η) the ‘surrogate’ negative
quadratic term that our algorithms include in the exponent by another function appropriate for the
specific distribution (Howard et al., 2018, Table 3). It is not currently clear what individual sequence
analogues can be obtained.

3. If one uses METAGRAD+C or METAGRAD+L as the subroutine in Algorithm 2 instead of METAGRAD, then a
Lipschitz bound need not be known in adavance; a version of Theorem 10 with different constants would still hold in
this case.

12

LIPSCHITZ ADAPTIVITY

Acknowledgments

We thank the anonymous reviewers for feedback that improved the presentation. Part of this work
was performed while Zakaria Mhammedi was conducting an internship at the Centrum Wiskunde &
Informatica (CWI). This work was also supported by the Australian Research Council and Data61.

References

Peter L. Bartlett, Elad Hazan, and Alexander Rakhlin. Adaptive online gradient descent. In Advances
in Neural Information Processing Systems 20 (NIPS), pages 65–72, 2007.

James R. Bunch, Christopher P. Nielsen, and Danny C. Sorensen. Rank-one modification of the
symmetric eigenproblem. Numerische Mathematik, 31(1):31–48, 1978.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Nicolò Cesa-Bianchi, Yoav Freund, David Haussler, David P. Helmbold, Robert E. Schapire, and
Manfred K. Warmuth. How to use expert advice. J. ACM, 44(3):427–485, 1997.

Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for
prediction with expert advice. Machine Learning, 66(2-3):321–352, 2007.

Kamalika Chaudhuri, Yoav Freund, and Daniel Hsu. A parameter-free hedging algorithm. In
Advances in Neural Information Processing Systems 22 (NIPS 2009), pages 297–305, 2009.

Alexey V. Chernov and Vladimir Vovk. Prediction with advice of unknown number of experts. In
Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, pages 117–125, 2010.

Chao-Kai Chiang, Tianbao Yang, Chia-Jung Le, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
Shenghuo Zhu. Online optimization with gradual variations. In Proc. of the 25th Annual Confer-
ence on Learning Theory (COLT), pages 6.1–6.20, 2012.

Ashok Cutkosky. Artificial constraints and lipschitz hints for unconstrained online learning. arXiv
preprint arXiv:1902.09013, 2019.

Ashok Cutkosky and Kwabena Boahen. Online learning without prior information. In Proceedings
of the 30th Annual Conference on Learning Theory (COLT), pages 643–677, 2017a.

Ashok Cutkosky and Kwabena A. Boahen. Stochastic and adversarial online learning without
hyperparameters. In Advances in Neural Information Processing Systems, pages 5059–5067,
2017b.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in
Banach spaces. In Conference On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July
2018., pages 1493–1529, 2018.

Chuong B. Do, Quoc V. Le, and Chuan-Sheng Foo. Proximal regularization for online and batch
learning. In Proc. of the 26th Annual International Conference on Machine Learning (ICML),
pages 257–264, 2009.

13

LIPSCHITZ ADAPTIVITY

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Tim van Erven and Wouter M. Koolen. Metagrad: Multiple learning rates in online learning. In
Advances in Neural Information Processing Systems 29 (NIPS), pages 3666–3674, 2016.

Dylan J Foster, Alexander Rakhlin, and Karthik Sridharan. Adaptive online learning. In Advances in
Neural Information Processing Systems 28 (NIPS), pages 3375–3383, 2015.

Dylan J. Foster, Alexander Rakhlin, and Karthik Sridharan. Zigzag: A new approach to adaptive
online learning. In Proc. of the 2017 Annual Conference on Learning Theory (COLT), pages
876–924, 2017.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 1997.

Pierre Gaillard, Gilles Stoltz, and Tim van Erven. A second-order bound with excess losses. In Proc.
of the 27th Annual Conference on Learning Theory (COLT), pages 176–196, 2014.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization, 2
(3–4):157–325, 2016.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by variation in
costs. Machine learning, 80(2-3):165–188, 2010.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

Steve Howard, Aaditya Ramdas, John McAuliffe, and Jasjeet Sekhon. Exponential line-crossing
inequalities. ArXiv e-prints, August 2018.

Wouter M. Koolen. The relative entropy bound for Squint, August 2015. Adversarial Intelligence
blog.

Wouter M. Koolen and Tim van Erven. Second-order quantile methods for experts and combinatorial
games. In Conference on Learning Theory, pages 1155–1175, 2015.

Wouter M. Koolen, Peter D. Grünwald, and Tim van Erven. Combining adversarial guarantees and
stochastic fast rates in online learning. In Advances in Neural Information Processing Systems,
pages 4457–4465, 2016.

Haipeng Luo and Robert E. Schapire. Achieving all with no parameters: Adaptive NormalHedge. In
Proc. of The 28th Annual Conference on Learning Theory (COLT), pages 1286–1304, 2015.

Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for unconstrained linear
optimization. In Advances in Neural Information Processing Systems 26 (NIPS), pages 2724–2732,
2013.

H. Brendan McMahan and Matthew J. Streeter. Adaptive bound optimization for online convex
optimization. In Proceedings of the 23rd Annual Conference on Learning Theory (COLT), pages
244–256, 2010.

14

LIPSCHITZ ADAPTIVITY

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Proc. of
the 26th Annual Conference on Learning Theory (COLT), pages 993–1019, 2013.

Steven de Rooij, Tim van Erven, Peter D. Grünwald, and Wouter M. Koolen. Follow the leader if
you can, hedge if you must. Journal of Machine Learning Research, 15(1):1281–1316, 2014.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in
Machine Learning, 4(2):107–194, 2011.

Rachel Ward, Xiaoxia Wu, and Léon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes, from any initialization. ArXiv:1806.01811 preprint, 2018.

Olivier Wintenberger. Optimal learning with Bernstein online aggregation. ArXiv:1404.1356v2
preprint, 2014.

Olivier Wintenberger. Optimal learning with Bernstein online aggregation. Machine Learning, 106
(1):119–141, 2017.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th Annual International Conference on Machine Learning (ICML), pages
928–936, 2003.

Appendix A. Proofs of Section 2

Proof of Lemma 1 We proceed by induction on T . By definition Φ0 = 0. For T ≥ 0, the definition
(5) gives

ΦT+1 =
∑
k

πk

∫ 1
2BT

0

eηR̄
k
T−η

2V̄ kT

(
eηr̄

k
T+1−η

2(r̄kT+1)2

− 1
)

η
dη︸ ︷︷ ︸

=:Q1

+
∑
k

πk

∫ 1
2BT

0

eηR̄
k
T−η

2V̄ kT − 1

η
dη︸ ︷︷ ︸

=:Q2

.

To control the first term Q1, we apply the so-called ‘prod bound’ ex−x
2 ≤ 1 + x for x ≥ −1/2

(Cesa-Bianchi et al., 2007) to x = ηr̄kT+1, which we may do as ηr̄T+1 ≥ − 1
2BT

BT . Linearity and
the definition of the weights (6), yield the following upper-bound on the term Q1

∑
k

πk

∫ 1
2BT

0

eηR̄
k
T−η

2V̄ kT ηr̄kT+1

η
dη =

〈∑
k

πk

∫ 1
2BT

0
eηR̄

k
T−η

2V̄ kT (p̂T+1 − ek) dη, l̄T+1

〉
= 0.

To control the second term Q2, we extend the range of the integral to find

Q2 ≤
∑
k

πk

∫ 1
2BT−1

0

eηR̄
k
T−η

2V̄ kT − 1

η
dη + ln

BT
BT−1

= ΦT + ln
BT
BT−1

.

15

LIPSCHITZ ADAPTIVITY

Proof of Lemma 2 For any ε ∈ [0, 1/(2BT−1)], we may split the potential (5) as follows

ΦT =
∑
k

πk

∫ ε

0

eηR̄
k
T−η

2V̄ kT − 1

η
dη︸ ︷︷ ︸

=:Q1

+
∑
k

πk

∫ 1
2BT−1

ε

eηR̄
k
T−η

2V̄ kT − 1

η
dη︸ ︷︷ ︸

=:Q2

.

For convenience, let us introduce b̄t := maxk|r̄kt | = bt · Bt−1/Bt and abbreviate S̄T :=
∑T

t=1 b̄t.
To bound the left term Q1 from below, we use ex − 1 ≥ x. Then combined with R̄kT ≥ −S̄T and
V̄ k
T ≤

∑T−1
t=1 b̄2t ≤ BT−1S̄T we find

Q1 ≥
∑
k

πk

∫ ε

0
R̄kT − ηV̄ k

T dη ≥ −
(
ε+

ε2

2
BT−1

)
S̄T .

For the right term Q2, we use KL duality to find

Q2 =
∑
k

πk

∫ 1
2BT−1

ε

eηR̄
k
T−η

2V̄ kT

η
dη + ln (2BT−1ε) ,

≥ e−KL(ρ‖π)

∫ 1
2BT−1

ε

eηR̄
ρ
T−η

2V̄ ρT

η
dη + ln (2BT−1ε) .

Way pick the admissible ε = 1/(2(S̄T + BT−1)) for which
(
ε+BT−1 · ε2/2

)
S̄T ≤ 1/2 (as it is

increasing in S̄T ≥ 0 and decreasing in BT−1 ≥ 0), and find

ΦT ≥ e−KL(ρ‖π)

∫ 1
2BT−1

ε

eηR̄
ρ
T−η

2V̄ ρT

η
dη − 1

2
− ln

(
1 +

S̄T
BT−1

)
,

which we may reorganise to

Q3 := ln

∫ 1
2BT−1

1
2(S̄T+BT−1)

eηR̄
ρ
T−η

2V̄ ρT

η
dη ≤ KL (ρ‖π) + ln

(
ΦT +

1

2
+ ln

(
1 +

S̄T
BT−1

))
.

The argument to bound the integral in Q3 splits in 3 cases. Let us abbreviate R ≡ R̄ρT and V ≡ V̄ ρ
T .

Let η̂ = R
2V be the maximiser of η → ηR− η2V .

1. First the important case, where [η̂ − 1/
√

2V , η̂] ⊆ [1/(2(S̄T +BT+1)), 1/(2BT−1)]. Then

Q3 ≥ ln

∫ η̂

η̂− 1√
2V

eηR−η
2V

η
dη ≥ ln

∫ η̂

η̂− 1√
2V

e

(
η̂− 1√

2V

)
R−
(
η̂− 1√

2V

)2
V

η
dη

=

(
η̂ − 1√

2V

)
R−

(
η̂ − 1√

2V

)2

V + ln ln
η̂

η̂ − 1√
2V

=
R2

4V
− 1

2
+ ln ln

1

1−
√

2V
R

≥ 1

2

(
R√
2V
− 1

)2

16

LIPSCHITZ ADAPTIVITY

where the last inequality uses ln ln(x/(x−1)) ≥ 1−x for x ≥ 1, which can be easily verified
by a one-dimensional plot. We conclude

R ≤
√

2V

(
1 +

√
2 KL (ρ‖π) + 2 ln

(
ΦT +

1

2
+ ln

(
1 +

S̄T
BT−1

)))
.

2. Then in the case where η̂ − 1/
√

2V < 1/S̄T , we have

R <
√

2V +
2V

S̄T
≤
√

2V + 2BT−1,

and we are done again.

3. We come to the final case where η̂ > 1/(2BT−1), meaning that R > V/BT−1. Here we use
that for any u ∈ [1/(2(S̄T +BT−1)), 1/(2BT−1)]

Q3 ≥ ln

∫ 1
2BT−1

u

euR−u
2V

η
dη ≥ uR(1− uBT−1) + ln ln

1

2uBT−1
,

and hence

R ≤
Q3 − ln ln 1

2uBT−1

u(1− uBT−1)
.

Picking the feasible u = (5−
√

5)/(10BT−1) and using − ln ln(5/(5−
√

5)) ≤ ln 2 yields

R ≤ 5BT−1

(
KL (ρ‖π) + ln

(
ΦT +

1

2
+ ln

(
1 +

S̄T
BT−1

))
+ ln 2

)
.

Finally, using the fact that

S̄T
BT−1

=
1

BT−1

T∑
t=1

Bt−1

Bt
bt ≤ 1 +

T−1∑
t=1

bt
Bt

concludes the proof.

Proof of Theorem 3 The idea of the proof is to analyse the rounds in three parts, as shown in
Figure 1.

For comparator ρ ∈ 4K , B > 0 and τ1, τ2 ∈ N such that τ1 < τ2, we define the regret Rρ(τ1,τ2]

and variance V ρ
(τ1,τ2] of SQUINT+C started at round τ1 + 1 (with input Bτ1) and terminated after

round τ2 by

Rρ(τ1,τ2]
:=

τ2∑
t=τ1+1

Eρ(k)

[
rkt

]
, V ρ

(τ1,τ2]
:=

τ2∑
t=τ1+1

Eρ(k)

[
(rkt)2

]
.

We also define

Γρ(τ1,τ2]
:= KL (ρ‖π) + ln

(
ln

τ2−1∑
t=1

bt
Bt

+
1

2
+ ln

(
2 +

τ2−1∑
t=τ1+1

bt
Bt

))
.

17

LIPSCHITZ ADAPTIVITY

. . .

1 Tτ2τ1

final restartpenultimate restart

√
V bound

√
V boundtiny

implies

Figure 1: Regret bounding strategy; most general case

Lemma 11 Let ρ ∈ 4K and τ1, τ2 ∈ N be such that τ1 < τ2. Suppose that Bτ2−1/Bτ1 ≤∑τ2−1
t=1 bt/Bt (this corresponds to the case where the restart condition in line 2 of Algorithm 1 is not

triggered at the end of round τ2 − 1). Then, the regret Rρ(τ1,τ2] of SQUINT+C satisfies:

Rρ(τ1,τ2] ≤
√

2V ρ
(τ1,τ2]

(
1 +

√
2Γρ(τ1,τ2]

)
+ 5Bτ2

(
Γρ(τ1,τ2] + ln 2

)
+Bτ2 . (19)

Proof of Lemma 11 By the assumption that Bτ2−1/Bτ1 ≤ ln
∑τ2−1

t=1 bt/Bt and Lemma 1, the
potential function Φτ2 can be upper-bounded by

Φτ2 ≤ ln
Bτ2−1

Bτ1
≤ ln

τ2−1∑
t=1

bt
Bt
.

Using this, together with Lemma 2 and (4), we get (19).

Assume without loss of generality that b1 6= 0. Then the regret of SQUINT+L in round t = 1 is
bounded by B1 ≤ BT , and SQUINT+C is started for the first time in round t = 2 with input B = B1.

Now suppose first that the restart condition in line 2 of Algorithm 1 is never triggered, which
means that Bt/B1 ≤

∑t
s=1 bs/Bs for all rounds t = 2, . . . , T . Then for any comparator distribution

ρ ∈ 4K , the result follows from Lemma 2 and the facts that V ρ
(1:T] ≤ V

ρ
T and Γρ(1:T] ≤ ΓρT .

Alternatively, suppose there is at least one restart. Then let 1 ≤ τ1 < τ2 < T be such that (τ1, τ2]
and (τ2, T] are the two intervals over which the last two runs of SQUINT+C occurred. We invoke
Lemma 2 separately for both these intervals and use Lemma 11 to bound

Rρ(τ1,T] ≤
√

2V ρ
(τ1,τ2]

(
1 +

√
2Γρ(τ1,τ2]

)
+ 5Bτ2

(
Γρ(τ1,τ2] + ln 2

)
+Bτ2

+
√

2V ρ
(τ2,T]

(
1 +

√
2Γρ(τ2,T]

)
+ 5BT

(
Γρ(τ2,T] + ln 2

)
+BT ,

≤ 2
√
V ρ

(τ1,T]

(
1 +

√
2Γρ(τ1,T]

)
+ 10BT

(
Γρ(τ1,T] + ln 2

)
+ 2BT , (20)

≤ 2
√
V ρ
T

(
1 +

√
2ΓρT

)
+ 10BT

(
ΓρT + ln 2

)
+ 2BT . (21)

18

LIPSCHITZ ADAPTIVITY

where in (20) we used the fact that
√
x+
√
y ≤
√

2x+ 2y. If there is exactly one restart, then (21)
implies the desired result. If there are multiple restarts, then the proof is completed by bounding the
contribution to the regret of all rounds 2, . . . , τ1 by

Ru
(1,τ1] ≤

τ1∑
t=2

bt ≤ Bτ1
τ1∑
t=1

bt
Bt
≤ Bτ1

τ2∑
t=1

bt
Bt

< Bτ2 ≤ BT ,

where the second to last inequality holds because there was a restart at the end of round t = τ2. Fi-
nally, by bounding the instantaneous regret from the first round byBT , we obtain the desired result.

Appendix B. Proofs of Section 3

Proof of Lemma 5 Let t ≥ 1. To simplify notation, we denote r̄ηs := 〈ûs − ûηs , ḡs〉, for u ∈ U and
s ∈ N. By appealing to the prod-bound (i.e. ex−x

2 − 1 ≤ x, for x ≥ −1/2), we have

Φt+1 = π(Gt+1 \ At+1) +
∑

η∈At+1

wηt+1

(
eηr̄

η
t+1−η(r̄ηt+1)2 − 1

)
+

∑
η∈At+1

wηt+1,

≤ π(Gt+1 \ At+1) +
∑

η∈At+1

wηt+1ηr̄
η
t+1 +

∑
η∈At+1

wηt+1.

Now by (14) ∑
η∈At+1

wηt+1ηr̄
η
t+1 =

∑
η∈At+1

ηwηt+1(ût+1 − ûηt+1)ᵀḡt = 0.

Moreover, by definition of Gt and At,

π(Gt+1 \ At+1) +
∑

η∈At+1

wηt+1 = π({η ∈ Gt+1 : sη > t}) +
∑

η∈Gt+1:sη≤t
wηt+1,

≤ π({η ∈ Gt : sη > t}) +
∑

η∈Gt:sη≤t
wηt+1 = π({η ∈ Gt : sη ≥ t}) +

∑
η∈Gt:sη<t

wηt+1,

= π(Gt \ At) +
∑
η∈At

wηt+1 = Φt.

Where we used that wηsη+1 = π(η). Finally, as A0 = ∅ and G0 = G, we find Φ0 = π(G) = 1.

Proof of Theorem 6 Throughout this proof we will deal with slaves η ∈ GT \AT that are provisioned
but not active yet by time T , and we will interpret their sη = T for uniform treatment, even though
technically all we know from (13) is that sη ≥ T .

First due to Lemma 5, we have ΦT ≤ 1, where ΦT is the potential defined in (15). Taking
logarithms and rearranging, we find

∀η ∈ GT , −
T∑

t=sη+1

f̄t(û
η
t , η) ≤ − lnπ(η). (22)

19

LIPSCHITZ ADAPTIVITY

Moreover, every slave η ∈ GT guarantees the following regret for the rounds t = sη + 1, . . . , T (see
Van Erven and Koolen 2016, Lemma 5):

T∑
t=sη+1

(
f̄t(û

η
t , η)− f̄t(u, η)

)
≤ ln det

(
I + 2η2D2(S̄T − S̄sη)

)
+ ‖u‖2

2D2 ,

≤ d ln
(

1 + 2D2

25dB2
T−1

tr S̄T

)
+ ‖u‖2

2D2 , (23)

where in (23) we used concavity of ln det, S̄sη � 0, and the fact that η ∈ GT ⊂ [0, 1/(5BT−1)]. We
then invert the ‘wake up condition’ (13) at time sη − 1 to infer

−
sη∑
t=1

f̄t(u, η) ≤ η
sη∑
t=1

r̄ut ≤
∑sη−1

t=1 r̄ut + r̄usη

D
∑sη−1

t=1 ‖ḡt‖2 +Bsη−1

≤ 1. (24)

Combining the bounds (22), (23), and (24), then dividing through by η, gives:

∀η ∈ GT , R̄u
T ≤ ηV̄ u

T + 1
ηCT (η), (25)

where CT (η) := d ln
(

1 + 2D2

25dB2
T−1

tr S̄T

)
− lnπ(η) + 2.

Let CT be as in the theorem statement and η∗ be the estimator defined by η∗ :=
√
CT /V̄ u

T .
Suppose that η∗ ≤ 1/(5BT−1). By construction of the grid GT , there exists i ∈ N such that

η̂ := 2−i/(5B0) ∈ GT and η̂ ∈ [η∗/2, η∗] . (26)

Since CT ≥ 1, the estimator η∗ can be lower-bounded by 1/
√
V̄ u
T , and thus due to (26) we have

2−i/(5B0) ≥ 1/
√

4V̄ u
T . This implies that the prior weight on η̂ satisfies

1

π(η̂)
= (i+ 1)(i+ 2) ≤

(
log2

2
√
V̄ u
T

5B0
+ 1

)(
log2

2
√
V̄ u
T

5B0
+ 2

)
≤
(

log2

√
V̄ u
T

B0
+ 3

)2

. (27)

Now from the fact that 1/
√
V̄ u
T ≤ η∗ ≤ 1/(5BT−1) ≤ 1/(5B0), we have

√
V̄ u
T /B0 ≥ 2. This,

combined with (27), implies that CT (η̂) ≤ CT , where CT is as in the theorem statement. Plugging
η = η̂ into (25) and using the fact that η̂ ∈ [η∗/2, η∗], gives

R̄u
T ≤ η̂V̄ u

T + 1
η̂CT (η̂) ≤ η∗V̄ u

T + 2
η∗
CT = 3

√
V̄ u
T CT . (28)

Now suppose that η∗ > 1/(5BT−1), and let η̂ := maxGT ≥ 1/(10BT−1), where the last inequality
follows by construction of GT . Note that in this case 1

π(η̂) ≤ (log2
2BT−1

B0
+ 1)(log2

2BT−1

B0
+ 2), and

the inequality CT (η̂) ≤ CT still holds. Plugging η = η̂ into (25) and using the assumption on η∗, i.e.
η∗ > 1/(5BT−1), we obtain

R̄u
T ≤ η̂V̄ u

T + 1
η̂CT (η̂) ≤ η̂V̄ u

T + 1
η̂CT ≤ 15BTCT . (29)

By combining (28) and (29), we get the desired result.

20

LIPSCHITZ ADAPTIVITY

Proof of Theorem 8 Assume without loss of generality that b1 6= 0. Then the regret of META-
GRAD+L in round one is bounded by B1 ≤ BT , and METAGRAD+C is started for the first time in
round t = 2 with parameter B = B1.

Let V u
(1:T] and C(1:T] represent the quantities denoted by V u

T and CT in Theorem 6 but measured
on rounds 2, . . . , T . Now suppose first that the restart condition in line 2 of Algorithm 1 is never
triggered, which means that

Bt
B1
≤

t∑
s=1

bs
Bs
, for all rounds t = 2, . . . , T . (30)

Then the result follows from Theorem 6, V u
(1:T] ≤ V

u
T , for all u ∈ U , and

C(1:T] = d ln

(
1 +

2

25d

∑T−1
t=1 b2t
B2
T−1

)
+ 2 ln

log+
2

√∑T
t=2 b

2
t

B1
+ 3

+ 2,

≤ d ln

(
1 +

2

25d

∑T−1
t=1 b2t
B2
T−1

)
+ 2 ln

log+
2

√√√√ T∑
t=2

(
t∑

s=1

bs
Bs

)2

+ 3

+ 2, (31)

≤ ΓT ,

where in (31), we used (30). Alternatively, suppose there is at least one restart. Then let 1 ≤
τ1 < τ2 < T be such that (τ1, τ2] and (τ2, T] are the two intervals over which the last two runs of
METAGRAD+C occurred. We invoke Theorem 6 separately for both these intervals to bound

Ru
(τ1,T] ≤ 3

√
V u

(τ1,τ2]C(τ1,τ2] + 15BTC(τ1,τ2] +Bτ2

+ 3
√
V u

(τ2,T]C(τ2,T] + 15BTC(τ2,T] +BT ,

≤ 3
√
V u

(τ1,τ2]ΓT /2 + 3
√
V u

(τ2,T]ΓT /2 + 15BTΓT + 2BT ,

≤ 3
√
V u

(τ1,T]ΓT + 15BTΓT + 2BT , (32)

where a subscript (τ1, τ2] indicates a quantity measured only on rounds τ1 + 1, . . . , τ2 and the last
inequality uses

√
x+
√
y ≤
√

2x+ 2y. If there is exactly one restart, then (32) implies the desired
result. If there are multiple restarts, then the proof is completed by bounding the contribution to the
regret of all rounds 2, . . . , τ1 by

Ru
(1,τ1] ≤

τ1∑
t=2

bt ≤ Bτ1
τ1∑
t=1

bt
Bt
≤ Bτ1

τ2∑
t=1

bt
Bt

< Bτ2 ≤ BT ,

where the second to last inequality holds because there was a restart at t = τ2. Finally, by bounding
the instantaneous regret from the first round by BT , we obtain the desired result.

21

LIPSCHITZ ADAPTIVITY

Appendix C. Proofs of Section 4

Proof of Lemma 9 We use the Lagrangian multiplier to solve (17). For this, let

L(u, µ) :=
(
uηt+1 − u

)ᵀ (
Ση
t+1

)−1 (
uηt+1 − u

)
+ µ(uᵀu−D2).

Setting ∂L
∂u = 0 implies that 2

(
Ση
t+1

)−1 (
u− uηt+1

)
+ 2µu = 0. After rearranging, this becomes

u =
((
µ+ 1

D2

)
I + 2η2St

)−1 (
Ση
t+1

)−1
uηt ,

= Qᵀ
t

(
xI + 2η2Λt

)−1
Qtv

η
t+1,

where we set x := µ+ 1/D2. The result follows after observing that uᵀu = D2/4 ⇐⇒ ρηt (x) =
D2/4.

Proof of Theorem 10 Let R̊u
T :=

∑T
t=1〈ŵt − u, g̊t〉 and V̊ u

T :=
∑T

t=1〈ŵt − u, g̊t〉2 be the pseudo-
regret and ‘variance’ of Algorithm 2. From our assumption on the pseudo-regret R̃u

T of METAGRAD

and the fact that 2
√
x = infη>0{ηx+ 1/η}, we have

∀u ∈ U ⊂ BD,∀η > 0, ηR̃u
T −

η2

2 V
u
T ≤ 1

2ΓT + ηBΓT . (33)

Now, as in the proof of (Cutkosky and Orabona, 2018, Theorem 3), we have

〈ŵt − u, g̊t〉 ≤ 2˚̀
t(ût)− 2˚̀

t(u), (34)

where ŵt = ΠU (ût) is the prediction of Algorithm 2 at round t and ˚̀
t is the function defined by

˚̀
t(u) := 1

2 (〈g̊t,u〉+ ‖g̊t‖ dU (u)). By convexity of ˚̀
t and the fact that gt ∈ ∂˚̀

t(ût), we have

〈ût − u, gt〉 ≥ ˚̀
t(ût)− ˚̀

t(u) ≥ 1
2〈ŵt − u, g̊t〉, for u ∈ U , (35)

where the right-most inequality follows from (34). Since the function x 7→ x − x2/2 is strictly
increasing on the interval]−∞, 1], (35) implies that for all η ∈]0, 1/B] =]0, 1/(DG)],

η
2 〈ŵt − u, g̊t〉 − η2

8 〈ŵt − u, g̊t〉2 ≤ η〈ût − u, gt〉 − η2

2 〈ût − u, gt〉2, for u ∈ U .

Summing this over t = 1, . . . , T and using (33), we get for all η ∈]0, 1/B] and u ∈ U ,
1
2R̊

u
T −

η
8 V̊

u
T ≤ R̃u

T −
η
2V

u
T ≤ 1

2ηΓT +BΓT , and so

R̊u
T ≤

η
4 V̊

u
T + 1

ηΓT + 2BΓT . (36)

The ‘unconstrained’ η ∈ [0,+∞] which minimizes the RHS of (36) is given by η∗ := 2
√

ΓT /V̊ u
T .

We consider two cases: suppose first that η∗ ≤ 1/B. For η = η∗, we have

η
4 V̊

u
T + 1

ηΓT =

√
V̊ u
T ΓT . (37)

Now suppose that η∗ > 1/B. For η = 1/B, we have
η
4 V̊

u
T + 1

ηΓT ≤ 2BΓT . (38)

Combining (36)–(38) yields the desired bound.

22

	Introduction
	An Adaptive Second-order Quantile Method for Experts
	The Squint Algorithm
	Lipschitz Adaptive Squint

	An Adaptive Method for Online Convex Optimization
	The MetaGrad Algorithm
	Lipschitz Adaptive MetaGrad

	Efficient Implementation Through a Reduction to the Ball
	Efficient Implementation of MetaGrad on the Ball
	A Reduction to the Ball

	Conclusion
	Proofs of Section 2
	Proofs of Section 3
	Proofs of Section 4

