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Abstract
We analyze a simple prefiltered variation of the least squares estimator for the problem of esti-

mation with biased, semi-parametric noise, an error model studied more broadly in causal statistics
and active learning. We prove an oracle inequality which demonstrates that this procedure provably
mitigates the variance introduced by long-term dependencies. We then demonstrate that prefiltered
least squares yields, to our knowledge, the first algorithm that provably estimates the parameters
of partially-observed linear systems that attains rates which do not not incur a worst-case depen-
dence on the rate at which these dependencies decay. The algorithm is provably consistent even
for systems which satisfy the weaker marginal stability condition obeyed by many classical models
based on Newtonian mechanics. In this context, our semi-parametric framework yields guarantees
for both stochastic and worst-case noise.
Keywords: Linear Dynamical Systems, Statistical Learning Theory, Variance Reduction, Time
Series, Semi-Parametric Statistics.

1. Introduction

Serial data are ubiquitous in machine learning, control theory, reinforcement learning, and the phys-
ical and social sciences. A major challenge is that such data exhibit long-term correlations, which
often obscure the effects of design variables on measured observations and drive up the variance of
statistical estimators.

In the study of linear, time-invariant dynamical (LTI) systems, for example, a vast literature of
both classical and contemporary work typically assumes that the system exhibits a property called
strict stability, which ensures that long term correlations decay geometrically (Verhaegen, 1993).
While recent works show this condition can be removed in the special case when the full system state
is perfectly observed (Simchowitz et al., 2018; Sarkar and Rakhlin, 2018; Faradonbeh et al., 2018),
it is not known whether the condition is necessary in general. Moreover, it is not fully understood
whether the rate of decay of correlations is the right quantity to parametrize the difficulty of learning,
even for strictly stable systems.

Among the many challenges introduced by both non-strictly stable and almost-unstable LTI
systems is that the more one probes, the more the long-term correlations compound to yield mea-
surements with large magnitudes, thereby driving up the variance of statistical estimators. This
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problem of growing variance arises in many other problem domains as well: for example, the rein-
forcement learning community has produced a great body of work dedicated to reducing variance in
the present of long time horizons and large reward baselines (Sutton and Barto, 1998; Greensmith
et al., 2004).

This work intervenes by making two contributions. First, we analyze a simple prefiltered
variation of the least squares estimator (PF-LS) for the problem of estimation with biased, semi-
parametric noise, an error model studied more broadly in causal statistics and active learning (Cher-
nozhukov et al., 2017; Krishnamurthy et al., 2018). We prove an oracle inequality which demon-
strates that this procedure provably mitigates the variance introduced by long-term dependencies.
Second, we demonstrate that prefiltered least squares yields, to our knowledge, the first algorithm
that provably estimates the parameters of partially-observed linear systems that attains rates which
do not incur a worst-case dependence on the rate at which these dependencies decay. The algorithm
is provably consistent even for systems which satisfy the weaker marginal stability condition obeyed
by many classical models based on Newtonian mechanics. In this context, our semi-parametric
framework yields guarantees for both stochastic and worst-case noise.

1.1. Problem Statement

We consider the problem of regressing a sequence of observations (yt) ⊂ Rm to a sequence of
inputs (ut) ⊂ Rp for times t ∈ [N ]. For a fixed T ∈ N, we define the concatenated input vectors
ut = [ut| . . . |ut−T+1] ∈ RTp, and assume an serial, semi-parametric relationship between yt and
ut; that is, there exists a filtration {Ft} and a G? ∈ Rm×Tp for which

yt = G?ut + δt, ut ∈ Ft, δt ∈ Ft−T . (1.1)

We choose inputs such that ut|Ft−1 ∼ N (0, Ip) which ensures (i) the Neyman-orthogonality con-
dition E[δtu

>
t ] = 0, indispensable for consistent semi-parametric estimation (Chernozhukov et al.,

2017) and (ii) that the inputs (ut) have well-conditioned covariance. This setting is motivated by
the problem of estimating the parameters (A?, B?, C?, D?) of a discrete-time linear system, which
evolves according to the updates

xt+1 = A?xt +B?ut +Bwwt

yt = C?xt +D?ut +Dzzt, (1.2)

where (ut) ⊂ Rp is the sequence of inputs, (yt) ⊂ Rm the sequence of outputs, (xt) ⊂ Rn is a
sequence of states, (wt) ⊂ Rdw and (zt) ⊂ Rdz are sequences of process noise and sensor noise,
respectively, and all above matrices are of appropriate dimension.1 Crucially, we do not observe
the system states xt or the noises zt and wt. We shall assume that the process and sensor noises
can be chosen semi-adversarially in the sense that wt, zt ∈ Ft−T (i.e. an adversary may only act
with a T -step delay). This model captures both stochastic and worst-case oblivious noise. A simple
recursion shows that this condition implies that (1.1) holds in this setting, with G? equal to

G? := [D?, C?B?, C?A?B?, C?A
2
?B?, . . . , C?A

T−2
? B?] ∈ Rm×Tp,

the length-T response function from the inputs ut−T+1, . . . ,uT to the observation yt. Examining
the dynamical equations (1.2), we see that the error δt corresponds to the residual part of yt which
is does not depend on ut, and is therefore {Ft−T }-adapted.

1. We do not estimate Bw and Dz , which are in general unidentifiable without a specific noise model.
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An important recent result due to Oymak and Ozay (2018) demonstrates that for these LTI
systems, a consistent estimate ofG? can produce a consistent estimate (Â, B̂, Ĉ, D̂) of an equivalent
realization of (A?, B?, C?, D?).2 Furthermore, Oymak and Ozay (2018) show that if the operator
norm ‖A?‖op is strictly less than one, then ordinary least squares (OLS) can efficiently recover G?
from the inputs u1, . . . ,uN . Formally, if the process and sensor noises are i.i.d normally distributed,
the least squares estimator which uses samples uN1−T+1, . . . ,uN for some N1 ≤ N/10,

ĜLS := arg min
G∈Rm×Tp

N∑
t=N1

‖Gut − yt‖22, (1.3)

converges toG? at a rate ofO
(
N−1/2

)
. Unfortunately, the condition ‖A?‖op < 1 is quite stringent,

and the learning rates degrade as ‖A?‖op approaches 1. Indeed, many systems of interest do not
even satisfy a weaker condition known as strict stability: ρ(A?) < 1, where ρ(·) denotes the spectral
radius. For example, simple oscillators, integrators, and elementary systems that arise from New-
ton’s laws yield realizations where ρ(A?) = 1. For example, the LTI system corresponding to the
discretization of the differential equation F = mẍ, with sampling time ∆ > 0, includes the matrix

A? = exp

(
∆ ·

0 1
0 0


)

=

1 ∆
0 1

. This matrix violates the strict stability condition, yet satisfies

ρ(A?) = 1. As mentioned above, non-asymptotic bounds for learning LTI systems typically yield
rates which depend on the inverse stability gap 1/(1 − ρ(A?))(Oymak, 2018; Hardt et al., 2016;
Shah et al., 2012); for example, Oymak (2018) requires one to select a horizon length T for which
‖A?‖Top ≤ .99, which necessitates that T & 1

1−ρ(A?) .
This work, on the other hand, suggests that a dependence on stability gap can be avoided in

many cases, and the difficulty of learning can instead by parametrized by quantities that are often
less conservative. Specifically, our results will extend to all marginally stable systems; that is,
systems which sastisfy ρ(A?) ≤ 1, including possibly ρ(A?) = 1.

1.2. Prefiltered Least Squares (PF-LS)

In light of the limitations of ordinary least squares, we analyze PF-LS, a simple prefiltering step to
improve the estimation of the matrix G? in the general semi-parametric setting (1.1). In Section 2,
we specialize our analysis to establish consistent recovery of any linear dynamical system for which
ρ(A?) ≤ 1. Prefiltering mitigates the magnitude of the errors δt by learning a coarse linear filter
of future outputs, denoted φrdg ∈ Rm×L, for L ∈ N. This filter uses a sequence (kt) ∈ RL
encoding past observations to estimate (yt) via the prediction φrdg ·kt; while we shall first describe
our results for general features, we shall ultimately specialize our bounds to the features kt :=
[y>t−T |y>t−2T | . . . |y>t−TL]> ∈ RLm, with L = Lm (see (2.7)).

We then estimate G? by regressing the filtered observations (yt−φrdg ·kt) to (ut). Concretely,
our procedure is achieved with the following two steps of least squares.

2. That is, a pair (A,B,C,D) such that D = D?, and for all j ∈ {0, 1, 2, . . . }, C?Aj?B? = CA
j
B.
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φrdg ← arg min
φ∈Rm×L

N∑
t=N1

‖yt − φ · kt‖22 + µ2‖φ‖2F (1.4)

ĜPF ← arg min
G∈Rm×Tp

N∑
t=N1

‖(yt − φrdg · kt)−Gut‖22 (1.5)

Throughout, we let Ñ = N − N1 + 1, and we use the notation ∆ ∈ RÑ×m to denote the matrix
whose rows are δ>N1

, . . . , δ>N and K ∈ RÑ×L the matrix whose rows are k>N1
, . . . ,k>N . Our first

contribution is the following inequality. Throughout, we use . to denote inequality up to universal
multiplicative constants.

Theorem 1.1 (Prefiltering Oracle Inequality, Informal) Consider the general semi-parametric
setting described in Section 1.1, and suppose that kt ∈ Ft−T . Then, with high probability,

‖ĜPF −G?‖op .
Optµ + Ovfitµ

N
· Õ
(√

T (p+m+ L)

)
.

Here, Õ (·) hides logarithmic terms in N , ‖K‖op, and 1/µ. The term

Ovfitµ ∼ Õ(
√
T (p+ L)‖G?‖op) captures the extent to which prefiltering overfits to (ut), and

Optµ := min
φ∈Rm×L

‖∆−Kφ>‖op + µ‖φ‖op (1.6)

describes the data-dependent prediction error of the best filter.

We defer a precise statement of Theorem 1.1 to Theorem 3.3. Note that this result makes no assump-
tions on the structure of the noise δt or the features kt, other than the measurability assumptions
that kt,wt, zt ∈ Ft−T . Moreover, the term Optµ captures to the actual sequence of errors δt, rather
than an a priori upper bound. For a sense of sense of scaling, the overfitting term Ovfitµ is typically
dominated by Optµ, and by setting φ = 0, Optµ ≤ ‖∆‖op. When δt = O (1) on average, this
terms behaves as ∼

√
N , and thus ‖ĜPF −G?‖op decays at a rate of of Õ

(
N−1/2

)
. In general, we

only need to ensure Optµ ∼
√
N .

1.3. Organization

Section 2 presents a precise statement of the PF-LS oracle inequality for LTI systems, Proposi-
tion 2.1, as well as bounds for the associated term Optµ in terms of the phase rank of A? (Defini-
tion 2.3). Consistency of estimation for marginally stable LTI systems is presented as a consequence
(Corollary B.1). Section 3 walks the reader through the analysis of the PF-LS estimator, culminat-
ing in a formal statement of the oracle inequality, Theorem 3.3. Section 4 provides a proof sketch
for results described in Section 2, and Section 5 addresses related work. Complete proofs are de-
ferred to the Appendix, which is divided into three parts: Part I contains graphical illustrations of
phase rank (Appendix A), the proof of Corollary B.1, and the lower bound for OLS, Theorem C.1.
Part II pertains to the the oracle inequality and related material from Section 3. Part III addresses
results specific to LTI systems. The appendix begins with a preface which consolidates notation and
outlines the organization of the subsequent appendices in greater detail.
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2. Rates for Learning LTI Systems

In the setting of marginally stable systems, we can not guarantee that ‖∆‖op grows as
√
N due to

the possible accumulation of system inputs. Indeed, Theorem C.1 in the appendix shows that the
OLS estimator is inconsistent whenever ρ(A?) ≥ 1 and the system satisfies a weak identifiability
criterion. Even for strictly systems, it is not clear whether the inverse stability gap (1 − ρ(A?))

−1,
correctly describes the difficulty of estimation. What we show is that by choosing a large enough
filter length L ∈ N and features

kt := [y>t−T |y>t−2T | . . . |y>t−TL]> ∈ RLm, (2.7)

we can ensure both that Optµ ∼ N1/2 for marginally stable systems and that Optµ need not depend
on the stability gap 1 − ρ(A?). Our choice of kt in (2.7) corresponds to filtering a subsampled
history of the outputs in order to predict yt. This linear prefiltering step is in the spirit of many
schemes detailed in the system identification and time-series literature (see Section 5), many of
which ensure performance in both stochastic and adversarial settings for strictly stable systems.
From the perspective of prefiltered semi-parametric learning, we observe that L corresponds to
L ·m, and that the dynamical equations (1.2) imply that features (2.7) are {Ft−T }-adapted.

We begin the task of deriving explicit estimation rates for LTI systems by first establishing an
oracle inequality for the PF-LS scheme given by (1.4) and (1.5), for two particular noise models.

Definition 2.1 (Noise Models) In the stochastic noise model, wt|Ft−T and zt−T |Ft−T are con-
ditionally 1-subgaussian.3In the adversarial noise model, the noise processes satisfy the bounds
‖wt‖22 ≤ dw and ‖zt‖22 ≤ dz with probability 1.

Observe that shaped and/or scaled noise can be addressed by altering Bw and Dz appropriately.
The conditions ‖wt‖22 ≤ dw and ‖zt‖22 ≤ dz make the adversarial and stochastic noise models
comparable, as in the stochastic noise model we have E[‖wt‖22] . dw and E[‖zt‖22] . dz by
subgaussianity. We shall assume x1 = 0 for the rest of the section, and we address general x1 in
the Appendix. Now, we introduce the following parameter, which illustrates the dependence of our
bounds on the eigenstructure of A?, the conditioning of the eigenvalues, and the magnitude of the
noises encoded in Bw and Dz .

Definition 2.2 (Magnitude Bound) Let A? = SJ?S
−1 denote the Jordan-normal decomposition

of A?. We define M := ‖C?S‖op

(
‖S−1B?‖op + ‖S−1Bw‖op

)
+ ‖D?‖op + ‖Dz‖op .

Lastly, our results apply once N satisfies a moderate lower bound. Specifically, we define Nmin =
max{10TL, cTp log4(2Tp)}, where c is a sufficiently large constant. Our result bounds ‖ĜPF −
G?‖op for LTI systems in terms of Optµ, M , and dimension quantities. Furthermore, we let
log+(x) := max{1, log(x)}. With these quantities defined, we state a specialized version of our
general oracle inequality, Theorem 3.3.

Proposition 2.1 Fix T and L, and suppose that N ≥ Nmin, N1 = TL, ρ(A?) ≤ 1, and that the
largest Jordan block of A? is of size k. Choosing some µ ≥ 1 and defining

d := p̃+ Lm
(
log+M + k log+N

)
= Õ (p+ Lmk) , (2.8)

3. That is, E[exp(λ〈v,wt〉) | Ft−T ] ≤ exp(λ2‖v‖22) for all v ∈ Rdw , and analogously for zt
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it holds with probability at least 1 − δ − (2Np)− log2(2Tp) log2(2Np) in the stochastic noise model
that

‖ĜPF −G?‖op . N−1/2Optµ ·

√
T (d + log 1

δ )

N
+
T (‖G?‖op + µ)(d + log 1

δ )

N
.

In the adversarial noise model, we instead take d := p̃ + Lm
(
log+(M + dz + dw) + k log+N

)
.

Moreover, we have ‖G?‖op .MT k−1/2.

We remark that the logarithmic terms in d can be refined further, but we we state the above
bound for its relative simplicity. In the following subsection, we show that for any marginally stable
system, one can ensure that Optµ ∼ N1/2 as long as L is chosen to be sufficiently large. The
parameter L can be chosen according to a structural minimization procedure (see Appendix H.4);
more detailed discussion of the choices of T and L is deferred to Appendix B.1.

2.1. Learning without the stability gap

We shall now aim to answer the more question: how accurately does the inverse stability gap (1 −
ρ(A?))

−1 describe the intrinsic difficulty of learning an LTI system? To this end, we describe
an alternative criterion we call phase rank, which does not depend on the stability radius in the
worst case. We use phase rank to bound the term Optµ, and thus, through Proposition 2.1, upper
bound the learning rate of the estimator ĜPF. As a second alternative to the inverse stability gap,
in Appendix K we define a condition called strong observability, related to the classical notion of
observability in control theory (Hautus, 1983). This condition also allows us to bound estimation
rates in terms of quantities that do not degrade (in the worst case) as ρ(A?)→ 1.

Phase Rank: Many approaches in the recent learning theory literature have developed bounds
which depend directly on the spectrum of A? and magnitudes of the state-space realization matri-
ces (A?, B?, C?, D?); however, many existing works have incurred dependencies on the minimal
polynomial of A?, which is exponentially large in the worst case. Our first approach adopts a new
measure of complexity we call phase rank, inspired by Hazan et al. (2018), derives bounds from
the spectrum of A? without paying for the size of the minimal polynomial. Rather than capturing
the effects of all eigenvalues, the phase rank groups together eigenvalues with approximately the
same phase, and only considers the eigenvalues of A? which lie near the boundary of the unit disk.
Formally, let D : {z ∈ C : |z| ≤ 1} denote the complex unit disk, and for a marginally stable A?,
let blkspec(A?) ⊂ C×N denote the set4 of all pairs (λ, k), where λ is an eigenvalue of A? and k is
a size of an associated Jordan block. We define phase rank as follows:

Definition 2.3 (Phase Rank) Let α ≥ 1. We say that A? has (α, T )-phase rank d if there exists
µ1, . . . , µd ∈ D such that, for any (λ, k) ∈ blkspec(A?) with |λ| ≥ 1− ((1 + α)T )−1, there exists
at least k elements µi1 , . . . , µik ⊂ {µ1, . . . , µd} satisfying

max
j∈[k]

min
µ̃:µ̃T=µTij

|λ− µ̃| ≤ α (1− |λ|) .

4. As we will be taking the maximum over blkspec(A?), set is equivalent to multiset for our purposes.
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In the above definition, the parameter T allows us to group together eigenvalues having ap-
proximately the same phase mod 2π/T , and the α parameter controls the ‘width’ of the approx-
imation. The phase rank is typically small for many systems of interest; for example, for real
diagonalizable systems, it is at most 2, regardless of the stability radius, thereby obviating a de-
pendence on 1 − ρ(A?) in the worst case. Phase rank can also take advantage of benign systems
which do exhibit stability; for example, phase rank is equal to 0 for strictly stable systems with
ρ(A?) < 1 − ((1 + α)T )−1. In Appendix A, we give some visual diagrams to aid the intuition
for this condition. Moreover, the (1, T ) phase-rank is at most the degree of the “minimal-phase
polynomial” of A?, the measure of complexity studied by Hazan et al. (2018) which inspired this
condition. With this definition in hand, we provide the following bound on Optµ.

Proposition 2.2 (Bounds for Phase Rank) Suppose that A? has (α, T ) phase rank d and maxi-
mum Jordan block size k. Then, for any δ ∈ (0, 1); withL ≥ d,N ≥ T (d+1+α) max{m, log(1/δ)},
and N1 ≥ TL; it holds with probability 1 − δ under the stochastic noise setting of Definition 2.1

that, with Cα,d,k := 2d(k2(1 + α)k−
1
2 + dk−

1
2 ),

N−1/2Optµ . (M + µN−1/2) · T k−1/2Cα,d,k.

We note that for strictly stable systems, one could instead establish bounds directly in terms of
the stability radius, rather than the phase rank. These bounds would roughly scale as N−1/2Optµ .

k2(1 − ρ(A?))
k− 1

2 , and not depend directly on T . For systems where the eigendirections of A?
can be “’disentangled” when observed by C?, we show in Appendix I.1.4 that one may decouple
the eigenmodes of A? to only have to consider the phase rank restricted to smaller portions of the
spectrum of A?. For example, if there exists a well-conditioned matrix V for which C?V and
V −1A? are diagonal with blocks (C1, C2), (A1, A2), respectively, then we only incur a penalty for
the maximum of the phase ranks ofA1 andA2. Appendix I also gives refinements of Proposition 2.2
that take more granular aspects of blkspec(A?) into account. For constant phase rank d, we have
the bound N−1/2Optµ ∼ O

(
T k−1/2

)
, which roughly matches the dependence on ‖F?‖op in the

bounds in Oymak and Ozay (2018). Lastly, as mentioned above, Theorem C.1 shows that OLS
inconsistently estimates G? when ρ(A?) = 1, even with no process or sensor noise.

2.2. Recovering the System Parameters

Given our consistent estimates of G?, we can recover the system parameters (A?, B?, C?, D?) at a
rate of Õ(1/N1/4), even for marginally stable systems. We prove Corollary B.1, a precise corol-
lary with all parameter dependencies made explicit, and discuss choices of parameters L and T in
Appendix B.

3. Oracle Inequality for Prefiltered Least Squares

The goal of this section is to present Theorem 3.3, a technical version of the general oracle inequal-
ity Theorem 1.1 for the estimator ĜPF. To guide the proofs and intuition, we first consider the
performance of the estimator which uses an arbitrary, fixed filter φ, rather than the data-dependent
filter chosen by (1.4):

Ĝfil(φ) := arg min
G∈Rm×Tp

N∑
t=N1

‖(yt − φ · kt)−Gut‖2. (3.9)
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Note that for φ = 0, Ĝfil(φ) = ĜLS is the OLS estimator. To analyze Ĝfil(φ), we must define
the associated error δφ,t := δt − φ · kt. Since δt,kt are Ft−T -adapted, δφ,t is as well. Thus,
yt−φ ·kt = G?ut+δφ,t is a semi-parametric model describing the relationship between yt−φ ·kt
and ut. We shall now establish two crucial properties which ensure estimation. The first shows that
the matrix U := [uN1 | . . . |uN ]> is well-conditioned with high probability.

Lemma 3.1 (Lemma C.2 in Oymak and Ozay (2018)) Define the event EU and number δU as

EU := {N
2
I � U

>
U � 2I} δU := (2Np)− log2(2Tp) log2(2Np).

Then, if N1 ≤ 1
10N and the sample size N satisfies N ≥ c′Tp log2(2Tp) log2(2Np) for a suffi-

ciently large c′ > 0, it holds that P[Ec
U

] ≤ δU.

Inverting, we see that it suffices to take N ≥ Nmin for a possibly larger constant c to ensure the
condition N ≥ c′Tp log2(2Tp) log2(2Np) holds. The second property we shall use is Neyman
orthogonality, which states that

E[utδ
>
φ,t] = E[E[ut|Ft−T ]δ>φ,t] = 0 .

This property is satisfied in our setting, since δφ,t is Ft−T adapted and E[ut|Ft−1] = 0. Cher-
nozhukov et al. (2017) show that under general conditions, Neyman orthogonality generally ensures
consistency of least squares, and Krishnamurthy et al. (2018) recently demonstrated that this idea
implies consistency in a time-series setting. Our first result adapts this argument to handle the fact
that our regression variables, ut have structure; namely, they are concatenated subsequences of (ut).
Denoting ∆φ ∈ RÑ×m to be the matrix [δ>φ,N1

| . . . | δ>φ,N ]>, we show the following bound.

Proposition 3.2 (Error Bound for Fixed Filter) For any fixed filter φ ∈ Rm×Lm, δ ∈ (0, 1), and
κ > 0, it holds with probability at least 1− δ that on EU,

‖Ĝfil(φ)−G?‖op .
(‖N−1/2∆φ‖op + κ)T 1/2

√
N

√
p̃+m+ log 1

δ + lil(
‖∆φ‖op
κN1/2 ), (3.10)

where lil(x) := log+(log+(x)) and p̃ := pmin{T, log2(eTp) log2(Tp)}. In particular, the com-
plement of (3.10) occurs with probability at most δ + δU.

For a sense of scaling, observe that whenever the sequence (δt,φ) is O(1) in magnitude on average,

then ‖∆φ‖op√
N

is O(1) with high probability, yielding estimation rates of Õ
(√

T (p+m)
N

)
.

Proof Sketch: Proposition 3.2 is derived as a special case of a more general result, Theorem E.1,
which relies on self-normalized tail bounds for martingale sequences due to Abbasi-Adkori (2011).
This theorem is similar in spirit to the tail bounds obtained by Krishnamurthy et al. (2018) for
semi-parametric contextual bandits. The parameter κ > 0 arises from the use of these tools, but
it can be chosen quite small due to the doubly-logarithmic dependence in 1/κ. The novelty of
our bound comes from a careful chaining argument in Appendix F.1 specific to semi-parametric
regression with the concatenated sequence (ut), based on the techniques in Krahmer et al. (2014).
This bound yields a dependence on p̃ instead the larger quantity Tp. In service of this argument, we
give a recipe for applying Talagrand’s chaining (Talagrand, 2014) to self-normalized martingale tail
bounds in Appendix F, which may be of general interest.
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3.1. Statement of the Oracle Inequality

In Proposition 3.2, we bounded the error for the least squares estimate associated with a fixed
predictor, Ĝfil(φ), in terms of its associated error ‖∆φ‖op. Specifically, Proposition 3.2 implied
that when ‖∆φ‖op grows as Õ

(
N1/2

)
, ‖Ĝfil(φ)−G?‖op decays as Õ

(
N−1/2

)
.

In many cases, such as our setting of marginally stable systems, it is not possible to select a filter
φ a priori in such a way that ‖∆φ‖op ≤ Õ

(
N1/2

)
. Instead, in light of Proposition 3.2, one would

like to choose the filter φ̂ which minimizes ‖∆φ‖op, and pay for the magnitude of its associated
error ‖∆

φ̂
‖op. Our main result of this section is an oracle inequality, proved in Appendix D, which

shows that prefiltering the output sequence (yt) essentially accomplishes this goal.

Theorem 3.3 (PF-LS Oracle Inequality) Let Optµ be as in (1.6), and define

Ovfitµ(δ) := ‖G?‖op ·min

{
N1/2, T 1/2

√
log 1

δ + p̃+ log det(I + µ−2KK>)1/2

}
deff(Opt, L, µ) := p̃+m+ lil Opt

µ + L log+(Opt +
√
N‖K‖op
µ2

) .

Then for any δ ∈ (0, 1), then following inequality holds probability with 1 − δ − δU, provided N
satisfies the conditions of Lemma 3.1:

‖ĜPF −G?‖op .
N−1/2(Optµ + Ovfitµ(δ) + µ)

√
N

·
√
T
(
log 1

δ + deff(Optµ + Ovfitµ(δ), L, µ)
)
.

Here, the term Optµ corresponds to the error achieved by the best filter φ, and the term deff captures
the “effective dimension” of the estimation problem, totaling the dimensions of the filter class, in-
puts (ut), and observations (yt). For the case of linear systems where kt = [y>t−T | . . . |y>t−TL]> and
L = Lm, in Appendix H.4 we give an algorithm for selecting the parameter L which admits an ora-
cle inequality, Proposition H.4. Moreover, the bound of Theorem 3.3 depends only logarithmically
on 1/µ, so µ may be taken to be very small.

Proof Sketch: In proving Theorem 3.3, we first obtain an intermediate but analogous result in
terms of the intermediate quantity ‖∆φrdg

‖op + µ‖φrdg‖op, which we bound in Appendix D.2 by
Optµ+Ovfitµ using KKT arguments and a variant of Proposition 3.2. To prove the the intermediate
result, Appendix D.1 considers “slices” v>φ along directions v ∈ Sm−1, and establish uniform
bounds with respect to a hierarchy of coverings of RLm, each with a different scale and granular-
ity, such that the bounds hold for each covering in the hierarchy simultaneously. This lets us tailor
the granularity of the covering for each specific filter φ, which (a) yields bounds depending on the
data-dependent errors ‖∆φ‖op, (b) ensures tighter control on filters φwith smaller norm, and (c) tol-
erates logarithmically more error as ‖φ‖op grows. Specializing the uniform bound to φrdg requires
loose control over ‖φrdg‖op (hence the regularization in (1.4)), which adding the regularization term
allows us to control. The choice of µ trades off between the magnitude of Optµ and the quantity
‖K‖op
κµ inside the logarithmic term. This is somewhat of an artifact of the proof and is unnecessary

if σmin(K) is bounded from below, for example. Again, since 1/µ appears in a logarithmic term,
we shall tyically take µ to be quite small (e.g. 1/N ).
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4. Proof Sketch for Bounding Optµ

Since Optµ = minφ ‖∆φ‖op +µ‖φ‖op, it suffices to exhibit some φ with reasonable operator norm
for which ‖∆φ‖op grows as

√
N . To this end, we define the auxiliary signal x̃n;t and associated

observation ỹn;t via

ỹn;t = C?x̃n;t, x̃n;t :=

{
A
n−(t−TL)
? xt−TL n ≥ t− LT

xn n ≤ t− LT
.

Here, x̃t is the state as if the noise and inputs had been “shut off” at time t − TL. We further
define the features k̃t := [ỹ>t−T ;t | ỹ>t−2T ;t | · · · | ỹ>t−TL;t]

> and decompose the error term as

δφ,t = δt − φ · kt = Err
(1)
φ,t + Err

(2)
φ,t , where

Err
(1)
φ,t := ỹt;t − φ · k̃t and Err

(2)
φ,t := (δt − ỹt;t)− φ · (kt − k̃t).

Here, Err
(1)
φ,t describes the approximation error ỹt;t−φ · k̃t incurred in predicting ỹt;t from the shut-

off sequence ỹt−T ;t, ỹt−2T ;t . . . , ỹt−TL;t, and Err
(2)
φ,t accounts for the additional noise induced by

the shut-off sequence. In Propositions 4.1 (resp. G.2), we prove bounds on the total contributions of
these two errors under stochastic (resp. adversarial) noise models outlined in Assumption 2.1. For
any fixed φ, the error terms Err

(2)
φ,t do not grow with time, since they only account for the contribution

of noise over TL time steps; thus, the contribution of Err
(2)
φ,t to ‖∆φ‖op grows as

√
N .

The terms Err
(1)
φ,t , on the other hand, may grow with time because they depend on the state

xt−TL, which can grow in magnitude for marginally stable systems under consistent excitation.
Fortunately, by the Cayley-Hamilton theorem, we can observe that for large enough L, there always
exists a φ for which Err

(1)
φ,t = 0 for all t. Indeed, let f(z) = zd+f1z

d−1+· · ·+fd denote the minimal
polynomial of AT? , and let φf = −[f1Im|f2Im| . . . |fdIm|0]. Then, if L ≥ d, a short computation
shows that Err

(1)
φf ,t

= 0. Unfortunately, φ = φf requires L to be at least the degree of the minimal

polynomial of AT? , which can be as large as n in general. Moreover, the minimal polynomial f
may have exponentially large coefficients, which can amplify the effect of noise in Err

(2)
φf ,t

and also
affect the contribution of the regularization term µ‖φ‖op. As introduced in Section 2.1, bounded
phase rank ensures that there exists a smaller (both in length and in norm) filter φ than one would
obtain by applying the minimal polynomial. Throughout, we shall consider the stochastic case; the
adversarial case is similar and deferred to the Appendix.

Applying Phase Rank: Proposition 2.2 in the introduction gave an explicit bound on Optµ in
terms of the largest Jordan block k of A? and the (α, T ) phase rank of the system. The formal proof
of this bound is deferred to Appendix I. Here, we shall instead provide an informal intuition about
why phase rank is also a natural quantity. Consider the state transition matrix A? =

[
1 0
0 1−ε

]
, and

suppose B? = Bw = I2. The first coordinate corresponds to a marginally unstable eigenvalue 1,
and the second corresponds to an eigenvalue which is strictly stable by a small margin ε. Taking
L = 1, we see the filter φ = Im corresponding to the polynomial g(z) = z − 1 not only exactly
cancels the first mode, it also downweights the second mode by a factor of (1 − (1 − ε)T ), as
Err

(1)
φ,t = C?[2](1− (1− ε)T ) · x̃t−T [2]. Moreover, we can express the second coordinate as x̃t[2] =∑t
s=1(1 − ε)t−s(us[2] + ws[2]). Due to the geometric decay, this sum roughly depends on only

the last O (1/ε) terms in the sum. Therefore, even for adversarial noise, |x̃t[2]| should be at most
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O (1/ε) on average. With this observation in hand, ‖Err
(1)
φ,t‖ . (1− (1− ε)T ) · 1

ε . T on average:
this bound depends neither on the time step t nor the parameter ε.

Now, how does this connect to phase rank? We show in Appendix I that the salient feature
of our choice of φ was that the corresponding polynomial g(z) had a root with the same phase
as the eigenvalues of A?, which exactly offset the magnitude of the state along the corresponding
eigendirections. Generalizing to systems with Jordan blocks and multiple phases, we prove that
small phase rank lets us construct small-norm filters φ which yield small ‖Err

(1)
φ,t‖.

Explicit Bounds on ‖∆φ‖op: A central technical step in bounding Optµ is obtaining explicit
upper bounds on ‖∆φ‖op. In what follows, we use bold sans-serif notation G = (A,B,C,D) to
denote a dynamical system, where G? := (A?, B?, C?, D?). With φ = [Ψ1 | · · · | ΨL], we define
‖φ‖bop :=

∑L
`=1 ‖Ψ`‖op. Lastly, we define the associated observation matrix Cφ := C?A

LT
? −∑L

`=1 Ψ`C?A
(L−`)T
? ∈ Rm×n, which controls the size of the filtered output sequence (yt−φ ·kt),

as well as the associated LTI systems Gφ := (A?, B?, Cφ, 0) and Fφ := (A?, Bw, Cφ, 0). We remark
that the parameter L in Cφ depends on the length of the filter φ; e.g. for φ ∈ Rm×dm, we replace
L by d. To state our bound on ‖∆φ‖op, we shall also need to define, for arbitrary dynamical systems
G = (A,B,C,D), the Markov parameter matrix Mk(G) :=

[
D | CB | · · · | CAk−1B | CAk−2B.

]
.

For example, we see thatMT (G) = G?. We shall also identify dynamical systems by their discrete-
time transfer functions; that is, we associate G = (A,B,C,D) with the real rational transfer func-
tion G(z) = C(zI −A)−1B +D, mapping C→ Rm×p. The notationMk(G) and G(z) allows us
to define the following control-theoretic norms:

Definition 4.1 (Control Norms) Consider a dynamical system G = (A,B,C,D) with ρ(A) ≤ 1.
We define the norms ‖G‖H∞ := supz∈C:|z|=1 ‖G(z)‖op, and ‖M∞ (G)‖op := limk→∞‖Mk (G)‖op.
We allow these norms to take on the value∞.

The H∞-norm admits a variational interpretation. It corresponds the induced `p2 → `m2 norm for
LTI systems. We also remark that ‖M∞(G)‖op is equal to the square root of the largest eigenvalue
of the so-called “infinite-horizon Gramian” and is an operator-norm representation of the H2-norm
in control theory; see Zhou et al. (1996, Chapter 4) for a discussion on both theH∞ andH2 system
norms. Note that ρ(A) < 1 guarantees that both norms are finite. We are now ready to state our
bound on the norm of the error ‖∆φ‖op. The adversarial case is similar and is given in Proposi-
tion G.2; both are proven in Appendix G.

Proposition 4.1 (Stochastic Noise Bound) Consider a filter of the form φ = [Ψ1| . . . |Ψd] ∈
Rm×dm for some 1 ≤ d ≤ L, and suppose thatN ≥ Tdmax{m, log(1/δ)}. Then, in the stochastic
noise model of Assumption 2.1, the extended φ̃ := [φ | |0m×(L−m)d] ∈ RL×m satisfies the following
with probability 1− δ:

‖∆
φ̃
‖op .

√
N(‖M∞(Gφ)‖op + ‖M∞(Fφ)‖op) +

√
m+ log(1/δ)(ΓN (Gφ) + ΓN (Fφ))

+
√
N(1 + ‖φ‖bop) (‖MTd (G?)‖op + ‖MTd (F?)‖op + ‖Dz‖op) ,

where we define ΓN (G) := min{
√
N‖M∞ (G)‖op, ‖G‖H∞} .

The parameter d optimizes for filters that arise from the phase rank of A? and allows for sharper
bounds (replacing d by L) in that setting. Note that for this proposition to not be vacuous, we must
choose φ such that the H∞- and ‖M∞ (·)‖op norms of the systems Gφ,Fφ, described above are
finite. This requires canceling out the effects of the modulus-1 eigenvalues of A?. This is why the
phase rank definition is at least as large as the number of such eigenvalues.
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5. Related Work

Identifying LTI systems from data has a decades-old history in both the time-series and system
identification communities (see Ljung (1999); Verhaegen (1993); Galrinho (2016) and references
therein) with least squares estimation being a central tool for dozens of algorithms, many of them
similar in spirit to PF-LS, (1.4),(1.5). One can regard PF-LS as a specific instance of a prefiltered
autoregressive model (such as ARX or ARMAX); much work has been done on explicit filtering
and debiasing schemes for these types of models Spinelli et al. (2005); Ding (2013); Zheng (2004);
Guo and Huang (1989); Zhang (2011); Wang (2011); Galrinho et al. (2014). However, analyses of
these schemes are often (i) asymptotic, (ii) for strictly stable systems only, or (iii) use a limited noise
model. A complementary viewpoint comes from a family of techniques techniques known broadly
as subspace identification (e.g. Qin (2006)), which take a singular value decomposition (SVD) of the
raw data; following Oymak and Ozay (2018) and the classical algorithm of Kung (1978), we instead
use SVD as a post-processing step via the Ho-Kalman algorithm. It is an interesting direction for
future work to explore of SVD-based algorithms can modified to enjoy guarantees for marginally
stable systems as well.

There has also been considerable recent work from the machine learning community on non-
asymptotic rates for prediction and estimation in LTI systems. While many have shown that strict
stability is not necessary when the full system state can be observed (Simchowitz et al., 2018;
Sarkar and Rakhlin, 2018; Faradonbeh et al., 2018), stability been central to other works providing
guarantees for when only (yt) are observed (Shah et al., 2012; Hardt et al., 2016; Oymak, 2018).
Strict stability can be removed at the expense of requiring a number of independent trajectories
which grows with desired accuracy Oymak (2018), or for online prediction problems in whichA? is
diagonalizable and persistent process noise is minimal (Hazan et al., 2017, 2018). The regret bounds
in Hazan et al. (2018) depended on the `1-norm of the minimal phase polynomial, the inspiration
for the phase rank condition in this work.

Beyond linear systems, our prefiltering step bears similarities to the instrumental variables
technique in used in controls (Viberg et al., 1997), econometrics (Hansen and Singleton, 1982)
and causal statistics (Angrist et al., 1996), which is used more for debiasing than for denoising.
More broadly, variance reduction has become an indispensable component of reinforcement learn-
ing (Weaver and Tao, 2001; Greensmith et al., 2004; Tucker et al., 2017; Sutton and Barto, 1998),
including the theoretical study of tabular Markov Decision Processes (Kakade et al., 2018; Sidford
et al., 2018).
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Preface
The appendix is divided into three main parts. Part I begins with Appendix A, which provides
illustrated examples of the the phase rank condition for various systems. This is then followed by
proofs of our secondary results: the proof of Corollary B.1 from Proposition 2.1 and the proof of the
lower bound for ordinary least squares, Theorem C.1. Part II contains the supporting material for
the results in Section 3, as well as generalizations beyond the setting of linear dynamical systems.
Our bounds make use of a a general recipe for applying chaining to self-normalized martingale
inequalities, described in Appendix F. Lastly, Part III provides the analysis underlying the results
in Section 4. Appendix G gives the corresponding results bounding ‖∆φ‖op in terms of various
control theoretic quantities. Appendix H gives a detailed proof of Proposition 2.1, a specific version
of our generalized oracle inequality for linear dynamical systems. The constant M , its analogue
Madv for adversarial noise, as well as the intermediate constantsMB,MC ,MD andM0, are defined
in Appendix H.1. This section also includes Appendix H.4, which presents and analyzes a procedure
for selecting the parameter L in a data-dependent fashion, as well as defining refinements of the
constant M . Appendices I and J give more granular interpretations of our estimation bounds in
terms of the phase rank, as well as supporting technical proofs. Finally, Appendix K defines strong
observability and gives alternative interpretations of our estimation bounds in terms of this quantity.
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Notation

General Mathematical Notation
. denotes inequality up to a universal constant.
Sd−1 := {v ∈ Rd : ‖v‖2 = 1}
log+(x) := max{1, log(x)}
lil(x) := log+(log+(x))
[n] := {1, . . . , n}
‖ · ‖op denotes matrix operator norm
‖ · ‖F denotes matrix Frobenius norm
‖ · |‖2 denotes vector two-norm
σk(·) denotes the k-th largest singular vector
σmin(A) denotes σn∧m for A ∈ Cn×m

cond(A) :=
‖A‖op
σmin(A) denotes the condition number

Semi-Parametric Notation
N ∈ N denotes the sample size,
u1, . . . ,uN ∈ Rp denote inputs
y1, . . . ,yN ∈ Rm denote observations
kN1 , . . . ,kN ∈ RL denote prefiltering features
ut := [u>t |u>t−1| . . . |u>t−1]> ∈ RTp, for length T ∈ N
U denotes the matrix whose rows are uN1 , . . . ,uN
Y denotes the matrix whose rows are yN1 , . . . ,yN
K denotes the matrix whose rows are kN1 , . . . ,kN
δt = yt −G?ut denotes semiparametric error
∆ denotes the matrix whose rows are δN1 , . . . , δN
{Ft} denotes our filtration, (δt) is {Ft−T } adapted
(ut) is {Ft}-adapted, ut|Ft−1 ∼ N (0, Ip)

kt ∈ RL are {Ft−T }-adapted prefiltering features
N1 denotes first recorded observation
Ñ = N −N1 is effective sample size
Nmin = cTp log4(Tp) for a sufficiently large Tp
φrdg is the filter from (1.4)
ĜPF is the estimator from (1.5)
ĜLS is the least squares estimator from (1.3)
Ĝfil(φ) is the fixed-filter estimator from (3.9)
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LTI System Notation
(ut) ⊂ Rp denote inputs, (xt) ⊂ Rn denote states, (yt) ⊂ Rm denote observations
(wt) ⊂ Rdw denote process noise, (zt) ⊂ Rdz denote sensor noise
The parameters (A?, B?, C?, D?) and (Bw, Dz) are clarified in (1.2)
G? := [D? | C?B? | C?A?B? | · · · | C?AT−2

? B?] ∈ Rm×Tp
kt := [y>t−T | y>t−2T | · · · | y>t−LT ]>.
G = (A,B,C,D) is a place holder variable for dynamical systems
G(z) = D + C(zI −A)−1B for G = (A,B,C,D)
G? = D? + C?(zI −A)−1B?
F? = D? + C?(zI −A)−1Bw.
H? = D? + C?(zI −A)−1x1.
φ = [Ψ1 | · · · | ΨL] for φ ∈ Rm×Lm.
Cφ = C? −

∑L
`=1 Ψ`C?.

Gφ = (A?, B?, Cφ, D?)
Fφ = (A?, Bw, Cφ, D?)
Hφ = (A?, Bw, Cφ,x1)

Mn(G) = [D | CB | CAB | · · · | CAn−2B] for G = (A,B,C,D)
‖Mn (G)‖op = ‖Mn(G)‖op for G = (A,B,C,D)
‖M∞ (G)‖op = limn→∞‖Mn(G)‖op

‖G‖Hinf
= supz∈C:|z|=1 ‖G(z)‖∞ for G = (A,B,C,D)

ΓN (G) = min{
√
N‖M∞ (G)‖op, ‖G‖Hinf

}
‖G‖Hop

2
= maxv∈Sm−1

√
1

2π

∫ 2π
0 ‖v>G(eiπθ)‖22 for G = (A,B,C,D)

‖G‖Hop
2

= ‖M∞ (G)‖op (Lemma I.10)
blkspec(A?) denotes the set of pairs (λ, k) corresponding
to eigenvalues of A? and corresponding Jordan block sizes k
A? = SJ?S

−1 denotes the Jordan decomposition of A?
(note blkspec(A?) = blkspec(J?))
MB,MC ,MD,M0,M,Madv are constants clarified in Appendix H.1.

Part I

Proof of Secondary Results
Appendix A. Examples of Phase Rank

We first recall the definition of phase rank.

Definition 2.3 (Phase Rank) Let α ≥ 1. We say that A? has (α, T )-phase rank d if there exists
µ1, . . . , µd ∈ D such that, for any (λ, k) ∈ blkspec(A?) with |λ| ≥ 1− ((1 + α)T )−1, there exists
at least k elements µi1 , . . . , µik ⊂ {µ1, . . . , µd} satisfying

max
j∈[k]

min
µ̃:µ̃T=µTij

|λ− µ̃| ≤ α (1− |λ|) .

Phase rank represents how many phases are required to cover “large eigenvalues”: eigenvalues
with magnitude at least 1 − ((1 + α)T )−1, where α ≥ 1 and T ≥ 1 is an integer. Moreover, the
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Figure 1: Examples (a), (b), (c), and (d) of phase rank, ordered clockwise from the top-left.

condition µ̃T = µTij means we actually only care about phases mod 2π/T . Graphically, this means
every µi contributes T “bumps” or “spokes” toward covering the eigenvalues of A?. Figure 1 gives
four example spectra for which we will calculate the phase rank. Each example shows the regions
in the complex disk we are covering by the choices of µi which witness the phase rank conditions.
First, we must be clear with graphical notation. The circular gray region5 represents the region of
“small” eigenvalues, and we will assume spectra lie outside of this region without loss of generality.
Single eigenvalues are represented by a dot; doubly repeated eigenvalues by a square. Examples (a),
(c), (d) have α = 1, whereas (b) depicts α = 2 to demonstrate the effect of increasing the parameter.

(a) In example (a), all eigenvalues lying on the unit circle means we must choose each µi to have
modulus 1. As a result, T equally-spaced spokes are added to the covering region for each µi.
We then see the (1, 2) phase rank is 2 and the (1, 4) phase rank is 1.

5. These regions have been artificially shrunk in Figure 1 for the sake of legibility, but the examples are morally correct.
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(b) The α parameter controls the width of the covering regions. We see in example (b) that increas-
ing α to 2 allows us to cover the two additional eigenvalues, such that the (2, 4) phase rank is
again 1.

(c) When there are spectra with modulus strictly less than 1, the µi witnessing the phase rank
condition may also have modulus strictly less than one; this also results in the spoke regions
transforming into “bumps”. Example (c) illustrates the (1, 3) phase rank being 2, as the µi
associated to the red bumps allows covering of the eigenvalues which are not quite at phases
{π/3,−π/3, π}.

(d) Recall that we need to cover a repeated eigenvalue multiple times as to its multiplicity. However,
in example (d), we are able to do so while also covering other eigenvalues; the (1, 2) phase rank
is indeed 2.

24



LEARNING LINEAR DYNAMICAL SYSTEMS WITH SEMI-PARAMETRIC LEAST SQUARES

Appendix B. Proof of Corollary B.1

To state the corollary for system parameter recovery, we first need to define the Hankel matrices
used by the Ho-Kalman algorithm.

Definition B.1 (Hankel Matrices) Given T ≥ 4, let T1 := b(T − 1)/2c. We define the Hankel
matrix H ∈ RT1m×(T1+1)p to be the block matrix6 with

H[i, j] := G?[i+ j] = C?A
i+j−2
? B? ,

and define H− ∈ RT1m×T1p to be the size Hankel matrix created by dropping the last block column
of H.

In order to learn (A?, B?, C?, D?) that has state dimension (i.e. system order) n, we need to ensure
that T1 ≥ n. This assumption, along with an assumed bound on the discrepancy between H and its
estimated version Ĥ, are used in Oymak and Ozay (2018) to prove consistency of the Ho-Kalman
algorithm (see Appendix B for details). With these assumptions, we can now fully state a corollary
for the recovery of system parameters.

Corollary B.1 (Recovery of System Parameters) Consider a linear dynamical system given by
(A?, B?, C?, D?), and parameters T and L such that

• A? ∈ Rn×n, C? ∈ Rm×n, B? ∈ Rn×p, D? ∈ Rn×p.

• Let (A,B,C,D) denote the realization of (A?, B?, C?, D?) corresponding to the applying
the Ho-Kalman algorithm to G?.

• (A?, B?, C?, D?) is minimal (Definition B.2) with Hankel matrix H. We also assume that
bT − 1/2c ≥ n, which ensures σmin(H−) > 0.

• (Â, B̂, Ĉ, D̂) is the output of the Ho-Kalman algorithm on ĜPF, with system order n.

• We have ρ(A?) ≤ 1, the largest Jordan block of A? is size at most k ≥ 1, and A? has
(α, T )-phase rank at most k ≤ d ≤ L.

• Let M be as in Definition 2.2, and define the parameter dL := (p+ Lmk) .

Then, under the stochastic noise model with x1 = 0, as long as N1 = TL and

N ≥ T (d+ 1 + α) max{m, log(1/δ)}+Nmin,

it holds with probability 1− δ − δU, there is a unitary matrix S ∈ Rn×n such that

(a) N−1/2Optµ . (M + 1) · T k−1/2Cα,d,k

(b) ‖ĜPF −G?‖op .
T kCα,d,k(1 +M) Õ (dL)1/2

N1/2︸ ︷︷ ︸
‘lead term’

+
T k+1/2(1 +M) Õ (dL)

N︸ ︷︷ ︸
’lower order term’

.

6. Note that this does not include D?.
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If, in addition, N is sufficiently large such that ‖G? − Ĝ‖op ≤ σmin(H−)/(4
√
T ), then

(c) max
{
‖B̂ − SB‖F, ‖Ĉ − CS∗‖F, ‖D̂ −D‖F

}
. n

1
2T 1/4

(
T kCα,d,k(1 +M) Õ (dL)

1
2

N
1
2

+
T k+ 1

2 (1 +M) Õ (dL)

N

)
(d) ‖Â−A‖F .

n
1
2T 1/4‖H‖op

σmin(H−)
3
2

(T kCα,d,k(1 +M))1/2 Õ (dL)
1
4

N
1
4

+

√
T k+1/2(1 +M) Õ (dL)

N

 ,

where the notation Õ (·) hides factors at most linear in logN , log(1/δ), log T , and/or log+(M +
dz + dw). When x1 6= 0, we use the more general definition of M from Definition H.1.

Under the adversarial noise model, the above bounds hold by (i) replacing M with Madv

(Definition H.1) and (ii) replacing the factors T k and Cα,d,k in the ‘lead term’ in bound (b) with

T k+1/2 and Cadv
α,d,k := 2d

(
k2

2k
(1 + α)k + dk

)
, respectively, and analogously for the subsequent

bounds (c) and (d).

As a consequence, we verify that combining prefiltered least squares with the Ho-Kalman al-
gorithm analyzed in Oymak and Ozay (2018) provides the consistent estimation of the underlying
system parameters themselves.

We remark that the condition that (A?, B?, C?, D?) is minimal is necessary to ensure identifia-
bility in the manner described by Corollary B.1. When minimality fails, we explain below that there
always exists a reduced system model equivalent (in an input-output sense) to (A?, B?, C?, D?),
which can be estimated in the sense of Corollary B.1.

Remark Concurrent with the preparation of this manuscript, Sarkar and Rakhlin (2018) intro-
duced an improved analysis of the Ho-Kalman algorithm which, in our setting, enables a rate of es-
timation of ‖Â−A?‖2 ≤ C‖G?−Ĝ‖, which enables a rate of estimation of ‖Â−A?‖ ≤ Õ(C′/

√
N)

for some problem dependent constant C′. We do not pursue this more refined analysis here.

B.1. Dependence on and Selection of T and L

As mentioned above, the recovery of (A?, B?, C?, D?) relies on three parameters: the feature length
L, the Markov matrix dimension T , and the system order n. As noted above, the bounds are rather
insensitive to the choice of regularizer.

Following Oymak and Ozay (2018), we assume that n is known, and that T should be chosen
such that c1n ≤ b(T − 1)/2c ≤ T ≤ c2n, for some constants c1, c2 > 1. These constants ensure
that the Hankel matrix H− has σmin(H−) > 0. A more data-dependent approach for selecting T
and n, which is particularly useful for systems of unknown order, is pursued by Sarkar et al. (2019);
for simplicity, we do not follow this direction here. The parameter L is more straightforward to
select. While our given bounds require that L ≥ d, where d is the phase rank of A, we show
in Proposition H.4 that a simple structural risk minimization procedure can be used to tune the
parameter as to satisfy an oracle inequality with respect to the optimal choice of L. The details
are deferred to Appendix H.4. In particular, the oracle approach implies that for sufficiently large
sample sizes N , the bounds in Corollary B.1 hold with L replaced by Õ(d).
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B.2. Proof of Corollary B.1 (a)

This bound follows from Proposition 2.2 and choosing (say) µ = 1.

B.3. Proof of Corollary B.1 (b)

We will choose to describe the constant of Corollary B.1 (b) in terms of phase rank rather than
strong observability, though both suffice to prove the corollary. Now, recall Proposition 2.1.

Proposition 2.1 Fix T and L, and suppose that N ≥ Nmin, N1 = TL, ρ(A?) ≤ 1, and that the
largest Jordan block of A? is of size k. Choosing some µ ≥ 1 and defining

d := p̃+ Lm
(
log+M + k log+N

)
= Õ (p+ Lmk) , (2.8)

it holds with probability at least 1 − δ − (2Np)− log2(2Tp) log2(2Np) in the stochastic noise model
that

‖ĜPF −G?‖op . N−1/2Optµ ·

√
T (d + log 1

δ )

N
+
T (‖G?‖op + µ)(d + log 1

δ )

N
.

In the adversarial noise model, we instead take d := p̃ + Lm
(
log+(M + dz + dw) + k log+N

)
.

Moreover, we have ‖G?‖op .MT k−1/2.

Now, taking (say) µ = 1 so that µN−1/2 ≤ 1, by Proposition 2.2 we have that

N−1/2Optµ . (M + 1) · T k−1/2Cα,d,k .

Note that our choice of d ensures that (d + log
(

1
δ

)
) is Õ (dL). Thus, using the above Proposition

(including the bound ‖G?‖op .MT k−1/2) gives

‖ĜPF −G?‖op .
T kCα,d,k(1 +M) Õ (dL)1/2

N1/2
+
T k+1/2(1 +M) Õ (dL)

N
.

The required length N then follows from the requirements on N for Propositions 2.2 and 2.1.

B.4. Proof of Corollary B.1 (c) and (d)

We begin by formally introducing standard regularity conditions in control theory, observability,
controllability, and minimality:

Definition B.2 (Observability, Controllability, Minimality) A linear system (A?, B?, C?, D?) is
said to be controllable if

rank
([
B? A?B? · · · An−1

? B?
])

= n.

A system is said to be observable if

rank




C?
C?A?

...
C?A

n−1
?


 = n.

A linear system (A?, B?, C?, D?) is said to be minimal if it is both observable and controllable.
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Even if (A?, B?, C?, D?) is not minimal, there always exists an n′ ≤ n and an equivalent system
(A,B,C,D) with A ∈ Rn′×n′ such that (A,B,C,D) is minimal. In this case, the Ho-Kalman
algorithm correctly recovers this reduced, minimal system. Section 4 of in Oymak and Ozay (2018)
concerns the robustness of the Ho-Kalman algorithm Ho and Kalman (1966), which generates state-
space matrices A?, B?, C?, D? from the matrix of Markov parameters G?. Oymak and Ozay show
how these estimates degrade when the matrix of Markov parameters is replaced by a noisy estimate.

Now, recall that T1 = b(T − 1)/2c and note that 2T1 + 1 ≤ T . Furthermore, recall that we
define the Hankel matrix H ∈ RT1m×(T1+1)p to be the block matrix7 with

H[i, j] := G?[i+ j] = C?A
i+j−2
? B? ,

and we now use Ĥ to denote its analogous estimated version. We also define H−, Ĥ− to be the size
(T1, T1) Hankel matrices created by dropping the last block column of H, Ĥ respectively.

At this stage, we would like to note that, in contrast to our main results for estimate Ĝ, the
bound requires that b(T − 1)/2c ≥ n, where n is the order of the unknown system. Note that with
this choice, under the assumption that (A?, B?, C?, D?) is minimal, the Hankel matrix is rank-n
and σn(H−) > 0 (as noted in Section 4.1 of Oymak and Ozay (2018)). Now, we synthesize their
relevant results below, which makes use of our choice n ≤ T1 ≤ T .

Proposition B.2 (Sections 4.1 and 4.2 of Oymak and Ozay (2018)) Let A,B,C,D be the state-
space realization corresponding to the output of the Ho-Kalman algorithm with input G? and let
(Â, B̂, Ĉ, D̂) be the state-space realization corresponding to the output of Ho-Kalman with input
Ĝ. Suppose the system (A?, B?, C?, D?) is observable and controllable, and suppose

‖H − Ĥ‖op ≤ σmin(H−)/4 , (B.11)

which, as noted by Oymak and Ozay (2018, Lemma 4.2), is satisfied as soon as ‖G? − Ĝ‖op ≤
σmin(H−)/(4

√
T ). Then, there exists a unitary matrix S such that

max
{
‖B̂ − SB‖F, ‖Ĉ − CS∗‖F

}
. n1/2T 1/4

√
‖G? − Ĝ‖op

‖Â− SAS∗‖F .
n1/2T 1/4

√
‖G? − Ĝ‖op‖H‖op

σmin(H−)3/2
.

Since ‖D̂ − D‖F ≤ ‖G? − Ĝ‖F, for N sufficiently large we can combine Proposition B.2 and
Section B.3 to arrive at Corollary B.1. The bounds (c) and (d) now follow from the above proposition
applied to Corollary B.1 (b) and the inequality

√
x+ y ≤

√
x+
√
y.

Appendix C. Lower Bound for OLS for Marginally Stable Systems

In this section, we show that OLS cannot recover a linear system for a marginally stable system,
even with zero process wt and sensor noise zt. Specifically, we have the following

7. Note that this does not include D?.
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Theorem C.1 Suppose that A? has a Jordan block of magnitude |λ| = 1 and size k, and that
(A?, B?, C?, D?) minimal. Suppose also that the process noise wt and sensor noise zt are iden-
tically zero. Then there exists a constant C depending on A?, B?, C?, as well as the ambient di-
mension n and k such that, for all N sufficiently large, ‖ĜLS − G?‖op ≥ CNk−1 with constant
probability.

The zero-noise assumption is for simplicity, and the above lower bound can also be demonstrated
in the presence of Gaussian noise. The important takeaway is that even without noise, the ordinary
least squares estimator is inconsistent.

The proof of Theorem C.1 has two components. The first is a lower bound, based on small-ball
technicals, which bounds ‖ĜLS −G?‖op in terms of the Gramian matrices

Gt :=
t∑

s=0

C?A
t−s
? B?B

>
? A

t−s
? C>? .

The following proposition is proved in Section C.1:

Proposition C.2 For N sufficiently large, and with no process or sensor noise, there with constant
probability

‖ĜLS −G?‖op &
1

N

√√√√√
∥∥∥∥∥∥

N∑
t=N1

Gt−T

∥∥∥∥∥∥
op

,

where we define the Gramian matrix

The second component, which completes the proof of Theorem C.1, is a lower bound estimate on
the operator norm of the sum of the Gramian matrices, proved in Section C.2:

Lemma C.3 Suppose that A? has a Jordan block of magnitude |λ| = 1 and size k, and that
(A?, B?, C?, D?) minimal. Then there exists a constant C depending on A?, B?, C?, as well as the
ambient dimension n and k such that, for all N ≥ max{20n2, 2k},√√√√‖ N∑

t=0

Gt‖op ≥ CNk.

C.1. Proof of Proposition C.2

When N ≥ N , Oymak and Ozay (2018, Lemma C.2) yields that σmax(U)2 ≤ 2N with probability
1− δU for δU = 1

Nω(1) , and on this event,

‖ĜLS −G?‖op = ‖U†∆‖op ≥ σmax(U)−2‖U†∆‖op ≥
‖U>∆‖op

2N
≥ ‖U

>∆‖op

2N
,

where we recall that with our notation, U is the matrix corresponding to the first p columns of U.
We now lower bound bound ‖U>∆‖op. Observe that when wt and zt = 0, we can write

δt =
t−T∑
s=1

C?A
t−s
? B?us.
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Observe that we can represent this quantity as a quadratic form in a long vector u1:N ∈ RNp. We
now invoke the follow lemma

Lemma C.4 (Small Ball for Gaussian Quadratic Forms) There exists a universal constant c such
that, for any matrix M ∈ Rd×d and vector z ∼ N (0, Id),

P[(z>Mz)2 ≥ 1

2
E(z>Mz)2] ≥ c.

We now compute that

v>U
>

∆w =
N∑

t=N1

v>utδ
>
t w =

N∑
t=N1

t−T∑
s=1

〈v,ut〉〈(C?At−s? B?)
>w,us〉

And thus, for v ∈ Sp−1,

E(v>U
>

∆w)2 = E
N∑

t=N1

t−T∑
s=1

〈v,ut〉2〈(C?At−s? B?)
>w,us〉2 + E[mean zero terms]

=
N∑

t=N1

t−T∑
s=1

‖C?At−s? B?)
>w‖22

= w>

 N∑
t=N1

t−T∑
t=1

C?A
t−s
? B?B

>
? A

t−s
? C>?

w = w>

 N∑
t=N1

Gt−T

w.

Thus, optimizing for w to be a lead eigenvector of
∑N

t=N1
Gt−T , we see that

P

‖U>∆‖op ≥
1√
2

√√√√‖ N∑
t=N1

Gt−T ‖op

 ≥ P

vU>∆w ≥ 1

2
‖

N∑
t=N1

Gt−T ‖op

 ≥ c.
for a universal constant c. Hence, we conclude that, with probability at least c− δU,

‖ĜLS −G?‖op ≥

√
‖U>∆‖2op

2N
≥

√
‖
∑N

t=N1
Gt−T ‖op

2
√

2N
.

C.1.1. PROOF OF LEMMA C.4

We may assume that M is symmetric, since replacing M by 1
2(M + M>) does not affect the

result. Since z has a unitary invariant distribution, we may also assume that M is diagonal whose
vector is a diagonal a ∈ Rd. Note that ‖a‖2 = 1

2‖M + M>‖F. Then, z>Mz =
∑n

i=1 aiz
2
i . Let

Z = (z>Mz)2. The Paley-Zygmund inequality states that

P[Z ≥ θE[Z]] ≥ (1− θ2)
E[Z]2

E[Z2]
.
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First, we have that

EZ = E(
n∑
i=1

a2
i z

4
i ) + E(

n∑
i 6=j=1

aiajz
2
i z

2
j ) = 3

n∑
i=1

a2
i +

n∑
i 6=j=1

aiaj = 2‖a‖22 + (
n∑
i=1

ai)
2.

On the other hand, a standard χ2-concentration (Laurent and Massart, 2000, Lemma 1) inequality
(adapted for nonnegative coefficients) yields:

P[|z>Mz−
∑
i

ai| ≥ 2(‖a‖2
√
t+ ‖a‖∞t] ≤ 2e−t,

which crudely implies P[Z2 & (
∑

i ai)
4 + ‖a‖22t4] ≤ 2e−t. Integrating, we find that E[Z2] .

(
∑

i ai)
4 + ‖a‖42. Thus, Paley-Zygmund and the lower bound on EZ imply for a universal constant

c that

P[Z ≥ θE[Z]] ≥ (1− θ2)
E[Z]2

E[Z2]
≥ (1− θ2)

(2‖a‖22)2

E[Z]2
≥ c(1− θ2)

for a universal constant c. Taking θ = 1/2 concludes.

C.2. Proof of Lemma C.3

If A? ∈ Rn×n, then rank(
∑N

t=0 Gt) ≤ n, and thus
√
‖
∑N

t=0 Gt‖op ≥
√

1
n tr(

∑N
t=0 Gt). We now

turn to lower bounding tr(
∑N

t=0 Gt). We can bound

tr(
N∑
t=0

Gt) = tr(
N∑
t=1

t−1∑
s=0

C?A
s
?B?B

>
? (As?)

>C?)

=
N−1∑
t=0

t∑
s=0

‖C?As?B?‖2F

≥
b(N−1)/nc−1∑

j=0

n−1∑
p=0

nj+p∑
s=0

‖C?As?B?‖2F

≥
b(N−1)/nc−1∑

j=0

n−1∑
p=0

nj∑
s=0

‖C?As+p? B?‖2F

≥
b(N−1)/nc−1∑

j=0

n−1∑
p=0

j−1∑
`=0

n−1∑
q=0

‖C?A`n+q+p
? B?‖2F

≥
b(N−1)/nc−1∑

j=0

j−1∑
`=0

n−1∑
p=0

n−1∑
q=0

‖C?A`n+q+p
? B?‖2F


Next, we define the controllability matrix

Cn := rank
([
B? A?B? · · · An−1

? B?
])

= n.
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and the observability matrix

On := rank




C?
C?A?

...
C?A

n−1
?


 ,

By observability and controllability, M := σn(On) · σn(Cn) > 0. Moreover, we observe thatn−1∑
p=0

n−1∑
q=0

‖C?A`n+q+p
? B?‖2F

 = ‖OnAkn? Cn‖2F ≥M2‖A`n? ‖2F.

Therefore,

tr(

N∑
t=0

Gt) ≥M2

b(N−1)/nc−1∑
j=0

j−1∑
`=0

‖A`n? ‖2F.

Next, we lower bound ‖A`n? ‖2F. Let A? = S−1J?S. Then,

‖Akn? ‖F ≥ ‖J?‖Fσmin(S−1)σmin(S) = cond(S)‖J `n? ‖F.

Lastly, we note that if J? has a Jordan block of eigenvalue |λ| = 1 and multiplicity, J `n? then it
contains an entry of magnitude

(
`n
k−1

)
. Thus, we can crudely lower bound

tr(
N∑
t=0

Gt) ≥M2cond(S)−2

b(N−1)/nc−1∑
j=0

j−1∑
`=0

(

(
`n

k

)
)2

&M2cond(S)−2N
2

n2

(
N/2

k − 1

)2

,

provided that N ≥ max{20n2, 2k}. Hence,√√√√‖ N∑
t=0

Gt‖op &
Mcond(S)N

n3/2

(
N/2

k − 1

)
≥ CNk,

where the last line is by Stirling’s approximation (where C depends on k).
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Part II

General Bound for Prefiltered Least Squares
Appendix D. General Statement and Analysis PF-LS

In this section, we a more explicit version of Theorem 3.3, which decouples an oracle bound with
a bound on ‖φrdg‖op. First, we recall the definitions of Ovfitµ(δ) and of the optimal term Optµ,
overfit term Ovfitµ(δ), and the effective dimension deff :

Optµ := min
φ∈Rm×L

‖∆−Kφ>‖op + µ‖φ‖op

Ovfitµ(δ) := ‖G?‖op ·min

{
N1/2, T 1/2

√
log 1

δ + p̃+ log det(I + µ−2KK>)1/2

}
deff(Opt, L, µ) := p̃+m+ lil Opt

µ + L log+(Opt +
√
N‖K‖op
µ2

) .

For our slightly refined bound, we shall use a parameter κ > 0 as in the bound Proposition 3.2) for
a fixed filter, and define a filter-specific effective dimension

d̃eff(φ;Leff , µ, κ) := p̃+m+ lil
‖∆φ‖op
κ
√
N

+ Leff log+(µ‖φ‖op +
µ−1‖K‖op

κ+N−1/2‖∆φ‖op
).

In this setting, our main result is as follows:

Theorem D.1 (General Statement of Theorem 3.3) Let µ, κ > 0 be fixed. Then

(a) Let Φ ⊂ RL×m be a set of filters such that each slice Φv := {φ>v : φ ∈ Φ} is contained in
a subspace of dimension Leff ≤ L. Then, with probability 1− δ, the following holds on EU:

∀φ ∈ Φ, ‖G? − Ĝfil(φ)‖op .
N−1/2‖∆φ‖op + κ√

N
· T 1/2

√
log 1

δ + d̃eff(φ;Leff , µ, κ).

(b) On EU, the filter φrdg ∈ RL×m satisfies max{µ‖φrdg‖op, ‖∆φrdg
‖op} ≤ Optµ + Ovfitµ(δ).

Thus, taking Φ = RL×m, part (a) implies that on EU, with probability 1− δ,

‖G? − Ĝfil(φ)‖op .
N−1/2(Optµ + Ovfitµ(δ)) + κ

√
N

·
√
T
(

log 1
δ + d̃eff(Optµ + Ovfitµ(δ), L, µ, κ)

)
.

Theorem 3.3 is a direct consequence of combining parts (a) and (b) of the above theorem, setting
κ = µ/

√
N , and applying some routine simplifications to bound d̃eff(Optµ + Ovfitµ(δ), L, µ, κ) ≤

(Optµ + Ovfitµ(δ), L, µ).
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D.1. Proof of Uniform Bound: Theorem D.1, Part (a)

Fix µ, κ > 0. Recall that

Ĝfil(φ) := arg min
G∈RTp×m

N∑
t=N1

‖(yt − φ · kt)−Gut‖2,

and thus

Ĝfil(φ) = G? + (Y −Kφ>)U
>

(U
>

U)−1 = G? + ∆φU
†
.

Thus, ‖G? − Ĝfil(φ)‖op = ‖∆φU
†‖op.

Step 0: Reduction To m = 1 and Φ = RLeff : We claim that prove the bound in the setting
where m = 1 and Φ = RLeff . Indeed, given φ ∈ Φ = Rm×L and a direction v ∈ Sm−1, let
v>φ ∈ R1×L denote the filter along v. Lastly, define

d̃eff(φ;µ, κ, Leff , v) := p̃+m+ lil
‖v>∆φ‖2
κ
√
N

+ Leff log+(µ‖v>φ‖2 +
µ−1‖K‖op

κ+N−1/2‖v>∆φ‖2
),

Suppose we can prove that for any fixed v ∈ Sm−1, it holds with probability 1− δ on EU that

‖v>∆φU
†‖2 . ‖v>∆φ‖2N−1/2+κ√

N
· T 1/2 ·

√
log 1

δ + d̃eff(φ;µ, κ, v)). (D.12)

Then, noting that ‖v>∆φ‖2 ≤ ‖∆φ‖op and d̃eff(φ;µ, κ, Leff , v) ≤ d̃eff(µ, κ, Leff), the theorem
follows from a standard covering argument. Moreover, the bound (D.12) is equivalent to the setting
where we observe y>t v and make predictions v>φ · kt, where φ ∈ Φ, or equivalently, (v>φ) ∈
Φv := {v>φ : φ ∈ Φ}. By assumption, there exists an Leff-dimensional subspace of RL containing
Φv. By projecting K onto this subspace and applying a unitary change of coordinates, we may
assume without loss of generality that Φv ⊂ RLeff . Finally, since we are proving a uniform bound,
it is only stronger to prove the bound for all filter (v>φ) ∈ RLeff .

Thus, to simplify notation, we assume m = 1 and Φ ⊂ RLeff , and will let d̃eff(. . . ) correspond
to these one-dimensional predictions.

Step 1: Pointwise bound Let’s start of with a pointwise bound for a fixed filter. By Proposi-
tion 3.2, we have with probability at least 1− δ,

‖∆φU
†‖2 ≤ C

(‖∆φ‖2N−1/2 + κ)T 1/2

√
N

√
p̃+ log 1

δ + lil(
‖∆φ‖op
κN1/2 ), (D.13)

for a sufficiently large constant C.

Step 2: Uniform bound over nets. For j ≥ 1, let cj = ee
j
. Let Tj denote a 1/cj net of the set

cjBRLeff /µ in the norm µ‖ · ‖2. We shall argue a uniform concentration bound over the nets Tj , and
then uses the nets to approximate bounds for each φ ∈ RLeff . Precisely, define the bound

B(‖∆φ‖2, j) :=
(N−1/2‖∆φ‖2 + κ)T 1/2

√
N

√
p̃+ Leff log(1 + 2c2

j ) + log(2j2

δ ) + lil
‖∆φ‖2
κ
√
N

,
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and, for C as in (D.13), define the event

Egood := {∀j,∀φ ∈ Tj : ‖∆φU
†‖2 ≤ CB(‖∆φ‖2, j)}, (D.14)

By a standard volumetric argument (see e.g. Vershynin (2018, Corollary 4.2.13)),
log |Tj | ≤ Leff log(1 + 2c2

j ), and therefore by applying (D.13) with δj := δ
2|Tj |j2 for each φ ∈ Tj

uniformly, we see that Egood holds with probability at least 1 − π2

12 δ ≥ 1 − δ. It remains to show
that on Egood, (D.12) holds as well.

Step 3: Uniform bound over φ ∈ RLeff . We shall now need a covering argument to
translate (D.14) into a uniform guarantee over RLeff : To this end, we introduce the shorthand
Rk := ‖K/µ‖op,establish the following covering claim:

Claim D.2 For any φ ∈ RLeff with µ‖φ‖2 ≤ cj , there exists φ̃ ∈ Tj satisfying ‖∆φ −∆
φ̃
‖2 ≤

Rk/cj .

Proof By definition, ‖φ‖2 ∈ cj
µ BRLeff . Since Tj is a 1/cj net of cj

µ BRLeff in the norm 1
µ‖ · ‖2, there

exists a φ̃ ∈ Tj with ‖φ− φ̃‖2 ≤ 1
cjµ

. Thus, ‖∆φ−∆
φ̃
‖2 = ‖K(φ− φ̃)‖2 ≤ ‖K‖op

1
cjµ

= Rk/cj .

As a consequence, we obtain a uniform bound as follows. Consider any φ, and any j for which
µ‖φ‖2 ≤ cj . For this j, let φ̃ denote the filter guaranteed by the above claim. Then on Egood,

‖∆φU
†‖2 ≤ ‖∆φ̃

U
†‖2 +

Rk

cjσmin(U)
≤ CB(‖∆

φ̃
‖2, j) +

Rk

cjσmin(U)

≤ CB(‖∆φ‖2 +
Rk

cj
, j) +

Rk

cjσmin(U)
.

Thus we conclude that on Egood ∩ EU, the following holds simultaneously for all φ ∈ Φ

‖∆φU
†‖2 . inf

j∈N:µ‖φ‖2≤cj
B

(
‖∆φ‖2 +

Rk

cj
, j

)
+

Rk

cj
√
N

. inf
j∈N:µ‖φ‖2≤cj

B

(
‖∆φ‖2 +

√
NRk

cj
, j

)
, (D.15)

where we note that B(A+B, j) +B/
√
N ≤ B(A+B +

√
NB, j) . B(A+B

√
N, j).

Step 4: Tuning the bound. Lastly, we tune the bound in (D.15) to each specific φ ∈ Φ. Note
that the infimum over j in (D.15) is taken for each φ ∈ Φ, and thus we can tailor j to our filter φ.
The remainder of the proof is simply choosing j appropriately. Define the random index

j0 := inf
{
j ∈ N : max{µ‖φ‖2, Rk

(κ+N−1/2‖∆φ‖2)
} ≤ cj

}
.
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Then ‖∆φU
†‖2 is bounded by (up to constants) by

B(‖∆φ‖2 +
Rk

√
N

cj0
, j0)

(i)

.
(N−1/2‖∆φ‖2+

Rk
cj0

+κ)
√
N

·
√
T ·

√
p̃+ ej0Leff + log 1

δ + lil(
N−1/2‖∆φ‖2+Rk/cj0

κ )

(ii)

. N−1/2‖∆φ‖2+κ√
N

·
√
T ·
√
p̃+ ej0Leff + log 1

δ + lil(
2N−1/2‖∆φ‖2

κ + 1)

(iii)

. N−1/2‖∆φ‖2+κ√
N

·
√
T ·
√
p̃+ ej0Leff + log 1

δ + lil
‖∆φ‖2
κN1/2 ,

where (i) follows by combining the definition of B in (D.14) with the chain of inequalities

1 + Leff log(1 + 2c2
j0) + log(2j0

2

δ ) . Leff log(cj0) + log(j0) + log(1/δ)

. Leffe
j0 + log(1/δ),

which uses the facts thatLeff ≥ 1 and cj0 = ee
j0 ≥ j0. Furthermore, (ii) uses Rk

cj0
≤
√
N‖∆φ‖2+κ

ands (iii) uses lil(2x+ 1) ≤ lil(x) + 1. Lastly, by the definition of j0, we see that

ej0 . log+(µ‖φ‖2 + Rk

(κ+N−1/2‖∆φ‖2)
) = log+(µ‖φ‖2 +

‖K‖op
µ(κ+N−1/2‖∆φ‖2)

),

which concludes the proof.

D.2. Proof of Õptµ bound, Theorem D.1, Part (b)

Let (kt) ⊂ RL be a sequence. For sequences (at) ⊂ Rm and regularizer µ > 0, and define the
ridge function:

ridge(A, µ) := arg min
φ∈Rm×L

N∑
t=N1

‖φ · kt − at‖22 + µ2‖φ‖2F,

where A ∈ RÑ×m is the matrix whose rows are (at). Note then that

φrdg := ridge(Y, µ).

To prove the desired bound, we begin by stating some properties of ridge, which are derived from
the KKT conditions in Section D.2.1:

Lemma D.3 (Properties of the Ridge Estimator)

(a) ridge(A, µ)> = (K>K + µ2I)−1K>A. In particular, ridge is linear in its first argument.

(b) ridge(A, µ) ∈ arg min
φ∈Rm×L ‖vcat

[
Kφ> −A, µφ>

]
‖op, where vcat [A,B] := [A>|B>]>.
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The second point of Lemma D.3 implies that ridge(A, µ) is nearly optimal in the operator norm, up
to the regularization. In particular, recall

Optµ := min
φ∈Rm×L

‖∆φ‖op + µ‖φ‖op.

Then it follows from Lemma D.3 that

max{‖∆ridge(∆,µ)‖op, µ‖ridge(∆, µ)‖op} ≤ min
φ∈Rm×L

‖vcat
[
Kφ> −∆, µφ>

]
‖op

= min
φ∈Rm×L

‖vcat
[
∆φ, µφ

>
]
‖op ≤ Optµ. (D.16)

Unfortunately, our algorithm does not have direct access to ∆, only Y. The following lemma
accounts for this discrepancy.

Lemma D.4 We have that

(a) ‖∆φrdg
‖op ≤ Optµ + ‖K ridge(UG>? , µ)>‖op

(b) µ‖φrdg‖op ≤ Optµ + µ‖ridge(UG>? , µ)‖op .

Lastly, we require a bound on ‖K ridge(UG>? , µ)>‖op and µ‖ridge(UG>? , µ)>‖op. This is accom-
plished by the following lemma:

Lemma D.5 With probability at least 1 − δ on EU, ‖K ridge(UG>? , µ)>‖op and
µ‖ridge(UG>? , µ)>‖op are both bounded as . Ovfitµ(δ).

Theorem D.1, Part (b) is now an immediate consequence of the two lemmas above.

D.2.1. PROOF OF LEMMA D.3

The first statement is standard. For the second statement, observe that ridge(Av, µ) = ridge(A, µ)v.
Hence, we have

min
φ∈Rm×L

‖vcat
[
Kφ> −A, µφ>

]
v‖22 = min

φ
‖K(φ>v)−Av‖22 + ‖µφ>v‖22

= min
w∈RL

‖Kw −Av‖22 + ‖µw‖22

= ‖Kridge(Av, µ)−Av‖22 + ‖µridge(Av, µ)‖22
= ‖Kridge(A, µ)v −Av‖22 + ‖µridge(A, µ)v‖22
= ‖vcat [Kridge(A, µ)−A, µridge(A, µ)] v‖22. (D.17)
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To conclude, we see that

‖vcat
[
Kφ>rdg −Y, µφ>rdg

]
‖op = ‖vcat [Kridge(Y, µ)−Y, µridge(Y, µ)]‖op

= max
v∈Sm−1

‖vcat [Kridge(Y, µ)−Y, µridge(Y, µ)] v‖2

(i)
= max

v∈Sm−1
min
φ
‖vcat

[
Kφ> −Y, µφ>

]
v‖2

(ii)

≤ min
φ

max
v∈Sm−1

‖vcat
[
Kφ> −Y, µφ>

]
v‖2

= min
φ
‖vcat

[
Kφ> −Y, µφ>

]
‖op,

where (i) uses (D.17) and (ii) uses weak duality. Since, by definition,

min
φ
‖vcat

[
Kφ> −Y, µφ>

]
‖op ≤ ‖vcat

[
Kφ>rdg −Y, µφ>rdg

]
‖op,

they must be equal.

D.2.2. PROOF OF LEMMA D.4

Proof of (a): By Lemma D.3, ridge is linear in its first argument. Therefore,

φrdg = ridge(Y, µ) = ridge(∆ + UG>? , µ) = ridge(∆, µ) + ridge(UG>? , µ).

Therefore,∥∥∆φrdg

∥∥
op

=
∥∥∥∆−Kφ>rdg

∥∥∥
op

= ‖∆−K
(

ridge(∆, µ) + ridge(UG>? , µ)
)
‖op

≤ ‖∆−K · ridge(∆, µ)‖op + ‖Kridge(UG>? , µ)‖op

= ‖∆ridge(∆,µ)‖op + ‖Kridge(UG>? )‖op ≤ Optµ + ‖Kridge(UG>? , µ)‖op,

by (D.16).
Proof of (b): Again, using the linearity of ridge and (D.16), we see that

µ ‖φrdg‖op = µ‖ridge(∆, µ) + ridge(UG>? , µ‖op

≤ µ‖ridge(∆, µ)‖op + µ‖ridge(UG>? , µ)‖op.

≤ Optµ + µ‖ridge(UG>? , µ)‖op.

D.2.3. PROOF OF LEMMA D.5

For M ∈ {K, µ}, we have

‖M ridge(UG>? , µ)>‖op = ‖M(K>K + µ2)−1K>UG>? ‖op

≤ ‖M(K>K + µ2)−1/2‖op · ‖(K>K + µ2)−1/2K>U‖op‖G?‖op

(D.18)
(i)

≤ ‖(K>K + µ2)−1/2K>‖op‖U‖op‖G?‖op

(ii)

≤ ‖U‖op‖G?‖op.
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where (i) and (ii) use the fact that ‖K(K>K + µ2)−1/2‖op, ‖µ(K>K + µ2)−1/2‖op, and
‖(K>K + µ2)−1/2K>‖op are all upper bounded by 1. For example,

‖K(K>K + µ2)−1/2‖op ≤ ‖K‖op‖(K>K + µ2)−1/2‖op ≤
‖K‖op√

σmin(K>K + µ2)
≤ 1.

Thus, ‖M ridge(UG>? , µ)‖op ≤ ‖U‖op‖G?‖op which is .
√
N‖G?‖op on EU.

For the second bound, starting from (D.18), we use the semi-parametric regression bound, part
(a) of Theorem E.1. Since kt is Ft−T -adapted, by applying part (a) of Theorem E.1 with V0 ← µ2I
and ∆← K, we see that with probability at least 1− δ,

‖(K>K + µ2)−1/2K>U‖op . T 1/2
√
p̃+ log 1

δ + log det(I + µ−2KK>)1/2.

Concluding we have that, on EU, with probability at least 1− δ,

‖M ridge(UG>? , µ)‖op . ‖G?‖op min{T 1/2
√
p̃+ log 1

δ + log det(I + µ−2KK>)1/2,
√
N}

= Ovfitµ(δ).

Appendix E. Semi-Parametric Regression

In this section we prove Proposition 3.2 as consequence of a more general setting. Our main theorem
is as follows:

Theorem E.1 Suppose the semi-parametric model (1.1) holds, where ut|Ft−1 is mean-zero and 1
subgaussian, and let p̃ := pmin{T, log2(eTp) log2(Tp)}. Then,

(a) For any fixed δ ∈ (0, 1) and V0 ∈ Sm++, it holds with probability 1− δ that

‖(∆>∆ + V0)−1/2∆>U‖op . T 1/2
√
p̃+ log 1

δ + log det(I + ∆V −1
0 ∆>)1/2

(b) For any fixed δ ∈ (0, 1) and κ > 0, it holds with probability 1− δ that

σmin(U)2‖U†∆‖op ≤ ‖∆>U‖op . T 1/2(‖∆‖op + κ)

√
p̃+m+ log 1

δ + lil(
‖∆‖op
κ ),

where lil(x) := log(1 + log(1 + x)).

Proposition 3.2 corresponds exactly to part (b) of the above theorem, with the substitution δt ← δφ,t.
Indeed, we have that (a)

Ĝfil(φ) = (Y −Kφ>)>U
(
U
>

U
)−1

= G? + ∆>φU
†>
,

(b) that the inputs ut+1|Ft ∼ N (0, Ip) are 1-subgaussian and {Ft}-adapted, and where we substi-
tute the errors δφ,t are Ft−T -adapted. Hence, whenever EU occurs, applying Theorem E.1, part (b)
with κ← κ

√
N and δt ← δφ,t yields

N‖U†∆φ‖op . σmin(U)2‖∆φU
†‖op . T 1/2(‖∆φ‖op + κ

√
N)

√
p̃+m+ log 1

δ + lil(
‖∆φ‖op√

Nκ
),

39



LEARNING LINEAR DYNAMICAL SYSTEMS WITH SEMI-PARAMETRIC LEAST SQUARES

which coincides with the statement of Proposition 3.2 after dividing both sides by N .
For comparison, observe that if one instead regressing (yt) to independent white noise ũt

iid∼
N (0, ITp) ∈ RTp, we would have rates ‖ĜLS − G?‖op = Θ(

√
1
N ·
√

(Tp+m) + log 1
δ ). In our

setting, martingale tail bounds incurs an addition log-factor (part (a) of Theorem E.1), which we
refine to lil(·) for operator norm error using Lemma E.6, below. In addition, correlation introduced
by the concatenated sequence forces us to pay an additional factor of T multiplying the m and log 1

δ
terms as well, which we conjecture is in the worst case. If handled naively, we would also have
to pay for T · (Tp) = pT 2, and the major effort in the proof of Theorem E.1 is to use a careful
chaining argument based on (Krahmer et al., 2014) to ensure that we instead pay for the generally
smaller term T p̃. This ensures that our bound is only suboptimal (up to more than log factors) once
m+ log 1

δ � p.
We present the proof of part (a) in E.1, and derive (b) as a consequence in E.2. Part (a) relies on

detailed chaining arguments, which we defer to Appendix F.

E.1. Proof of Theorem E.1, Part (a)

We shall also use the notation

Ñ = N −N1 and N0 = N1 − T.

Adopting the setting of Theorem E.1, {Ft} be a filtration, and suppose that (ut) ⊂ Rp is a {Ft}-
adapted 1-subgaussian and (δt) ⊂ Rm is a sequence of {Ft−T } adapted sequence.

We shall begin with the proof of part (a); the proof of part (b) will be derived as a consequence
in E.2. Begin by fixing V0 ∈ Sm++. For vectors v = [v>1 , . . . , v

>
T ]> ∈ RTp, we define the process

zv := ‖∆>Uv‖∆>∆+V0 .

We see that

‖(∆>∆ + V0)−1/2∆>U‖op = sup
v∈STp−1

zv .

Hence, it suffices to show that, with probability 1− δ,

sup
v∈STp−1

zv . T 1/2
√

log(1/δ) + log det(I + (∆>∆V −1
0 )1/2 + p̃

The first step is to express Uv = ToepT (v)
→
u, where

→
u ∈ R(N−N0+1)p is the vector obtained

by concatenating uN0 , . . . ,uN and ToepT (v) ∈ RÑ×(N−N0+1)p is an [Ñ × (N −N0 + 1)] block
Toeplitz matrix, where each of the size (1× p) blocks on the k-th superdiagonal are equal to v>T−k
for 0 ≤ k ≤ T − 1, i.e.

ToepT (v) :=

v
>
T · · · v>1

. . . . . .
v>T · · · v>1

 .
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We can then express ∆>ToepT (v) ∈ Rm×((N−N0+1)p with blocks At−1(v)> ∈ Rm×p for t ∈
{N0, . . . , N}, where

At−1(v)> :=

T−1∑
j=0

(δt+jIt+j∈[N1,N ])v
>
T−j .

Since At−1(v)> depends only on terms δs for s ≤ t+ T − 1, we see that At−1(v) is Ft−1-adapted.
Then we see that

∆>Uv = ∆>ToepT (v)
→
u =

N∑
t=N0

At−1(v)>ut.

We now introduce the variance process:

V∆(v) :=

N∑
t=N0

At−1(v)>At−1(v) = ∆>ToepT (v)>ToepT (v)∆,

which corresponds to a variance proxy for ∆>Uv. Indeed, consider the simple case where ut are
deterministic and δt

iid∼ N (0, 1) are independent Gaussian. Then, then the covariance matrix

E[(∆>Uv)(∆>Uv)>]

would be equal to V∆(v). In fact, if ut is any martingale sequence with E[utut] � I , and ut were
deterministic, then it still holds E[(∆>Uv)(∆>Uv)>] � V∆(v).

In our general case where both δt and δt are martingales, and δt is subgaussian, we can use
V∆(v) as a data-dependent subgaussian variance proxy. Recall that δt|Ft−1 is subgaussian and
Ft measurable. Crucially, we will also use that for each v, {At(v)} is {Ft}-adapted, since At(v)
involves the terms only the terms δt+1, . . . , δt+T , and {δs} is {Fs−T }-adapted. These two points
let us invoke the following lemma, which generalizes a bound due to Abbasi-Adkori (2011):

Lemma E.2 (Generalization of Theorem 3 in Abbasi-Adkori (2011)) Let Ft denote an arbi-
trary filtration. Let {At} ⊂ Rp×m and {ut} ⊂ Rm be Ft adapted, and suppose further that
ut|Ft−1 is mean zero and 1-subgaussian. Define the variance process Vk :=

∑k
t=1A

>
t−1At−1.

Then, for any {Gt}-adapted stopping time τ , one has∥∥∥∥∥
τ∑
t=1

A>t−1ut

∥∥∥∥∥
2

(Vτ+V0)−1

≤ 2 log

(
det(I + VτV

−1
0 )1/2

δ

)
w.p. 1− δ.

To prove part (a) of the proposition, we shall set τ = N , and At−1 = At−1(v) for t ≥ N0, and
At−1 = 0 for t ≤ N0. For this choice ofA, then

∑N
t=1A

>
t−1ut = ∆>Uv and Vτ = VN = V∆(v).

Thus, we have that for any V0 � 0,

∥∥∥∆>Uv
∥∥∥2

(V∆(v)+V0)−1
≤ 2 log

(
det(I + V∆(v)V −1

0 )1/2

δ

)
w.p. 1− δ. (E.19)
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To use (E.19) to bound supv∈STp−1 zv, we shall show that that the random variables zv behave
like a subgaussian process, with a random offset µ. This will allow us to apply a chaining argument
to bound their supremum. To this end, introduce ‖v‖	 := ‖ToepT (v)‖op; it is straightforward to
check that ‖·‖	 defines a norm on RTp. We shall need the following bound, proved in Section E.3:

Lemma E.3 (Bounds on ‖·‖	) ‖v‖2 ≤ ‖v‖	 ≤
√
T‖v‖2.

By definition, V∆(v) = ∆>ToepT (v)ToepT (v)>∆, and thus the above lemma implies

V∆(v) � ‖ToepT (v)‖2op∆>∆ = ‖v‖2	∆>∆.

Thus, we see

zv = ‖∆>Uv‖(∆>∆+V0)−1 = ‖v‖	 ‖∆
>Uv‖(‖v‖2	∆>∆+‖v‖2	V0)−1

≤ ‖v‖	 ‖∆
>Uv‖(V∆(v)+‖v‖2	V0)−1 .

Thus, by (E.19), we have that with probability 1− δ,

‖∆>Uv‖(V(v)+‖v‖2	V0)−1 ≤

√√√√2 log

(
det(I + V∆(v)(‖v‖2	 V

−1
0 )1/2

δ

)

(i)
=

√
2 log

(
det(I + ∆>∆V −1

0 )1/2

δ

)
≤
√

2 log
(
det(I + ∆>∆V −1

0 )1/2
)

+
√

2 log(1/δ),

where in (i) we use the fact that if A1, B � 0 and A2 � A1, then det(I + A1B
−1) ≤ det(I +

A2B
−1), together with the bound V∆(v) � ‖v‖2	∆>∆.

Hence, introducing the random offset µ :=
√

2 log det(I + (∆>∆V −1
0 )1/2, which does not

depend on v, we see that for any v ∈ RTp,

P[zv ≥ ‖v‖	 (µ+
√

2 log(1/δ))]

= P[‖∆>Uv‖(∆>∆+V0)−1 ≥ ‖v‖	 (µ+
√

2 log(1/δ))] ≤ δ. (E.20)

Therefore, we find that

P
[
zx − zy > ‖x− y‖	

(
µ+

√
2 log(1/δ)

)]
= P

[
‖∆>Ux‖(∆>∆+V0)−1 − ‖∆>Uy‖(∆>∆+V0)−1 > ‖x− y‖	

(
µ+

√
2 log(1/δ)

)]
≤ P

[
‖∆>U(x− y)‖(∆>∆+V0)−1 > ‖x− y‖	

(
µ+

√
2 log(1/δ)

)]
≤ δ. (E.21)

Intuitively this inequality says that zv has subgaussian tails, modulo the offset µ. This enables us to
a chaining argument to the increments zv, which is detailed in Appendix F:
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Corollary E.4 There exists universal constants c1, c2 such that, with probability 1− δ

sup
v∈STp−1

zv ≤ c1

(
(
√

log(c2/δ) + µ) max
x∈STp−1

‖x‖	 + γ2(STp−1, ‖·‖	)

)
,

where γ2(STp−1, ‖·‖	) denotes Talagrand’s γ2-functional (see, e.g. Talagrand (2014)).

By Lemma E.3, we have maxv∈STp−1 ‖x‖	 ≤
√
T maxv∈STp−1‖v‖2 =

√
T . In Section F.1, we

sharpen a computation of Dudley’s bound due to Krahmer et al. (2014) to control γ2(STp−1, ‖·‖	):

Proposition E.5 (Control of γ2(STp−1, ‖·‖	)) We have the bound

γ2(STp−1, ‖·‖	) ≤
√
T p̃, where p̃ := pmin{T, log2(eTp) log2(eT )}.

Combining the above Proposition with Corollary E.4, we have with probability 1− δ,

sup
v∈STp−1

zv .
(

(
√

log(c2/δ) + µ)
√
T +

√
T p̃
)

. T 1/2
√

log(1/δ) + µ2 + p̃

. T 1/2
√

log(1/δ) + log det(I + ∆>∆V −1
0 )1/2 + p̃

= T 1/2
√

log(1/δ) + log det(I + ∆>V −1
0 ∆)1/2 + p̃, as needed.

E.2. Proof of Theorem E.1, Part (b)

We shall bound supw∈Sm−1−1 ‖w>∆>U‖2. For w ∈ Sm−1, the m = 1 case of Theorem E.1 with
∆←∆w and V0 = κ2 ∈ R implies that with probability at least 1− δ,

‖w>∆>U‖2√
w>∆>∆w + κ2

=

∥∥∥∥((∆w)> (∆w) + κ2
)−1/2

(∆w)>U

∥∥∥∥
op

. T 1/2
√

log(1/δ) + log(1 + ((∆w)> (∆w)κ−2)1/2 + p̃

≤ T 1/2

√
log(1/δ) + log(1 +

‖∆‖2op

κ2
)1/2 + p̃

≤ T 1/2

√
log(1/δ) + log(1 +

‖∆‖op

κ
) + p̃,

where the last line uses
√

1 + x2 ≤ 1 + x for x ≥ 0. Since w>∆>∆w ≤ ‖∆‖2op, rearranging
shows we have that with probability 1− δ,

‖w>∆>U‖2 ≤
√
‖∆‖2op + κ2T 1/2

√
log(1/δ) + log(1 +

‖∆‖op

κ
) + p̃

≤ (‖∆‖op + κ)T 1/2

√
log(1/δ) + log(1 +

‖∆‖op

κ
) + p̃
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We now proceed to union bound over w. A standard covering argument (see e.g. Vershynin (2018,
Section 4.2)) shows that if T is an ε-net of Sm−1, then ‖∆>U‖op = supw∈Sm−1 ‖w>∆>U‖2
≤ 1

1−ε supw∈T ‖w>∆>U‖2. A standard computation (see e.g. Vershynin (2018, Corollary 4.2.13))
lets us choose |T | ≤ m log(1 + 2

ε ). Setting ε = 1/2 and union bounding over w ∈ T , we have that
with probability at least 1− δ,

‖∆>U‖op . (‖∆‖op + κ)T 1/2

√
log(1/δ) + log(1 +

‖∆‖op

κ
) +m+ p̃.

Recall the definition lil(x) := log+(log+(x)). The final bound follows directly from invoking the
following lemma with Z = ‖∆>U‖op, C . T 1/2, D = m+ p̃, and M = ‖∆‖op:

Lemma E.6 (Iterated Logarithm Conversion) Let Z be a random variable and suppose that
there exists constants C,D and a random variable M such that, for any κ > 0, it holds that

P[Z ≥ C(κ+M)
√

log(1/δ) +D + log(1 + M
κ )] ≤ δ. Then, for any β, κ > 0, one also has

P

[
Z ≥ C((1 + β)M + κ)

√
log 2

δ + 2 lil(βMκ ) +D + log
(

1 + e
β

)]
≤ δ.

In particular, if D & 1, then by setting β = 1, P
[
Z & C(M + κ)

√
log 1

δ + lil(Mκ ) +D

]
≤ δ.

Proof Define κj = ej−1κ for j ≥ 1, and δj = δ
2j2

. Then,
∑

j≥1 δj ≤ δ, and by a union bound,

P[Z ≥ inf
j≥1

C(κj +M)
√

log 1
δj

+D + log(1 + M
κ )] ≤ δ.

In particular, choosing j = blog βM/κc, we have that βMe ≤ κj ≤ max{κ, βM}, which implies
M + κj ≤M + max{κ, βM}) ≤ (1 + β)M + κ and log(1 + M

κj
) ≤ log(1 + e

β ). Moreover, δj =
δ

2j2
≥ δ

2 max{log βM/κ,1}2 , which implies log(1/δj) ≤ log(2/δ) + 2 log(max{log(βM/κ), 1}) ≤
log(2/δ) + 2 lil(βM/κ). Hence,

P
[
Z ≥ C((1 + β)M + κ)

√
log(2/δ) + 2 lil(βMκ ) +D + log(1 + e

β )

]
≤ δ.

E.3. Proof of Lemma E.3

To lower bound ‖v‖	 = ‖ToepT (v)‖op ≥ ‖v‖2. observe that the first row of
ToepT (v) consists of the vector [v>N , v

>
N−1, . . . , v

>
1 ] ∈ RTp, followed by zeros. Hence,

‖ToepT (v)‖op ≥ ‖[v>N , v>N−1, . . . , v
>
1 ]‖2 = ‖v‖2. To upper bound ‖v‖	 = ‖ToepT (v)‖op, ob-

serve that by the norm-contraction inequality ‖ToepT (v)‖op is bounded by the operator norm of the
Toeplitz matrix M ∈ R(N−N1+1)×(N−N0+1) (recall N0 = N1 − T ) whose ij-th entry is the norm
of the ij-th vector block of ToepT (v). This is an upper triangular Toeplitz matrix with an associated
sequence ai = ‖VT−i‖2 for i ∈ {0, . . . , T −1}, and ai = 0 for i ≥ N . By a standard inequality, the
operator norm ofM is bounded by the `1 norm of the sequence a0, a1, . . . , which is

∑T−1
i=0 ‖VN−i‖,

which in turn is at most
√
T
∑T−1

i=0 ‖VN−i‖22 =
√
T‖v‖22.

44



LEARNING LINEAR DYNAMICAL SYSTEMS WITH SEMI-PARAMETRIC LEAST SQUARES

E.4. Proof of Lemma E.2

The proof is essentially identical to that of Theorem 3 in Abbasi-Adkori (2011), with the ex-
ception that the variance-process is matrix-valued, and the noise process is vector-valued. Let
Sk :=

∑k
t=1A

>
t−1ut. We begin by constructing a supermartingale for each direction w ∈ Rm:

Mk(w) := exp

(
〈w,Sk〉 −

1

2
‖w‖2Vk

)
.

Note that M0 = 1. To verify that Mk(w) is a supermartingale with respect to the filtration Fk, we
see use the fact that Sk = Sk−1 +Ak−1uk and Vk = Ak−1A

>
k−1 + Vk−1 to write

E[Mk(w)|Fk−1] = E
[
exp

(
〈w,A>k−1uk + Sk−1〉 −

1

2
‖w‖2

Vk−1+A>k−1Ak−1

)]
= E

[
exp

(
〈w,A>k−1uk + Sk−1〉 −

1

2
‖w‖2Vk−1

− 1

2
‖w‖2

A>k−1Ak−1

)]
= E

[
exp

(
〈w,A>k−1uk〉 −

1

2
‖w‖2

A>k−1Ak−1

)
Mk−1(w)

]
(i)
= Mk−1(w) · E

[
exp

(
〈w,A>k−1uk〉 −

1

2
‖w‖2

A>k−1Ak−1

)]
= Mk−1(w) · E

[
exp

(
〈Ak−1w,uk〉 −

1

2
‖Ak−1w‖2

)]
(ii)

≤ Mk−1,

where (i) uses the fact that Mk−1 is Fk measurable, and (ii) uses that Mk−1 ≥ 0 and 〈Ak−1w,uk〉
is ‖Ak−1w‖2-subgaussian. Since M0 = 1, we conclude by the optional stopping theorem that for
any k ∈ N and w ∈ Rm, E[Mk(w)] ≤ 1. The remainder of the proof follows that of Theorem 3
in Abbasi-Adkori (2011) verbatim. Specifically, these steps show that

‖Sτ‖2
V
−1
τ

≤ 2 log

(
det(V

−1/2
0 ) det(V

1/2
τ )

δ

)
, where Vτ = Vτ + V0.

To conclude, we verify that

det(V
1/2
τ ) det(V

−1/2
0 ) =

√
det(Vτ ) det(V −1

0 ) =

√
det(Vτ · V −1

0 )

=

√
det((V0 + Vτ ) · V −1

0 =

√
det(I + VτV

−1
0 ).

Appendix F. Chaining for Self-Normalized Tail Inequalities

In this section, we introduce a generic inequality for martingales. Let’s consider the general set up.
Let (Ω,F) denote a probability space, X denote a separable space with metric d(·, ·, ), {zx}x∈X
denote a real valued random process defined on (Ω,F)

Definition F.1 Let σ,µ denote random variables taking values in R≥0. We say that a process
{zx}x∈X is a (σ,µ)-offset subgaussian process on (X , d) if, for any x, y ∈ X and u > 0,

P[zx − zy ≥ d(x, y)(σu+ µ)] ≤ exp(−u2/2).
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Note that we do not require σ,u, {zx} to be independent. We now define Talagrand’s γ2 functional:

Definition F.2 Let X be a separable metric space. Talagrand’s γ2 function is defined as

γ2(X , d) := inf
(An):|An|≤22n

sup
x∈X

∑
n≥0

2n/2diam(An(x)),

where the inf is taken over all sequences of partitions (An) of X of size |An| ≤ 22n (with the
exception of |A0| = 1).

Typically, computing the infimum in the definition of γ2 may be challenging. Fortunately, there
exists a easier-to-manage upper bound on γ2 due to Dudley:

Proposition F.1 (Dudley’s Bound) Let X be a separable metric space with diam(X ) <∞. Then,

γ2(X , d) ≤
∫ diam(X )

0

√
logN (X , d, u)du,

whereN (X , d, u) denotes the cardinality of the minimal u-covering of X , that is, the cardinality of
a minimal subset T of X satisfying supx∈X infy∈T d(x, y) ≤ u.

Finally, we introduce the main theorem of this section, which extends the generic chaining applied
to typical subgaussian processes to (σ,µ)-offset-subgaussian process:

Theorem F.2 Let {zx}x∈X be a (σ,µ)-offset subgaussian process. Then, there exists universal
constants c such that

P[ sup
x,y∈X

|zx − zy| ≥ c1 (σγ2(X , d) + diam(X )(σu+ µ))] ≤ c2e
−u2 .

If in in addition X is normed spaced with d(x, y) = ‖x − y‖, and P[zx ≥ ‖x‖(σu + µ)] ≤
exp(−u2/2), then

P

[
sup
x,y∈X

|zx| ≥ c1

(
σγ2(X , d) + (min

x∈X
‖x‖+ diam(X ))(σu+ µ)

)]
≤ c2e

−u2 .

With Theorem F.2 in hand, the proof of Corollary E.4 is nearly immediate.
Proof Let X = STp−1 ⊂ RTp, and define the norm ‖·‖	 := ‖ToepT (v)‖op. Recall the inequali-
ties (E.20) and (E.21), restated here for convenience with the ‖·‖	 notation:

P
[
zv ≥

√
2 log(1/δ) ‖v‖	 σ + µ

]
≤ δ,

where u = µ :=
√

2 log det(I + (∆>∆V −1
0 )1/2 and σ = 1. By setting u =

√
2 log(1/δ), we see

that zx is (σ,µ)-offset normed subgaussian with respect to γ2(X , ‖·‖	). The corollary is therefore
a direct consequence of Theorem F.2, again substituting in u =

√
2 log(1/δ).
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F.1. Proof of Proposition E.5

Proof Our argument follows the proof of Theorem 4.1 in Krahmer et al. (2014), modifying the
argument to ensure tighter dependences on T and p. Notably, we remove a dependence on the
number of samples N which would arise from invoking Krahmer et al. (2014) without alteration.
We shall use Dudley’s inequality to bound

γ(STp−1, ‖·‖	) ≤
∫ diam(STp−1,‖·‖	)

u=0

√
logN (STp−1, ‖·‖	 , u)du

=

∫ √2T

u=0

√
logN (STp−1, ‖·‖	 , u)du .

√
Tp(min{T, log2(eT ) log2(eTp)})

Using the fact that ‖·‖	 ≤
√
T‖ · ‖2, and logN (STp−1,

√
T‖‖̇, u) . Tp log(1 +

√
T
u ), one can

coarsely bound the above by
√
Tp
∫ √2T
u=0

√
log(1 +

√
T
u .

√
T 2p

∫ 1
0

√
log(1 + 1

u)du .
√
T 2p.

It remains to prove the more refined bound of
√
Tp log2(eT ) log2(eTp) To do so, we need to

control the associated covering numbers logN (STp−1, ‖·‖	 , u). To this end, we shall require two
ingredients. The first is known as Maurey’s Lemma,

Lemma F.3 Krahmer et al. (2014, Lemma 4.2) Let U denote a finite subset of a normed space
(X , ‖ · ‖), and suppose that that there exists an A > 0 such that, for any k ∈ N and sequence
(u1, . . . , uk) ∈ Uk, E[‖

∑k
i=1 εiui‖] ≤ A

√
k, where εi are independent Rademacher random vari-

ables. Then,

logN (conv(U), ‖ · ‖, u) ≤
(
A

u

)2

log |U|.

In order to apply Maurey’s lemma, we shall choose U = {
√
Tp · ei}Tpi=1 and

X = RTp with the metric ‖·‖	. Observe that STp−1 ⊂ conv(U), and thus
logN (STp−1, ‖·‖	 , u) ≤ logN (conv(U), ‖·‖	 , u). To estimate the latter quantity using
Lemma F.3, we shall require the following characterization of ‖·‖	:

Lemma F.4 There exists a setZ ⊂ RTp with |Z| ≤ 16π(Tp)3/2 such that ‖z‖∞ ≤ 1 for all z ∈ Z
and ‖v‖	 ≤ 4 maxz∈Z z

>v for all v ∈ RTp.

Lemma F.4 is proven in the subsection below. We stress that it the lemma is crucial to removing
the N -dependence in our final bound; the proof of Theorem 4.1 in Krahmer et al. (2014) effectively
renders ‖v‖	 ≤ maxz∈Z′ z

>v for some |Z ′| ≈ N .
To obtain a covering estimate, observe that for any sequence u1, . . . , uk ∈ Uk, Lemma F.4

implies

E[‖
k∑
i=1

εiui‖] . E[max
z∈Z
〈z,

k∑
i=1

εiui〉] = E[max
z∈Z

k∑
i=1

εi · 〈z, ui〉]

For any fixed z ∈ Z , we have |〈z, ui〉| ≤ ‖z‖∞‖ui‖1 ≤
√
Tp. Thus, by a union bound and

Hoeffding’s inequality, we have that for any appropriate constant c1,

P[sup
z∈Z

k∑
i=1

εi · 〈z, ui〉 ≥
√
Tp ·
√
ku] ≤

∑
z∈Z

P[
k∑
i=1

εi · 〈z, ui〉 ≥
√
Tp ·
√
ku] ≤ |Z|e−c1u2 .
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A standard tail integration argument reveals that E[supz∈Z
∑k

i=1 εi · 〈z, ui〉 ≥
√
ku] .

√
k ·√

log |Z| ·
√
Tp for an appropriate constant c2. Thus, U and ‖·‖	 satisfy the conditions of

Lemma F.3 with A .
√
Tp log |Z|, and thus

logN (STp−1, ‖·‖	 , u) ≤ logN (conv(U), ‖·‖	 , u) .
Tp log |Z|

u2
· log |U| . Tp log2(eTp)

u2
,

where we use the bound |U| = Tp and |Z| . (Tp)3/2. For u ≤ 1, this bound is quite loose, and
instead we shall use the bound ‖·‖	 ≤ T‖ · ‖2 to obtain a standard covering bound:

logN (STp−1, ‖·‖	 , u) ≤ logN (STp−1, Tp‖ · ‖2, u) . Tp log(
eT

u
),

Invoking Dudley’s bound yields

γ(STp−1, ‖·‖	) .
∫ √2T

1

√
Tp log2(eTp)

u2
du+

∫ 1

0

√
Tp log

eT

u

=
√
Tp

(
log(eTp)

∫ √2T

1

du

u
+

∫ 1

0

√
log eT

u

)

≤
√
Tp

(
log(eTp)

∫ √2T

1

du

u
+
√

log eT +

∫ 1

0

√
log 1

u

)

=
√
Tp

(
log(eTp) log(

√
2T ) +

√
log eT +

∫ 1

0

√
log 1

u

)
.
√
Tp log(eTp) log(eT ),

where we use the fact that
∫ 1

0

√
log 1

u is at most a universal constant.

F.1.1. PROOF OF LEMMA F.4

We can embed ToepT (v) as a submatrix an infinite Toeplitz operator where a−i = vi+1 for i ∈
{0, . . . , Tp}, and 0 elsewhere. It is well known that such a matrix has operator norm bounded
by the H∞ norm maxθ∈[0,2π]

∣∣∣∑Tp
k=1 v[k]eikθ

∣∣∣, where | · | denotes complex magnitude. Define

F (θ) :=
∣∣∣∑Tp

k=1 v[k]eikθ
∣∣∣. Our proof will have two ingredients:

1. For all θ ∈ [0, 2π], we can bound F (θ) ≤
√

2 sup`∈[4]〈zθ,`, v〉, where ‖zθ,`‖∞ ≤ 1 for
` ∈ [4].

2. We construct a covering T of [0, 2π] such that supθ∈[0,2π] F (θ) ≤ 2 maxθ∈T F (θ), and |T | ≤
4π(Tp)3/2

Together, these two imply that, for Z = {zθ,` : θ ∈ T , ` ∈ [4]}, ‖v‖	 ≤ 2
√

2 supz∈Z〈z, v〉, as well
as ‖z‖∞ ≤ 1 for all z ∈ Z , and |Z| = 4|T | ≤ 16π(Tp)3/2.
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Proof of Point 1: Given a complex number ω, we have |ω| =
√
<(ω)2 + =(ω)2 ≤√

2 max{|<(ω)|, |=(ω)|} =
√

2 max{<(ω),−<(ω),=(ω),−=(ω)}. Defining the complex vec-
tor zθ = (eikθ)Tpk=1, and zθ,1 = <(zθ), zθ,2 = =(zθ), zθ,3 = −z1,θ, z4,θ = −zθ,2, we see that
F (θ) ≤

√
2 max`∈[4]〈z`,θ, v〉. Moreover, max`∈4 ‖z`,θ‖∞ ≤ 1, as max{|<(eikθ)|, |=(eikθ)|} ≤ 1

for all k ∈ R.

Proof of Point 2: It suffices to show that F (θ) is ‖v‖2 · (Tp)3/2-Lipschitz. Indeed, if this is true
then by choosing a 1

2(Tp)3/2
-net T of [0, 2π], we have

‖v‖	 = max
θ∈[0,2π]

F (θ) ≤ max
θ∈T

F (θ) + max
θ∈[0,2π]

min
θ′∈T
|F (θ)− F (θ′)|

≤ max
θ∈T

F (θ) +
1

2(Tp)3/2
· (Tp)3/2‖v‖2 ≤ max

θ∈T
F (θ) +

1

2
‖v‖	 ,

where we used the bound that ‖v‖	 ≥ ‖v‖2. After rearranging, ‖v‖	 ≤ maxθ∈T 2F (θ). Lastly,
we note that we can construct a 1

2(Tp)3/2
-net of the interval [0, 2π] of size at most b4π(Tp)3/2c ≤

4π(Tp)3/2. It remains to show that F (θ) is Lipschitz. We can bound

|F (θ1)− F (θ2)| ≤

∣∣∣∣∣
Tp−1∑
k=0

v[k](eikθ1 − eikθ2)

∣∣∣∣∣ ≤ ‖v‖2
√√√√Tp−1∑

k=0

|eikθ1 − eikθ2 |2

by Cauchy Schwartz. Geometrically, |eikθ1 − eikθ2 | is the distance between the point
(cos kθ1, sin kθ1) and the point (cos kθ2, sin kθ2) on the unit sphere, which is at most the arc length

k|θ2−θ1| between the two points. Hence,
√∑Tp−1

k=0 |1− eik(θ2−θ1)|2| ≤
√∑Tp−1

k=0 k2(θ2 − θ1)2 ≤
(Tp)3/2|θ2 − θ1|.

F.2. Proof of Theorem F.2

The second part of the theorem is a consequence of the first after noting that

max
y∈X

zy ≤ min
x∈X

(
|zx|+ max

y∈X
|zy − zx|

)
≤ min

x∈X
|zx|+ max

x,y∈X
|zy − zx|,

and that maxx,y∈X |zy − zx| can be bounded by the first part of the theorem, whereas minx∈X zx
can be bounded by the condition P[zx ≥ ‖x‖(σu+ µ)] ≤ exp(−u2/2).

The proof of the first part of the theorem is analogous to the proof of Theorem 2.2.27 in Ta-
lagrand (2014). With a standard separability argument, we may assume without loss of gen-
erality that X is finite. Let Nn := 22n . By the definition of the γ2 functional, we may
choose a sequence (An) of partitions of X of size at most |An| ≤ Nn satisfying (An)n≥0 with
supx∈X

∑
n≥0 2n/2diam(An(x)) ≤ 2γ2(X ).

The key observation is that this is chosen to (nearly) minimize a bound involving only distances
between elements of X , and is not chosen based on the random variances σ or offsets µ.

Let (Xn)n≥0 denote any sequence of subsets of Xn where Xn comprises of exactly one element
of each set in An; note then that |Xn| ≤ Nn. Define the unioned sets Un :=

⋃n
q=0Xq. In particular,

U0 = X0, and |Un| ≤
∑n

q=0Nq ≤ 2Nn. Lastly, we define the event

E(u) := {|zx − zx| ≤ 2d(x1, x2)(σ(u+ 2n/2) + µ), ∀n ≥ 1, x, y ∈ Un, zx}.
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Display (2.60) in Talagrand verifies that P[E(u)c] ≤ 2
∑

n≥1 |Un|2 exp(−2(2n + u2)) ≤
c2 exp(−2u2). Therefore, it suffices to show that there exists a constant c1 such that, if for any
fixed σ, µ ≥ 0, then for any deterministic real-valued process {zx}x∈X satisfying the condition

|zx − zy| ≤ 2d(x, y)(σ(u+ 2n/2) + µ), ∀n ≥ 1, x, y ∈ Un, (F.22)

it holds that supx∈X |zx1 − zy| ≤ c1 (σγ2(X ) + diam(X )(σu+ µ)).
First consider the case σ = 0. For any x, y ∈ X , it suffices to show |zx − zy| ≤ 2µdiam(X ).

Since
⋃
n Un = X andX is finite by assumption, there exists an n large enough for which x, y ∈ Un.

By (F.22), |zx − zy| ≤ 2d(x, y)(σ(u+ 2n/2) + µ) = 2d(x, y)µ ≤ 2µdiam(X ).
Next, consider the case σ > 0. Define z′x := zx/σ, and u′ = u + µ/σ. Then, the process z′x

satisfies the condition:

|z′x − z′y| ≤ 2d(x, y)(u′ + 2n/2), ∀n ≥ 1, x, y ∈ Un, (F.23)

The proof of Talagrand (2014, Theorem 2.2.27) shows that (F.23) implies that supx,y∈X |z′x− z′y| ≤
c1(γ2(X ) + diam(X )u′). Multiplying both sides by σ, we have

sup
x,y∈X

|zx − zy| ≤ c1(γ2(X ) + σdiam(X )u′) = c1(γ2(X ) + diam(X )(σu+ µ)) .
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Part III

Prefiltered Least Squares for Linear Dynamical
Systems
Appendix G. Bounds on ‖∆φ‖op

In this section, we extend Proposition 4.1 to the case where x1 6= 0, and to the adversarial noise
regime. Throughout, we assume that x1 is deterministic (stochastic bounds can be developed by
reasoning over the randomness of x1). When x1 6= 0, we now have three LTI systems:

Gφ := (A?, B?, Cφ, 0), Fφ := (A?, Bw, Cφ, 0), Hφ := (A?,x1, Cφ, 0) . (G.24)

Our bound for stochastic noise with general x1 6= 0 is as follows:

Proposition G.1 (Stochastic Noise Bound) Consider a filter of the form φ = [Ψ1| . . . |Ψd] ∈
Rm×dm for some 1 ≤ d ≤ L, and suppose that N ≥ Tdmax{m, log(1/δ)}. Then, under the
stochastic noise model of Assumption 2.1, with probability at least 1− δ we have that the extended
filter φ̃ := [φ | |0m×(L−m)d] ∈ RL×m satisfies

‖∆
φ̃
‖op .

√
N(‖M∞(Gφ)‖op + ‖M∞(Fφ)‖op) + ‖M∞ (Hφ)‖op

+
√
m+ log(1/δ)(ΓN (Gφ) + ΓN (Fφ))

+
√
N(1 + ‖φ‖bop) (‖MTd (G)‖op + ‖MTd (F)‖op + ‖Dz‖op) ,

where we define ΓN (G) := min{
√
N‖M∞ (G)‖op, ‖G‖H∞} ..

For adversarial noise, we obtain the following analogous bound:

Proposition G.2 (Bound on Optλ for adversarial noise) Consider a filter of the form φ =
[Ψ1| . . . |Ψd] for some 1 ≤ d ≤ L. With probability at least 1 − δ, if N ≥ Tdmax{m, log(1/δ)},
then in the adversarial noise model, the extended filter φ̃ := [φ | |0m×(L−m)d] ∈ RL×m satisfies

‖∆
φ̃
‖op .

√
N‖M∞ (Gφ)‖op +

√
NdwΓN (Fφ) + ‖M∞ (Hφ)‖op

+
√
m+ log(1/δ)ΓN (Gφ)

+
√
N(1 + ‖φ‖bop)

[
‖MTd (G)‖op +

√
Tddw‖MTd (F)‖op +

√
ddz‖Dz‖op

]
.

G.1. Outline of the Proofs

We shall assume without loss of generality that d = L, because the extended filter φ̃ ∈ Rm×Lm and
the original φ ∈ Rm×dm yields the same errors. We now outline the proofs of Proposition 4.1 and
Proposition G.2. Throughout, we fix a filter φ ∈ Rm×Lm. We are aiming to control

‖∆φ‖op =
∥∥∥∆−Kφ>

∥∥∥
op

= ‖[δN1 − φ · kN1 |δN1+1 − φ · kN1+1| . . . |δN − φ · kN ]‖op .
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Concretely, we take our features to be L previous output values equally T -spaced, i.e.

kt := [y>t−T | y>t−2T | · · · | y>t−LT ]> .

We express our filter as φ = [Ψ1| . . . |ΨL], for Ψj ∈ Rm×m. Thus, our prediction takes the form

φ · kt =

L∑
`=1

Ψ`yt−`T .

Recall from Section 4 the auxiliary signal x̃n;t, associated observation ỹn;t, and auxiliary features
k̃t defined via

x̃n;t :=

{
A
n−(t−LT )
? xt−LT n ≥ t− LT

xn n ≤ t− LT
ỹn;t := C?x̃n;t

k̃t := [ỹ>t−T ;t | ỹ>t−2T ;t | · · · | ỹ>t−LT ;t]
> .

We can now decompose the error term as

δφ,t = δt − φ · kt = (ỹt;t − φ · k̃t)︸ ︷︷ ︸
(Err

(1)
φ,t)

+ [(δt − ỹt;t)− φ · (kt − k̃t)]︸ ︷︷ ︸
(Err

(2)
φ,t)

,

where we have suppressed the dependence on φ in Err
(1)
t and Err

(2)
t , as φ is fixed. We further define

the stacked errors8

Err
(j)
φ,t1:t2

:=
[
Err

(j)
φ,t1
|Err

(j)
φ,t−1| . . . |Err

(j)
φ,t2

]
,

and our goal will be to control ‖Errφ,N :N1‖op ≤ ‖Err
(1)
φ,N :N1

‖op + ‖Err
(2)
φ,N :N1

‖op. Toward bounding
these two terms, we outline a general strategy to bound their individual components; the full details
can be found in the remainder of the section. Let uN :1 ∈ RNp, wN :1 ∈ RNdw , zN :1 ∈ RNdz denote
the concatenated (from N down to 1) sequences of input, process noise, and sensor noise vectors.
By the linearity of the system, we can express

Errφ,N :N1 = (G(1) + G(2))uN :1 + (F(1) + F(2))wN :1 + G
(2)
z zN :1 + H(1)x1 .

where G(1) encodes the contribution of uN :1 to Err
(1)
φ , G(2) encodes the contribution of uN :1 to

Err
(2)
φ , and so on. For example, G(1) is a linear operator that maps RNp to RÑ×m. Note that zN :1

only contributes to the second error term and x1 only contributes to the first.
Then, the key to bounding the error terms is that we can write, for example,

v>G(1)uN :1 =
(
G(1)
v uN :1

)>
8. Here, we reverse the time ordering of the columns (which is norm-preserving) in order to cleanly write many quanti-

ties in terms of Toeplitz operators.
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for an appropriate block matrix G(1)
v ∈ RÑ×Np. Thus,

‖G(1)uN :1‖op = sup
v∈Sm−1

‖G(1)
v uN :1‖2. (G.25)

Our main tool to control this quantity is the following result, due to Krahmer et al. (2014) (somewhat
overloading our notation forM):

Proposition G.3 LetM⊂ Rn×m denote a class of matrices, and let ξ ∈ Rm denote a subgaussian
vector. Then,

P[ sup
M∈M

‖Mξ‖2 & γ2(M, ‖ · ‖op) + diam(M, ‖ · ‖F) +
√

log(1/δ)diam(M, ‖ · ‖op)] ≤ 1− δ .

We observe that, even with the martingale structure, the vectors uN :1 is a sub-Gaussian vector, as is
wN :1 in the stochastic model. Our strategy is outlined as follows:

1. We begin give a detailed proof to bound G(1) in Section G.2.

2. We begin give a detailed proof to bound G(2) in Section G.3.

3. We explain how to bound the contributions of the remaining terms in Section G.4. Specif-
ically, we address process noise under both stochastic and adversarial models in G.4.1 and
adversarial noise in G.4.2. Lastly, we address the contributions of the initial state in G.4.3.

G.2. Bounding G(1)

Step 1: Recognize a block matrix structure Recalling that Gφ = (A?, B?, Cφ, 0), for each
vector v ∈ Rm, we define the block Toeplitz matrix

G̃(1)
v :=


v>MN−TL(Gφ)

01×p v>MN−1−TL(Gφ)
...

...
0

1×(Ñ−2)p
v>MN1+1−TL(Gφ)

0
1×(Ñ−1)p

v>MN1−TL(Gφ)

 ∈ RÑ×(N−TL−1)p .

One can verify that G̃(1)
v is the nonzero portion (i.e. submatrix) of G(1)

v , which is sufficient for our
goal of bounding matrix norms.

Step 2: Bound the Frobenius and operator norms By considering each row of G̃(1)
v , we imme-

diately see that

‖G̃(1)
v ‖2F ≤ N‖v>MN (Gφ)‖2F ≤ N‖v‖22‖MN (Gφ)‖2op .

Since ‖Mk (Gφ)‖op is increasing in k, we can bound ‖MN (Gφ)‖op ≤ ‖M∞ (Gφ)‖op. However,
we would like to note that, in general, maxv∈Sm−1‖v>MN (Gφ)‖F could be much less than this
quantity, and using it instead would sharpen Proposition 4.1.

Now, concerning the operator norm, we have two options. First, we could simply take

‖G̃(1)
v ‖op ≤ ‖G̃(1)

v ‖F ≤ ‖v‖
√
N‖M∞ (Gφ)‖op .
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On the other hand, we see that

‖G̃(1)
v ‖op

(i)

≤ ‖v>Gφ‖H∞ = sup
|z|=1
‖v>Cφ(zI −A?)−1B?‖op ≤ ‖v‖2‖Gφ‖H∞ ,

where (i) comes from the fact that G̃(1)
v is, in a sense, a “submatrix” of the infinite-dimensional

linear operator v>Gφ (see e.g. Tilli (1998) Corollary 4.2). Thus, recalling that

ΓN (Gφ) = min{
√
N‖M∞ (Gφ)‖op, ‖Gφ‖H∞} ,

we have that supv∈Sm−1‖G̃(1)
v ‖op ≤ ΓN (Gφ).

Step 3: Bound the γ2 functional To bound γ2(M, ‖ · ‖op) withM = {G(1)
v : v ∈ Sm−1}, we

first note that γ2(M, ‖ · ‖op) ≤ γ2(Sm−1, ‖G(1)
(·) ‖2), as the linear map v → G

(1)
v is only injective, in

general. Then, one can use Step 2 above to show (see Talagrand (2014) Exercise 2.2.23) that

γ2(Sm−1, ‖G(1)
(·) ‖2) ≤ ΓN (Gφ) γ2(Sm−1, ‖ · ‖2) .

Finally, upper bounding the right hand side by Dudley’s integral and using the standard covering
number bound for the sphere gives

γ2(M, ‖ · ‖op) . ΓN (Gφ)
√
m .

We remark that one could instead use the generic chaining (see Talagrand (2014) Chapter 2) to
bound γ2 directly and, instead of

√
m, get the stable rank of some matrix, but we will be loose in

this aspect.
Putting these three steps together with Proposition G.3 shows that with probability at least 1−δ,

‖G(1)uN :1‖op .
√
N‖M∞ (Gφ)‖op +

√
m+ log (1/δ)ΓN (Gφ) .

G.3. Bounding G(2)

Now, we seek to bound ‖G(2)uN :1‖op = supv∈Sm−1 ‖G(2)
v uN :1‖2, and we repeat the previous three

steps.

Step 1 The explicit block matrix structure is a bit cumbersome to write out, but the key is to note
that the rows of G(2)

v are simply shifted versions of v>G(2), where

G(2) :=MTd(G) · blkdiag(0T×T , IT (L−1)×T (L−1))−
L∑
k=1

Ψk[0m×Tk | MT (L−k)(G)] .

Note that the slight complication with blkdiag occurs due to the subtraction of G?ut in δt; this
blkdiag term is simply identity in the process noise case of G.4.1.
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Step 2 By the same argument as for the first error term, we have that ‖G(2)
v ‖F ≤√

N‖v‖2‖G(2)‖op. The operator norm requires slightly more care, and requires the following
lemma.

Lemma G.4 We have that ‖G(2)
v ‖op .

√
TL‖v‖2‖G(2)‖op.

Proof As stated before, G(2)
v is embeddable in a block Toeplitz matrix with shifted versions of

v>G(2) as its rows, where the nonzero portion of v>G(2) has at most TL consecutive blocks. We
use the following elementary property of Toeplitz matrices to bound ‖G(2)

v ‖op.

Lemma G.5 Let X and Y be Toeplitz matrices generated by x ∈ Ra and y ∈ Rb, where “gener-
ated” can include padding x and y with zeros on either end. Then,

‖XY ‖op ≤ ‖x ∗ y‖1 ≤ (a+ b− 1)‖x‖2‖y‖2 ,

where ∗ denotes convolution,

Taking X = Y > = G
(2)
v (and making the appropriate adjustment for the vector case), we see that

‖G(2)
v ‖2op = ‖G(2)

v G(2)
v

>‖op . TL‖v>G(2)‖22 ≤ TL‖v‖22‖G(2)‖2op .

Furthermore, by Hölder’s inequality (with the convention that Ψ0 := 1),

‖G(2)‖op ≤ ‖
L∑
k=0

Ψk[0m×Tk | MT (L−k)(G)]‖op

≤

(
1 +

L∑
k=1

‖Ψk‖op

)
max
j∈[L]
‖[0m×Tj | MT (L−j)(G)]‖op

≤ (1 + ‖φ‖bop)MTL(G) .

Thus, we have shown that ‖G(2)
v ‖op .

√
TL‖v‖2(1 + ‖φ‖bop)MTL(G).

Step 3 As with the first term, we upper bound Talagrand’s γ2 functional using the operator norm
calculation from Step 2.

Again putting the three steps together and appealing to Proposition G.3, we see that with prob-
ability at least 1− δ,

‖G(2)uN :1‖op .
(√

N +
√
TLm+

√
TL log(1/δ)

)
(1 + ‖φ‖bop)MTL(G)

.
√
N(1 + ‖φ‖bop)MTL(G) ,

by the assumption on N .

55



LEARNING LINEAR DYNAMICAL SYSTEMS WITH SEMI-PARAMETRIC LEAST SQUARES

G.4. Additional terms

G.4.1. PROCESS NOISE

In the stochastic noise model, the previous calculations for G(1) and G(2) apply directly as the mar-
tingale structure allows us to again use Proposition G.3; namely, the vectors ws:t are 1-subgaussian.

In the adversarial noise model, we can bound (G.25) directly. First, we see that

‖F(1)wN :1‖op = sup
v∈Sm−1

‖F(1)
v wN :1‖2 ≤

√
Ndw sup

v∈Sm−1

‖F(1)
v ‖op ≤

√
NdwΓN (Fφ) ,

by the same arguments as in the preceding section. Second, the same strategy outlined for G(2)

establishes that

‖F(2)wN :1‖op ≤
√
NTLdw(1 + ‖φ‖bop)‖MTL (F?)‖op.

G.4.2. OUTPUT NOISE

Let us first start with the stochastic noise model. The same calculations as in Section G.3 hold,
except now we are concerned with the matrix

G(2)
z :=

L∑
k=0

Ψk

[
0m×Tk | Dz | 0m×T (L−k)−1

]
.

As such, we see that ‖G(2)
z,v‖F ≤

√
N‖v‖2‖G(2)

z ‖op and ‖G(2)
z,v‖op .

√
L‖v‖2‖G(2)

z ‖op. Then,

‖G(2)
z ‖op = ‖

L∑
k=0

Ψk

[
0m×Tk | Dz | 0m×T (L−k)−1

]
‖op ≤ (1 + ‖φ‖bop)‖Dz‖op,

so by Proposition G.3 we have

‖G(2)
z zN :1‖op .

(√
N +

√
Lm+

√
L log(1/δ)

)
(1 + ‖φ‖bop)‖Dz‖op

.
√
N(1 + ‖φ‖bop)‖Dz‖op .

For the adversarial case, we instead have

‖G(2)
z zN :1‖op .

√
NLdz(1 + ‖φ‖bop)‖Dz‖op .

G.4.3. CONTRIBUTION OF THE INITIAL STATE

We see that the nonzero contribution of x1 to ∆φ is given by

H(1)x1 = [CφA
N−TL−1x1 | CφAN−TL−2x1 | · · · | CφAN1−TL−1x1] .

Thus, ‖H(1)x1‖op ≤ ‖MN (Hφ)‖op.
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Appendix H. Definition of M , M adv, and Proof of Proposition 2.1

H.1. Notation

Note that in the body of the text we assumed x1 = 0. Here we allow x1 6= 0, and opt for the more
general definitions of M . Specifically, we define the constants

M0 := ‖S−1x1‖
MB(t) := ‖S−1B?‖+

√
t‖S−1Bw‖, MB := MB(1)

MC := ‖C?S‖op

MD(t) := ‖D?‖op +
√
t‖Dz‖op, MD := MD(1) (H.26)

which inherently reflect the conditioning of the chosen realization of G?. We define the general
version of M and Madv that take x1 into account.

Definition H.1 Let A? = SJ?S
−1 denote the Jordan-normal decomposition of A?. We let

M := (N−1/2M0 +MB)MC +MD

Madv := (N−1/2M0 +MB(Tddw))MC +MD(ddz) .

Note that the above definition reduces to the quantities used in the body of the paper in the case
x1 = 0. We shall require the following bound, which is a corollary of Proposition I.2 and Lemma I.3
in the next section:

Corollary H.1 (Concrete Markov Bounds) Let A? have maximum Jordan block size k. Then, for
any n ≥ 1,

‖Mn (G?)‖op . ‖D?‖op + ‖S−1B?‖op‖C?S‖op · k1/2nk−
1
2 ,

where an analogous bound holds for F? and H? replacing S−1B? by S−1Bw and S−1x1, respec-
tively.

H.2. Proof of Proposition 2.1

We first begin with the following lemma, which gives a generic bound on deff and Ovfitµ in terms
of the quantity

Õpt := ‖Y+‖op + ‖G?‖op, where Y+ := [yN | . . . |y1].

We have the following bound, in terms of an intermediate error quantity d
Õpt

.

Lemma H.2 On EU, we have

deff(Optµ + Ovfitµ, Lm, µ) . d
Õpt

:= p̃+ Lm log+(Õpt) + Lm log+(
√
NL
µ2

)

Ovfitµ . min{N,
√
T (d

Õpt
+ log 1

δ )}‖G?‖op .
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We defer the proof of the above lemma until Section H.3. Now, recall that by Theorem 3.3 with
L← Lm, on the event EU,

‖ĜPF −G?‖op .
N−1/2(Optµ + Ovfitµ(δ) + µ)

√
N

·
√
T
(
log 1

δ + deff(Optµ + Ovfitµ(δ), L, µ)
)

with probability at least 1− δ − δU. Combining with Lemma H.2, we have

‖ĜPF −G?‖op .
(Optµ +

√
T (d

Õpt
+ log 1

δ )‖G?‖op + µ)
√
N

·

√√√√T
(

log 1
δ + d

Õpt

)
N

.

It now suffices to show that with probability 1− δ (absorbing union bounds into log(1/δ)), that
when µ ≥ 1,

d
Õpt

. d := p̃+ Lm
(
log+M + k log+N

)
, (H.27)

where k is the largest Jordan block of A?. Indeed, with this inequality, we have

‖ĜPF −G?‖op .
(Optµ +

√
T (d + log 1

δ )‖G?‖op + µ)
√
N

·

√
T
(
log 1

δ + d
)

N

= N−1/2Optµ ·

√
T (d + log 1

δ )

N
+
T (‖G?‖op + µ)(d + log 1

δ )

N
.

Proof of (H.27): For µ ≥ 1, using the bound N ≥ L, we have

d
Õpt

= p̃+ Lm log+(Õpt) + Lm log+(
√
NL
µ2

)

. p̃+ Lm log+(Õpt) + Lm log+N.

Thus, it remains to establish the bound

log+ Õpt .

{
log+M + k log+N (stochastic noise)
log+Madv + k log+N (adversarial noise) .

We begin this task by bounding the random part of Õpt, ‖Y+‖op. We will do so in terms of the
block Toeplitz matrix

TN (G?) =



D? C?B? C?A?B? . . . C?A
N−2
? B?

0d×d D? C?B?
. . . C?A

N−3
? B?

...
. . . . . . . . .

...

...
. . . D? C?B?

0d×d · · · · · · 0d×d D?



∈ RNm×Np

and its analog for TN (F?), as well asMN (H?).
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Proposition H.3 Suppose that N ≥ max{m, log(1/δ)}. With probability at least 1 − δ, we have
that

(i) (Stochastic model)

‖Y+‖op .
√
N (‖TN (G?)‖op + ‖TN (F?)‖op + ‖Dz‖op) + ‖MN+1 (H?)‖op

≤
√
N
(√

N‖MN (G?)‖op +
√
N‖MN (F?)‖op + ‖Dz‖op

)
+ ‖MN+1 (H?)‖op

(ii) (Adversarial model) ‖Y+‖op is bounded as

.
√
N
(
‖TN (G?)‖op +

√
dw‖TN (F?)‖op +

√
dz‖Dz‖op

)
+ ‖MN+1 (H?)‖op

≤
√
N
(√

N‖MN (G?)‖op +
√
dw
√
N‖MN (F?)‖op +

√
dz‖Dz‖op

)
+ ‖MN+1 (H?)‖op

Proof The argument mirrors those in Appendix G. The dependence on H? is through the Markov
operator ‖MN (H?)‖op due to the argument given in Section G.4.3. For the other terms, we bound
the G term as a representative example. Letting Y(u) being the operator that maps uN :1 to Y+, the
key is to again note that Y

(u)
v = (I ⊗ v>)TN (G?). Thus, by the now-standard arguments, one can

show that

sup
v∈Sm−1

‖Y(u)
v ‖op ≤ ‖TN (G?)‖op and sup

v∈Sm−1

‖Y(u)
v ‖F ≤

√
N‖TN (G?)‖op .

Proposition G.3 along with the simplification N ≥ max{m, log(1/δ)} then gives the desired
bounds. Bounding ‖TN (G?)‖op ≤

√
N‖MN (G?)‖op follows by considering each row of TN

separately and then noting that each row of TN is a submatrix of the first.

We now bound Õpt = ‖Y+‖op +
√
N‖G?‖op in the stochastic case using Proposition H.3 and

Corollary H.1:

‖Y+‖op+
√
N‖G?‖op

Prop. H.3
.
√
N
(√

N‖MN (G?)‖op +
√
N‖MN (F?)‖op + ‖Dz‖op + ‖G?‖op

)
+ ‖MN+1 (H?)‖op

(i)

≤
√
N
(

2
√
N‖MN (G?)‖op +

√
N‖MN (F?)‖op + ‖Dz‖op

)
+ ‖MN+1 (H?)‖op

≤ 2N
(
‖MN (G?)‖op +

√
N‖MN (F?)‖op +N−1/2‖MN+1 (H?)‖op + ‖Dz‖op

)
Cor. H.1
. 2N

(
MCMBN

k−1/2 +N−1/2 ·M0MCN
k−1/2 +MD

)
≤ 2Nk+1/2

(
MCMB +N−1/2M0 +MD

)
Defn. H.1

= 2Nk+1/2M ,

where (i) uses ‖G?‖op = ‖MT (G?)‖op ≤ ‖MN (G?)‖op asN ≥ T , and where in the penultimate,
last line M1, M0, and MD are the constants in (H.26). Hence, we have that

log+ Õpt . log+ 2N2k+1M . k logN + log+M

The adversarial case is analogous, where we replace MB ← MB(dw) and MD ← MD(dz), which
yield the extra factors of

√
dw and

√
dz .

Finally, the bound ‖G?‖op = ‖MT (G?)‖op . MT k−1/2 follows immediately from Proposi-
tion I.2 and Lemma I.3.
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H.3. Proof of Lemma H.2

Proof Recall the definition

deff(Opt, L, µ) := p̃+m+ lil Opt
µ + L log+(Opt +

√
N‖K‖op
µ2

),

which we bound with Opt ← Optµ + Ovfitµ and L ← Lm. Since Ovfitµ ≤
√
N‖G?‖op, we can

write

Optµ + Ovfitµ ≤ min
φ
‖∆− φK‖op + µ‖φ‖op +

√
N‖G?‖op

≤ ‖∆‖op +
√
N‖G?‖op (taking φ = 0)

≤ ‖∆ +G?U‖op + ‖G?‖op‖U‖op +
√
N‖G?‖op

. ‖Y‖op +
√
N‖G?‖op (on EU)

≤ ‖Y+‖op +
√
N‖G?‖op := Õpt.

Moreover, since K consists of L submatrices, each of which is a submatrix of Y+, we see that
‖K‖op ≤

√
L‖Y+‖op. Lastly, recall log+ x ≥ 1. Therefore, we can bound

deff(Optµ + Ovfitµ, Lm, µ) . p̃+ lil Õpt
µ + Lm log+(Õpt +

√
N‖K‖op
µ2

) (absorbing m)

≤ p̃+ lil Õpt
µ + Lm log+(Õpt +

√
NL‖Y+‖op

µ2
)

≤ p̃+ lil Õpt
µ + Lm log+(Õpt(1 +

√
NL
µ2

))

. p̃+ lil Õpt
µ + Lm log+(Õpt) + Lm log+(

√
NL
µ2

).

Lastly, we observe that since lil is submultiplicative, lil Õpt
µ . lil Õpt+lil 1

µ ≤ log+ Õpt+log+
1
µ ≤

Lm(log+ Õpt + log+
1
µ). Partially absorbing this lil term, we find that

deff(Optµ + Ovfitµ, Lm, µ) . p̃+ Lm log+(Õpt) + Lm log+(
√
NL
µ2

) + Lm log+

1

µ
.

Now, note that if µ ≥ 1, Lm log+
1
µ = Lm ≤ Lm log+(

√
NL
µ2

). On the other hand, if µ ≤ 1, then
√
NL
µ2
≥ 1

µ , and thus Lm log+
1
µ ≤ Lm log+(

√
NL
µ2

). In either case, Lm log+
1
µ ≤ Lm log+

√
NL
µ2

,
so

deff(Optµ + Ovfitµ, Lm, µ) . p̃+ Lm log+(Õpt) + Lm log+(
√
NL
µ2

) .

For the second bound of Lemma H.2, we use the fact that if Λ is a matrix of rank Lm,

log det(I + Λ)1/2 =
Lm∑
i=1

log
√

1 + λi(Λ) ≤
Lm∑
i=1

log
√

1 + ‖Λ‖op . Lm log+‖Λ‖op.
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Applying the above equation with Λ = µ−2KK>, we find that

Ovfitµ(δ) := ‖G?‖op ·min

{√
N,
√
T
√

log 1
δ + p̃+ log det(I + µ−2KK>)1/2

}

. ‖G?‖op ·min

√N,√T
√

log 1
δ + p̃+ Lm log+

‖K‖2op

µ2


≤ ‖G?‖op ·min

√N,√T
√

log 1
δ + p̃+ Lm log+

L‖Y+‖2op

µ2


≤ ‖G?‖op ·min

{√
N,
√
T
√

log 1
δ + p̃+ Lm log+‖Y+‖2op + Lm log+

L
µ2

}
,

from which the result follows by taking Lm log+‖Y+‖2op . Lm log+‖Y+‖op ≤ Lm log+ Õpt

and Lm log+
L
µ2
≤ Lm log+

√
NL
µ2

, as N ≥ L.

H.4. Selecting the parameter L

In this section, we give an informal discussion of how to select the parameter L. Observe that
the confidence bounds from Theorem 3.3 are almost data-dependent, but in fact depends on the
quantity Optµ + Ovfitµ, which is not known to the learner. In order to select L, one shall need to
replace these quantities with data-dependent ones, and then use a standard procedure (e.g. structural
risk minimization) to tune L. First, considering L fixed, define the following empirical proxy for
Optµ + Ovfitµ,

Ôptµ := ‖Y −Kφrdg‖op + µ‖φrdg‖op.

Our first main result of this section is that

Ôptµ & ‖G?‖op

√
N + Optµ

with high probability. Formally, our guarantee is

Proposition H.4 For constants C1, C2, suppose that there exists an K ∈ {e, e2, . . . } such that L
and N satisfy

(1) N ≥ C1T (p̃+m+ LmK + log 1/δ)

(2) K ≥ logµ‖φrdg‖op, and either

(3) (a): K ≥ log
C2‖K‖op

µ
√
N‖G?‖op

or (b): K ≥ log
C2‖K‖op
µÔpt

.

Then, with probability 1− 2δ, whenever EU holds,

Ôptµ & Optµ + ‖G?‖op

√
N .
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Note that condition (3a) gives a condition which is more amenable to analysis (requiring only a
lower bound on ‖G?‖op), whereas condition (3b) can be evaluated by the learner, as K and Ôpt are
empirical quantities. We sketch the proof of the above result in the following subsection. Now, note
that by the triangle inequality, we also have

Ôptµ . ‖G?‖op

√
N + Optµ,

and moreover, ‖G?‖op

√
N ≤ Ovfitµ by definition. Hence we can use structural risk minimiza-

tion Shawe-Taylor et al. (1998) to select L.
To sketch this approach, let Ôptµ;L, KL, OptLµ , ĜLPF, and Nmin(L) be the corresponding quan-

tities defined for a given L. We define the set

S(δ) :=
{
L ∈ N : C1T (p̃+m+ Lm

(
log+

C2‖KL‖op
µÔptL

+ log+ µ‖φLrdg‖op

)
+ log L

δ ) ≤ N
}
,

which represents the set of admissible lengths L for which Proposition H.4 guarantees that Ôptµ;L

is a good proxy for Optµ + Ovfitµ. We may then select L̂ as

L̂ ∈ arg min{Conf(L, µ) : L ∈ S(δ)},

where we have defined the upper confidence bound

Conf(L, µ) :=
N−1/2(Ôptµ;L + µ)

√
N

·
√
T
(

log 1
δ + deff(Ôptµ;L, Lm, µ)

)
.

We can briefly analyze the outcome using a sketch of arguments similar to those in Section H.
Denote the L-indexed dimension quantity from Proposition 2.1,

d(L) := p̃+ Lm
(
log+M + k log+N + log+

)
= Õ (p+ Lmk) .

It can be shown that for an appropriate constant C2, with probability 1− δ on EU, it holds that{
L : N ≥ C2(T (d(L) + Lm log+‖G?‖−1

op + log 1
δ ))
}
⊆ S(δ).

This can in turn be used to establish the following analogue of Proposition 2.1, whose proof we
omit.

Proposition H.5 Fix a δ ∈ (0, 1), and T, Lmax ∈ N. Suppose that N ≥ Nmin(Lmax), N1 =
TLmax, ρ(A?) ≤ 1, and that the largest Jordan block of A? is of size k. Then, once

N ≥ C2(T (d(Lmax) + Lmaxm log+‖G?‖−1
op + log 1

δ ),

the estimator ĜL̂PF, where L̂ is selected in the manner described above, satisfies with probability at
least 1− δ − (2Np)− log2(2Tp) log2(2Np) in the stochastic noise model that

‖ĜL̂PF −G?‖op . min
L∈{0,1,...,Lmax}

(
OptLµ +

√
N‖G?‖op + µ
√
N

)
·

√
T (d(L) + log L

δ )

N
.

In the adversarial noise model, we instead take d(L) := p̃ +
Lm

(
log+M + log+(dz + dw) + k log+N

)
.

We remark that the parameter Lmax in the above proposition appears merely in the analysis. More-
over, one can also search L in powers binary powers 2i for added computational efficiency.
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H.4.1. PROOF SKETCH OF PROPOSITION H.4

By the reverse triangle inequality,

Ôptµ = ‖Y −Kφ̂‖op + µ‖φ̂‖op ≥ ‖∆−Kφ̂‖op + µ‖φ̂‖op − ‖G?‖op ≥ Optµ − ‖G?‖op.

Thus if Ôptµ ≤ Optµ + ‖G?‖op

√
N , then Optµ . ‖G?‖op

√
N . Hence, it suffices to show that

Ôptµ & ‖G?‖op

√
N with probability 1 − δ on EU. Moreover, it suffices to prove the theorem

if (3a) holds; indeed, if (3b) holds, then either Ôpt ≤ ‖G?‖op

√
N , it which case (3a) holds, or

Ôpt ≥ ‖G?‖op

√
N as desired.

Fix a v ∈ Sm−1 for which ‖G?‖op = ‖v>G?‖2. In this simplified setting, we show the follow-
ing lemma.

Lemma H.6 Fix v ∈ Sm−1. Then with, probability 1− δ, for any j ∈ N satisfying

ej ≥ log

(
8‖K‖op

µ‖G?v‖2

)
and ej ≥ logµ‖φrdgv‖2,

where N & T (p̃+m+ Lmej + log 1/δ), then ‖(Y −Kφrdg)v‖2 ≥ 1
4‖v
>G?‖2.

This implies Proposition H.4, since ej ≥ logµ‖φrdg‖op implies ej ≥ logµ‖φ>rdgv‖2, and v was
chosen so that ‖v>G?‖2 = ‖G?‖op. We now prove the above lemma:
Proof We shall use the following intermediate lemma, which we prove following the proof of
Lemma H.6.

Lemma H.7 Suppose m = 1. Then for any fixed φ and any N & T (p̃ + log 1
δ ), it holds with

probability at least 1− δ on EU that ‖(Y −Kφ)v‖2 ≥ 1
2
√

2
‖G?‖

√
N .

Next, we mirror the proof of Theorem D.1, For j ≥ 1, let cj = ee
j

and let Tj denote a 1/cj net
of the set cjBRLeff /µ in the norm ‖ · ‖2. Following the computations in that proof, it holds with
probability at least 1− δ that, for all j which satisfy

N & T (p̃+ Lmej + log 1/δ),

it holds that for all φ̃ ∈ Tj that

‖Y −Kφ̃>‖ ≥ 1

2
√

2
‖G?‖

√
N.

Hence, if for some ∆ > 0 we have

ej ≥ log

(
‖µ−1K‖op

∆

)
,

and if φrdg ∈ cjBRLeff /µ, we have with probability 1− δ on EU,

‖Y −Kφ̃‖ ≥ ‖Y −Kφ̃‖ − ‖K‖op‖φrdg − φ̃‖2

≥ ‖Y −Kφ̃>‖ −∆ ≥ ‖G?‖
√
N

2
√

2
−∆.
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Finally, setting ∆ = ‖G?‖
√
N

8 yields the desired bound of Proposition H.4.

Proof [Proof of Lemma H.7] Since m = 1, we work with the 2-norm. Here,

‖Y −KLφ
>‖22 = ‖∆ + UG>? −Kφ>‖22

= ‖UG>? ‖22 + ‖∆−Kφ>‖22 + 2〈UG>? ,∆φ〉2

=
1

2
‖UG>? ‖22 +

1

2
‖∆φ‖22 (:=

1

2
T1)

+
1

2
‖UG>? ‖22 +

1

2
‖∆φ‖22 + 2〈UG>? ,∆φ〉2 (:= T2).

We shall show that with probability 1− δ on EU, the term T2 is nonnegative. This suffices since on
EU, 1

2T1 ≥ 1
4(‖G?‖2

√
N)2. To show that T2 is nonnegative with high probability, we may assume

thatG? 6= 0, for otherwise this holds trivially. On EU, we have that ‖UG>? ‖2 ≥ 1√
2

√
N‖G?‖ := α.

Now, set β = ‖∆φ‖2. We may also assume that β ≤ 16α, since otherwise

1

2
‖UG>? ‖22 +

1

2
‖∆φ‖22 + 2〈UG>? ,∆φ〉2 ≥

α2

2
+
β2

2
− β‖G?‖‖U‖op ≥

α2

2
+
β2

2
− 2βα (on EU),

which is nonnegative for β ≥ 16α. Next, by Theorem E.1 with κ ← α, ∆ ← ∆φ, ‖∆φ‖op ← β,
and m = 1, we have with probability 1− δ that

‖∆>U‖2 . T 1/2(β + α)

√
p̃+ log 1

δ + lil(βα) .

Using the fact that β ≤ 16α, that the above bound is at most CT 1/2α
√
p̃+ log 1

δ for a universal

constant C. Noting that ‖G?‖ =
√

2/Nα, we find that with probability 1− δ on EU,

T2(v) ≥ α2

2
− 2〈UG>? ,∆φ〉2 ≥

α2

2
− ‖G?‖2‖∆>φU‖2

≥ α2

2
−
√

2/Nα · CT 1/2α
√
p̃+ log 1

δ = α2

1

2
− C

√
2T (p̃+ log 1

δ )

N

 ,

which is nonnegative as soon as N ≥ C ′T (p̃+ log 1
δ ) for some universal constant C ′.

Appendix I. Polynomial Approximations and Phase Rank

In this section, we present demonstrate how to bound Optµ using the (α, T ) phase rank of A?. Our
bounds will be in terms of the M(·)-constants defined in Section H.1 above.

1. Section I.1 presents our main findings in terms of two types quantities: K1(· · · ) captures the
“complexity” of a polynomial required to cancel out large dynamical modes ofA? (formalized
in Proposition I.1), and K2(·) describes the growth rate of finite-length Markov parameter
matrices (Proposition I.2). We also present findings based on worst-case upper bounds on
K1(· · · ) and K2(·), via Lemma I.3. Specifically,
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(a) Theorems I.4 and I.5 present refined bounds for the stochastic and adversarial noise
models respectively, which are simplified into Proposition 2.2 for stochastic noise, and
Corollary I.6 for adversarial noise.

(b) We also derive Theorem I.8, and a simplified consequence Corollary I.9, under the con-
dition that the modes of A? can be “disentangled”, even when observed through the
matrix C?.

2. Section I.2 introduces the main technical tools which . The idea is to show the existence
of filters φ for control-theoretic norms of the systems Gφ,Fφ,Hφ defined in (G.24) can be
bounded by a quantityH(q)

f (. . . ), which roughly describes how well a polynomial of bounded
degree and coefficient magnitude can “cover” a certain set of poles in the complex plane. We
focus on scalar filters (Section I.2.1), and discuss possibly sharper bounds for richer, non-
scalar filters (Section I.2.2). Section I.2.1 also includes Proposition I.13, which bounds the
covering-like quantity H(. . . ) with the more transparent K1(α, d, T ).

3. Finally, Section I.3 gives a proof of Theorem I.4 for stochastic noise; this proof only depends
on results stated in the first section of this appendix, I.1.

With the exception of the proof Theorem I.4, all further proofs are deferred to Appendix J. Lastly,
again, we recall the definition of phase rank:

Definition 2.3 (Phase Rank) Let α ≥ 1. We say that A? has (α, T )-phase rank d if there exists
µ1, . . . , µd ∈ D such that, for any (λ, k) ∈ blkspec(A?) with |λ| ≥ 1− ((1 + α)T )−1, there exists
at least k elements µi1 , . . . , µik ⊂ {µ1, . . . , µd} satisfying

max
j∈[k]

min
µ̃:µ̃T=µTij

|λ− µ̃| ≤ α (1− |λ|) .

I.1. Main Results

We start by presenting our main results for the stochastic case. LetA? = SJ?S
−1 denote the Jordan

decomposition of A?. Since blkspec(A?) = blkspec(J?), we shall use the two interchangeably.

I.1.1. K1 AND K2: CONTROLLING POLES AND MARKOV OPERATOR NORMS

We begin by introducing two central quantities. First, we introduce a term K1(d, T, α, q) which
reflects how well a d-length linear filter can predict observations of the Jordan-normal linear system
J? when it has (α, T ) phase rank d. Here, prediction is defined by the ‖M∞ (·)‖op andH∞ norms,
indexed by q ∈ {2,∞}, respectively. Formally, we define

K1(d, T, α, q) := max
(λ,k)∈blkspec(A?)

k2cHq


0 |λ| = 1

(T (1 + α))k−
I(q=2)

2 2d−k |λ| ∈ (1− 1
T (1+α) , 1]

2d

(1−|λ|)k−
I(q=2)

2

|λ| < 1− 1
T (1+α)

,

where cH∞ := 1 and cH2 :=

√
1 +

2

π
.
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Taking q = ∞ correspond to the H∞-norm, whereas taking q = 2 corresponds to the norm
‖M∞(·)}‖op. This notation is because ‖M∞ (G?)‖op can be rendered as a norm we call Hop

2 ,
defined in (I.32), on the transfer function G(z). This norm is similar to but slightly sharper than the
standardH2-norm in control theory; see Chapter 4 of Zhou et al. (1996) for a discussion on transfer
function norms, includingH2. In Section I.2.1, we then show the following bound.

Proposition I.1 Suppose A? has (α, T )-phase rank d. Then, there exists a filter φ ∈ Rm×dm with
1 + ‖φ‖bop ≤ 2d such that

‖M∞(Gφ)‖op ≤ ‖S−1B?‖op · ‖C?S‖opK1(d, T, α, 2)

‖Gφ‖H∞ ≤ ‖S−1B?‖op · ‖C?S‖opK1(d, T, α,∞).

Analogous bounds hold for Fφ and Hφ where ‖S−1B?‖op is replaced by ‖S−1Bw‖op and
‖S−1x1‖op, respectively.

Second, we (somewhat tediously) define a term K2(N),

M̃(k,N) :=


N1/2 k = 1

Nk−1/2
(

e
k−1

)k−1
2 ≤ k ≤ N + 1

N1/22N k ≥ N + 1

(I.28)

M(k, λ,N) =


k

(1−|λ|)k−
1
2
∧ M̃(k,N) 0 ≤ |λ| < 1

M̃(k,N) |λ| = 1 ,
. (I.29)

K2(N) := max
(λ,k)∈blkspec(A?)

M(k, λ,N). (I.30)

The term K2(N) describes the entire magnitude of an length-N trajectory generated by the Jordan-
normal linear system J?. Indeed, in Section J.2, we prove

Proposition I.2 (Bound on Magnitude of Markov Parameters) Consider a dynamical system of
the form G = (A?, B,C,D), where A? = SJ?S

−1 is in Jordan normal form. Then, for all n ≥ 1,

‖Mn(G)‖op ≤ ‖Mn+1(G)‖op ≤ ‖D‖op + ‖S−1B‖op‖CS‖opK2(n).

It is immediate to then check that K1 and K2 admit the following worst case bounds:

Lemma I.3 (Worst-Case Bounds on K1,K2) Suppose that A? has ρ(A?) ≤ 1, and has largest
Jordan block of size k. Then,

K2(n) ≤ enk−
1
2 .

If further A? has (α, T )-phase rank at most d ≥ k for some α ≥ 1, then for n ≥ 1,

K1(d, T, α, q) . k2(T (1 + α))k−
I(q=2)

2 2d.
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I.1.2. MAIN RESULTS: STOCHASTIC NOISE WITH BLOCK-SCALAR FILTERS

We begin by presenting bounds on Optµ for stochastic noise that arise from considering block-scalar
filters of the form

φ̃ = [φ | 0] ∈ Rm×Lm,where φ = [f1Im | f2Im | . . . fdIm] ∈ Rm×dm.

We state two bounds: first, a theorem in terms of the more precise bounds K1(N) and K2(N), and
then a corollary which applies the bounds from Lemma I.3, which is proved in Section I.3:

Theorem I.4 (Bounds for Stochastic Noise) Suppose that A? has (α, T ) phase rank at most 1 ≤
d ≤ L. Then, for any δ ∈ (0, 1) and N ≥ Tdmax{m, log(1/δ)}, it holds with probability 1 − δ
that

N−1/2Optµ .MC(MB +N−1/2M0)K1(d, T, α, 2)

+ min{K1(d, T, α, 2), N−1/2K1(d, T, α,∞)}MCMB

√
m+ log(1/δ)

+ 2d
(
MCMBK2(Td) +MD + µN−1/2

)
.

By replacing the above bounds with worst case bounds from Lemma I.3, we obtain the bound

N−1/2Optµ .MC(MB +N−1/2M0)k2(T (1 + α))k−
1
2 2d

+N−1/2k2(T (1 + α))k2dMCMB

√
m+ log(1/δ)

+ 2d
(
MCMB(Td)k−

1
2 +MD + µN−1/2

)
.

ForN ≥ T (1+α) max{m, log(1/δ)}, we can absorb the second line into the first term. This yields
that N−1/2Optµ is bounded by .

MC(MB +N−1/2M0)k2(T (1 + α))k−
1
2 2d + 2d

(
MCMB(Td)k−

1
2 +MD + µN−1/2

)
≤ 2dT k−

1
2

(
k2(1 + α)k−

1
2 + dk−

1
2

)
(M + µN−1/2),

from which we directly obtain Proposition 2.2 as stated in the body of the paper, which we restate
here for convenience.

Proposition 2.2 (Bounds for Phase Rank) Suppose that A? has (α, T ) phase rank d and
maximum Jordan block size k. Then, for any δ ∈ (0, 1); with L ≥ d,
N ≥ T (d + 1 + α) max{m, log(1/δ)}, and N1 ≥ TL; it holds with probability 1 − δ under

the stochastic noise setting of Definition 2.1 that, with Cα,d,k := 2d(k2(1 + α)k−
1
2 + dk−

1
2 ),

N−1/2Optµ . (M + µN−1/2) · T k−1/2Cα,d,k.

I.1.3. RESULTS FOR ADVERSARIAL NOISE

We now present the analogue of Theorem I.4 for adversarial noise; the proof is essentially identical,
and omitted in the interest of brevity:
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Theorem I.5 (Bounds for Adversarial Noise) In the setting of Theorem I.4 (with the adversarial
noise model), we have that

N−1/2Optµ .MC(‖S−1B?‖op +N−1/2M0)K1(d, T, α, 2)

+MC‖S−1B?‖op ·min{K1(d, T, α, 2), N−1/2K1(d, T, α,∞)}

+MC‖S−1Bw‖opK1(d, T, α,∞)
√
dw

+ 2d
(
MCMB(Tddw)K2(Td) +MD(ddz) + µN−1/2

)
,

where MB(·) and MD(·) are as in (H.26).

Recalling the definition of definition of Madv := (N−1/2M0 +MB(Tddw))MC +MD(ddz) from
Definition H.1, we obtain the following analogue of Proposition 2.2:

Corollary I.6 In the setting of the previous theorem, where A? has (α, T ) phase rank d, and
maximum Jordan block size k, we have that

N−1/2Optµ ≤ (Madv + µN−1/2) · T kCadv
α,d,k, where

Cadv
α,d,k := 2d

(
k2

2k
(1 + α)k + dk

)
.

I.1.4. BOUNDS FOR DISENTANGLING FILTERS

For the case when, after a similarity transformation, the invariant subspaces of A? can be decom-
posed onto the rows ofC?, we can construct individual filters for each element in the decomposition.
This is a generalization of the often-studied case (e.g. Sarkar and Rakhlin (2018)) of full-state ob-
servation: after transformation, we can observe each mode of A? directly. We begin by describing
partitions of its associated Jordan matrix J? into invariant subspaces.

Definition I.1 (Admissible Spectral Partition) Let J ∈ Rn×n be a matrix in Jordan normal form.
We say that a set S1:r := {S1, . . . ,Sr} ⊂ [n] is an admissible spectral partition if, for each i ∈ [r],
the matrix J(Si) := (Jab)ab∈Si×Si ∈ C|Si|×|Si| is a Jordan matrix.

In other words, S1:r ⊂ [n] is an admissible spectral partition if each Si corresponds to coordinates
indexing a J-invariant subspace of Cn.

Next, we introduce a notion under which an admissible spectral partition can be “disentangled”
by a transformation V , such that subsets of rows of V C? are supported on invariant subspaces of
A? corresponding to the partition {S1, . . . ,Sr}.

Definition I.2 (Disentangling Matrix) Let A? = SJ?S
−1. We see that an invertible matrix V ∈

Rm×m disentangles an admissible spectral partition S1:r of J? if we we have the decomposition
V C?S = [C>1 |C>2 | . . . |C>q ]>, where each matrix Ci is supported on entries in Si. We let cond(V )
denote the condition number of V , and denote the associated quantity

MC(S1:r;V ) := ‖V −1‖op max
v=(v1,...,vr)∈Sm−1

(
r∑
i=1

‖v>i Ci‖2

)
.
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Finally, we let K1(d, T, α, q;Si) denote the analogue of K1 restricted to pairs (λ, k) ∈
blkspec(J(Si)), and note that K1(d, T, α, q;Si) also satisfies the bound in Lemma I.3. With these
definitions in place, we have the following analogue of Proposition I.1, the result motivating the
definition of K1.

Proposition I.7 Suppose {S1, . . . ,Sr} ⊂ [n] is an admissible partition of J?, disentangled by
a matrix V , and that each J(Si) has (αi, T ) phase rank at most d. Then, there exists a filter
φ ∈ Rm×dm with ‖φ‖bop ≤ κ(V ) min(r, d)2d such that

‖Gφ‖Hop
2
≤ ‖S−1B?‖opMC(S1:r;V ) ·max

i
K1(d, T, αi, 2;Si)

‖Gφ‖H∞ ≤ ‖S−1B?‖opMC(S1:r;V ) ·max
i
K1(d, T, α,∞;Si),

with analogous bounds for Fφ and Hφ.

Following along the lines of the proof of Theorem I.4, we have the following bound for stochastic
noise (we omit adversarial noise for brevity).

Theorem I.8 (Bounds for Stochastic Noise with Disentangling Predictors) Suppose
{S1, . . . ,Sr} ⊂ [n] is an admissible partition of J?, disentangled by a matrix V , and that
each J(Si) has (αi, T ) phase rank at most 1 ≤ d ≤ L. Introduce the shorthand

K̃1(q) := max
i∈[r]

K1(d, T, αi, q;Si)

Then, for any δ ∈ (0, 1) and N ≥ Tdmax{m, log(1/δ)}, it holds with probability 1− δ that

N−1/2Optµ .MC(S1:r;V )(MB +N−1/2M0)K̃1(2)

≤ min{K̃1(2), N−1/2K̃1(∞)}MC(S1:r;V )MB

√
m+ log(1/δ)

≤ cond(V ) min(r, d)2d
(
MCMBK2(N) +MD + µN−1/2

)
. (I.31)

Corollary I.9 Letting αmax := maxi∈[r]{αi}, k denote the size of the largest Jordan block of A?
and supposing N ≥ T (1 + αmax), (I.31) can be bounded by

N−1/2Optµ . T k−1/2

[(
k2

(
1 + αmax

2

)k
MC(S1:r;V )(MB +

M0√
N

)

)

+
(

cond(V )(r ∧ d)2d
(
MCMBK2(N) +MD + µN−1/2

))]
.

I.2. Polynomial Approximations for Linear Dynamical Systems

In this section, we present bounds on the terms ‖Gφ‖H∞ , ‖Fφ‖H∞ , and ‖Hφ‖H∞ . Our strategy is
to relate these quantities to how well polynomials can approximate a set of complex numbers. To
begin, we define Mon(L,B) as the set of degree-L monic polynomials on C,

f(z) = zL + f1z
L−1 + · · ·+ fL ,
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with real coefficients and `1-norm at most B, i.e. ‖f‖L1 := 1 +
∑L

i=1 |fi| ≤ B. Furthermore,
for a finite set C ⊂ D × N (usually C = blkspec(A?)), we define the following complexity terms,
corresponding to H2 and H∞. For q ∈ {2,∞}, and constants cHq defined above, we define the
complexity terms

H
(q)
f (C, T ) := max

(λ,k)∈C


0 f(z) has root order ≥ k at λ
∞ |λ| = 1, f(z) has root order < k at λ

cHq max
z:|z−λ|≤1−|λ|

k2|f(z)|

(1−|λ|)k−
I(q=2)

2

otherwise.

The term H
(q)
f (blkspec(A?), T ) roughly describes how effectively a polynomial f cancels the

poles inA?. Due to the T -step subsampling, we shall typically be interested inH(q)
g for polynomials

of the form g(z) = f(zT ). We recall the definition of the H∞-norm for a real rational transfer
function G(z) : C→ Cm×p:

‖G‖H∞ := sup
z∈T
‖G(z)‖op .

If the poles of A? are all strictly inside D, this quantity is finite. Above, we use the operator norm
on Cp → Cm. Now, we define theHop

2 norm for such a transfer function via

‖G‖Hop
2

:= max
v∈Sm−1

√
1

2π

∫
z∈T
‖v>G(z)‖22 (I.32)

= max
v∈Sm−1

√
1

2π

∫
z∈T

tr[(v>G(z))∗(v>G(z))]

= max
v∈Sm−1

‖v>G(z)‖H2 ,

where again we use the standard `2-norm on Cp and the definition of the canonical H2-norm (see
Section 4.3 of Zhou et al. (1996) for both the frequency-domain and time-domain definitions).
Crucially,Hop

2 is equal to the operator norm of the infinite-horizon Markov “matrix”.

Lemma I.10 (Equivalence ofHop
2 and ‖M∞(·)‖op) Let G = (A,B,C,D), and suppose ρ(A) <

1. Then,

‖M∞(G)‖op = ‖G‖Hop
2
.

Proof Using (i) to denote block indexing, we see that

‖v>Mk(G)‖22 = tr

[
k−2∑
i=0

M(i)
k (v>G)M(i)

k (v>G)∗

]

=⇒ ‖v>M∞(G)‖22 = tr

[ ∞∑
i=0

M(i)
∞ (v>G)M(i)

∞ (v>G)∗

]
(∗)
= ‖v>G‖2H2

=⇒ ‖M∞(G)‖2op = ‖G‖2Hop
2
,
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where the limiting step holds as ρ(A) < 1, and (∗) comes from the time-domain characterization of
theH2 norm.

At the center of our analysis is the following proposition, that demonstrates that H(q)
f does, in fact,

describe the ability of polynomials f to cancel poles.

Proposition I.11 (Polynomial Approximation of Jordan Blocks) Let f : C → C be an analytic
function and J ∈ Rn×n be a Jordan block matrix. Then ‖f(J)(zI − J)−1‖H∞ ≤ H

(∞)
f (C, 1) and

‖f(J)(zI − J)−1‖Hop
2
≤ H

(2)
f (C, 1). Moreover, if f is a polynomial of degree at most d < k, then

the factor of k2 in H(q)
f can be replaced with k(d+ 1).

The above proposition is proved in Appendix J.1.4. Note that each of the Hop
2 - and H∞-norms

is finite as long as its argument has all of its poles strictly inside the unit disk. Therefore, some poles
of A? with modulus 1 may need to be canceled in order to achieve a finite Hop

2 or H∞-norm; we
shall use the (standard) convention that the argument of the norm, as a real rational function of z,
should be “evaluated” before computing the norm.

I.2.1. APPROXIMATIONS USING BLOCK-SCALAR FILTERS: PROOF OF PROPOSITION I.1

Our first theorem bounds the H∞- and Hop
2 -norms of Fφ, Gφ and Hφ in terms of the quantity

H
(q)
f (blkspec(A?), T ) by considering simple, block-weighted identity filters of the form

φ = −
[
f1Im×m|f2Im×m| . . . |fLIm×m

]
∈ Rm×Lm, (I.33)

where f1, . . . , fL correspond to the coefficients of a polynomial f ∈ Mon(L,B).

Theorem I.12 Let (A?, B?, C?) be a dynamical system, where A? = SJ?S
−1 denotes the Jordan

decomposition of A?. Then, for any f ∈ Mon(L,B) , the filter φ ∈ Rm×Lm from (I.33) satisfies
1 + ‖φ‖bop ≤ B and

‖Gφ‖Hop
2
≤ ‖S−1B?‖ · ‖C?S‖opH

(2)
f (blkspec(J?), T )

‖Gφ‖H∞ ≤ ‖S−1B?‖ · ‖C?S‖opH
(∞)
f (blkspec(J?), T ),

and similarly for Fφ and Hφ, where B? is replaced by Bw and x1, respectively.

The theorem above is proven in Section J.1.1. Note that this theorem does not preclude the case
where Hf (blkspec(J?), T ) = ∞, and thus the polynomial f must be chosen appropriately. In
particular, by choosing f(z) =

∏d
i=1(z − µTi ), where µ1, . . . , µd are the complex numbers which

witness the (α, T )-phase rank condition, we show in Section J.1.2 that for systems of bounded phase
rank and Jordan block size, Hf (blkspec(J?), T ), is bounded. This is summarized in the following
proposition.

Proposition I.13 Suppose that J? has (α, T )-phase rank d. Then there exists a polynomial f ∈
Mon(d, 2d) such that H(q)

f (blkspec(J?), T ) ≤ K1(d, T, α, q).

Proposition I.1 is now a direct consequence of combining Proposition I.13 with Theorem I.12 (with
L = d).
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I.2.2. APPROXIMATIONS USING DISENTANGLING FILTERS

We present an analogue of Theorem I.12 for disentangling filters.

Theorem I.14 Let G? = (A?, B?, C?), and let A? = SJ?S
−1 denote the Jordan decomposi-

tion of A?. Suppose V disentangles a spectral partition S1:r of J?. Then, for any polynomials
f (1), . . . , f (r) ∈ Mon(L,B), there exists a filter φ ∈ Rm×Lm with ‖φ‖bop ≤ cond(V ) min(r, L)B
satisfying

‖Gφ‖H∞ ≤ ‖V −1‖op‖S−1B?‖op max
v=(v1,...,vr)∈Sm−1

r∑
i=1

‖v>i Ci‖2
(
H

(∞)

f (i)
(blkspec(J?(Si)), T )

)
and similarly for Fφ and Hφ, where B? is replaced by Bw and x1, respectively. This also holds for
theHop

2 analogues, replacing H(∞) by H(2). Here cond(V ) denotes the condition number.

The proof is given in Section J.1.3. Proposition I.7 is now a corollary of this theorem and Proposi-
tion I.13.

I.3. Proof of Theorem I.4

We shall prove the stochastic case; the adversarial case follows from essentially the same arguments.
Let A? have ρ(A?) ≤ 1 and (α, T ) phase rank d, and consider the filter φ from Proposition I.1,
which satisfies 1 + ‖φ‖ ≤ 2d and

‖M∞(Gφ)‖op ≤ ‖S−1B?‖op · ‖C?S‖opK1(d, T, α, 2) (I.34)

‖Gφ‖H∞ ≤ ‖S−1B?‖op · ‖C?S‖opK1(d, T, α,∞),

and analogously for Fφ and Hφ. Consider the extended filter φ̃ = [φ|0] obtained by embedding φ
in Rm×Lm. Then, ‖φ̃‖op = ‖φ‖op, and thus

N−1/2Optµ ≤ N−1/2(‖∆
φ̃
‖op + µ‖φ‖op).

Therefore, by the assumption N ≥ Tdmax log(1/δ),m, bounding N−1/2‖∆
φ̃
‖op with Proposi-

tion 4.1 implies

N−1/2Optµ . ‖M∞(Gφ)‖op + ‖M∞(Fφ)‖op +N−1/2‖M∞ (Hφ)‖op︸ ︷︷ ︸
(a)

+

√
m+ log(1/δ)

N
(ΓN (Gφ) + ΓN (Fφ))︸ ︷︷ ︸
(b)

+ (1 + ‖φ‖bop) (‖MTd (G)‖op + ‖MTd (F)‖op + ‖Dz‖op) +N−1/2µ‖φ‖op)︸ ︷︷ ︸
(c)

.

For term (a), we have that

(‖M∞(Gφ)‖op + ‖M∞(Fφ)‖op) +N−1/2‖M∞ (Hφ)‖op

(I.34)
. ‖C?S‖op(N−1/2‖S−1x1‖op + ‖S−1B?‖op + ‖S−1Bw‖)K1(d, T, α, 2)

≤MC(MB +N−1/2M0)K1(d, T, α, 2) .
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Similarly, for the term (b), recalling ΓN (G) = min{
√
NMN (G), ‖G‖H∞},√

m+ log(1/δ)

N
(ΓN (Gφ) + ΓN (Fφ))

≤ min{K1(d, T, α, 2), N−1/2K1(d, T, α,∞)} · ‖C?S‖op(‖S−1Bw‖+ ‖S−1B?‖op)
√
m+ log 1

δ

= min{K1(d, T, α, 2), N−1/2K1(d, T, α,∞)}MBMC

√
m+ log 1

δ ,

where we take ‖MN (Gφ)‖op ≤ ‖M∞ (Gφ)‖op to use (I.34). For term (c), we have 1 + ‖φ‖bop ≤
2d and ‖φ‖op ≤ ‖φ‖bop ≤ 2d, so that

(1+‖φ‖bop) (‖MTd (G)‖op + ‖MTd (F)‖op + ‖Dz‖op) +N−1/2µ‖φ‖op

≤ 2d
(
‖MTd (G)‖op + ‖MTd (F)‖op + ‖Dz‖op +N−1/2µ

)
. 2d

(
MBMCK2(Td) + ‖D?‖op + ‖Dz‖op +N−1/2µ

)
≤ 2d

(
MBMCK2(Td) +MD + +N−1/2µ

)
,

where the bound ‖MTd (G)‖op + ‖MTd (F)‖op . MBMCK2(Td) follows from Proposition I.2.
Combining parts (a), (b), and (c) then yields Theorem I.4.

Appendix J. Supporting Proofs

J.1. Proofs for Section I.2

J.1.1. PROOF OF THEOREM I.12

We prove the bound for Gφ without loss of generality. Let f ∈ Mon(L,B), and define the corre-
sponding filter

φ = −
[
f1Im×m|f2Im×m| . . . |fLIm×m

]
∈ Rm×Lm .

Since f ∈ Mon(L,B), we have that

1 + ‖φ‖bop = 1 +

L∑
`=1

‖flIm×m‖op = 1 +

L∑
`=1

|fl| = ‖f‖1 ≤ B.

With this filter, the corresponding observation matrix Cφ is given by (with a reasonable abuse of
notation)

Cφ = C?A
LT
? + C?f1A

(L−1)T
? + C?f2A

(L−2)T
? + · · ·+ C?fL = C?f(AT? ).

Therefore,

Gφ(z) = C?f(AT? )(zI −A?)−1B? = C?Sf(JT? )(zI − J?)−1S−1B?.
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We can now bound theH∞-norm of Gφ in terms of f :

‖Gφ‖H∞ = max
z∈T
‖C?Sf(JT? )(zI − J?)−1S−1B?‖op

≤ ‖C?S‖op‖S−1B?‖op max
z∈T
‖f(JT? )(zI − J?)−1‖op

= ‖C?S‖op‖S−1B?‖op‖f(JT? )(zI − J?)−1‖H∞ .

A similar argument shows that

‖Gφ‖Hop
2
≤ |C?S‖op‖S−1B?‖op‖f(JT? )(zI − J?)−1‖Hop

2
.

To control the H∞ and Hop
2 terms at the heart of the above bound, we will recall the following

proposition, proved in Section J.1.4 below.

Proposition I.11 (Polynomial Approximation of Jordan Blocks) Let f : C→ C be an analytic
function and J ∈ Rn×n be a Jordan block matrix. Then ‖f(J)(zI − J)−1‖H∞ ≤ H

(∞)
f (C, 1) and

‖f(J)(zI − J)−1‖Hop
2
≤ H

(2)
f (C, 1). Moreover, if f is a polynomial of degree at most d < k, then

the factor of k2 in H(q)
f can be replaced with k(d+ 1).

In particular, we apply Proposition I.11 with the analytic function f̃(z) := f(zT ). This implies
that ‖f(JT? )(zI − J?)−1‖H∞ ≤ H

(∞)
f (C, T ). Hence, we find that

‖Gφ‖H∞ ≤ ‖C?S‖op‖S−1B?‖opH
(∞)
f (C, T ),

and similarly for H(2)
f .

J.1.2. PROOF OF PROPOSITION I.13

Let µ1, . . . , µd witness the (α, T )-phase rank condition of blkspec(A?). We now consider the cor-
responding polynomial f(z) :=

∏d
i=1(z − µTi ). Note that f is monic and has degree d; thus, the

fact that f ∈ Mon(d, 2d) follow from the following bound on its `1-norm.

Lemma J.1 Let f be a degree-d polynomial whose roots all lie in D. Then maxz∈D |f(z)| ≤
‖f‖`1 ≤ 2d.

Proof The bound maxz∈D |f(z)| ≤ ‖f‖`1 holds for any polynomial by the triangle inequality. Then,
since |µi| ≤ 1, ‖f‖`1 =

∑d
i=0 |

∑
S∈([d]i )

∏
i∈S µi| ≤

∑d
i=0

(
d
i

)
= 2d.

Next, for any (λ, k) ∈ C, we shall bound each term in the maximum of Hf (C, T ).
For |λ| = 1, the approximate phase rank condition implies that there are at least k elements

µi such that λT = µTi . Thus, f(zT ) has a root of order ≥ k at λ, and the corresponding term in
H

(q)
f (C, T ) evaluates to zero. We shall therefore show that for |λ| < 1, one has

max
z:|z−λ|≤1−|λ|

k2|f(zT )|
(1− |λ|)k

≤

{
(1 + α)kT k2d−kk |λ| ∈ [1− 1

T (1+α) , 1)
2d

(1−|λ|)k |λ| < 1− 1
T (1+α)

. (J.35)
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This immediately implies the desired bound on H(∞)
f (blkspec(A?), T ) in Proposition I.13. For the

correct bound for q = 2, we note that since we need only consider |λ| < 1, by factoring out a
(1− |λ|)1/2 we have

c−1
H2
H

(2)
f (blkspec(A?), T ) = max

(λ,k)∈blkspec(A?):|λ|<1
max

z:|z−λ|≤1−|λ|

k2|f(zT )|
(1− |λ|)k−1/2

(J.35)
≤ (1− |λ|)1/2

{
(1 + α)kT k2d−kk |λ| ∈ [1− 1

T (1+α) , 1)
2d

(1−|λ|)k |λ| < 1− 1
T (1+α)

=

{
(1− |λ|)1/2(1 + α)kT k2d−kk |λ| ∈ [1− 1

T (1+α) , 1)
2d

(1−|λ|)k−1/2 |λ| < 1− 1
T (1+α)

≤

{
(1 + α)k−1/2T k−1/22d−kk |λ| ∈ [1− 1

T (1+α) , 1)
2d

(1−|λ|)k−1/2 |λ| < 1− 1
T (1+α)

,

where the last line uses that (1− |λ|)1/2 ≤ (1 + α)−1/2T−1/2 for |λ| ∈ [1− 1
T (1+α) , 1).

We now turn our attention to the proof of (J.35). For λ < 1 − 1
(1+α)T and z ∈ C such that

|z − λ| ≤ 1− |λ|, we note that z ∈ D. Thus, zT ∈ D implies f(zT ) ≤ 2d by Lemma J.1. Hence,

k2 max
z:|z−λ|≤1−|λ|

|f(zT )|
(1− |λ|)k

≤ k2 2d

(1− |λ|)k
.

Lastly, we consider the case λ ∈ [1 − 1
(1+α)T , 1). Since (λ, k) ∈ C and {µ1, . . . , µd} wit-

nesses the (α, T )-phase rank condition, without loss of generality (by permuting labels) we have
maxj∈[k] minµ̃:µ̃T=µTi

|λ − µ̃| ≤ α (1− |λ|). Letting µ̃i denote a complex number satisfying
µ̃T = µTi which minimizes |λ− µ̃| (breaking ties arbitrarily), it then follows that

max
i∈[k]
|λ− µ̃i| ≤ α (1− |λ|) .

We shall then factor

f(zT ) =

(
k∏
i=1

(z − µ̃i)

)
· F (z)

where

F (z) :=

(
k∏
i=1

zT − µTi
z − µ̃i

)
·

(
d∏

i=k+1

(zT − µTi )

)
.

We first estimate the magnitude of F (z).

Lemma J.2 F (z) ≤ T k2d−k for any z : |z − λ| ≤ 1− |λ|.

Proof First, observe that any z : |z − λ| ≤ 1− |λ| lies in D. Hence,

|F (z)| ≤

∣∣∣∣∣
k∏
i=1

zT − µTi
z − µ̃i

∣∣∣∣∣ ·
∣∣∣∣∣

d∏
i=k+1

|zT |+ |µTi |

∣∣∣∣∣ ≤ 2d−k

∣∣∣∣∣
k∏
i=1

zT − µTi
z − µ̃i

∣∣∣∣∣ .
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Next, we observe that that for i ∈ [k], we have µ̃Ti = µTi . Thus,∣∣∣∣zT − µTiz − µ̃i

∣∣∣∣ =

∣∣∣∣zT − µ̃Tiz − µ̃i

∣∣∣∣ =
∣∣∣zT−1 + zT−2µ̃i + · · ·+ µ̃T−1

i

∣∣∣ ≤ T.
Hence |F (z)| ≤ 2d−kT k.

Next, we we estimate the contribution of
∣∣∣∏k

i=1(z − µ̃i)
∣∣∣.

Lemma J.3 Let z satisfy |z − λ| ≤ 1− |λ|. Then, |
∏k
i=1(z−µ̃i)|
(1−|λ|)k | ≤ (1 + α)k.

Proof For z : |z − λ| ≤ 1− |λ|, we have∣∣∣∣∣
k∏
i=1

(z − µ̃i)

∣∣∣∣∣ ≤
k∏
i=1

(|z − λ|+ |λ− µ̃i|)

≤
k∏
i=1

((1− |λ|) + α(1− |λ|)) = (1 + α)k(1− |λ|)k.

Combining these two estimates, we find that

k2 maxz:|z−λ|≤(1−|λ|) |f(zT )|
(1− |λ|)k

≤ k2(1 + α)kT k2d−k.

In summary, we have shown that for any (λ, k) ∈ C with |λ| < 1, one has

max
z:|z−λ|≤1−|λ|

k2|f(zT )|
(1− |λ|)k

≤ k2

{
(1 + α)kT k2d−k λ > 1− 1

T (1+α)
2d

(1−|λ|)k λ ≤ 1
T (1+α)

.

J.1.3. PROOF OF THEOREM I.14

We shall prove the bound for H(∞); the bound for H(2) is similar. As in the statement of the
theorem, letA? = SJ?S

−1, let S := blkspec(A?), and suppose there exists subsets S1, . . . ,Sr ⊂ S
and an invertible transformation V for which V C?S = [C>1 |C>2 | . . . |C>r ]>, where Ci is supported
on entries corresponding to Si, and Ci ∈ Rmi×n. Finally, let f (1), . . . , f (r) denote the polynomials
in Mon(L,B), and define the block diagonal matrix

X` := blkdiag(f
(1)
` Im1×m1 , f

(2)
` Im2×m2 , . . . , f

(r)
` Imr×mr) ,

and let

φ = −
[
V −1X1V |V −1X2V | · · · |V −1XLV

]
.
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We can then compute that

Cφ = C?A
TL
? + V −1X1V C?A

(L−1)T
? + . . . V −1XLV C?

= V −1
(
V C?SS

−1ATL? S +X1V C?SS
−1A

(L−1)T
? S + · · ·+ V −1XLV C?S

)
S−1

= V −1
(
V C?SJ

TL
? +X1V C?SJ

T (L−1)
? + · · ·+ V −1XLV C?S

)
S−1

= V −1



C1J

TL
?

C2J
TL
?

...
CrJ

TL
?

+


f

(1)
1 C1J

T (L−1)
?

f
(2)
1 C2J

T (L−1)
?

...
f

(r)
1 CrJ

T (L−1)
?

+ · · ·+


f

(1)
L C1

f
(2)
L C2

...
f

(r)
L Cr


S−1

= V −1


C1f

(1)(J?)

C2f
(2)(J?)
...

Crf
(r)(J?)

S−1 .

Hence,

‖Gφ‖op = sup
z∈T

∥∥∥∥∥∥∥∥∥V
−1


C1f

(1)(J?)

C2f
(2)(J?)
...

Crf
(r)(J?)

S−1(zI −A?)−1B?

∥∥∥∥∥∥∥∥∥
op

= sup
z∈T

∥∥∥∥∥∥∥∥∥V
−1


C1f

(1)(J?)

C2f
(2)(J?)
...

Crf
(r)(J?)

 (zI − J?)−1S−1B?

∥∥∥∥∥∥∥∥∥
op

≤ ‖V −1‖op‖S−1B?‖op sup
z∈T

∥∥∥∥∥∥∥∥∥


C1f

(1)(J?)(zI − J?)−1

C2f
(2)(J?)(zI − J?)−1

...
Crf

(r)(J?)(zI − J?)−1


∥∥∥∥∥∥∥∥∥

op

= ‖V −1‖op‖S−1B?‖op sup
z∈T

max
v=(v1,...,vr)∈Sm−1

‖
r∑
i=1

v>i Cif
(i)(J?)(zI − J?)−1‖2.

≤ ‖V −1‖op‖S−1B?‖op sup
z∈T

max
v=(v1,...,vr)∈Sm−1

r∑
i=1

‖v>i Cif (i)(J?)(zI − J?)−1‖2.

Note that the sizes of vi are given by the admissible spectral partition of A?. By assumption, for
each i, Ci is supported on coordinates in Si. Hence, we see that

‖v>i Cif (i)(J?)(zI − J?)−1‖2 = ‖v>i Cif (i)(J(Si))(zI − J(Si))−1‖2,
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since J(Si) is J? supported on Si. Thus, for any z ∈ D,

sup
z∈T

max
v=(v1,...,vr)∈Sm−1

r∑
i=1

‖v>i Cif (i)(J?)(zI − J?)−1‖2

≤ max
v=(v1,...,vr)∈Sm−1

r∑
i=1

‖v>i Ci‖2‖ sup
z∈T
‖f (i)(J(Si))(zI − J(Si))−1‖op

≤ max
v=(v1,...,vr)∈Sm−1

r∑
i=1

‖v>i Ci‖2H
(∞)

f (i)
(blkspec(J?(Si)), T ),

where for each term we invoke Proposition I.11 and argue as in Theorem I.12. Therefore,

‖Gφ‖H∞ ≤ ‖V −1‖op‖S−1B?‖op · max
v=(v1,...,vr)∈Sm−1

r∑
i=1

‖v>i Ci‖2H
(∞)

f (i)
(blkspec(J?(Si)), T ) .

Moreover, by the construction in Theorem I.12, we see that

‖φ‖bop ≤ cond(V )

L∑
`=1

‖X`‖op = cond(V )

L∑
`=1

max
i∈[r]
|f (i)
` | ≤ cond(V ) min(r, L)B .

J.1.4. PROOF OF PROPOSITION I.11

We wish to show that as long as f(z) has a root of order at least k at each (λ, k) ∈ blkspec with
|λ| = 1, then

‖f(J?)(zI − J?)−1‖H∞ ≤ cH∞ max
w:|w−λ|≤1−|λ|

k2|f(w)|
(1− |λ|)k

, and

‖f(J?)(zI − J?)−1‖Hop
2
≤ cH2 max

w:|w−λ|≤1−|λ|

k2|f(w)|

(1− |λ|)k−
1
2

,

where k2 can be replaced by k(d+ 1) if f is given by a polynomial of degree d. Note that the right-
hand sides of the above displays use argument w instead of z to avoid confusion with the parameter
z on the right-hand side. We start with following lemma:

Lemma J.4 LetB(z) ∈ Rn×n be a block-diagonal transfer function with blocksB1(z), . . . , Br(z).
Then, ‖B(z)‖H∞ = maxi∈[r] ‖B(z)‖H∞ and ‖B(z)‖Hop

2
= maxi∈[r] ‖B(z)‖Hop

2
.

Proof
ForH∞,

‖B(z)‖H∞ = max
z∈T
‖B(z)‖op = max

z∈T
max
j∈[r]
‖Bj(z)‖op

= max
j∈[r]

max
z∈T
‖Bj(z)‖op = max

j∈[r]
‖Bj(z)‖H∞

78



LEARNING LINEAR DYNAMICAL SYSTEMS WITH SEMI-PARAMETRIC LEAST SQUARES

ForHop
2 , let v = (v1, . . . , vr) be a decomposition of v along the blocks Bj ∈ Rnj×nj . Then:

‖B(z)‖2Hop
2

= max
v∈Sn−1

1

2π

∫ 2π

0
tr(v>B(eiθ)∗B(eiθ)v)dθ

= max
v∈Sn−1

r∑
j=1

1

2π

∫ 2π

0
tr(v>j Bj(e

iθ)∗Bj(e
iθ)vj)

≤ max
v∈Sn−1

‖vj‖22 max
wj∈Snj−1

1

2π

∫ 2π

0

r∑
j=1

tr(w>j Bj(e
iθ)∗Bj(e

iθ)wj)

= max
v∈Sn−1

‖vj‖22‖Bj(z)‖2Hop
2

= max
j∈[r]
‖Bj(z)‖2Hop

2
,

where the last holds since
∑

j ‖vj‖22 = ‖v‖2 = 1. To see the converse holds, one may choose v to
be supported on the coordinates of one block Bj .

We now return to the proof of Proposition I.11. Let f be an analytic function of degree d, where
we take d = ∞ if f is not a finite-length polynomial. Since f(J)(zI − J)−1 has the same Jordan
block structure as J , the above lemma lets us assume without loss of generality that J consists of
a single Jordan block corresponding to an eigenvalue λ of order k. If f has a zero of order k at
λ, then f is divisible by (z − λ)k, which by Cayley-Hamilton implies that f(J) = 0 and thus
‖f(J)(zI − J)−1‖Hop

2
≤ ‖f(J)(zI − J)−1‖H∞ = 0. We shall now show that for any |λ| < 1 and

z ∈ T,

‖f(J)hz(J)‖op ≤
1

|z − λ|
max

w:|w−λ|≤1−|λ|

|f(w)|k(k ∧ d+ 1)

(1− |λ|)k−1
. (J.36)

We first show how to conclude the proof assumption the above display (J.36), and then turn to
establishing the inequality.

1. Concluding the proof from (J.36): To boundH∞, we see that

‖f(J)hz(J)‖H∞ = max
z∈T
‖f(J)hz(J)‖op ≤ max

w:|w−λ|≤1−|λ|

|f(w)|k(k ∧ d+ 1)

(1− |λ|)k
,

since we have |z − λ| ≥ 1− |λ| for all z ∈ T and λ ∈ D. Noting that cH∞ = 1, the above display
is precisely the quantity corresponding to H(∞)

f by taking k(k ∧ (d+ 1)) ≤ k2, but it allows one to
replace k2 by k(d+ 1) for d < k.

To boundHop
2 , we use the following lemma, proved at the end of the section.

Lemma J.5 (H2 integration) For cH2 =
√

1 + 2
π ,
√

1
2π

∫ 2π
0

1
|eiθ−λ|2dθ ≤ cH2

√
1

1−|λ| for all

λ ∈ D : |λ| < 1.
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We note that in our context, the variable over which we integrate is the subscript z in f(J)hz(J).
Using the integral computation,

‖f(J)hz(J)‖2Hop
2

= max
v∈Sn−1

1

2π

∫ 2π

0
tr(v>(f(J)heiθ(J))∗(f(J)heiθ(J))v

≤ 1

2π

∫ 2π

0
‖(f(J)heiθ(J)‖2op

(J.36)
≤

(
max

w:|w−λ|≤1−|λ|

|f(w)|k(k ∧ (d+ 1))

(1− |λ|)k−1

)2 1

2π

∫ 2π

0

1

|z − λ|2

Lem. J.5
≤

(
max

w:|w−λ|≤1−|λ|

|f(w)|k(k ∧ (d+ 1))

(1− |λ|)k−1

)2

c2
H2

1

1− |λ|

=

(
max

w:|w−λ|≤1−|λ|

|f(w)|k(k ∧ (d+ 1))

(1− |λ|)k−1/2

)2

c2
H2

as needed.
2. Proving (J.36): Since |λ| < 1, the function hz(λ) := 1

z−λ is analytic on T, and thus we can
write f(J)(zI−J)−1 = f(J)hz(J). By Lemma G.5 and the formula for functions of Jordan block
matrices, we see that (dropping the λ argument for brevity)for any z ∈ T,

‖f(J)hz(J)‖op ≤
k−1∑
`=0

∑̀
j=0

∣∣∣∣∣ h(`−j)
z

(`− j)!

∣∣∣∣∣
∣∣∣∣∣f (j)

j!

∣∣∣∣∣
=

k−1∑
j=0

∣∣∣∣∣f (j)

j!

∣∣∣∣∣
k−1∑
`=j

∣∣∣∣∣ h(`−j)
z

(`− j)!

∣∣∣∣∣
=

k−1∑
j=0

∣∣∣∣∣f (j)

j!

∣∣∣∣∣
k−j∑
`=1

∣∣∣∣∣h(`)
z

`!

∣∣∣∣∣
=

k−1∑
j=0

∣∣∣∣∣f (j)

j!

∣∣∣∣∣
k−j∑
`=1

|z − λ|−`

=
k−1∧d∑
j=0

∣∣∣∣∣f (j)

j!

∣∣∣∣∣
k−j∑
`=1

|z − λ|−` , (J.37)

where the last line uses the fact that if f is a degree d polynomial, all f (j) vanish for j > d. Next,
we use Cauchy’s integral formula to bound the magnitudes of the terms

∣∣∣f (j)j! ∣∣∣:
Lemma J.6 (Cauchy’s Integral Formula, see e.g. Stein and Shakarchi (2003)) Let f : C → C
be an analytic function. Then f (n)(λ) ≤ n!

rn maxa:|λ−a|=r |f(a)|.

By setting r = 1− |λ|, we have that∣∣∣∣∣f (j)(λ)

j!

∣∣∣∣∣ ≤ max
w:|w−λ|≤1−|λ|

|f(w)|
(1− |λ|)j

.
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Furthermore, if f is a polynomial of degree d, moreover, then f (j) vanishes for all j > d. Therefore,
picking up where we left off from our bound on ‖f(J)hz(J)‖op in Equation (J.37), we bound

d∧k−1∑
j=0

∣∣∣∣∣f (j)

j!

∣∣∣∣∣
k−j∑
`=1

|z − λ|−` ≤ max
w:|w−λ|≤1−|λ|

|f(w)|
d∧k−1∑
j=0

k−j∑
`=1

|z − λ|−`(1− |λ|)−j

=
1

|z − λ|
max

w:|w−λ|≤1−|λ|
|f(w)|

k−1∧d∑
j=0

k−j∑
`=1

|z − λ|1−`(1− |λ|)−j

(i)

≤ 1

|z − λ|
max

w:|w−λ|≤1−|λ|
|f(w)|

k−1∧d∑
j=0

k−j∑
`=1

(1− |λ|)1−`−j

≤ 1

|z − λ|
max

w:|w−λ|≤1−|λ|

|f(w)|k(k ∧ d+ 1)

(1− |λ|)k−1
,

where (i) follows since follows since minz∈T |z − λ| = 1 − |λ| for λ ∈ D, and the last inequality
comes from taking the maximum over the at most k(k∧d+1)

2 ≤ k(k∧d+1) terms in the double sum.
Lastly, we complete the argument by turning to the proof of Lemma J.5.

Proof [Proof of Lemma J.5] By rotation invariance of the integral, we may assume λ is real and
non-negative. Fix a θ0 ∈ (0, π2 ] to be chosen later. Then, we decompose our integral as∫ 2π

0

1

|eiθ − λ|2
dθ =

∫ 2π

0

1

sin2 θ + (1− λ cos θ)2
dθ

(i)
= 2

∫ π

0

1

sin2 θ + (1− λ cos θ)2
dθ

(ii)

≤ 2

(
θ0

(1− λ)2
+

(∫ π/2

θ0

1

sin2 θ
dθ

)
+ π

)
(iii)
= 2

(
θ0

(1− λ)2
+ cot θ0 + π

)
,

where (i) uses the symmetry of the integral, and (ii) breaks the integral into [0, θ0], [θ0, π], and
[π, 2π], bounding the integrand above by 1

1−λ , 1
sin2 θ

, and 1 on each respective portion.
Now, setting θ0 = arcsin(1 − λ) ∈ (0, π2 ], we have that cot θ0 ≤ 1/ sin θ0 = 1/(1 − λ).

Moreover, sin θ0 = 1− λ, so

θ0

(1− λ)2
=

1

1− λ
· θ0

sin θ0
≤ 1

1− λ
,

since sinx ≤ x. Combining the above bounds,

1

2π

∫ 2π

0

1

|eiθ − λ|2
dθ ≤ 2

π(1− λ)
+ 1 ≤ 1

λ
(1 +

2

π
),

as needed.
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J.2. Bounds on Finite System Norms: Proof of Proposition I.2

Here we prove a bound on the operator norm of a Markov matrix, in terms of the terms M,M̃,K2

in (I.29), (I.28), and (I.30) respectively. We recall the proposition we aim to prove:

Proposition I.2 (Bound on Magnitude of Markov Parameters) Consider a dynamical system
of the form G = (A?, B,C,D), where A? = SJ?S

−1 is in Jordan normal form. Then, for all
n ≥ 1,

‖Mn(G)‖op ≤ ‖Mn+1(G)‖op ≤ ‖D‖op + ‖S−1B‖op‖CS‖opK2(n).

Proof We have that

‖Mn+1(G)‖op = ‖
[
D | CB | CA?B | · · · | CAn−1

? B
]
‖op

≤ ‖D‖op + ‖
[
CB | CA?B | · · · | CAn−1

? B
]
‖op

= ‖D‖op + ‖
[
CSS−1B? | CSJ?S−1B | · · · | CSJn−1

? S−1B?
]
‖op

= ‖D‖op + ‖CS ·
[
I | J? | · · · | Jn−1

?

]
· (In×n ⊗ S−1B)‖op

≤ ‖D‖op + ‖CS‖op · ‖
[
I | J? | · · · | Jn−1

?

]
‖op‖In×n ⊗ S−1B‖op

= ‖D‖op + ‖CS‖op‖S−1B‖op · ‖
[
I | J? | · · · | Jn−1

?

]
‖op .

Next, we see that since J t? is block diagonal, the operator norm of
[
I | J? | · · · | Jn−1

?

]
is equal to

the largest operator norm of a block row corresponding to one the blocks of J?9 Consequently, it
suffices to prove that J? = J consists of a single Jordan block (λ, k) ∈ blkspec(A?). We shall first
consider a bound that holds for |λ| < 1, and then a general bound for arbitrary λ. For |λ| < 1, by
Lemma I.10 we have

‖
[
I | J | · · · | Jn−1

]
‖op ≤ lim

n→∞
‖
[
I | J | · · · | Jn−1

]
‖op = ‖(zI − J)−1‖Hop

2
.

Applying Proposition I.11 with the trivial polynomial f(z) = 1, which has degree d = 0, gives

‖(zI − J)−1‖Hop
2
≤ cH2 max

z:|z−λ|≤1−|λ|

|f(z)|k(k ∧ d+ 1)

(1− |λ|)k−1/2
=

k

(1− |λ|)k−1/2
.

Now for λ ∈ [0, 1], we need to bound

‖
[
I | J | · · · | Jn−1

]
‖2op ≤ M̃(k, n)2,

where we recall the definition

M̃(k, n) :=


n1/2 k = 1

nk−1/2
(

e
k−1

)k−1
2 ≤ k ≤ n+ 1

n1/22n k ≥ n+ 1

.

9. Indeed, the operator norm is invariant under permutations of rows and columns, and since Jt? is block diagonal, one
can permute the columns of

[
I | J? | · · · | Jn−1

?

]
to render it a block diagonal (rectangular) matrix. It is then well

known that the operator norm rectangular block diagonal operators is equal to the operator norm of its largest block.
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Recalling the formula for the powers of Jordan blocks, we have that

J t =



λt
(
t
1

)
λt−1

(
t
2

)
λt−2 . . .

(
t

k−1

)
λt−(k−1)

0 λt
(
t
1

)
λt−1 · · ·

(
t

k−2

)
λt−(k−2)

...
. . . . . . . . .

...

...
. . . λt

(
t
1

)
λt−1

0 · · · · · · 0 λt



, (J.38)

where we use the convention
(
t
j

)
= 0 for j > t. Bounding ‖J t‖op by the `1 norm of its first row

gives

‖J t‖op ≤
k−1∑
j=0

(
t

j

)
|λ|t−jI(t ≥ j) =

k−1∑
j=0

αj,t, (J.39)

where αt,j =
(
t
j

)
|λ|t−jI(t ≥ j) ≤

(
t
j

)
I(t ≥ j). Since αt,j is increasing in t, we can use the crude

bound

‖
[
I | J | · · · | Jn−2

]
‖2op ≤

n−1∑
t=0

‖J t‖2op ≤
n−1∑
t=0

(
k−1∑
j=0

αt,j)
2

≤ n

k−1∑
j=0

αn,j

2

= n

k−1∧n∑
j=0

(
n

j

)2

.

For k ≥ n + 1,
∑k−1

j=0

(
n
j

)
= 2n, yielding a bound of n(2n)2. For k = 1, the above sum is n, and

for 2 ≤ k ≤ n+ 1, we have the standard bound bound
∑k−1

j=0

(
n
j

)
≤ ( en

k−1)k−1, yielding a bound of

(nk−
1
2 ( e
k−1)k−1)2. Taking a square root of each of the three cases concludes the proof.

Appendix K. Bounds under Strong Observability

In this section, we formally define a notion called strong observability, inspired by the control theory
community, which describes how difficult it is to estimate the hidden state in a linear system with
known dynamics. We then use this notion to develop a bound on Optµ in terms of the quantities
introduced. We begin by defining the d-step observability matrix

Od(A,C) := [C>|(CA)>| . . . |(CAd−1)>]> ∈ Rmd×n

for conforming A,C. Furthermore, we introduce the definition of an invariant decomposition:
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Definition K.1 (Invariant Decomposition) We say that (A+, A−, C+, C−) is an invariant de-
composition of (A?, C?) if A? = A+ + A−, C? = C+ + C−, A+A− = A−A+ = 0, and
rowspace(C+) ⊂ rowspace(A+) and C−A+.

In other words, A+ and A− contain complementary invariant subspaces of A?, C+ provides in-
formation only about A+, and C− provides no information about A+.10 One should associate A+

with large dynamical modes we need to filter and A− with smaller modes we can disregard. Strong
observability is then defined as follows.

Definition K.2 (Strong Observability) Given a pair (A+, C+) with rowspace(C+) ⊆
rowspace(A+), we say that (A+, C+) is (σ, T, d)-strongly observable if σn+(Od(AT+, C+)) ≥ σ >
0, with n+ := rank(A+).

Here, σk(·) denotes the k-th largest singular value. Strong observability states that given d obser-
vations sampled every T time steps, one can reconstruct the hidden state xt in a numerically stable
fashion. Restricted to the pair (A+, C+), strong observability is a quantitative version of a funda-
mental observability condition in control theory, and state estimation in particular (see, e.g. Hautus
(1983)). As an example, one can show that the transition matrixA? = [ 1 ∆

0 1 ] and observation matrix
C? =

[
1 0
]
, which correspond to Newton’s equation F = mẍ when the position x is observed,

satisfies (σ, T, 2)-strong observability whenever T∆ is bounded away from zero.
We begin by stating a simplified bound on Optµ under the strong observability condition, in

terms of the control-theoretic norm ‖M∞(·)‖op.

Proposition K.1 (Bounds for Strong Observability) Let d ≤ L, N ≥ Ld log(1/δ) and
(A+, A−, C+, C−) be an invariant decomposition of (A?, C?), with ρ(A−) < 1. Define the sys-
tems

G− = (A−, B?, C−, 0), and F− = (A−, Bw, C−, 0).

Then if (A+, A−) is (σ, T, d)-strongly observable for (A+, A−), then with probability at least 1−δ,

N−1/2Optµ . d

(
1 +
‖C+A

T
+‖op

σ

)(√
(m+ log 1

δ )CA− + CTd +N−1/2µ

)
, where

CA− := ‖M∞(G−)‖op + ‖M∞(F−)‖op and CTd := ‖MTd(G?)‖op + ‖MTd(F?)‖op + ‖Dz‖op.

If L is greater than the degree d+ of the minimal polynomial ofA+, then the above bound also holds
with d(1 + ‖C+A

T
+‖op/σ) (resp. d) replaced by 2d+ (resp. d+), even if strongly observability fails.

We note that by choosing the invariant partition (A+, A−) to ensure that A− is stable (i.e., placing
all unstable modes into A+), then the operator norms of the infinite-horizon quantities G− and F−
are finite; moreover, by placing near-unstable modes into A+, one can obviate the dependence on
instability in these terms as well.

In the following subsection, we shall a state more precise variant of the above bound, including
analogues for adversarial noise. Subsequent subsections contain the deferred proofs.

10. We note that if A+ and A− satisfies A+A− = A−A+ = 0 and A? = A− + A+, then we can obtain an invari-
ant decomposition (A+, A−, C+, C−) by letting C+ = ProjA?

C is the matrix obtained by projecting C onto the
rowspace of A+, and and C− = C? − C+ the projection onto its complement.
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K.1. Granular Bounds for Strong Observability

In this section, we present bounds under the strong observability criterion, Definition K.2. We define
the corresponding stochastic observability error term,

ObsErrstoc(δ,m,N) :=
√
N(‖M∞(G−)‖op + ‖M∞(F−)‖op) + ‖M∞ (H−)‖op

+
√
m+ log(1/δ)(ΓN (G−) + ΓN (F−))

+
√
N (‖MTd (G?)‖op + ‖MTd (F?)‖op + ‖Dz‖op) ,

and the adversarial observability error term,

ObsErradv(δ,m,N) :=
√
N‖M∞ (G−)‖op +

√
NdwΓN (F−) + ‖M∞ (H−)‖op

+
√
m+ log(1/δ)ΓN (G−)

+
√
N
[
‖MTd (G?)‖op +

√
Tddw‖MTd (F?)‖op +

√
ddz‖Dz‖op

]
,

where we recall the definition

ΓN (G) := min{
√
N‖M∞ (G)‖op, ‖G‖H∞}

Our main theorem is as follows:

Theorem K.2 Suppose that N ≥ Tdmax{m, log(1/δ)}. Then, if (A+, C+) is (σ, T, d)-strongly
observable for d ≤ L, then with probability 1− δ, we have that in the stochastic model,

Optµ ≤ (ObsErrstoc(δ,m,N) + µ)

(
1 +

d‖C+A
d
+‖op

σ

)
.

where the analogous bound holds with ObsErradv under adversarial noise.
In general, even if (A+, C+) may not be (σ, d)-strongly observable, we argue as follows. Let

f+ denote the minimal polynomial of A+. If L ≥ deg(f+), then

Optµ ≤ (ObsErrstoc(δ,m,N) + µ)‖f+‖L1

≤ (ObsErrstoc(δ,m,N) + µ)2deg(f+) ≤ (ObsErrstoc(δ,m,N) + µ)2rank(A+),

and analogously for adversarial noise.

Proposition K.1 follows directly by bounding ΓN (G) ≤
√
N‖M∞ (G)‖op and dropping the H−

term under the assumption made in the body that x1 = 0. We now turn the proof of the theorem.
The above theorem is prove in the following subsection.

K.2. Proof of Theorem K.2

Let φ = [Ψ1| . . . |Ψd|0]; in view of the discussion in Section G, we can assume L = d for our
analysis. Since A+A− = A−A+ = 0, it follows that for any power k ≥ 1, Ak? = Ak+ + Ak−.
Moreover, since rowspace(C+) ⊂ rowspace(A+) ∈ ker(A−)> (and similarly when the signs are
swapped), it follows that C+A− = C−A+ = 0. It then follows that

C?A
k
? = C+A

k
+ + C−A

k
−, for all k ≥ 0.
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This allows us to decompose Cφ as Cφ := C+
φ + C−φ , where for σ ∈ {+,−}

Cσφ := CσA
LT
σ −

L∑
`=1

Ψ`CσA
(L−`)T
σ ∈ Rm×n .

The following proposition gives us a control on ‖∆φ‖op in terms of the systems Cσφ . Its proof is
deferred to the following subsection:

Proposition K.3 Suppose that φ ∈ Rm×md satisfies Cφ[A+] = 0 and that N ≥
Tdmax{m, log(1/δ)}. Then, in the stochastic noise model,

‖∆φ‖op . (1 + ‖φ‖bop)ObsErrstoc(δ,m,N) ,

and in the adversarial noise model,

‖∆φ‖op . (1 + ‖φ‖bop)ObsErradv(δ,m,N) .

Hence, for stochastic noise, we get that with probability at least 1− δ,

Optµ ≤ µ‖φ‖op + ‖∆φ‖op ≤ (1 + ‖φ‖bop)(µ+ ObsErrstoc(δ,m,N)),

and similarly for adversarial noise. To conclude, it remains to bound ‖φ‖bop. Considering an
invariant partition A? = A+ + A−, we invoke the following lemma, which is a consequence of the
Moore-Penrose pseudoinverse.

Lemma K.4 If (A+, C+) is (σ, T, d)-strongly observable, then there exists a matrix

φ = [Ψ1| . . . |Ψd] ∈ Rm×md satisfying C+A
Td
+ −

∑d
`=1 Ψ`C+A

T`
+ = 0 and ‖φ‖op ≤

‖C+ATd+ ‖op
σ .

Using this lemma (proved in Appendix K.3.1) and the error bounds from Proposition 4.1 below,
we conclude the proof of Proposition K.1 in Appendix K.3.2. This lemma directly yields the first
part of our theorem, since

1 + ‖φ‖bop ≤ (1 + d‖φ‖op) ≤ 1 +
d‖C+A

d
+‖op

σ
.

Proof [Proof of Lemma K.4] Recall the observability matrix

Od(A+, C+) =


C+

C+A+
...

C+A
d−1
+

 .

Observe that since rowspace(C+) ⊂ rowspace(A+), Od(A+, C?) has rank at most
dim(rowspace(A+)) = rank(A+) = n+. By assumption, Od(A+, C+) has rank at
least n+ as well. It follows that rowspace(Od(A+, C+)) = rowspace(A+), and therefore
C+A

d
+ ∈ range(Od(A+, C+)). This implies that for the filter

φ = C+A
d
+Od(A+, C+)† ∈ Rm×dm,
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we have

φOd(A+, C+) = C+A
d
+Od(A+, C+)†Od(A+, C+) = C+A

d
+ .

The above then implies that

C+
φ = C+A

d
+ − φ · Od(A+, C+) = 0.

Moreover, as we have established that rank(Od(A+, C?)) = n+, we have

‖φ‖op = ‖C+A
d
+Od(A+, C+)†‖op

≤ ‖C+A
d
+‖op‖Od(A+, C+)†‖op ≤ ‖C+A

d
+‖opσn+(Od(A+, C+))−1 .

Recalling that our strong observability assumption implies that σn+(Od(A+, C+))−1 ≥ σ, we find
that the above quantity is at most ‖C+A

d
+‖op/σ by assumption.

The second part of our theorem follows by constructing φ to use the minimal polynomial ofA+.

Lemma K.5 There exists a φ with 1 + ‖φ‖bop = ‖f+‖`1 ≤ 2deg(f+) ≤ 2n+ and C+
φ = 0, where

f+ is the the minimal polynomial of A+.

Proof Let f+ denote the minimal polynomial of A+, and let

φ = [f+
1 Im|f

+
2 Im| · · · |f

+
deg(f+)Im|0].

Then, C+
φ = C+f+(A+) = 0. Since f+ has all of its roots in the complex disk (as the spectrum of

A+ is a subset of the spectrum of A?), Lemma J.1 implies that 1 + ‖φ‖bop = ‖f+‖`1 ≤ 2deg(f+) ≤
2n+ .

These two possible methods of bounding ‖φ‖bop conclude the proof.

K.3. Proof of Proposition K.3

Again, we assume L = d. Using the properties of an invariant decomposition, we can modify our
error calculations as follows; the proof in stated in Section K.3.2.

Lemma K.6 Suppose that Cφ[A+] = 0. Then, the conclusions of Propositions G.1 and G.2 hold
with Gφ,Fφ and Hφ replaced by the following systems:

G−φ := (A−, B?, C
−
φ , 0), F−φ := (A−, Bw, C

−
φ , 0), H−φ := (A−,x1, C

−
φ , 0) .

We can now bound the control norms of these “minus”-systems (proof in Section K.3.1):

Lemma K.7 ‖M∞
(
G−φ

)
‖op ≤ (1 + ‖φ‖bop)‖M∞ (G−)‖op and ‖(Gφ)−‖H∞ ≤ (1 +

‖φ‖bop)‖G−‖H∞ , and similarly for the corresponding F and H systems.

Now bounding ΓN (G) ≤
√
N‖MN (G)‖op, we can simplify the bound in the stochastic model to

obtain
‖∆φ‖op

1 + ‖φ‖bop
.
√
N(m+ log 1

δ )(‖M∞(G−)‖op + ‖M∞(F−)‖op)

+
√
N (‖MTd (G?)‖op + ‖MTd (F?)‖op + ‖Dz‖op) .
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K.3.1. PROOF OF LEMMA K.7

Let us take G−φ as a representative example. Using the formula

C−φ := C−A
LT
− −

L∑
`=1

Ψ`C−A
(L−`)T
− ,

we have (with the convention Ψ0 = Im),

‖M∞
(
G−φ

)
‖op = lim

n→∞
‖Mn

(
G−φ

)
‖op

= lim
n→∞

L∑
`=0

‖Mn

(
(A−, B?,ΨL−`C−A

`
−, 0)

)
‖op

= lim
n→∞

L∑
`=0

‖ΨL−`‖op‖Mn

(
(A−, B?, C−A

`
−, 0)

)
‖op

(i)

≤ lim
n→∞

L∑
`=0

‖ΨL−`‖op‖Mn+` ((A−, B?, C−, 0))‖op

= lim
n→∞

L∑
`=0

‖ΨL−`‖op‖Mn+` (G−)‖op

=
L∑
`=0

‖ΨL−`‖op lim
n→∞

‖Mn+` (G−)‖op

= ‖M∞ (G−)‖op ·
L∑
`=0

‖ΨL−`‖op = ‖M∞ (G−)‖op(1 + ‖φ‖bop),

where in (i) we have used the fact thatMn((A−, B?, C−A
`
−, 0)) is a submatrix of the matrix

Mn+`((A−, B?, C−A
`
−, 0)). This argument can be applied for theH∞-norm, viewed as the asymp-

totic limit of the operator norm of the associated Toeplitz operator (see e.g. Tilli (1998) Corollary
4.2).

K.3.2. PROOF OF LEMMA K.6

Examining the arguments in Section G, it suffices to modify the control of the term Err(1). Recall
the shut-off sequence

x̃n;t :=

{
A
n−(t−LT )
? xt−LT n ≥ t− LT

xn n ≤ t− LT
ỹn;t := C?x̃n;t

k̃t := [ỹ>t−T ;t | ỹ>t−2T ;t | · · · | ỹ>t−LT ;t]
> ,
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Defining the terms γt := Bwwt +B?ut, since Cφ[A?] = C−φ we have that

Err
(1)
t = ỹt;t − φ · k̃t = Cφ[A?]x̃t−TL = C−φ x̃t−TL

= C−φ

(
t−LT−2∑
i=0

Ai?γt−1−i +At−TL−1
? x1

)

= C−φ

(
γt−1 +

t−LT−2∑
i=1

Ai?γt−1−i +At−TL−1
? x1

)

= C−φ

γt−1 +
∑

σ∈{+,−}

t−LT−2∑
i=1

(Aiσ)γt−1−i +At−TL−1
σ x1

 .

Observe now that the term corresponding to σ = + is canceled by C−φ , because it involves only
terms which have the products A−A+ or C−A+. Thus,

Err
(1)
t = C ′φ[A−]

(
γt−1 +Ai−)γt−1−i +At−TL−1

− x1

)
.

This term can be then be controlled analogously to the term Err
(1)
t in Section G, replacing A? with

A− and Cφ with C−φ .
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