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Abstract
We consider the dynamics of a linear stochastic approximation algorithm driven by Markovian
noise, and derive finite-time bounds on the moments of the error, i.e., deviation of the output of
the algorithm from the equilibrium point of an associated ordinary differential equation (ODE). We
obtain finite-time bounds on the mean-square error in the case of constant step-size algorithms by
considering the drift of an appropriately chosen Lyapunov function. The Lyapunov function is a
standard Lyapunov function used to study the stability of linear ODEs, but can also be interpreted
in terms of Stein’s method, which is used to obtain bounds on steady-state performance bounds. We
also provide a comprehensive treatment of the moments of the square of the 2-norm of the approx-
imation error. Our analysis yields the following results: (i) for a given step-size, we show that the
lower-order moments can be made small as a function of the step-size and can be upper-bounded
by the moments of a Gaussian random variable; (ii) we show that the higher-order moments beyond
a threshold may be infinite in steady-state; and (iii) we characterize the number of samples needed
for the finite-time bounds to be of the same order as the steady-state bounds. As a by-product of our
analysis, we also solve the problem of obtaining finite-time bounds for the performance of temporal
difference learning algorithms with linear function approximation and a constant step-size, without
requiring a projection step or an i.i.d. noise assumption.

1. Introduction

Reinforcement learning refers to a collection of techniques for solving Markov Decision Problems
(MDPs) when the underlying system model is unknown Bertsekas and Tsitsiklis (1996); Sutton
and Barto (2018); Bhatnagar et al. (2012); Szepesvári (2010); Bertsekas (2011). We consider one
of the simplest versions of the problem, where a policy is given and the goal is to compute the
value function associated with the policy. Since the state space of the MDP can be very large, it is
customary to approximate the value function by a function with far fewer parameters than the state
space. Deep neural networks and linear function approximations are the two common approaches
for approximating the value function. Here, we are motivated by linear function approximations,
and assume that a given function’s parameters are updated using temporal difference (TD) learning
Sutton (1988). One contribution of the paper is to derive finite time bounds on the distance between
the parameters estimated by TD and the parameters that minimize the projected Bellman error.

The proof of convergence of TD(0), and more generally TD(λ), was presented in Tsitsiklis and
Van Roy (1997). That paper proved asymptotic convergence, but did not study finite-time error
bounds. The finite-time performance of the TD algorithm has been studied in Dalal et al. (2017);
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Lakshminarayanan and Szepesvari (2018), but it is assumed that the samples required to update the
function parameters are i.i.d. We do not require such an assumption in this paper. Bounds on the
finite-time mean-square error in the general Markovian case have been derived recently in Bhandari
et al. (2018). However, in analyzing constant step-size algorithms, they remark that their finite-time
results hold only under the assumption that the standard algorithm includes a projection step. We
do not require such an assumption here. We also remark that some of these papers also allow for
averaging of the iterates. For example, Lakshminarayanan and Szepesvari (2018) uses averaging to
obtain problem independent step-sizes and error bounds, which is an interesting technique which
we do not address in this paper.

We consider a general linear stochastic approximation algorithm of the form considered in Lak-
shminarayanan and Szepesvari (2018), but with Markovian noise. Since it is well known that TD
algorithms can be viewed as a special case of linear stochastic approximation Tsitsiklis and Van Roy
(1997); Bertsekas and Tsitsiklis (1996), finite-time bounds for linear stochastic approximation can
be converted to finite-time bounds on TD algorithms. The first major theme of our analysis is the
study of the drift of an appropriately chosen Lyapunov function to obtain an upper bound on the
mean-square error. We do this by mimicking the steps in deriving finite time bounds on the square
of the 2-norm of the state of a linear ODE. The choice of the Lyapunov function can either be
motivated by Stein’s method, a method that was originally designed to study central limit theorem
approximations, or the stability theory of linear ODEs. When studying the drift, we also condi-
tion on the state of the system sufficiently in the past so that the probability distribution has mixed
sufficiently to be close to the stationary distribution in an appropriate sense.

The second major theme of our analysis is in extending the drift analysis to study all moments
of the parameters estimated by the stochastic approximation algorithm. Here, a key contribution is
to show that lower-order moments of the square of the 2-norm of the approximation error can be
upper bounded by the moments of a Gaussian distribution, and to show that the moments may not
exist in steady-state beyond a threshold order. Our results also imply that the 2-norm of the error of
the stochastic approximation algorithm does not have exponentially decaying tails in steady-state.
We also discuss the relationship between our results and central limit theorem results obtained in
prior literature in the limit where the step-size goes to zero.

The rest of the paper is organized as follows. In Section 2, we consider a version of linear
stochastic approximation where the “noise” is Markovian. The key ideas behind the Lyapunov-
Stein approach for studying linear stochastic approximation algorithms with constant step-sizes are
presented in this section. The applications to TD(0) and TD(λ) are almost immediate, and these are
discussed in Section 3. Concluding remarks are provided in Section 4.

2. Linear Stochastic Approximation with Markov Noise

Consider the following linear stochastic recursion with a constant step size ε

Θk+1 = Θk + ε (A(Xk)Θk + b(Xk)) , (1)

where Θk is a random vector, A(Xk) is a random matrix and b(Xk) is a random vector, generated
according to an underlying Markov chain {Xk}. Assume the following two limits exist:

lim
k→∞

E[A(Xk)] = Ā and lim
k→∞

E[b(Xk)] = 0.
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The corresponding ODE for this stochastic recursion is

θ̇ = Āθ. (2)

The recursion (1) is called linear stochastic approximation in Lakshminarayanan and Szepesvari
(2018), and we adopt that terminology here.

Assume that Ā is a Hurwitz matrix (i.e., all eigenvalues have strictly negative real parts), and
thus, the equilibrium point of the ODE is 0. We note that, if the steady-state value of E[b(Xk)] is
not equal to 0, then the ODE’s equilibrium point will not be 0. However, by appropriate centering,
we can always rewrite both the stochastic recursion and the ODE in the form we consider here. A
number of temporal difference algorithms for reinforcement learning, including TD(0), TD(λ) and
GTD; and stochastic gradient descent algorithm for linear-square estimation can be written in this
form (see the detailed discussion in Lakshminarayanan and Szepesvari (2018)).

We are interested in estimating the deviation from the equilibrium using the metric E[||Θk||2n]
for finite k.

2.1. Notation, Assumptions, and Key Ideas

Throughout of this paper, ‖ · ‖ denotes the 2-norm for vectors and the induced 2-norm for matrices.
We now state assumptions below.

• Assumption 1: {Xk} is a Markov chain with state space S . We assume the following two
limits exist:

lim
k→∞

E[A(Xk)] = Ā and lim
k→∞

E[b(Xk)] = 0.

Define τδ ≥ 1 to be the mixing time of {Xk} such that

‖E[b(Xk)|X0 = i]‖ ≤ δ ∀i, ∀k ≥ τδ (3)

‖Ā− E[A(Xk)|X0 = i]‖ ≤ δ ∀i, ∀k ≥ τδ. (4)

We assume that there exists K ≥ 1 such as τδ ≤ K log 1
δ . When considering constant step-

size algorithms, we will always choose δ = ε. For convenience, we will assume that ε is
chosen such that ετε ≤ 1/4. Note that we make this assumption to simplify some of the
notation and analysis. The precise condition on ε required for the finite-time bounds is more
restrictive and will be presented in Theorem 7. When the context is clear, we will omit the
subscript δ in τδ to simplify the notation.

• Assumption 2: We assume bmax = supi∈S ‖b(i)‖ < ∞ and Amax = supi∈S ‖A(i)‖ ≤ 1.
Under this assumption, it follows that ‖Ā‖ ≤ Amax ≤ 1.

• Assumption 3: All eigenvalues of Ā are assumed to have strictly negative real parts, i.e., A
is Hurwitz. This ensures that the ODE is globally, asymptotically stable. This also implies
that there exists a symmetric P > 0, which solves the Lyapunov equation

− I = Ā>P + PĀ. (5)

Let γmax and γmin denote the largest and smallest eigenvalues of P, respectively.
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Remark 1 One part of Assumption 1 states the Markov chain mixes at a geometric rate (i.e., τδ ≤
K log 1

δ ), which holds for any finite-state Markov chain which is aperiodic and irreducible Brémaud
(2013). We assume geometric mixing for notational convenience. Our error bounds, which are in
terms of ε and τ, hold for general mixing rates as long as lim supε→0 ετε = 0.

Remark 2 We assume Amax ≤ 1 throughout this paper. If Amax > 1, we can normalize A and b
as follows, if necessary:

A(i)← A(i)

Amax
and b(i)← b(i)

Amax
.

In the context of TD algorithms, this is called feature normalization Bhandari et al. (2018). This fea-
ture normalization is merely for notational convenience. All results hold without this normalization
with minor changes.

Before we present our results, we present the intuition behind them. A well-known idea in
studying stochastic recursions is to study the corresponding ODE, which in this case is (2); Meerkov
(1972a,b) are the first papers we are aware of that establish this connection. Comprehensive surveys
on this topic can be found in Kushner and Yin (2003) and Borkar (2009). The key idea behind
the derivation of our finite-time performance bounds is very similar to how one would proceed to
obtain bounds on ||θt||2 for the ODE (2). As is standard in the study of linear ODEs Chen (1998),
we consider the Lyapunov functionW (θ) = θTPθ, and study its time derivative along the trajectory
of the ODE:

dW

dt
= θ>PĀθ + θ>Ā>Pθ = −||θ||2 ≤ − 1

γmax
W,

where the second equality above is obtained by recalling the Lyapunov equation for P and the
inequality is obtained by defining γmax is the largest eigenvalue of P. Thus,

W (θt) ≤ e−
1

γmax
t
W (θ0),

which further implies

‖θt‖2 ≤
1

γmin
W (θt) ≤

1

γmin
e
− t
γmaxW (θ0) ≤ γmax

γmin
e
− t
γmax ||θ0||2,

where γmin > 0 is the smallest eigenvalue of P. In other words, ‖θt‖2 decreases exponentially as
e
− t
γmax . Our analysis of the stochastic system (Theorem 7) will show that the mean-square error

E
[
‖Θk‖2

]
approaches its steady-state value as

γmax

γmin

(
1− 0.9ε

γmax

)k−τ
‖Θ0‖2 (6)

when ε is small, which closely resembles the convergence rate of the ODE.
The analysis of the stochastic system is related to the analysis of the ODE, except that we will

look at the one-time-step drift of the Lyapunov function instead of the time derivative as in the case
of the ODE. This introduces some challenges due to the Markovian nature of Xk. In particular,
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when performing the stochastic analysis, one has to deal with the correlation between A(Xk) and
Θk. Additionally, since the bound is motivated by the ODE which is determined only by the steady-
state distribution of A(Xk) and b(Xk), we have to study the system after an initial transient period
equal to the mixing time defined earlier. This leads to the presence of τ in (6), which does not
appear in the corresponding expression for the ODE before that.

A possible alternative method to study stochastic recursions is Stein’s method, which is com-
monly used to obtain steady-state bounds. To motivate Stein’s method, we first note that a standard
method to study stochastic recursions is to consider the drift of a Lyapunov function W :

E[W (Θk+1)−W (Θk)|Hk],

where Hk is some appropriate history which we do not specify yet. Even though we are interested
the case where Xk is a Markov chain, it is instructive to get some intuition by considering the case
where Xk is i.i.d. Further, any finite-time performance bounds should ideally yield good bounds in
steady-state as well, so we will first get some intuition about obtaining good steady-state bounds.
When the system is in steady-state, one can use the fact that the unconditioned drift must be equal
to zero (subject to the usual caveats about appropriate expectations existing in steady-state):

E[W (Θk+1)−W (Θk)] = 0,

where Θk is drawn according to a stationary distribution which is assumed to exist. Expanding the
left-hand side using Taylor’s series, we get

E

[
∇>W (Θk)(Θk+1 −Θk) +

1

2
(Θk+1 −Θk)

>∇2W (Θ̃)(Θk+1 −Θk)

]
= 0 (7)

for an appropriate Θ̃.Now it is interesting to consider how one should chooseW so that the solution
to the above equation provides a bound on some performance metric of interest. Suppose, we are
interested in obtaining a bound on E[‖Θk‖2], then Stein’s method (see Ying (2016) and references
within) suggests that one should choose W so that

∇>W (Θk)E [Θk+1 −Θk |Θk] = −||Θk||2, ∀Θk. (8)

The rationale is that, by substituting (8) in (7), we get

E
[
||Θk||2

]
= E

[
1

2
(Θk+1 −Θk)

>∇2W (Θ̃)(Θk+1 −Θk))

]
,

and one can use bounds on the Hessian ∇2W to bound E[||Θk||2]. We do not pursue such bounds
here, although one can easily do so based on our analysis later, but we focus on the so-called Stein’s
equation (8). Using the fact that E [Θk+1 −Θk|Θk] = εĀΘk (under the assumption Xk are i.i.d.),
we can rewrite (8) as

∇>W (Θk)ĀΘk = −||Θk||2.

To solve for W, we guess that it has a positive-definite quadratic form

W (Θk) = Θ>k PΘk.
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Substituting this quadratic form into Stein’s equation yields

Θ>k

(
P + P>

)
ĀΘk = Θ>k

(
PĀ+ Ā>P

)
Θk = −||Θk||2.

Using the fact that Stein’s equation must be satisfied for all Θk to obtain

Ā>P + PĀ = −I,

which is the same as the Lyapunov equation (5).
We have now argued that the quadratic form for W serves as a good Lyapunov function, and

can be motivated using two different perspectives: the ODE Lyapunov function perspective and the
Stein’s method perspective. We also note that if Ā is negative definite in addition to being Hurwitz
like in TD(0) and TD(λ), then we can use W (Θk) = Θ>k Θk directly as the Lyapunov function for
obtaining finite-time performance bounds. We will address this further in Section 3.

In summary, there are three key ideas in the derivation of finite-time bounds on the mean square
error of Θk: (i) the choice of the Lyapunov function, (ii) the use of the ODE to guide the analysis
of the drift of the Lyapunov function, and (iii) an appropriate conditioning of the drift to invoke the
mixing properties of the Markov chain {Xk}.

2.2. Finite-Time Bounds on the Mean-Square Error

Before we study the drift of W, we first present a sequence of three lemmas which will be useful
for proving the main result later. The first lemma below essentially states that, since Θk − Θk−1

is of the order of ε for all k, we have Θτ − Θ0 is of the order of ετ. The subsequent two lemmas
provide bounds on terms involving Θk+1 − Θk in terms of Θk, which will be useful later. All of
these statements can intuitively inferred from (1), the proofs presented in the appendix (Appendices
A-C) make the intuition precise.

Lemma 3 The following three inequalities hold when comparing Θ0 and Θτ :

‖Θτ −Θ0‖ ≤2ετ‖Θ0‖+ 2ετbmax, (9)

‖Θτ −Θ0‖ ≤ 4ετ‖Θτ‖+ 4ετbmax (10)

and
‖Θτ −Θ0‖2 ≤ 32ε2k2‖Θτ‖2 + 32ε2τ2b2max. (11)

�

Lemma 4 The following inequality holds for any k ≥ 0∣∣∣(Θk+1 −Θk)
>P (Θk+1 −Θk)

∣∣∣ ≤ 2ε2γmax ‖Θk‖2 + 2ε2γmaxb
2
max.

�

Lemma 5 The following inequality holds for all k ≥ τ :∣∣∣∣E [Θ>k P (ĀΘk −
1

ε
(Θk+1 −Θk)

)∣∣∣∣Θk−τ , Xk−τ

]∣∣∣∣ ≤ κ1ετE
[
‖Θk‖2

∣∣∣Θk−τ

]
+ κ2ετ,
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where

κ1 =62γmax(1 + bmax) and κ2 = 55γmax(1 + bmax)3.

�

We are now ready to study the drift of W (Θk).

Lemma 6 For any k ≥ τ and ε such that κ1ετ + εγmax ≤ 0.05, we have

E [W (Θk+1)] ≤
(

1− 0.9ε

γmax

)
E [W (Θk)] + κ̃2ε

2τ,

where
κ̃2 = 2

(
κ2 + γmaxb

2
max

)
.

Proof Note that for any k ≥ τ, we have

E [W (Θk+1)−W (Θk)|Θk−τ , Xk−τ ]

= E
[
2 Θ>k P (Θk+1 −Θk) + (Θk+1 −Θk)

>P (Θk+1 −Θk)
∣∣∣Θk−τ , Xk−τ

]
= E

[
2 Θ>k P (Θk+1 −Θk − εĀΘk) + (Θk+1 −Θk)

>P (Θk+1 −Θk)
∣∣∣Θk−τ , Xk−τ

]
+ εE

[
2 Θ>k PĀΘk

∣∣∣Θk−τ , Xk−τ

]
.

Using the Lyapunov equation, the last term in the previous equation becomes

2Θ>k PĀΘk = Θ>k (Ā>P + PĀ)Θk = −‖Θk‖2.

Now applying Lemma 4 and Lemma 5, we obtain

E [W (Θk+1)−W (Θk)|Θk−τ ]

≤− εE
[
||Θk||2|Θk−τ

]
+ 2ε (κ1ετ + εγmax)E

[
||Θk||2|Θk−τ

]
+ 2ε2τ

(
κ2 +

γmaxb
2
max

τ

)
.

Given that
κ1ετ + εγmax ≤ 0.05,

we have

E [W (Θk+1)−W (Θk)|Θk−τ ] ≤− 0.9εE
[
||Θk||2|Θk−τ

]
+ κ̃2ε

2τ

≤− 0.9ε

γmax
E [W (Θk)|Θk−τ ] + κ̃2ε

2τ,

so the lemma holds.
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Theorem 7 For any k ≥ τ and ε such that κ1ετ + εγmax ≤ 0.05, we have the following finite-time
bound:

E
[
‖Θk‖2

]
≤ γmax

γmin

(
1− 0.9ε

γmax

)k−τ
(1.5‖Θ0‖+ 0.5bmax)2 +

κ̃2γmax

0.9γmin
ετ. (12)

Proof By recursively using the previous lemma, we have

E [W (Θk)] ≤ ak−τE [W (Θτ )] + b
1− ak−τ

1− a
≤ ak−τE [W (Θτ )] + b

1

1− a

where a = 1− 0.9ε
γmax

and b = κ̃2ε
2τ. Furthermore, we have

E
[
‖Θk‖2

]
≤ 1

γmin
E [W (Θk)] ≤

1

γmin
ak−τE [W (Θτ )] + b

1

γmin(1− a)
,

and

E [W (Θτ )] ≤γmaxE
[
‖Θτ‖2

]
≤γmaxE

[
(‖Θτ −Θ0‖+ ‖Θ0‖)2

]
≤γmax ((1 + 2ετ)‖Θ0‖+ 2ετbmax)2 ,

where the last inequality holds due to (9). The theorem holds because ετ ≤ 1
4 .

Remark 8 Using (12), one can obtain estimates on the number of samples required for the mean-
square error to be of the same order as its steady-state value (the second term of the upper bound
in (12)). For example, if k ≥ τ + O(1

ε log 1
ε ), then it is easy to see that E[||Θk||2] becomes O(ετ).

This raises an interesting question: for what values of k is E[||Θk||2n] of the order of (ετ)n for
n > 1? An answer to this question will show that ‖Θk‖ is O(ετ) in a stronger sense. We answer
this question in the next section.

It is straightforward to extend the analysis in this section to the case of diminishing step sizes,
see Appendix F. Since the focus of the paper is on constant step-size algorithms, we do not discuss
issues such as choosing the stepsizes to optimize the rate of convergence.

2.3. Finite-Time Bounds on the Higher Moments

Based on the finite-time bound on the mean-square error, we can further derive the bounds on
higher moments of ||Θk||2 by induction. In this section, we show that that given a constant step-size
ε, for any n = o

(
1
ετ

)
, the n-th moment of ‖Θk‖2 can be bounded by the 2n-th moment of some

Gaussian random variable. Further, for sufficiently large n (n = ω
(

1
ε

)
), the higher moments will be

∞ in steady state, which may appear to be surprising given standard results on Brownian limits of
stochastic recursions in the limit ε → 0. We present an explanation and some intuition first before
we state our main results for higher moments.
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It is standard in the study of certain stochastic recursions to use a higher power of the same
Lyapunov function used to obtain lower moment bounds to obtain higher moment bounds, see
Eryilmaz and Srikant (2012); Srikant and Ying (2013), for example. However, the analysis in these
references, which use some equivalent of letting ε → 0 in this paper, the phenomenon which we
observe here does not occur: namely that some higher moments do not exist for each non-zero ε. To
get some intuition about why certain higher moments may not exist, consider obtaining a recursion
for E

[
||Θk||2n

]
from (1) for the case where Θk is a scalar and {Xk} are i.i.d.; it will be of the form

E
[
Θ2n
k+1

]
= E

[
(1 + εA(Xk))

2n
]
E
[
Θ2n
k

]
+ additional terms.

IfE[(1+εA(Xk))
2n)] > 1, this recursion will blow up to infinity depending on the additional terms

above. We will present an example in Appendix E to show that this can indeed happen.
It is also instructive to compare our results to those obtained from Ornstein-Uhlenbeck (O-U)

limits of stochastic recursions such as those studied in Hajek (1985); Kushner and Yin (2003);
Borkar (2009); typically it is shown that Θk/

√
ε converges to an O-U process in the limit as ε→ 0.

One may be tempted to conclude that it may be possible to obtain tail probabilities of the form
Pr(||Θk|| ≥

√
εx) using the Gaussian steady-state limit of the O-U process. Our analysis here

shows that this is incorrect, in general. In fact, the steady-state distribution is not only not sub-
Gaussian, it is not even sub-exponential since the higher moments are all infinity for large n. We
remark that the constant step-size analysis of other reinforcement learning algorithms have been
considered in Borkar and Meyn (2000); Beck and Srikant (2012), but they do not consider TD
learning with a linear function approximation nor higher-moment bounds as we consider here. Now,
we present our main result on higher moments.

Theorem 9 Assume the step-size ε satisfies the assumption in Theorem 7. Then for any integer n
such that ετn ≤ 1

4
√
γmin

(
1

γmin
+ bmax

)
, there exists kn such that for any k ≥ kn,

E
[
‖Θk‖2n

]
≤ (2n− 1)!! (cτε)n , (13)

where

kn = nτ +
c̃

ε

(
log

1

ε

) n∑
m=1

1

m
, (14)

and both c and c̃, defined in the appendix, are constants independent of ε and n. �

The proof of this theorem can be found in Appendix D. The above result holds for n = O(1/ετ).
In an example in Appendix E, it is shown that the nth moment of ‖Θ∞‖2 for n = ω

(
1
ε

)
does not

exist.

Remark 10 Since n = O(1/ετ) is sufficient for steady-state moments no higher than n to exist and
τ = O(log 1

ε ), it is easy to see that k = O(1
ε log2 1

ε ) is sufficient for the bounds in (14) to hold. This
is only off by a logarithmic factor from the sufficient condition for the bound on the mean-square
error to reach a value close to its steady-state; see Remark 8.
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3. TD Learning

We consider an MDP over a finite state-space, denoted by S, operating under a fixed stationary
policy. We assume that the resulting Markov chain is time-homogeneous, irreducible and aperiodic,
and so has a unique stationary distribution π to which it converges from any initial probability
distribution. We will denote the ith component of the stationary distribution by π(i). Since the
policy is fixed, we will not use any explicit notation to denote the policy and will consider the
resulting Markov chain directly. Let Zk ∈ S denote the state of the Markov chain in time instant
k. We are interested in estimating the value function V, associated with the given policy. The value
function at state i is given by

V (i) = E

[ ∞∑
k=0

αkc(Zk)

∣∣∣∣∣Z0 = i

]
, (15)

where c(i) is the instantaneous reward associated with state i, and α ∈ [0, 1) is the discount factor.
It is well known that the value function satisfies

V (i) = c̄(i) + α
∑
j

pijV (j), (16)

where c̄(i) = E[c(i)], and pij is the one-step probability of jumping from state i to state j. If pij
were known, V can be obtained by solving the above equation. Here, our goal is to estimate the
value function by observing a trace of the Markov chain {Z0, Z1, Z2, . . .}.

Since the size of the state space can be very large, the goal is to approximate the value function
by a linear function of suitably chosen feature vectors as follows:

V (i) ≈ φ>(i)θ,

where θ is an unknown weight vector to be estimated and φ(i) is a feature vector associated with
state i. If we denote the size of the state space by N and the dimension of θ by d, then d ≤ N and
typically d << N.

3.1. TD(0)

Consider the following constant step size version of TD(0) to estimate θ :

Θk+1 =Θk − εφ(Zk)
(
φ>(Zk)Θk − c(Zk)− αφ>(Zk+1)Θk

)
=Θk + ε

(
−φ(Zk)

(
φ>(Zk)− αφ>(Zk+1)

)
Θk + c(Zk)φ(Zk)

)
,

where Θk is the estimate of θ at time instant k and ε ∈ (0, 1) is a constant step size.
Define Φ> to be matrix whose rows are φ>(i), D to be a diagonal matrix with D(i, i) = π(i),

where π(i) is the stationary distribution of the Markov chain Z in state i, Γ to be the transition prob-
ability matrix of the Markov chain Z, and c̄ = (c̄(1), · · · , c̄(i), · · · )>. For the case of diminishing
step sizes, by verifying the conditions in Benveniste et al. (2012), it was shown in Tsitsiklis and
Van Roy (1997) that the algorithm tracks the ODE

θ̇ = Ãθ + b̃, (17)

10
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and converges to its unique equilibrium point θ∗ under the assumption that Φ is full rank, where

Ã = −ΦD
(

Φ> − αΓΦ>
)

and b̃ = ΦDc̄.

Now by centering the equilibrium point to zero (i.e., Θ← Θ− θ∗) and defining

Xk = (Zk, Zk+1)>

A(Xk) =− φ(Zk)
(
φ>(Zk)− αφ>(Zk+1)

)
b(Xk) =c(Zk)φ(Zk)−A(Xk)θ

∗

Ā =Ã

b̄ =0,

TD(0) can be written as a special case of the general stochastic approximation algorithm form (1).

3.2. TD(λ)

In TD(λ), instead of updating the weight vector in the direction of the feature vector of the current
state, i.e., φ(Zk), one uses the direction of the eligibility trace which is defined to be

ϕk = (αλ)ϕk−1 + φ(Zk).

In other words,

Θk+1 = Θk − εφ(Zk)
(
φ>(Zk)Θk − c(Zk)− αφ>(Zk+1)

)
ϕk.

Note that Xk = (Zk, Zk+1, ϕk) is a Markov chain. The algorithm is similar to TD(0) except that
now the state-space of the underlying Markov chain is uncountable due to the presence of ϕk.

The ODE for TD(λ) in the form of θ̇ = Ãθ + b̃ (Lemma 6.5 in Bertsekas and Tsitsiklis (1996))
has

Ã = φ>D(U − I)φ and b̃ = φ>Dqc̃,

where

U = (1− λ)
∞∑
j=0

λj(αΓ)j+1 and c̃ =
∞∑
j=0

(αλΓ)j c̄.

By centering the equilibrium point to zero (i.e. Θ← Θ− θ∗) and defining

A(Xk) =− ϕk
(
φ>(Zk)− αφ>(Zk+1)

)
b(Xk) =c(Zk)ϕk −A(Xk)θ

∗

Ā =Ã

b̄ =0,

the update of Θk can be written in the form of the general stochastic approximation in Theorem 7

Θk+1 = Θk + ε (A(Xk)Θk + b(Xk)) .

11
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Since both TD(0) and TD(λ) are special cases of general stochastic approximation. Our finite-
time bounds can be applied to TD learning when Assumptions 1-3 hold. In the following corollary,
it shows that the finite-time bounds are valid when the feature matrix used in linear function approx-
imation is full rank, and the 2-norm of feature vectors and instantaneous rewards are both bounded.
The proof of this corollary is included in the appendix.

Corollary 11 The finite-time bounds in Theorem 7 and Theorem 9 apply to TD(0) and TD(λ) when
the feature matrix Φ is full rank, maxi∈S ‖φ(i)‖ = φmax <∞, and maxi∈S E[c(i)] = cmax <∞.
�

Note that Tsitsiklis and Van Roy (1997) proves that Ā is a negative definite matrix (but not
necessarily symmetric), not just Hurwitz. In this special case, in addition to the Lyapunov function
used in Theorem 7, one can also use a different Lyapunov function, and follow the rest of the steps
in our analysis of general linear stochastic approximation algorithms, to obtain finite-time bounds.
We present the analysis for the mean square error in Appendix G.

4. Conclusions

In this paper, we solve the problem of obtaining finite-time bounds on the performance of temporal
difference learning algorithms using linear function approximation and a constant step-size, without
making i.i.d. noise assumptions or requiring a projection step to keep the parameters bounded. Our
approach is to consider a more general linear stochastic approximation model and analyze it by
studying the drift of a Lyapunov function motivated by Stein’s method. Our analysis shows that
the moments (up to a certain order) of the square of the 2-norm of the approximation error can
be upper-bounded by the moments of a Gaussian random variable; and beyond a certain order, the
higher moments become unbounded in steady-state. Our results are also easily extendable to obtain
finite-time moment bounds for time-varying step sizes as well.

Acknowledgments: Research supported by the following grants: NSF NeTS 1718203, NSF CPS
ECCS 1739189, NSF CPS ECCS 1739344, CMMI 1562276, NSF ECCS 1609370, NSF ECCS
1609202, NSF/USDA Grant AG 2018-67007-28379, NSF NeTS 1813392, and NSF SpecEES 1824393.
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Appendix A. Proof of Lemma 3

We first have

‖Θk+1 −Θk‖ ≤ ε ‖A(Xk)Θk + b(Xk)‖ ≤ ε (‖Θk‖+ bmax) , (18)

which implies that

‖Θk+1‖ ≤ (1 + ε) ‖Θk‖+ εbmax.

By recursively using the inequality above, we have

‖Θk‖ ≤ (1 + ε)k ‖Θ0‖+ εbmax

k−1∑
j=0

(1 + ε)j ,

which is an increasing function in k. Therefore, for any 1 ≤ k ≤ τ, we have

‖Θk‖ ≤ (1 + ε)τ ‖Θ0‖+ εbmax

τ−1∑
j=0

(1 + ε)j

= (1 + ε)τ ‖Θ0‖+ εbmax
(1 + ε)τ − 1

ε
.

Next we want to use the following bound

(1 + x)τ ≤ 1 + 2xτ (19)

for small x. Note that
(1 + x)τ |x=0 = 1 + 2xτ |x=0 ;

and when x ≤ log 2
τ−1 ,

∂

∂x
(1 + x)τ = τ(1 + x)τ−1 ≤(a) τe

x(τ−1) ≤(b) 2τ =
∂

∂x
(1 + 2xτ)
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where inequality (a) holds because log(1 + x) ≤ x for x ≥ 0, and inequality (b) holds when
x ≤ log 2

τ−1 .

Since we have assumed that ετ ≤ 1/4, we have ε ≤ 1
4τ ≤

log 2
(τ−1) , and so we can apply the bound

(19) to obtain ∀1 ≤ k ≤ τ,

‖Θk‖ ≤ (1 + 2ετ) ‖Θ0‖+ 2ετbmax ≤ 2‖Θ0‖+ 2ετbmax, (20)

where the last inequality holds because ετ ≤ 1
4 .

Now from (18) and (20), we have

‖Θτ −Θ0‖ ≤
τ−1∑
k=0

‖Θk+1 −Θk‖

≤ε
τ−1∑
k=0

‖Θk‖+ ετbmax

≤ετ (2‖Θ0‖+ 2ετbmax) + ετbmax

=2ετ‖Θ0‖+ 2ε2τ2bmax + ετbmax

≤2ετ‖Θ0‖+ 2ετbmax,

where the last inequality holds because

2ε2τ2bmax ≤
1

2
ετbmax

due to the choice of ε which satisfies ετ ≤ 1
4 .

From the inequality above, we further have

‖Θτ −Θ0‖ ≤2ετ‖Θ0‖+ 2ετbmax

≤2ετ‖Θτ −Θ0‖+ 2ετ‖Θτ‖+ 2ετbmax

≤1

2
‖Θτ −Θ0‖+ 2ετ‖Θτ‖+ 2ετbmax,

which implies that

‖Θτ −Θ0‖ ≤ 4ετ‖Θτ‖+ 4ετbmax.

This further implies that

‖Θτ −Θ0‖2 ≤32ε2τ2‖Θτ‖2 + 32ε2τ2b2max,

because (a+ b)2 ≤ 2a2 + 2b2.
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Appendix B. Proof of Lemma 4

Note that ∣∣∣(Θk+1 −Θk)
>P (Θk+1 −Θk)

∣∣∣
≤γmax ‖Θk+1 −Θk‖2

≤ε2γmax ‖A(Xk)Θk + b(Xk)‖2

≤ε2γmax (‖A(Xk)Θk‖+ ‖b(Xk)‖)2

≤ε2γmax (‖Θk‖+ bmax)2

≤2ε2γmax

(
‖Θk‖2 + b2max

)
,

where the second-to-last inequality uses the fact that ‖A(Xk)‖ ≤ 1.

Appendix C. Proof of Lemma 5

We prove Lemma 5 for the case k = τ, the proof for the general case is essentially identical. We
first note that

E

[
Θ>τ P

(
ĀΘτ −

1

ε
(Θτ+1 −Θτ )

)∣∣∣∣Θ0, X0

]
=E

[
Θ>τ P

(
ĀΘτ − (A(Xτ )Θτ + b(Xτ ))

)∣∣∣Θ0, X0

]
=E

[
Θ>τ P

(
ĀΘτ −A(Xτ )Θτ

)∣∣∣Θ0, X0

]
(21)

− E
[

Θ>τ Pb(Xτ )
∣∣∣Θ0, X0

]
. (22)

We first consider (21):

(21)

=E
[

Θ>τ P
(
ĀΘτ −A(Xτ )Θτ

)∣∣∣Θ0, X0

]
=E

[
Θ>0 P

(
ĀΘ0 −A(Xτ )Θ0

)∣∣∣Θ0, X0

]
+ E

[
(Θτ −Θ0)>P

(
Ā−A(Xτ )

)
(Θτ −Θ0)

∣∣∣Θ0, X0

]
+

E
[

(Θτ −Θ0)>P
(
Ā−A(Xτ )

)
Θ0

∣∣∣Θ0, X0

]
+ E

[
Θ>0 P

(
Ā−A(Xτ )

)
(Θτ −Θ0)

∣∣∣Θ0, X0

]
.

We next analyze each of the terms above. First we have∣∣∣E [Θ>0 P
(
Ā−A(Xτ )

)
Θ0

∣∣∣Θ0, X0

]∣∣∣
=
∣∣∣Θ>0 P (Ā− E [A(Xτ )|X0]

)
Θ0

∣∣∣
≤‖Θ>0 P‖

∥∥(Ā− E [A(Xτ )|X0]
)

Θ0

∥∥
≤(a)εγmax‖Θ0‖2 (23)
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where inequality (a) holds due to the assumption on the mixing time τ. Next,∣∣∣E [(Θτ −Θ0)>P
(
Ā−A(Xτ )

)
(Θτ −Θ0)

∣∣∣Θ0, X0

]∣∣∣
≤E

[∥∥∥(Θτ −Θ0)>P
∥∥∥ ∥∥(Ā−A(Xτ )

)
(Θτ −Θ0)

∥∥∣∣∣Θ0, X0

]
≤γmaxE

[
(‖Ā‖+ ‖A(Xτ )‖) ‖Θτ −Θ0‖2

∣∣∣Θ0, X0

]
≤2γmaxE

[
‖Θτ −Θ0‖2

∣∣∣Θ0, X0

]
. (24)

Finally,∣∣∣E [(Θτ −Θ0)>P
(
Ā−A(Xτ )

)
Θ0

∣∣∣Θ0, X0

]∣∣∣+
∣∣∣E [Θ>0 P

(
Ā−A(Xτ )

)
(Θτ −Θ0)

∣∣∣Θ0, X0

]∣∣∣
≤4γmax‖Θ0‖E [‖Θτ −Θ0‖|Θ0, X0]

≤(a)8ετγmax‖Θ0‖ (‖Θ0‖+ bmax)

≤8ετγmax‖Θ0‖2 + 8ετγmax‖Θ0‖bmax (25)

where inequality (a) follows from Lemma 3.
Next we consider (22) and use the definition of the mixing time to obtain∣∣∣−E [Θ>τ Pb(Xτ )

∣∣∣Θ0, X0

]∣∣∣
=
∣∣∣−E [Θ>0 Pb(Xτ )

∣∣∣Θ0, X0

]
− E

[
(Θ>τ −Θ>0 )Pb(Xτ )

∣∣∣Θ0, X0

]∣∣∣
≤εγmax‖Θ0‖+ γmaxbmaxE [‖Θτ −Θ0‖|Θ0, X0]

≤εγmax‖Θ0‖+ 2ετγmaxbmax (‖Θ0‖+ bmax) . (26)

By combining the bounds (23)-(26), we have

E

[
Θ>τ P

(
ĀΘτ −

1

ε
(Θτ+1 −Θτ )

)∣∣∣∣Θ0, X0

]
≤ (εγmax + 8ετγmax) ‖Θ0‖2 + (εγmax + 10ετγmaxbmax) ‖Θ0‖+ 2ετγmaxb

2
max

+ 2γmaxE
[
‖Θτ −Θ0‖2

∣∣∣Θ0, X0

]
≤(b)14ετγmax(bmax + 1)‖Θ0‖2 + 7ετγmax(bmax + 1)2 + 2γmaxE

[
‖Θτ −Θ0‖2

∣∣∣Θ0, X0

]
≤(c)14ετγmax(bmax + 1)E

[
‖Θτ‖2

∣∣Θ0, X0

]
+ 7ετγmax(bmax + 1)2

+ 6γmax(bmax + 1)E
[
‖Θτ −Θ0‖2

∣∣∣Θ0, X0

]
≤(d)14ετγmax(bmax + 1)E

[
‖Θτ‖2

∣∣Θ0, X0

]
+ 7ετγmax(bmax + 1)2

+ 6γmax(bmax + 1)
(
32ε2τ2E

[
‖Θτ‖2

∣∣Θ0, X0

]
+ 32ε2τ2b2max

)
≤(e)62ετγmax(bmax + 1)E

[
‖Θτ‖2

∣∣Θ0, X0

]
+ 55ετγmax(bmax + 1)3, (27)

where inequality (b) holds by noting that 2‖Θ0‖ ≤ 1 + ‖Θ0‖2, (c) follows from the triangle in-
equality, (d) follows from Lemma 3, and (e) uses the fact ετ ≤ 1/4.
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Appendix D. Proof of Theorem 9

We will use induction to prove this theorem. Suppose the bound holds for n − 1, and consider n.
To simplify notation, we consider the system starting from kn−1. In other words, in the following
analysis, the kth iteration is the (k + kn−1)th iteration of the original system. To simplify our
notation, we assume bmax ≥ 1 without the loss of generality. Since P is a real positive definite
matrix, there exists a real positive definite matrix S such that S>S = P, and the eigenvalues of S
are the square roots of eigenvalues of P. We define Ψ = SΘ, so Θ>PΘ = Ψ>Ψ and Θ = S−1Ψ.
Note that S> = S.

We consider Lyapunov function

Wn(ψ) =
(
ψ>ψ

)n
.

The gradient and Hessian of Wn(ψ) are given below:

OWn(ψ) =2n
(
ψ>ψ

)n−1
ψ

O2Wn(ψ) =4n(n− 1)
(
ψ>ψ

)n−2
ψψ> + 2n

(
ψ>ψ

)n−1
I.

Taylor’s Theorem states

Wn(ψ̂) = Wn(ψ) + (ψ̂ − ψ)>OWn(ψ) +
1

2
(ψ̂ − ψ)>O2Wn(ψ̃)(ψ̂ − ψ),

where ψ̃ = hψ + (1− h)ψ̂ for some h ∈ [0, 1]. Therefore, we have(
Ψ>k+1Ψk+1

)n
=
(

Ψ>k Ψk

)n
+ (Ψk+1 −Ψk)

>2n
(

Ψ>k Ψk

)n−1
Ψk

+ (Ψk+1 −Ψk)
>
(

4n(n− 1)
(

Ψ̃>Ψ̃
)n−2

Ψ̃Ψ̃> + 2n
(

Ψ̃>Ψ̃
)n−1

I

)
(Ψk+1 −Ψk),

where Ψ̃ = hΨk + (1− h)Ψk+1 for some h ∈ [0, 1], which implies that(
Ψ>k+1Ψk+1

)n
=
(

Ψ>k Ψk

)n
+ 2(εSĀΘk)

>n
(

Ψ>k Ψk

)n−1
Ψk (28)

+ (Ψk+1 −Ψk − εSĀΘk)
>2n

(
Ψ>k Ψk

)n−1
Ψk (29)

+ (Ψk+1 −Ψk)
>
(

4n(n− 1)
(

Ψ̃>Ψ̃
)n−2

Ψ̃Ψ̃> + 2n
(

Ψ̃>Ψ̃
)n−1

I

)
(Ψk+1 −Ψk). (30)

We will analyze each of the three terms above in the following subsections.
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D.1. Bounding (28)

First, from the Lyapunov equation, we obtain

2(SĀS−1ψ)>ψ = 2θ>Ā>Pθ = −θ>θ = −ψ>P−1ψ,

which implies that

(28) =
(

Ψ>k Ψk

)n
− εn

(
Ψ>k Ψk

)n−1
Ψ>k P

−1Ψk

=
(

Ψ>k Ψk

)n−1 (
Ψ>k Ψk − εnΨ>k P

−1Ψk

)
≤
(

1− εn

γmax

)(
Ψ>k Ψk

)n
. (31)

D.2. Bounding (29)

Next we have

(29) =− 2ε(A(Xk)Θk + b(Xk)− ĀΘk)
>n
(

Ψ>k Ψk

)n−1
SΨk

=− 2ε(A(Xk)Θ0 + b(Xk)− ĀΘ0)>n
(

Ψ>0 Ψ0

)n−1
SΨ0 (32)

− 2ε(
(
A(Xk)− Ā

)
(Θk −Θ0))>n

(
Ψ>0 Ψ0

)n−1
SΨ0 (33)

− 2ε(A(Xk)Θk + b(Xk)− ĀΘk)
>
(
n
(

Ψ>k Ψk

)n−1
SΨk − n

(
Ψ>k Ψk

)n−1
SΨ0

)
(34)

− 2ε(A(Xk)Θk + b(Xk)− ĀΘk)
>
(
n
(

Ψ>k Ψk

)n−1
SΨ0 − n

(
Ψ>0 Ψ0

)n−1
SΨ0

)
.

(35)

We recall the following inequalities

‖Θk −Θ0‖ ≤2εk (‖Θ0‖+ bmax)∥∥A(Xk)Θk + b(Xk)− ĀΘk

∥∥ ≤2‖Θk‖+ bmax.

Also according to Taylor’s theorem, we have∥∥∥∥(Ψ>k Ψk

)n−1
−
(

Ψ>0 Ψ0

)n−1
∥∥∥∥ ≤4εk(n− 1)

√
γmax (‖Θ0‖+ bmax) ‖Ψ̂‖2n−3,

where ‖Ψ̂‖ = ĥ‖Ψ0‖+ (1− ĥ)‖Ψk‖ for some ĥ ∈ [0, 1].
We next analyze (32)-(35). First,

(32) = 2εn
(

Ψ>0 Ψ0

)n−1 (
((A(Xk)− Ā)Θ0)>SΨ0 + b>(Xk)SΨ0

)
.

Based on the mixing assumption, we have

E[|(32)|] =E[E[|(32)||Θ0]]

≤E
[
2ε2n

(√
γmax

γmin
‖Ψ0‖2n +

√
γmax‖Ψ0‖2n−1

)]
≤E

[
ε2n

((
2

√
γmax

γmin
+
√
γmax

)
‖Ψ0‖2n +

√
γmax‖Ψ0‖2n−2

)]
.
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Next,

|(33)| ≤8
√
γmaxε

2kn (‖Θ0‖+ bmax) ‖Ψ0‖2n−1

≤8
√
γmaxε

2kn

(
1

√
γmin

‖Ψ0‖+ bmax

)
‖Ψ0‖2n−1

=8
√
γmaxε

2kn

(
1

√
γmin

‖Ψ0‖2n + bmax‖Ψ0‖2n−1

)
≤4
√
γmaxε

2kn

((
2

√
γmin

+ bmax

)
‖Ψ0‖2n + bmax‖Ψ0‖2n−2

)
,

and

|(34)| ≤4γmaxε
2kn(2‖Θk‖+ bmax)2‖Ψk‖2n−2

=4γmaxε
2kn

(
4‖Θk‖2 + 4bmax‖Θk‖+ b2max

)
‖Ψk‖2n−2

≤4γmaxε
2kn

(
(4 + 2bmax)‖Θk‖2 + (b2max + 2bmax)

)
‖Ψk‖2n−2

≤4γmaxε
2kn

(
4 + 2bmax

γmin
‖Ψk‖2n + (b2max + 2bmax)‖Ψk‖2n−2

)
.

Finally, we have

|(35)| ≤8γmaxε
2kn(n− 1)(2‖Θk‖+ bmax)(‖Θ0‖+ bmax)‖Ψ0‖‖Ψ̂‖2n−3.

According to the definition of Ψ̂, we obtain

‖Ψ̂‖2n−3 ≤ ‖Ψ0‖2n−3 + ‖Ψk‖2n−3.

Furthermore, note that
|x|a|y|b ≤ |x|a+b + |y|a+b

for any a > 0 and b > 0. Therefore, we have

|(35)| ≤8γmaxε
2kn(n− 1)

(
4 + 3bmax

γmin

(
‖Ψk‖2n + ‖Ψ0‖2n

)
+

2b2maxγmin + 3bmax

γmin

(
‖Ψ0‖2n−2 + ‖Ψk‖2n−2

))
.

D.3. Bounding (30)

We now consider (30), and have

|(30)| ≤γmaxε
2 (‖Θk‖+ bmax)2

(
4n2‖Ψ̃‖2n−2

)
≤4γmaxε

2n2
(
2‖Θk‖2 + 2b2max

) (
‖Ψ0‖2n−2 + ‖Ψk‖2n−2

)
≤4γmaxε

2n2

(
4

γmin
‖Ψk‖2n +

2

γmin
‖Ψ0‖2n + 2b2max

(
‖Ψ0‖2n−2 + ‖Ψk‖2n−2

))
.
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D.4. Bounding E[‖Ψ0‖2n]

We note that

‖Ψ0‖2n − ‖Ψk‖2n =
2n−1∑
m=0

(
‖Ψ0‖2n−m‖Ψk‖m − ‖Ψ0‖2n−m−1‖Ψk‖m+1

)
=

2n−1∑
m=0

‖Ψ0‖2n−m−1‖Ψk‖m (‖Ψ0‖ − ‖Ψk‖)

≤
2n−1∑
m=0

2
√
γmaxεk‖Ψ0‖2n−m−1‖Ψk‖m(‖Θ0‖+ bmax).

Furthermore,

‖Ψ0‖2n−m−1‖Ψk‖m(‖Θ0‖+ bmax)

≤ 1
√
γmin
‖Ψ0‖2n−m‖Ψk‖m + bmax‖Ψ0‖2n−m−1‖Ψk‖m

≤
(

1
√
γmin

+ bmax

)
‖Ψ0‖2n−m‖Ψk‖m + bmax‖Ψ0‖2n−m−2‖Ψk‖m

≤
(

1
√
γmin

+ bmax

)(
‖Ψ0‖2n + ‖Ψk‖2n

)
+ bmax

(
‖Ψ0‖2n−2 + ‖Ψk‖2n−2

)
.

Therefore, we have

‖Ψ0‖2n − ‖Ψk‖2n

≤4
√
γmaxεkn

((
1

√
γmin

+ bmax

)(
‖Ψ0‖2n + ‖Ψk‖2n

)
+ bmax

(
‖Ψ0‖2n−2 + ‖Ψk‖2n−2

))
=εkn

(
c̃1(‖Ψ0‖2n + ‖Ψk‖2n) + c̃2

(
‖Ψ0‖2n−2 + ‖Ψk‖2n−2

))
,

where c̃1 = 4
√
γmax

(
1√
γmin

+ bmax

)
and c̃2 = 4

√
γmaxbmax, which implies that

(1− c̃1εkn)‖Ψ0‖2n − (1 + c̃1εkn)‖Ψk‖2n ≤ c̃2εkn
(
‖Ψ0‖2n−2 + ‖Ψk‖2n−2

)
,

and

‖Ψ0‖2n ≤
1 + c̃1εkn

1− c̃1εkn
‖Ψk‖2n +

c̃2

1− c̃1εkn
εkn

(
‖Ψ0‖2n−2 + ‖Ψk‖2n−2

)
.

Choosing k = τ and under assumption that εkn ≤ 1
2c̃1
, we have

‖Ψ0‖2n ≤3‖Ψk‖2n +
c̃2

c̃1
‖Ψ0‖2n−2 +

c̃2

c̃1
‖Ψk‖2n−2.

D.5. Higher Moment Bounds

Choosing k = τ, from the analysis above, we observe that the bounds we have involve ‖Ψk‖2n,
‖Ψ0‖2n−2 and ‖Ψτ‖2n−2, where E

[
‖Ψ‖2n−2

]
≤ (2n − 3)!!(cτε)n−1 based on the induction as-

sumption. Therefore, it is easy to verify that there exist constant c1 and c2, independent of ε, τ and
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n, such that

E
[(

Ψ>τ+1Ψτ+1

)n]
≤
(

1− εn

γmax

)
E
[(

Ψ>τ Ψτ

)n]
+ ε2τn2

(
c1E

[(
Ψ>τ Ψτ

)n]
+ c2(2n− 3)!!(cτε)n−1

)
≤
(

1− 0.9εn

γmax

)
E
[(

Ψ>τ Ψτ

)n]
+ ε2τnc2(2n− 1)!!(cτε)n−1,

where the last inequality holds because ε = O( 1
τn). The same inequality holds for any k ≥ τ (by

conditioning on Θk−τ instead of Θ0 in the analysis). We therefore have for the original system,

E
[(

Ψ>k Ψk

)n]
≤
(

1− 0.9εn

γmax

)k−kn−1−τ
E
[(

Ψ>kn−1+τΨkn−1+τ

)n]
+

10c2γmax

9
τε(2n− 1)!!(cτε)n−1.

Since

‖Ψkn−1+τ‖ ≤‖Ψ0‖+ ‖Ψkn−1+τ −Ψ0‖
≤√γmax (‖Θ0‖+ 2ε(kn−1 + τ)(‖Θ0‖+ bmax))

≤3
√
γmaxεkn−1 (‖Θ0‖+ bmax) ,

where the last inequality holds because kn−1 = ω
(

1
ε

)
and τ = log 1

ε , we have

E
[(

Ψ>kn−1+τΨkn−1+τ

)n]
≤ (3
√
γmaxεkn−1 (‖Θ0‖+ bmax))2E

[(
Ψ>kn−1+τΨkn−1+τ

)n−1
]
,

which implies that

E
[(

Ψ>k+1Ψk+1

)n]
≤
(

1− 0.9εn

γmax

)k−kn−1−τ
9γmaxε

2k2
n−1 (‖Θ0‖+ bmax)2 (2n− 3)!!(cτε)n−1 +

10c2γmax

9
τε(2n− 1)!!(cτε)n−1.

Therefore, we conclude that for

k ≥ kn = kn−1 + τ +
log

εk2n−1(‖Θ0‖+bmax)2

2c2τn

− log
(

1− 0.9εn
γmax

) , (36)

we have the following bound

E
[(

Ψ>k+1Ψk+1

)n]
≤ 11c2γmaxτε(2n− 1)!!(cτε)n−1. (37)

So the theorem holds by defining c = 11 max{c2γmax,
κ̃2γmax

γmin
} and by noting that

log
εk2n−1(‖Θ0‖+bmax)2

2c2τn

− log
(

1− 0.9εn
γmax

) = O

(
1

εn
log

1

ε

)
.
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Appendix E. Example showing that higher moments may not exist

We consider the following example:

Θk+1 = Θk + ε (A(Xk)Θk + b(Xk)) ,

where Xk ∈ {−1, 1} are independent Bernoulli random variables (across k) such that

Pr (Xk = −1) = Pr (Xk = 1) = 0.5.

Furthermore, we define A(−1) = −2, b(−1) = −1, and A(1) = b(1) = 1. Therefore, the ODE is

θ̇ = −θ.

Consider the 2n-th moment of Θ at steady state. Suppose the 2n-th moment exists and assume
the system is at steady state at time 0. We then have

E
[
Θ2n

1

]
= E

[
Θ2n

0

]
,

i.e.
E
[
E
[
Θ2n

1 −Θ2n
0

∣∣Θ0

]]
= 0.

From Taylor’s Theorem, we have

Θ2n
1 −Θ2n

0

=2nΘ2n−1
0 (Θ1 −Θ0) + n(2n− 1)Θ̃2n−2 (Θ1 −Θ0)2

=2εnΘ2n−1
0 (A(X0)Θ0 + b(X0)) + ε2n(2n− 1)Θ̃2n−2 (A(X0)Θ0 + b(X0))2

where Θ̃ = hΘ0 + (1− h)Θ1 for some h ∈ [0, 1]. Since X0 is independent of Θ0, we have

E
[
Θ2n

1 −Θ2n
0 |Θ0

]
=− 2εnΘ2n

0 + ε2n(2n− 1)E
[

Θ̃2n−2 (A(X0)Θ0 + b(X0))2
∣∣∣Θ0

]
.

Note that if Θ0 > 0, then when A(X0) = b(X0) = 1, which occurs with probability 0.5, we have
Θ̃ > Θ0, and

Θ̃2n−2 (A(X0)Θ0 + b(X0))2 ≥ Θ2n−2
0 (Θ0 + 1)2 ≥ Θ2n

0 .

If Θ0 < 0, then when A(X0) = −2 and b(X0) = −1, which occurs with probability 0.5, we have
−Θ̃ > −Θ0, and

Θ̃2n−2 (A(X0)Θ0 + b(X0))2 ≥ Θ2n−2
0 (−2Θ0 − 1)2 ≥ 4Θ2n

0 .

Therefore, we can conclude

E
[

Θ̃2n−2 (A(X0)Θ0 + b(X0))2
∣∣∣Θ0

]
≥ 1

2
Θ2n

0 ,

which implies that

E
[
Θ2n

1 −Θ2n
0

∣∣Θ0

]
=

(
−2εn+

1

2
ε2n(2n− 1)

)
Θ2n

0

≥ (ε(n− 1)− 2) εnΘ2
0.

Therefore, when n = ω(1/ε), we have

0 = E
[
Θ2n

1 −Θ2n
0

]
≥ (ε(n− 1)− 2) εnE

[
Θ2

0

]
> 0,

which leads to the contradiction and proves that the 2n-th moment does not exist when n = ω(1/ε).
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Appendix F. Diminishing Step Sizes

Considering the stochastic recursion

Θk+1 = Θk + εk (A(Xk)Θk + b(Xk)) , (38)

where εk is the step-size used at iteration k. The step-size satisfies the following assumption: εk is
a nonincreasing sequence and there exists k∗ > 0 and κs > 0 such that for any k ≥ k∗, k− τεk ≥ 0

and
εk−τεk
εk
≤ κs.

Theorem 12 Define k̂ to be the smallest integer such that k̂ ≥ k∗, k̂ε0 ≤ 1/4, and

κ1κsεk̂τεk̂ + γmaxεk̂ ≤ 0.05.

Then for any k ≥ k̂, we have

E [‖Θk‖] ≤
γmax

γmin
(1.5‖Θ0‖+ 0.5bmax)2

k−1∏
j=k̂

aj

+ κ̌2

k−1∑
j=k̂

bj

 k−1∏
l=j+1

al

 ,

where aj = 1− 0.9εj
γmax

, bj = ε2jτεj , and κ̌2 = 2κ2κs + 2γmaxb
2
max. �

To prove the above theorem, we again use drift analysis with the same Lyapunov function

W (Θk) = Θ>k PΘk.

We first present the modified versions of Lemmas 4 and 5 for diminishing step size.

Lemma 13∣∣∣E [(Θk −Θk−1)>P (Θk −Θk−1)
∣∣∣Θ0

]∣∣∣ ≤ 2ε2kγmaxE
[
‖Θk‖2

∣∣∣Θ0

]
+ 2ε2kγmaxb

2
max.

�

The proof of this lemma is identical to that of Lemma 4.

Lemma 14 For any k such that k ≥ k∗ and k − τεk ≥ 0, the following bound holds:∣∣∣∣E [Θ>k P

(
ĀΘk −

1

εk
(Θk+1 −Θk)

)∣∣∣∣Θk−τεk

]∣∣∣∣ ≤ κ1κsεkτεkE
[
‖Θk‖2 |Θk−τεk

]
+ κ2κsεkτεk .

Proof Define l = k − τεk , which is a nonnegative number because k − τεk ≥ 0 according to the
assumption. By following the proof of Lemma 5 where we replace τ with τεk and ε with εl, and by
simplifying the constants κ1 and κ2 based on the fact that εlτεk ≤ 1

4 , we can obtain∣∣∣∣E [Θ>k P

(
ĀΘk −

1

εk
(Θk+1 −Θk)

)∣∣∣∣Θl

]∣∣∣∣ ≤ κ1εlτεkE
[
‖Θk‖2 |Θk−τεk

]
+ κ2εlτεk .
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Therefore, the lemma holds because εl ≤ κsεk for k > k∗.

Following the proof of Lemma 6, we have that for k ≥ k̂,

E
[
W (Θk+1)−W (Θk)|Θk−τεk

]
=− εkE

[
||Θk||2|Θk−τεk

]
−

E
[
εk∇>W (Θk)(ĀΘk) + (Θk)

>P (Θk+1 −Θk)
∣∣∣Θk−τεk

]
+

E

[
1

2
(Θk+1 −Θk)

>P (Θk+1 −Θk)

∣∣∣∣Θk−τεk

]
.

By applying the previous two lemmas, we obtain

E
[
W (Θk+1)−W (Θk)|Θk−τεk

]
≤− εkE

[
||Θk||2|Θk−τεk

]
+ 2εk (κ1κsεkτεk + εkγmax)E

[
||Θk||2|Θk−τεk

]
+

2κ2κsε
2
kτεk + 2γmaxb

2
maxε

2
k.

Under the assumption
κ1κsεkτεk + γmaxεk ≤ 0.05,

we have

E
[
W (Θk+1)−W (Θk)|Θk−τεk

]
≤− 0.9εkE

[
||Θk||2|Θk−τεk

]
+ 2κ2κsε

2
kτεk + 2γmaxb

2
maxε

2
k

≤− 0.9ε

γmax
E [W (Θk)|Θk−τ ] + 2κ2κsε

2
kτεk + 2γmaxb

2
maxε

2
k

≤− 0.9ε

γmax
E [W (Θk)|Θk−τ ] + 2

(
κ2κs + 2γmaxb

2
max

)
ε2kτεk ,

which implies

E [W (Θk+1)] ≤
(

1− 0.9εk
γmax

)
E [W (Θk)] + κ̌2ε

2
kτεk ,

where
κ̌2 = 2κ2κs + 2γmaxb

2
max.

By recursively using the previous inequality, we have for any k that satisfies the assumptions of
theorem, the following inequality holds

E [W (Θk)] ≤

k−1∏
j=k̂

aj

E
[
W (Θk̂)

]
+ κ̃2K

k−1∑
j=k̂

bj

 k−1∏
l=j+1

al


≤γmax

(
(1 + 2ε0k̂)‖Θ0‖+ 2ε0k̂bmax

)2

k−1∏
j=k̂

aj

+ κ̌2

k−1∑
j=k̂

bj

 k−1∏
l=j+1

al

 .

The theorem holds because W (Θk) ≥ γmin‖Θk‖.
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Appendix G. Negative Definite Ā

If Ā is not only Hurwitz but also negative definite (but not necessarily symmetric), then we can use
a simple quadratic Lyapunov function V (Θk) = ‖Θk‖2. Considering constant step τ, we have any
k ≥ τ, we have

E
[
‖Θk+1‖2 − ‖Θk‖2

∣∣Θk−τ
]

=E

[
Θ>k (Θk+1 −Θk) +

1

2
‖Θk+1 −Θk‖2

∣∣∣∣Θk−τ

]
=E

[
εΘ>k (A(Xk)Θk + b(Xk)) +

1

2
‖Θk+1 −Θk‖2

∣∣∣∣Θk−τ

]
=(a)εE

[
Θ>k Ā(Θk)

∣∣∣Θk−τ

]
+ εE

[
Θ>k (A(Xk)Θk + b(Xk)− ĀΘk)

∣∣∣Θk−τ

]
+

E

[
1

2
‖Θk+1 −Θk‖2

∣∣∣∣Θk−τ

]
≤ελminE

[
‖Θk‖2

∣∣Θk−τ
]

+ εE
[

Θ>k (A(Xk)Θk + b(Xk)− ĀΘk)
∣∣∣Θk−τ

]
+

E

[
1

2
‖Θk+1 −Θk‖2

∣∣∣∣Θk−τ

]
where equality (a) holds because and λmin < 0 is the largest eigenvalue of the negative definite
matrix Ā.

We can apply Lemma 4 and Lemma 5 with P = I, (i.e., γmin = γmax = 1, to bound the second
and third terms above. It is easy to verify that we have the following finite-time bounds for constant
step size and diminishing step size for using this simple quadratic Lyapunov function when Ā is
negative definite.

Corollary 15 For any k ≥ τ and κ1ετ + εγmax ≤ 0.05, we have the following finite-time bound:

E
[
‖Θk‖2

]
≤ (1− 0.9λminε)

k−τ (1.5‖Θ0‖+ 0.5bmax)2 +
κ̃2

0.9
ετ. (39)

�

Appendix H. Proof of Corollary 11

To apply the finite-time bound established in Theorem 7 to TD(0), we verify the assumptions pre-
sented in Section 2.1 under the assumptions of the corollary.

• Assumption 1: Note that

‖E[b(Xk)|X0 = (Z0, Z1) = (z0, z1)]‖

=

∥∥∥∥∥∑
i

(Pr (Zk = i|Z0 = z0, Z1 = z1)− πi)
(
c̄(i)φ(i) + φ(i)

(
φ>(i)− αPijφ>(j)

)
θ∗
)∥∥∥∥∥

≤bmax

∑
i

|πi − Pr (Zk = i|Z1 = z1) |,
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where bmax = cmaxφmax + 2φ2
maxθ

∗, and

‖Ā− E[A(Xk)|X0 = (Z0, Z1) = (z0, z1)]‖

=

∥∥∥∥∥∑
i

(Pr (Zk = i|Z1 = z1)− π(i))φ(i)
(
φ>(i)− αPijφ>(j)

)∥∥∥∥∥
≤2φ2

max

∑
i

|πi − Pr (Zk = i|Z1 = z1) |.

Since {Zk} is a finite state, aperiodic and irreducible Markov chain, it has a geometric mixing
rate Brémaud (2013), so Assumption 1 holds.

• Assumption 2: To satisfy Assumption 2, we assume maxi∈S ‖φ(i)‖ = φmax < ∞ and
maxi∈S E[c(i)] = cmax <∞, which implies

‖A(Xk)‖ =
∥∥∥−φ(Zk)

(
φ>(Zk)− αφ>(Zk+1)

)∥∥∥
≤‖φ(Zk)‖2 + α‖φ(Zk)‖‖φ(Zk+1)‖
≤(1 + α)φ2

max <∞
‖b(Xk)‖ ≤bmax <∞.

By normalizing the feature vectors, we can have φmax ≤ 1√
1+α

, which implies that

‖A(Xk)‖ ≤ (1 + α)φ2
max ≤ 1.

So Assumption 2 holds.

• Assumptions 3: The assumption holds when Φ is full rank Tsitsiklis and Van Roy (1997).

We next verify the assumptions presented in Section 2.1 for TD(λ).

• Assumption 1: Given that {Zk} is a finite-state, aperiodic and irreducible Markov chain,
geometric mixing holds according to Lemma 6.7 in Bertsekas and Tsitsiklis (1996).

• Assumption 2: We note that

‖ϕk‖ ≤ (αλ)‖ϕk−1‖+ ‖φ(Zk)‖ ≤ (αλ)‖ϕk−1‖+ φmax,

which implies that

‖ϕk‖ ≤ (αλ)k‖φ(Z0)‖+ φmax

k−1∑
j=0

(αλ)j ≤ φmax

1− αλ
<∞,

‖A(Xk)‖ =
∥∥∥−ϕk (φ>(Zk)− αφ>(Zk+1)

)∥∥∥
≤‖ϕk‖ (‖φ(Zk)‖+ α‖φ(Zk+1)‖)

≤(1 + α)

1− αλ
φ2

max <∞,
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and

‖b(Xk)‖ ≤ cmax‖ϕk‖+ ‖A(Xk)‖θ∗ ≤ (cmax + (1 + α)φmaxθ
∗)

φmax

1− αλ
.

Using feature normalization, we can assume φmax ≤
√

1−αλ
1+α ,which implies that ‖A(Xk)‖ ≤

1 and ‖b(Xk)‖ <∞. So Assumption 2 holds.

• Assumptions 3: The assumption holds when Φ is full rank Tsitsiklis and Van Roy (1997).
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