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Abstract
We study the sample complexity of model-based reinforcement learning (henceforth RL) in general
contextual decision processes that require strategic exploration to find a near-optimal policy. We
design new algorithms for RL with a generic model class and analyze their statistical properties. Our
algorithms have sample complexity governed by a new structural parameter called the witness rank,
which we show to be small in several settings of interest, including factored MDPs. We also show
that the witness rank is never larger than the recently proposed Bellman rank parameter governing the
sample complexity of the model-free algorithm OLIVE (Jiang et al., 2017), the only other provably
sample-efficient algorithm for global exploration at this level of generality. Focusing on the special
case of factored MDPs, we prove an exponential lower bound for a general class of model-free
approaches, including OLIVE, which, when combined with our algorithmic results, demonstrates
exponential separation between model-based and model-free RL in some rich-observation settings.
Keywords: Reinforcement Learning, exploration

1. Introduction

Reinforcement learning algorithms can be broadly categorized as model-based or model-free methods.
Methods in the former family explicitly model the environment dynamics and then use planning
techniques to find a near-optimal policy. In contrast, the latter family models much less, typically
only an optimal policy and its value. Algorithms from both families have seen substantial empirical
success, but we lack a rigorous understanding of the tradeoffs between them, making algorithm
selection difficult for practitioners. This paper provides a new understanding of these tradeoffs, via a
comparative analysis between model-based and model-free methods in general RL settings.

Conventional wisdom and intuition suggests that model-based methods are more sample-efficient
than model-free methods, since they leverage more supervision. This argument is supported by
classical control-theoretic settings like the linear quadratic regulator, where state-of-the-art model-
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based methods have better dimension dependence than contemporary model-free ones (Tu and Recht,
2018). On the other hand, since models typically have more degrees of freedom (e.g., parameters)
and can waste effort on unimportant elements of the environment, one might suspect that model-free
methods have better statistical properties. Indeed, recent work in tabular Markov Decision Processes
(MDPs) suggest that there is almost no sample-efficiency gap between the two families (Jin et al.,
2018). Even worse, in complex environments where function approximation and global exploration
are essential, the only algorithms with sample complexity guarantees are model-free (Jiang et al.,
2017). In such environments, which of these competing perspectives applies?

To answer this question, we study model-based RL in episodic contextual decision processes
(CDPs) where high-dimensional observations are used for decision making and the learner needs to
perform strategic exploration to find a near-optimal policy. For model-based algorithms, we assume
access to a classM of models and that the true environment is representable by the class, while for
model-free algorithms, we assume access to a class of value functions that realizes the optimal value
function (with analogous assumptions for policy-based methods). Under such assumptions, we posit:

Model-based methods rely on stronger function-approximation capabilities but can be
exponentially more sample efficient than their model-free counterparts.

Our contributions provide evidence for this thesis and can be summarized as follows:
1. We show that there exist MDPs where (1) all model-free methods, given a value function class

satisfying the above realizability condition, incur exponential sample complexity (in horizon);
and (2) there exist model-based methods that, given a model class containing the true model,
obtain polynomial sample complexity. In fact, these MDPs belong to the well-studied factored
MDPs (Kearns and Koller, 1999), which we use as a running example throughout the paper.

2. We design a new model-based algorithm for general CDPs and show that it has sample complexity
governed by a new structural parameter, the witness rank. We further show that many concrete
settings, including tabular and low rank MDPs, reactive POMDPs, and reactive PSRs have a small
witness rank. This algorithm is the first provably-efficient model-based algorithm that does not
rely on tabular representations or highly structured control-theoretic settings.

3. We compare our algorithm and the witness rank with the model-free algorithm OLIVE (Jiang
et al., 2017) and the Bellman rank, the only other algorithm and structural parameter at this level
of generality. We show that the witness rank is never larger, and can be exponentially smaller
than the Bellman rank. In particular, our algorithm has polynomial sample complexity in factored
MDPs, an exponential gain over OLIVE and any other realizability-based model-free algorithm.
The caveat in our thesis is that model-based methods rely on strong realizability assumptions.

In the rich environments we study, where function approximation is essential, some form of re-
alizability is necessary (see Proposition 1 in Krishnamurthy et al. (2016)), but our model-based
assumption (See Assumption 1) is strictly stronger than prior value-based analogs (Antos et al., 2008;
Krishnamurthy et al., 2016). On the other hand, our results precisely quantify the tradeoffs between
model-based and model-free approaches, which may guide future empirical efforts.

2. Preliminaries

We study Contextual Decision Processes (CDPs), a general sequential decision making setting where
the agent optimizes long-term reward by learning a policy that maps from rich observations (e.g.,
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raw-pixel images) to actions. The term CDP was proposed by Krishnamurthy et al. (2016) and
extended by Jiang et al. (2017), with CDPs capturing broad classes of RL problems allowing rich
observation spaces including (Partially Observable) MDPs and Predictive State Representations.
Please see the above references for further background.

Notation. We use [N ] , {1, . . . , N}. For a finite set S, ∆(S) is the set of distributions over S, and
U(S) is the uniform distribution over S. For a function f : S → R, ‖f‖∞ denotes sups∈S |f(s)|.

2.1. Basic Definitions

Let H ∈ N denote a time horizon and let X be a large context space of unbounded size, partitioned
into subsets X1, . . . ,XH+1. A finite horizon episodic CDP is a tuple (X ,A, R, P ) consisting of a
(partitioned) context space X , an action spaceA, a transition operator P : {⊥}∪ (X ×A)→ ∆(X ),
and a reward function R : X × A → ∆(R) with R ⊆ [0, 1].1 We assume a layered Markovian
structure, so that for any h ∈ [H], xh ∈ Xh and a ∈ A, the future context and the reward
distributions are characterized by xh, a and moreover Pxh,a , P (xh, a) ∈ ∆(Xh+1). We use
P0 , P (⊥) ∈ ∆(X1) to denote the initial context distribution, and we assume |A| = K throughout.2

Note that the layering of contexts allows us to implicitly model the level h as part of the context.
A policy π : X → ∆(A) maps each context to a distribution over actions. By executing this

policy in the CDP for h− 1 steps, we naturally induce a distribution over Xh, and we use Exh∼π[·]
to denote the expectation with respect to this distribution. A policy π has associated value and
action-value functions V π : X → R+ and Qπ : X ×A → R+, defined as

∀h ∈ [H], x ∈ Xh : V π(x) , E
π

[
H∑
t=h

rt

∣∣∣xh = x

]
, Qπ(x, a) , E

r∼R(x,a)
[r] + E

x′∼Px,a

[
V π(x′)

]
,

Here, the expectation is over randomness in the environment and the policy, with actions sampled by
π. Note that there is no need to index V and Q by the level h since it is encoded in the context. The
value of a policy π is vπ , Ex1∼P0 [V π(x1)] and the goal is to find a policy π that maximizes vπ.

For regularity, we assume that almost surely
∑H

h=1 rh ≤ 1.

Running Example As a running example, we consider factored MDPs (Kearns and Koller, 1999).
Let d ∈ N and let O be a small finite set. Define the context space X , [H]×Od, with the natural
partition by time. For a state x ∈ X we use x[i] for i ∈ [d] to denote the value of x on the ith state
variable (ignoring the time step h), and similar notation for a subset of state variables. For each state
variable i ∈ [d], the parents of i, pai ⊆ [d] are the subset of state variables that directly influence i.
In factored MDPs, the transition dynamics P factorize according to the parent relationships:

∀h, x ∈ Xh, x′ ∈ Xh+1, a ∈ A, P (x′ | x, a) =
d∏
i=1

P (i)[x′[i] | x[pai], a, h] (1)

for conditional distributions {P (i)}di=1 of the appropriate dimensions. Note that we always condition
on the time point h to allow for non-stationary transitions. This transition operator has L ,∑d

i=1HK · |O|1+|pai| parameters, which can be much smaller than dHK|O|1+d for an unfactorized
process on |O|d states.3 When |pai| is small for all i, we can expect algorithms with low sample

1. We assume Markov transitions w.l.o.g., since context may encode history.
2. Partitioning the context space by time allows us to capture more general time-dependent dynamics, reward, and policy.
3. Actually the full unfactored process has HK|O|2d parameters. Here we are assuming that the state variables are

conditionally independent given the previous state and action.
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complexity. Indeed Kearns and Koller (1999) show that factored MDPs can be PAC learned with
poly(H,K,L, ε, log(1/δ)) samples in the average and discounted reward settings. For more recent
development in this line of research, we refer the readers to Diuk et al. (2009); Nguyen et al. (2013);
Osband and Van Roy (2014b); Guo and Brunskill (2017) and the references therein.

2.2. Model Class

Since we are interested in general CDPs with large state spaces (i.e., non-tabular setting), we equip
model-based algorithms with a model classM, where all models inM share the same X and A but
can differ in reward function R and transition operator P . The environment reward and dynamics are
called the true model and denoted M? , (R?, P ?). For a model M ∈ M, πM , VM , QM , and vM
are the optimal policy, value function, action-value function, and value in the model M , respectively.
These objects are purely functions of M and do not depend on the environment. For the true model
M?, these quantities are denoted π?, V ?, Q?, v?, suppressing subscripts. For M , (R,P ), we
denote (r, x′) ∼Mx,a as sampling a reward and next context from M : r ∼ R(x, a), x′ ∼ Px,a. We
use xh ∼ π to denote a state sampled by executing π in the true environment M? for h− 1 steps.

We use OP (for Optimal Planning) to represent the operator that maps a model M to its op-
timal Q function and its optimal policy, that is OP(M) , (QM , πM ). We denote OP(M) ,
{Q, π : ∃M ∈M s.t. OP(M) = (Q, π)} as the set of optimal Q functions and optimal policies
derived from the classM.4 Throughout the paper, when we compare model-based and model-free
methods, we useM as input for the former and OP(M) for the latter.

We assume the model class has finite (but exponentially large) cardinality and is realizable.

Assumption 1 (Realizability ofM) We assume the model classM contains the true model M?.

The finiteness assumption is made only to simplify presentation and can be relaxed using standard
techniques; see Theorem 8 for a result with infinite model classes. While realizability can also be
relaxed (as in Jiang et al. (2017)), it is impossible to avoid it altogether (that is, to compete with
OP(M) for arbitraryM) due to exponential lower bounds (Krishnamurthy et al., 2016).

Running Example For factored MDPs, it is standard to assume the factorization, formally pai for
all i ∈ [d], and the reward function are known (Kearns and Koller, 1999). Thus the natural model
classM is just the set of all dynamics of the form (1), which obey the factorization, with shared
reward function. While this class is infinite, our techniques apply as shown in the proof of Theorem 8.

3. Why Model-based RL?

This section contains our first main result, that model-based methods can be exponentially more
sample-efficient than model-free ones. To our knowledge, this is the first result of this form.

To show such separation, we must prove a lower bound against all model-free methods, and, to do
so, we first formally define this class of algorithms. Strehl et al. (2006) define model-free algorithms
to be those with o(|X |2|A|) space, but this definition is specialized to the tabular setting and
provides little insight for algorithms employing function approximation. In contrast, our definition is
information-theoretic: Intuitively, a model-free algorithm does not operate on the context x directly,
but rather through the evaluations of a state-action function class G. Formally:

4. As πM is determined by QM , i.e., πM (x) = arg maxaQM (x, a), we sometimes overload notation and use Q =
OP(M) to represent the set of optimal Q functions derived fromM.
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Definition 1 (Model-free algorithm) Given a (finite) function class G : (X ×A)→ R, define the
G-profile ΦG : X → R|G|×|A| by ΦG(x) := [g(x, a)]g∈G,a∈A. An algorithm is model-free using G if
it accesses x exclusively through ΦG(x) for all x ∈ X during its entire execution.

In this definition, G could be a class of Q functions, a class of policies, or even the union of
such classes. As such, it captures both value-function-based algorithms like OLIVE, optimistic Q-
learning (Jin et al., 2018), and Delayed Q-learning (Strehl et al., 2006) as well as direct policy search
algorithms like policy gradient methods (See Appendix D for a details).5 In Appendix D, we show
that when G consists of all Q-functions as in the tabular setting, the underlying context/state can be
recovered from the G-profile, so Definition 1 introduces no restriction whatsoever. However, beyond
tabular settings, the G-profile can obfuscate the context from the agent and may even introduce partial
observability. This can lead to a significant loss of information, which can have a dramatic effect on
the sample complexity. Such information loss is formalized in the following theorem.

Theorem 2 Fix δ, ε ∈ (0, 1]. There exists a familyM of CDPs with horizon H , all with the same
reward function, and satisfying |M| ≤ 2H ,such that
1. For any CDP in the family, with probability at least 1 − δ, a model based algorithm usingM

as the model class (Algorithm 3, Appendix E) outputs π̂ satisfying vπ̂ ≥ v? − ε using at most
poly(H, 1/ε, log(1/δ)) trajectories.

2. With G = OP(M), any model-free algorithm using o(2H) trajectories outputs a policy π̂ with
vπ̂ < v? − 1/2 with probability at least 1/3 on some CDP in the family.

See Appendix C.2 for the proof. Informally, the result shows that there are CDPs where model-
based methods can be exponentially more sample-efficient than any model-free method, when given
access to a G satisfying Q? ∈ G, π? ∈ G. As concrete instances of such methods, the lower bound
applies to several recent value-based algorithms for CDPs (Krishnamurthy et al., 2016; Jiang et al.,
2017; Dann et al., 2018) as well as any future algorithms developed assuming just realizable optimal
value functions or optimal policies. On the other hand, it leaves room for sample efficient model-free
techniques that require stronger representation conditions on G. To our knowledge, this is the first
information-theoretic separation result for any broad class of model-based/model-free algorithms.
Indeed, even the definition of model-free methods is new here.6

Given this result, it might seem that model-based methods should always be preferred over model-
free ones. However, it is worth also comparing the assumptions required to enable the two paradigms.
Since M? ∈M for each CDP in the family, we also have Q? ∈ OP(M). This latter value-function
realizability assumption is standard in model-free RL with function approximation (Antos et al.,
2008; Krishnamurthy et al., 2016), but our model-based analog in Assumption 1 can be substantially
stronger. As such, model-based methods operating with realizability typically require more powerful
function approximation. Further, while we view setting G = OP(M) as the most natural choice for
the purposes of comparison, using a more expressive G may reveal state information and circumvent
the lower bound (as we show in Appendix C.3). Thus, while Theorem 2 formalizes an argument
in favor of model-based methods, realizability considerations and choice of G provide important
caveats.

5. There are model-free algorithms that elude our definition (for example, ones that approximate the state-action
distributions (Chen et al., 2018; Liu et al., 2018)), although these algorithms do not address the exploration setting.

6. Sutton and Barto (2018, Section 11.6) have a closely related definition (where the learner can only observe state
features), but the definition is specialized to linear function approximation and is subsumed by ours.
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Running Example The construction in the proof of Theorem 2 is a simple factored MDP with
d = H , |O| = 4, |pai| = 1 for all i, and deterministic dynamics. As we see, our algorithm has
polynomial sample complexity in all factored MDPs (and a broad class of other environments).

The construction implies that model-free methods cannot succeed in factored MDPs. To our
knowledge, no information theoretic lower bounds for factored MDPs exist, but the result does
agree with known computational and representational barriers, namely (a) that planning is NP-
hard (Mundhenk et al., 2000), (b) that Q? and π? may not factorize (Guestrin et al., 2003), and (c)
that π? cannot be represented by a polynomially sized circuit (Allender et al., 2003). Our result
provides a new form of hardness, namely statistical complexity, for model-free RL in factored MDPs.

4. Witnessed Model Misfit

In this section we introduce witnessed model misfit, a measure of model error, which we later use to
eliminate candidate models in our algorithm.

To verify the validity of a candidate model, a natural idea is to compare the samples from the
environment with synthetic samples generated from a model M . To formalize this comparison
approach, we use Integral Probability Metrics (IPM) (Müller, 1997): for two probability distributions
P1, P2 ∈ ∆(Z) over z ∈ Z and a function class F : Z → R that is symmetric (i.e. if f ∈ F then
−f ∈ F also holds), the IPM with respect F is: supf∈F Ez∼P1 [f(z)]− Ez∼P2 [f(z)]. We use IPMs
to define witnessed model misfit.

Definition 3 (Witnessed Model Misfit) For a classF : X×A×R×X → R, modelsM,M ′ ∈M
and a time step h ∈ [H], the Witnessed Model Misfit of M ′ witnessed by M at level h is:

W(M,M ′, h;F) , sup
f∈F

E
xh∼πM
ah∼πM′

[
E

(r,x′)∼M ′h
[f(xh, ah, r, x

′)]− E
(r,x′)∼M?

h

[f(xh, ah, r, x
′)]

]
, (2)

where for a model M = (R,P ), (r, x′) ∼Mh is shorthand for r ∼ Rxh,ah , x′ ∼ Pxh,ah .

W(M,M ′, h;F) is the IPM between two distributions over X ×A×R×X with the same marginal
over X × A but two different conditionals over (r, x′), according to M ′ and the true model M?,
respectively. The marginal over X ×A is the distribution over context-action pairs when πM , the
optimal policy of another candidate model M , is executed in the true environment. We call this
witnessed model misfit since M ′ might successfully masquerade as M? unless we find the right
context distribution to witness its discrepancy. Below we illustrate the definition with some examples.

Example [Total Variation] When F = {f : ‖f‖∞ ≤ 1}, the witnessed model misfit becomes

W(M,M ′, h;F) = E
[∥∥R′xh,ah ◦ P ′xh,ah −R?xh,ah ◦ P ?xh,ah∥∥TV |xh ∼ πM , ah ∼ πM ′

]
, (3)

where Rx,a ◦ Px,a is the distribution over R× X with r ∼ Rx,a, x
′ ∼ Px,a independently. This is

just the total variation distance7 between R′ ◦ P ′ and R? ◦ P ?, averaged over context-action pairs
x ∼ πM , a ∼ πM ′(·|x) sampled from the true environment.

Example [Exponential Family] Suppose the modelsM , (R,P ) are from a conditional exponential
family: conditioned on (x, a) ∈ X ×A, we have Rx,a ◦ Px,a , exp (〈θx,a,T(r, x′)〉) /Z(θx,a) for
parameters θx,a ∈ Θ , {θ : ‖θ‖ ≤ 1} ⊂ Rm with partition function Z(θx,a) and sufficient statistics

7. We use ‖P1 − P2‖TV =
∑
x∈X |P1(x)− P2(x)|, differing from the standard definition of ‖·‖TV by a factor of 2.
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T : R×X → Rm. With V = {X × A → Θ}, we design F = {(x, a, r, x′) 7→ 〈v(x, a),T(r, x′)〉 :
v ∈ V}. In this setting, witnessed model misfit is

W(M,M ′, h;F) = E
xh∼πM ,ah∼πM′

[∥∥∥ E
(r,x′)∼M ′h

[T(r, x′)]− E
(r,x′)∼M?

h

[T(r, x′)]
∥∥∥
?

]
,

with ‖x‖? , sup{〈x, θ〉| ‖θ‖ ≤ 1}. Here, we measure distance, in the dual norm, between the
expected sufficient statistics of (r, x′) sampled from M ′ and the true model M?. See Appendix G.
Example [MMD] When F is a unit ball in an RKHS, we obtain MMD (Gretton et al., 2012).

Witnessed model misfit is also closely related to the average Bellman error, introduced by Jiang
et al. (2017). Given Q functions, Q and Q′, the average Bellman error at time step h is:

EB(Q,Q′, h) , E
[
Q′(xh, ah)− rh −Q′(xh+1, ah+1)

∣∣xh ∼ πQ, ah:h+1 ∼ πQ′
]

(4)

where πQ is the greedy policy associated with Q, i.e., πQ(a|x) , 1{a = argmaxa′ Q(x, a′)}, and
the random trajectories (w.r.t. which we take expectation) are generated in the true environment M?.

When the Q functions are derived from a model class, meaning that Q = OP(M), we can
extend the definition to any pair of models M,M ′ ∈ M, using QM and QM ′ . In such cases, the
average Bellman error forM,M ′ is just the model misfit witnessed by the function fM ′(x, a, r, x′) =
r + VM ′(x

′). We conclude this section with an assumption about the class F .

Assumption 2 (Bellman domination using F) F is symmetric, finite in size,8 ∀f ∈ F : ‖f‖∞ ≤
2, and the witnessed model misfit (2) satisfies ∀M,M ′ ∈M : W(M,M ′, h;F) ≥ EB(QM , QM ′ , h).

As discussed above, one easy way to satisfy this assumption is to ensure that the special functions
r + VM (x′) are contained in F for all M ∈ M, but this is not the only way as we will see
in Section 6.9 The Bellman domination condition in Assumption 2 plays an important role in the
algorithm we present next, as it allows us to detect the suboptimality of a model in terms of the value
attained by its optimal policy in the actual MDP.

5. A Model-based Algorithm

In this section, we present our main algorithm and sample complexity results. We start by describing
the algorithm. Then, working towards a statistical analysis, we introduce the witness rank, a new
structural complexity measure. We end this section with the main sample complexity bounds.

5.1. Algorithm

Since we do not have access to M?, we must estimate the witnessed model misfit from samples.
Since F will always be clear from the context, we drop it from the arguments to the model misfit for
succinctness. Given a dataset D , {(x(n)

h , a
(n)
h , r

(n)
h , x

(n)
h+1)}Nn=1 with

x
(n)
h ∼ πM , a(n)

h ∼ U(A), (r
(n)
h , x

(n)
h+1) ∼M?

h ,

denote the importance weight ρ(n) , KπM ′(a
(n)
h |x

(n)
h ). We simply use the empirical model misfit:

Ŵ(M,M ′, h) , max
f∈F

N∑
n=1

ρ(n)

N
E

(r,x′)∼M ′h

[
f(x

(n)
h , a

(n)
h , r, x′)− f(x

(n)
h , a

(n)
h , r

(n)
h , x

(n)
h+1)

]
. (5)

8. As before, our results apply wheneverF has bounded statistical complexity. We describe a more complicated algorithm
with no dependence on the complexity of F in the appendix.

9. We allow the `∞ bound of 2 to accommodate these functions whose range can be 2 under our assumptions.
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Algorithm 1 Inputs: (M,F , n, ne, ε, δ, φ)
1: M0 =M
2: for t = 1, 2, ... do
3: Choose model optimistically: M t = argmaxM∈Mt−1

vM , set πt = πMt

4: Execute πt to collect ne trajectories {(xih, aih, rih)Hh=1}
ne
i=1 and set v̂π

t
= 1

ne

∑ne
i=1

(∑H
h=1 r

i
h

)
5: if |v̂πt − vMt | ≤ ε/2 then Terminate and output πt end if
6: Find ht such that ÊB(M t,M t, ht) ≥ ε

4H (See (6))

7: Collect trajectories {(x(i)
h , a

(i)
h , r

(i)
h )Hh=1}ni=1 where a(i)

h ∼ π
t for h 6= ht and a(i)

ht
∼ U(A)

8: for M ′ ∈Mt−1 do Compute Ŵ(M t,M ′, ht) (See (5)) end for
9: SetMt = {M ∈Mt−1 : Ŵ(M t,M, ht) ≤ φ}

10: end for

Here the importance weight ρ(n) accounts for distribution mismatch, since we are sampling from
U(A) instead of πM ′ . Via standard uniform convergence arguments (in Appendix A) we show that
Ŵ(M,M ′, h) provides a high-quality estimate ofW(M,M ′, h) under Assumption 2.

We also require an estimator for the average Bellman error EB(M,M,h). Given a data set
{(x(h)

n , a
(n)
h , r

(i)
h , x

(n)
h+1)}Nn=1 where x(n)

h ∼ πM , a
(n)
h ∼ πM , and (r

(n)
h , x

(n)
h+1) ∼ M?

h , we form an
unbiased estimate of EB(M,M,h) as

ÊB(M,M,h) ,
1

N

N∑
n=1

[
QM (x

(n)
h , a

(n)
h )−

[
r

(n)
h + VM (x

(n)
h+1)

]]
. (6)

The pseudocode is displayed in Algorithm 1. The algorithm is round-based, maintaining a version
space of models and eliminating a model from the version space when the discrepancy between the
model and the ground truth M? is witnessed. The witness distributions are selected using a form of
optimism: at each round, we select, from all surviving models, the one with the highest predicted
value, and use the associated policy for data collection. If the policy achieves a high value in the
environment, we simply return it. Otherwise we estimate the witnessed model misfit on the context
distributions induced by the policy, and we shrink the version space by eliminating all incorrect
models. Then we proceed to the next iteration.

Intuitively, using a simulation lemma analogous to Lemma 1 of Jiang et al. (2017), if M t is the
optimistic model at round t and we do not terminate, then there must exist a time step ht (line 6)
where the average Bellman error is large. Using Assumption 2, this also implies that the witness
model misfit for M t witnessed by M t itself must be large. Thus, if t is a non-terminal round, we
ensure that M t and potentially many other models are eliminated.

The algorithm is similar to OLIVE, which uses average Bellman error instead of witnessed model
misfit to shrink the version space. However, by appealing to Assumption 2, witness model misfit
provides a more aggressive elimination criterion, since a large average Bellman error on a distribution
immediately implies a large witnessed model misfit on the same distribution, but the converse does
not necessarily hold. Since the algorithm uses an aggressive elimination rule, it often requires fewer
iterations than OLIVE, as discussed below.

Computational considerations. In this work, we focus on the sample complexity of model-based
RL, and Algorithm 1, as stated, admits no obvious efficient implementation. The main bottleneck, for
efficiency, is the optimistic computation of the next model in line 3 where we perform a constrained
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optimization, restricted to the class of all models not eliminated so far. The objective in this problem
encapsulates a planning oracle to map models from our class to their values, and the constraints
involve enforcing small values of witness model misfit on the prior context distributions. While the
witness model misfit is linear in the transition dynamics, finding an optimistic value function induces
bilinear, non-convex constraints even in a tabular setting. This resembles known computational
difficulties with OLIVE, but we note that the recent hardness result of Dann et al. (2018) for OLIVE

does not apply to Algorithm 1, leaving the possibility of an efficient implementation open.

5.2. A structural complexity measure

So far, we have imposed realizability and expressivity assumptions (Assumption 1 and Assumption 2)
on M and F . Unfortunately, these alone do not enable tractable reinforcement learning with
polynomial sample complexity, as verified by the following simple lower bound.

Proposition 4 Fix H,K ∈ N+ with K ≥ 2 and ε ∈ (0,
√

1/8). There exists a family of MDPs,
classesM,F satisfying Assumption 1 and Assumption 2 for all MDPs in the family with |M| =
|F| = KH−1, and a constant c > 0, such that the following holds: For any algorithm that takesM,
F as inputs and uses T ≤ cKH−1/ε2 episodes, the algorithm outputs a policy π̂ with vπ̂ < v? − ε
with probability at least 1/3 for some MDP in the family.

The proof, provided in Appendix C.1, adapts a construction from Krishnamurthy et al. (2016) for
showing that value-based realizability is insufficient for model-free algorithms. The result suggests
that we must introduce further structure to obtain polynomial sample complexity guarantees. We do
so with a new structural complexity measure, the witness rank.

For any matrix B ∈ Rn×n, define rank(B, β) to be the smallest integer k such that B = UV >

with U, V ∈ Rn×k and for every pair of rows ui, vj , we have ‖ui‖2 · ‖vj‖2 ≤ β. This generalizes
the standard definition of matrix rank, with a condition on the row norms of the factorization.

Definition 5 (Witness Rank) Given a model classM, test functionsF , and κ ∈ (0, 1], for h ∈ [H],
define the set of matrices Nκ,h such that any matrix A ∈ Nκ,h satisfies:

A ∈ R|M|×|M|, κEB(M,M ′, h) ≤ A(M,M ′) ≤ W(M,M ′, h), ∀M,M ′ ∈M,

We define the witness rank as
W(κ, β,M,F , h) , min

A∈Nκ,h
rank(A, β).

We typically suppress the dependence on β because it appears only logarithmically in our sample
complexity bounds. Any β that is polynomial in other parameters (K,H , and the rank itself) suffices.

To build intuition for the definition, first consider the extreme whereA(M,M ′) =W(M,M ′, h).
The rank of this matrix corresponds to the number of context distributions required to verify non-zero
witnessed model misfit for all incorrect models. This follows from the fact that there are at most
rank(W) linearly independent rows (context distributions), so any non-zero column (an incorrect
model) must have a non-zero in at least one of these rows. Algorithmically, if we can find the policies
πM corresponding to these rows, we can eliminate all incorrect models to find M? and hence π?.

At the other extreme, we have A(M,M ′) = κEB(M,M ′, h), the Bellman error matrix . The
rank of this matrix, called Bellman rank, provides an upper bound on the witness rank by construction,
and is known to be small for many natural RL settings, including tabular and low-rank MDPs, reactive
POMDPs, and reactive PSRs (see Section 2 of Jiang et al. (2017) for details). The minimum over all
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sandwiched A matrices in the definition of the witness rank allows a smooth interpolation between
these extremes in general. We further note that the choice of the class F defining the IPM also
affects the witness model misfit and hence the witness rank. Adapting this class to the problem
structure yields another useful knob to control the witness rank, as we show for the running example
of factored MDPs in Section 6.

5.3. Sample complexity results

We now present a sample complexity guarantee for Algorithm 1 using the witness rank. Denote
Wκ , maxh∈[H] W(κ, β,M,F , h). The main guarantee is the following theorem.

Theorem 6 Under Assumption 1 and Assumption 2, for any ε, δ, κ ∈ (0, 1], set φ = κε
48H
√

Wκ
, and

denote T = HWκ log(β/2φ)/ log(5/3). Run Algorithm 1 with inputs (M,F , ne, n, ε, δ, φ), where
ne = Θ

(
H2 log(HT/δ)/ε2

)
and n = Θ

(
H2KWκ log(T |M||F|/δ)/(κε)2

)
. Then with probability

at least 1 − δ, Algorithm 1 outputs a policy π such that vπ ≥ v? − ε. The number of trajectories
collected is at most Õ

(
H3W2

κK
κ2ε2

log
(
T |F||M|

δ

))
.

The proof is included in Appendix A. Since, as we have discussed, many popular RL models admit
low Bellman rank and hence low witness rank, Theorem 6 verifies that Algorithm 1 has polynomial
sample complexity in all of these settings. A noteworthy case that does not have small Bellman rank
but does have small witness rank is the factored MDP, which we discuss further in Section 6.

Comparison with OLIVE. The minimum sample complexity is achieved at infκ Wκ/κ, which is
never larger than the Bellman rank. In fact when κ = 1, the sample complexity bounds match in
all terms except (a) we replace Bellman rank with witness rank, and (b) we have a dependence on
model and test-function complexity log(|M||F|) instead of Q-function complexity log |OP(M)|.
The witness rank is never larger than the Bellman rank and it can be substantially smaller, which
is favorable for Algorithm 1. However, we always have log |M| ≥ log |OP(M)| and since we
require realizability, the model class can be much larger than the induced Q-function class. Thus the
two results are in general incomparable, but for problems where modeling the environment is not
much harder than modeling the optimal Q-function (in other words log(|M||F|) ≈ log |OP(M)|),
Algorithm 1 can be substantially more sample-efficient than OLIVE.

Adapting to unknown witness rank. In Theorem 6, the algorithm needs to know the value of κ
and Wκ, as they are used to determine φ and n. In Appendix F, we show that a standard doubling
trick can adapt to unknown κ and Wκ. The sample complexity for this adaptation is given by
Õ(H3W2

κ?K/((κ
?ε)2) log(|M||F|/δ)), where κ? , arg minκ∈(0,1] Wκ/κ minimizes the bound

in Theorem 6. A similar technique was used to adapt OLIVE to handle unknown Bellman rank.

Extension to infinite M. Theorem 6 as stated assumes that M and F are finite classes. It
is desirable to allow rich classes M to have a better chance of satisfying realizability of M?

in Assumption 1. Indeed, it is possible to use standard covering arguments to handle the case of
infiniteM, and we demonstrate this in the context of factored MDPs in Theorem 8.

Extension to infinite F . While our result also extends to infinite F with bounded statistical
complexity, it is desirable to handle even richer classes, for example, F = {f : ‖f‖∞ ≤ 1} for the
total variation distance, which does not admit uniform convergence. To handle such rich classes, we
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borrow ideas from the Scheffé tournament of Devroye and Lugosi (2012),10 and extend the method
to handle conditional distributions and IPMs induced by an arbitrary class. The analysis here covers
the total-variation based witnessed model misfit defined in (3) as a special case.

Theorem 7 Under Assumption 1 and Assumption 2, but with no restriction on size of F ,11 there
exists an algorithm such that: For any ε, δ ∈ (0, 1], with probability at least 1 − δ the algorithm
outputs a policy π such that vπ ≥ v?−ε with at most Õ

(
H3W2

κK
κ2ε2

log
(
T |M|
δ

))
trajectories collected,

where T = HWκ log(β/2φ)/ log(5/3).

The algorithm modifies Algorithm 1 to incorporate the Scheffé estimator instead of the direct
empirical estimate for the witnessed model misfit (5). We defer the details of the algorithm and
analysis to Appendix B. The main improvement over Theorem 6 is that the sample complexity here
has no dependence on F , so we may use test function classes with unbounded statistical complexity.

6. Case Study on MDPs with Factored Transitions

In this section, we study the running example of factored MDPs in detail. Recall the definition of
factored transition dynamics in (1). Following Kearns and Koller (1999), we assume R? and {pai}
are known, andM is the continuous space of all models obeying the factored transition structure
and with R? as the reward function. For this setting, we have the following guarantee.

Theorem 8 For MDPs with factored transitions and for any ε, δ ∈ (0, 1], with probability at least
1− δ a modification of Algorithm 1 (Algorithm 3 in Appendix E) outputs a policy π with vπ ≥ v?− ε
using at most Õ(d2L3HK2 log(1/δ)/ε2) trajectories.

This result should be contrasted with the Ω(2H) lower bound from Theorem 2 that actually applies
precisely to this setting, where the lower bound construction has description length L polynomial
in H (see Appendix C.2 for details). Combining the two results we have demonstrated exponential
separation between model-based and model-free algorithms for MDPs with factored transitions.

Comparing with Theorem 6, the main improvement is that we are working with an infinite
model class of all possible factored transition operators. The linear scaling with H , which seems
to be an improvement, is purely cosmetic as we have L = Ω(H) here. Theorem 8 involves a slight
modification to Algorithm 1, in that it uses a slightly different notion of witnessed model misfit,

WF (M,M ′, h) = max
f∈F

E
xh∼πM
ah∼U(A)

[
E

(r,x′)∼M ′h
[f(xh, ah, r, x

′)]− E
(r,x′)∼M?

h

[f(xh, ah, r, x
′)]

]
. (7)

together with an F specially designed for factored MDPs (subscript ofWF indicates adaptation to
factored MDPs). The main difference with (3) is that ah is sampled from U(A) rather than πM ′ .
This modification is crucial to obtain a low witness rank, since πM ′ is in general not guaranteed to be
factored (recall the representation hardness discussed at the end of Section 3). Thanks to uniformly
random actions and our choice of F ,WF essentially computes the sum of the TV-distances across
all factors, and the corresponding matrix naturally factorizes and yields low witness rank. On the
other hand, the choice of πM ′ for the general case allows a direct comparison with Bellman rank and

10. The classical Scheffé tournament targets the following problem: given a set of distributions {Pi}Ki=1 over X , and a set
of i.i.d samples {xi}Ni=1 from P ? ∈ ∆(X ), approximate the minimizer argmini∈[K] ‖Pi − P ?‖TV.

11. In fact, Assumption 2 holds automatically if we choose F = {f : ‖f‖∞ ≤ 2}.
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leads to better guarantees in general, so we do not use the definition (7) more generally. We defer the
details of the algorithm and its analysis to Appendix E.

7. Related Work

For tabular MDPs, a number of sample-efficient RL approaches exist, mostly model-based (Kearns
and Singh, 2002; Jaksch et al., 2010; Dann and Brunskill, 2015; Szita and Szepesvári, 2010; Azar
et al., 2017), but some are model-free (Strehl et al., 2006; Jin et al., 2018). In contrast, our work
focuses on more realistic rich-observation settings.12 For factored MDPs, all prior sample-efficient
algorithms are model-based (Kearns and Koller, 1999; Osband and Van Roy, 2014b). With rich
observations, many prior works either focus on structured control settings like LQRs (Abbasi-Yadkori
and Szepesvári, 2011; Dean et al., 2018) or Lipschitz-continuous MDPs (Kakade et al., 2003; Ortner
and Ryabko, 2012; Pazis and Parr, 2013; Lakshmanan et al., 2015). In LQRs, Tu and Recht (2018)
show a gap between model-based and a particular model-free algorithm, but not an algorithm agnostic
lower bound, as we show here for factored MDPs. We expect that our algorithm or natural variants
are sample-efficient in many of these specific settings.

In more abstract settings, most sample-efficient algorithms are model-free (Wen and Van Roy,
2013; Krishnamurthy et al., 2016; Jiang et al., 2017; Dann et al., 2018). Our work can be seen as
a model-based analog to Jiang et al. (2017), which among the above references, studies the most
general class of environments.

On the model-based side, Lattimore et al. (2013) and Osband and Van Roy (2014a) obtain sample
complexity guarantees; the former makes no assumptions but the guarantee scales linearly with the
model class size, and the latter makes continuity assumptions, so both results have more limited
scope than ours. Ok et al. (2018) propose a complexity measure for structured RL problems, but their
results are for asymptotic regret in tabular or Lipschitz MDPs.

On the empirical side, models are often used to speed up learning (see e.g., Aboaf et al., 1989;
Deisenroth et al., 2011, for classical references in robotics). Such results provide empirical evidence
that models can be statistically valuable, which complement our theoretical results.

Finally, two recent papers share some technical similarities to our work. Farahmand et al. (2017)
also use IPMs to detect model error but their analysis is restricted to test functions that form a ball
in an RKHS, and they do not address exploration issues. Xu et al. (2018) devise a model-based
algorithm with function approximation, but their algorithm performs local policy improvement and
cannot find a globally optimal policy in a sample-efficient manner.

8. Discussion

We study model-based RL in general contextual decision processes. We derive an algorithm for
general CDPs and prove that it has sample complexity upper-bounded by a new structural notion
called the witness rank, which is small in many settings of interest. Comparing model-based and
model-free methods, we show that the former can be exponentially more sample efficient in some
settings, but they also require stronger function-approximation capabilities, which can result in worse
sample complexity in other cases. Comparing the guarantees here with those derived by Jiang et al.
(2017) precisely quantifies these tradeoffs, which we hope guides future design of RL algorithms.

12. In fact, our information-theoretic definition of model-free methods (Definition 1) is uninteresting in the tabular setting.
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Appendix A. Proof of Theorem 6

We first present several lemmas that are useful for proving Theorem 6.

Fact 1 For any two models M,M ′, the corresponding average Bellman error can be written as

EB(M,M ′, h) , EB(QM , QM ′ , h)

=Exh∼πM ,ah∼πM′
[
E(r,x′)∼M ′h

[
r + VM ′(x

′)
]
− E(r,x′)∼M?

h

[
r + VM ′(x

′)
]]
. (8)

Lemma 9 (Lemma 11 of Jiang et al. (2017)) Consider a closed and bounded set V ⊂ Rd and a
vector p ∈ Rd. Let B be any origin-centered enclosing ellipsoid of V . Suppose there exists v ∈ V
such that p>v ≥ κ and define B+ as the minimum volume enclosing ellipsoid of {v ∈ B : |p>v| ≤
κ

3
√
d
}. With vol(·) denoting the (Lebesgue) volume, we have:

vol(B+)

vol(B)
≤ 3

5
.
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Recall that VM , πM denote the optimal value function and policy derived from model M , and
that vM denotes πM ’s value in M . For any policy π, vπ denotes the policy π’s value in the true
environment.

Lemma 10 (Simulation Lemma) Fix a model M . Under Assumption 2, we have

vM − vπM =
H∑
h=1

EB(M,M,h), and vM − vπM ≤
H∑
h=1

W(M,M,h).

Proof Start at time step h = 1,

Ex1∼P0 [VM (x1)− V πM (x1)]

= Ex1∼P0,a1∼πM

[
E(r,x2)∼Mx1,a1

[r + VM (x2)]− E(r,x2)∼M?
x1,a1

[r + V πM (x2)]
]

= Ex1∼P0,a1∼πM

[
E(r,x2)∼Mx1,a1

[r + VM (x2)]− E(r,x2)∼M?
x1,a1

[r + VM (x2)]
]

+ Ex1∼P0,a1∼πM

[
E(r,x2)∼M?

x1,a1
[VM (x2)]− E(r,x2)∼M?

x1,a1
[V πM (x2)]

]
,

where the first equality is based on applying Bellman’s equation to VM in M and V πM in M?. Now,
by Fact 1, the first term above is exactly EB(M,M, 1). The second term can be expressed as,

E [VM (x2)− V πM (x2)|x2 ∼ πM ] ,

which we can further expand by applying the same argument recursively to obtain the identity
involving the average Bellman errors. For the bound involving the witness model misfit, since
VM ∈ F , we simply observe that EB(M,M,h) ≤ W(M,M,h).

Next, we present several concentration results.

Lemma 11 Fix a policy π, and fix ε, δ ∈ (0, 1). Sample ne = log(2/δ)
(2ε)2

trajectories {(x(i)
h , a

(i)
h , r

(i)
h )Hh=1}

ne
i=1

by executing π and set v̂π = 1
ne

∑ne
i=1

∑H
h=1 r

(i)
h . With probability at least 1 − δ, we have

|v̂π − vπ| ≤ ε.

The proof is a direct application of Hoeffding’s inequality on the random variables
∑H

h=1 r
(i)
h .

Recall the definitions of Ŵ and ÊB from (5) and (6), and the shorthand notation (r, x′) ∼Mh,
which stands for r ∼ Rxh,ah and x′ ∼ Pxh,ah (with (R,P ) = M ) whenever the identities of xh and
ah are clear from context.

Lemma 12 (Deviation Bound for ÊM ) Fix h and model M ∈M. Sample a dataset

D =
{

(x
(i)
h , a

(i)
h , r

(i)
h , x

(i)
h+1)

}N
i=1

with x(i)
h ∼ πM , a

(i)
h ∼ U(A), (r

(i)
h , x

(i)
h+1) ∼M?

h of size N . Then

with probability at least 1− δ, we have for all M ′ ∈M:∣∣∣Ŵ(M,M ′, h)−W(M,M ′, h)
∣∣∣ ≤√2K log(2|M||F|/δ)

N
+

2K log(2|M||F|/δ)
3N

.

Proof
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Fix M ′ ∈M and f ∈ F , define the random variable zi(M ′, f) as:

zi(M
′, f) , KπM ′(a

(i)
h |x

(i)
h )

(
E

(r,x′)∼M ′h
f(x

(i)
h , a

(i)
h , r, x

′)− f(x
(i)
h , a

(i)
h , r

(i)
h , x

(i)
h+1)

)
.

The expectation of zi(M ′, f) is

E[zi(M
′, f)] = E

xh∼πM ,ah∼πM′
[ E
(r,x′)∼M ′h

[f(xh, ah, r, x
′)]− E

(r,x′)∼M?
h

[f(xh, ah, r, x
′)]]︸ ︷︷ ︸

,d(M ′,M?,f)

,

and it is easy to verify that Var(zi(M
′, f)) ≤ 4K. Hence, we can apply Bernstein’s inequality, so

that with probability at least 1− δ, we have∣∣∣∣∣ 1

N

N∑
i=1

zi(M
′, f)− d(M ′,M?, f)

∣∣∣∣∣ ≤
√

2K log(2/δ)

N
+

2K log(2/δ)

3N
.

Via a union bound overM and F , we have that for all pairs M ′ ∈ M, f ∈ F , with probability at
least 1− δ:∣∣∣∣∣ 1

N

N∑
i=1

zi(M
′, f)− d(M ′,M?, f)

∣∣∣∣∣ ≤
√

2K log(2|M||F|/δ)
N

+
2K log(2|M||F|/δ)

3N
. (9)

For fixed M ′, we have shown uniform convergence over F , and this implies that the empirical and
the population maxima must be similarly close, which yields the result.

Lemma 13 (Deviation Bound on ÊB) Fix modelM ∈M. Sample a datasetD =
{

(x
(i)
h , a

(i)
h , r

(i)
h , x

(i)
h+1)

}N
i=1

with x(i)
h ∼ πM , a

(i)
h ∼ πM , (r

(i)
h , x

(i)
h+1) ∼M?

h of size N . Then with probability at least 1− δ, for
any h ∈ [H], with probability at least 1− δ, we have:∣∣∣EB(M,M,h)− ÊB(M,M,h)

∣∣∣ ≤√ log(2H/δ)

2N
.

The result involves a standard application of Hoeffding’s inequality with a union bound over h ∈ [H],
which can also be found in Jiang et al. (2017).

Lemma 14 (Terminate or Explore) Suppose that for any round t, v̂π
t

satisfies
∣∣∣vπt − v̂πt∣∣∣ ≤ ε/8

and M? is never eliminated. Then in any round t, one of the following two statements must hold:
1. The algorithm does not terminate and there exists a h ∈ [H] such that EB(M t,M t, h) ≥ 3ε

8H ;
2. The algorithm terminates and outputs a policy πt which satisfies vπ

t ≥ v? − ε.

Proof Let us first consider the situation where the algorithm does not terminate, i.e., |v̂πt − vMt | ≥
ε/2. Via Lemma 10, we must have

H∑
h=1

EB(M t,M t, h) ≥
∣∣∣vπt − vMt

∣∣∣ =
∣∣∣vπt − v̂πt + v̂π

t − vMt

∣∣∣ ≥ ∣∣∣v̂πt − vMt

∣∣∣− ∣∣∣vπt − v̂πt∣∣∣ ≥ 3ε/8.
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By the pigeonhole principle, there must exist h ∈ [H], such that

EB(M t,M t, h) ≥ 3ε

8H
,

so we obtain the first claim. For the second claim, if the algorithm terminates at round t, we must
have |v̂πt − vMt | ≤ ε/2. Based on the assumption that M? is never eliminated, and M t is the
optimistic model, we may deduce

vπ
t ≥ v̂πt − ε

8
≥ vMt − 5ε

8
≥ v? − 5ε

8
≥ v? − ε. (10)

Recall the definition of the witness rank (Definition 5):

W(κ, β,M,F , h) = inf
{

rank(A) : κEB
(
M,M ′, h

)
≤ A(M,M ′) ≤ W(M,M ′, h),∀M,M ′ ∈M

}
.

Let us denote A?κ,h as the matrix that achieves the witness rank W(κ, β,M,F , h) at time step
h. Denote the factorization by A?κ,h(M,M ′) = 〈ζh(M), χh(M ′)〉 with ζh, χh ∈ RW(κ,β,M,F ,h).
Finally, recall that β ≥ maxM,M ′,h ‖ζh(M)‖2‖χh(M ′)‖2.

Lemma 15 Fix round t and assume that
∣∣∣ÊB(M t,M t, h)− EB(M t,M t, h)

∣∣∣ ≤ ε
8H for all h ∈ [H]

and
∣∣∣vπt − v̂πt∣∣∣ ≤ ε/8 hold. If Algorithm 1 does not terminate, then we must haveA?κ,ht(M

t,M t) ≥
κε
8H .

Proof We first verify the existence of ht in the selection rule line 6 in Algorithm 1. From Lemma 14,
we know that there exists h ∈ [H] such that EB(M t,M t, h) ≥ 3ε

8H , and for this h, we have

ÊB(M t,M t, h) ≥ 3ε

8H
− ε

8H
=

ε

4H
. (11)

While this h may not be the one selected in line 6, it verifies that ht exists, and further we do know
that for ht

EB(M t,M t, ht) ≥
2ε

8H
− ε

8H
=

ε

8H
,

Now the constraints defining A?κ,ht give A?κ,ht(M
t,M t) ≥ κEB(M t,M t, ht), which proves the

lemma.

Recall the model elimination criteria at round t:Mt = {M ∈Mt−1 : Ŵ(M t,M, ht) ≤ φ}.

Lemma 16 Suppose that
∣∣∣Ŵ(M t,M, ht)−W(M t,M, ht)

∣∣∣ ≤ φ holds for all t, ht, and M ∈M.
Then
1. M? ∈Mt, for all t.
2. Denote M̃t = {M ∈ M̃t−1 : A?κ,ht(M

t,M) ≤ 2φ} with M̃0 =M. We haveMt ⊆ M̃t for all
t.
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Observe M̃t is defined via the matrix A?κ,h.
Proof Recall that we haveW(M t,M?, ht) = 0. Assuming M? ∈Mt−1 and via the assumption in
the statement, for every t, we have

Ŵ(M t,M?, ht) ≤ W(M t,M?, ht) + φ = φ,

so M? will not be eliminated at round t.
For the second result, we know that M̃0 = M. Assume inductively that, we haveMt−1 ⊂

M̃t−1, and let us prove thatMt ⊂ M̃t. Towards a contradiction, let us assume that there exists
M ∈ Mt such that M /∈ M̃t. Since M ∈ Mt ⊂Mt−1 ⊂ M̃t−1, the update rule for M̃t implies
that

A?κ,ht(M
t,M) > 2φ.

But, using the deviation bound and the definition of Aκ?,h, we get

Ŵ(M t,M, ht) ≥ W(M t,M, ht)− φ ≥ A?κ,ht(M
t,M)− φ > φ,

which contradicts the fact that M ∈Mt. Thus, by induction we obtain the result.

With our choice of φ = κε
48H
√

Wκ
, we may now quantify the number of rounds of Algorithm 1

using M̃t.

Lemma 17 (Iteration complexity) Suppose that∣∣∣Ŵ(M t,M, ht)−W(M t,M, ht)
∣∣∣ ≤ φ, ∣∣∣ÊB(M t,M t, h)− EB(M t,M t, h)

∣∣∣ ≤ ε

8H
,

hold for all t, ht, h ∈ [H], and M ∈ M, then the number of rounds of Algorithm 1 is at most
HWκ log( β2φ)/ log(5/3).

Proof From Lemma 15, if the algorithm does not terminate at round t, we find M t and ht such that

A?κ,ht(M
t,M t) =

〈
ζht(M

t), χht(M
t)
〉
≥ κε

8H
= 6
√

Wκφ,

which uses the value of φ = κε
48H
√

Wκ
.

Recall the recursive definition of M̃t = {M ∈ M̃t−1 : A?κ,ht(M
t,M) ≤ 2φ} from Lemma 16.

For the analysis, we maintain and updateH origin-centered ellipsoids where the hth ellipsoid contains
the set {χh(M) : M ∈ M̃t}. DenoteOht as the origin-centered minimum volume enclosing ellipsoid
(MVEE) of {χh(M) : M ∈ M̃t}. At round t, for ζht(M

t), we just proved that there exists a vector
χht(M

t) ∈ Ohtt−1 such that
〈
ζht(M

t), χht(M
t)
〉
≥ 6
√

Wκφ. Denote Ohtt−1,+ as the origin-centered
MVEE of {v ∈ Ohtt−1 :

〈
ζht(M

t), v
〉
≤ 2φ}. Based on Lemma 9, and the fact that Ohtt ⊂ Ohtt−1,+,

by the definition of M̃t, we have:

vol(Ohtt )

vol(Ohtt−1)
≤

vol(Ohtt−1,+)

vol(Ohtt−1)
≤ 3/5,
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which shows that if the algorithm does not terminate, then we shrink the volume of Ohtt by a constant
factor.

Denote Φ , supM∈M,h ‖ζh(M)‖2 and Ψ , supM∈M,h ‖χh(M)‖2. ForOh0 , we have vol(Oh0 ) ≤
cWκΨWκ where cWκ is the volume of the unit Euclidean ball in Wκ-dimensions. For any t, we have

Oht ⊇ {q ∈ RWκ : max
p:‖p‖2≤Φ

〈q, p〉 ≤ 2φ} = {q ∈ RWκ : ‖q‖2 ≤ 2φ/Φ}

Hence, we must have that at termination, vol(OhT ) ≥ cWκ(2φ/Φ)Wκ . Using the volume of Oh0 and
the lower bound of the volume of OhT and the fact that every round we shrink the volume of Ohtt by
a constant factor, we must have that for any h ∈ [H], the number of rounds for which ht = h is at
most:

Wκ log(
ΦΨ

2φ
)/ log(5/3). (12)

Using the definition β ≥ ΦΨ, this gives an iteration complexity of HWκ log
(
β
2φ

)
/ log(5/3).

We are now ready to prove Theorem 6. Note that we are using A?κ, rather than relying on EB or
W .
Proof [Proof of Theorem 6]

Below we condition on three events: (1)
∣∣∣Ŵ(M t,M, ht)−W(M t,M, ht)

∣∣∣ ≤ φ for all t and

M ∈M, (2)
∣∣∣ÊB(M t,M t, h)− EB(M t,M t, h)

∣∣∣ ≤ ε
8H for all t and h ∈ [H], and (3)

∣∣∣vπt − v̂πt∣∣∣ ≤
ε/8 for all t.

Under the first and second condition, from the lemma above, we know that the algorithm must
terminate in at most T = WκH log(β/(2φ))/ log(5/3) rounds. Once the algorithm terminates,
based on Lemma 14, we know that we must have found a policy that is ε-optimal.

Now, we show that with our choices for n, ne, and φ, the above conditions hold with proba-
bility at least 1 − δ. Based on value of ne = 32H

2 log(6HT/δ)
ε2

, and Lemma 11, we can verify that
the third condition |vπt − v̂πt | ≤ ε/8 for all t ∈ [T ] with probability 1 − δ/3, and the condition∣∣∣ÊB(M t,M t, h)− EB(M t,M t, h)

∣∣∣ ≤ ε/(8H) holds for all t ∈ [T ] and h ∈ [H] with probability

at least 1−δ/3. Based on the value of n = 18432H2KWκ log(12T |M||F|/δ)/(κε)2, the value of φ,
and the deviation bound from Lemma 12, we can verify that the condition

∣∣∣Ŵ(M t,M, ht)−W(M t,M, ht)
∣∣∣ ≤

φ holds for all t ∈ [T ], M ∈M with probability at least 1−δ/3. Together these ensure the algorithm
terminates in T iterations. The number trajectories is at most (ne + n) · T , and the result follows by
substitute the value of ne, n, and T .

Appendix B. Proof of Theorem 7

We are interested in generalizing Theorem 6 to accommodate a broader class of test functions F ,
for example {f : ‖f‖∞ ≤ 1} that induces the total-variation distance. This class is not a Glivenko-
Cantelli class, so it does not enable uniform convergence, and we cannot simply use empirical mean
estimator as in (5).
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Algorithm 2 Extension to F with Unbounded Complexity. Arguments: (M,F , ε, δ, ε)
1: Compute F̃ from F andM via (13)
2: Set φ = κε/(48H

√
Wκ) and T = HWκ log(β/2φ)/ log(5/3)

3: Set ne = Θ(H2 log(6HT/δ)/ε2) and n = Θ(H2KWκ log(12T |M||F̃ |/δ)/(κ2ε2))
4: Run Algorithm 1 with inputs (M, F̃ , ne, n, ε, δ, φ) and return the found policy.

The key is to define a much smaller function class F̃ ⊂ F that does enjoy uniform convergence,
and at the same time is expressive enough such that the witnessed model misfit w.r.t. F̃ is the same
as that w.r.t. F . To define F̃ , we need one new definition. For a model M and a policy π, we
use xh ∼ (π,M) to denote that xh is sampled by executing π in the model M , instead of the true
environment, for h steps. With this notation, define fπ,M1,M2,h as:

argmax
f∈F

E

[
E

(r,xh+1)∼M2

[f(xh, ah, r, xh+1)]− E
(r,xh+1)∼M1

[f(xh, ah, r, xh+1)] | xh ∼ (π,M1), ah ∼ πM2

]
.

Note that the maximum over F is always attained due to the boundedness assumption on f ∈ F , and
hence this definition is without loss of generality. Now we define

F̃ ,
{
±fπM3

,M1,M2,h : M1,M2,M3 ∈M, h ∈ [H]
}
. (13)

This construction is based on the Scheffé estimator, which was originally developed for density
estimation in total variation (Devroye and Lugosi, 2012). As we have done here, the idea is to define
a smaller function class containing just the potential maximizers. Importantly, this smaller function
class is computed independently of the data, so there is no risk of overfitting. The main innovation
here is that we extend the Scheffé estimator to conditional distributions, and also to handle arbitrary
classes F .

Lemma 18 For any true model M? ∈M, policy πM , h ∈ [H], and target model M ′, we have

W(M,M ′, h;F) =W(M,M ′, h; F̃).

Moreover |F̃ | ≤ 2|M|3H .

Proof The bound on |F̃ | is immediate. For the other claim, by the realizability assumption forM, F̃
contains the functions fπM ,M?,M ′,h for each (M,M ′, h) pair. These are precisely the test functions
that maximize the witness model misfit for F , and so the IPM induced by F̃ achieves exactly the
same values.

Replacing Ŵ(M,M ′, h) in (5), which uses F , to instead use F̃ , we obtain Algorithm 2 and The-
orem 7 as a corollary to Theorem 6. The key is that we have eliminated the dependence on |F| in the
bound.
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Appendix C. Lower Bounds and the Separation Result

C.1. Proof of Proposition 4

To prove Proposition 4, we need the following lower bound for best-arm identification in stochastic
multi-armed bandits.

Lemma 19 (Theorem 2 from Krishnamurthy et al. (2016)) ForK ≥ 2, ε <
√

1/8, and any best-
arm identification algorithm, there exists a multi-armed bandit problem for which the best arm i? is ε
better than all others, but for which the estimate î of the best arm must have P[̂i 6= i?] ≥ 1/3 unless
the number of samples collected is at least K/(72ε2).

Proof [Proof of Proposition 4] Below we explicitly give the construction ofM. Every MDP in this
family shares the same reward function, and actually also shares the same transition structure for all
levels h ∈ [H − 1]. The models only differ in their transition at the last time step.

FixH andK ≥ 2. Each MDPMa? ∈M corresponds to an action sequence a? = {a?1, a?2, . . . , a?H−1}
where a?i ∈ [K]. Thus there are KH−1 models. The reward function, which is shared by all models,
is

R(x) , 1 {x = x?} (14)

where x? is a special state that only appears at level H . Let x′ denote another special state at level H .
For any model Ma? , at any level h < H − 1, the state xh is simply the history of actions

xh , {a1, a2, . . . ah−1} applied so far, and taking a ∈ A at state xh deterministically transitions to
xh ◦ a , {a1, a2, . . . , ah−1, a}. The transition at level h = H − 1 is defined as follows:

P a?(xH |xH−1, aH−1) ,

{
0.5 + ε1 {xH−1 ◦ aH−1 = a?} , xH = x?

0.5− ε1 {xH−1 ◦ aH−1 = a?} , xH = x′.
(15)

Thus, in each model Ma? , each action sequence {a1, a2, . . . , aH−1} can be regarded as an arm in
MAB problem withKH−1 arms, where all the arms yield Ber(0.5) reward except for the optimal arm
a? which yields Ber(0.5 + ε) reward. In fact, this construction is information-theoretically equivalent
to the construction used in the standard MAB lower bound, which appears in the proof of Lemma 19.
That lower bound directly applies and since we have KH−1 arms here, the result follows.

C.2. Proof of Theorem 2

Theorem 2 has two claims: (1) There exists a family of MDPs in which Algorithm 3 achieves
polynomial sample complexity, and (2) Any model-free algorithm will incur exponential sample
complexity in this family. As we have discussed, the actual result is stronger in that the model class
consists of factored MDPs under a particular structure, and our algorithm can handle any class of
factored MDPs with an arbitrary (but known) structure.

The rest of this subsection is organized as follows: Appendix C.2.1 describes the family of
MDPs we construct. Since the MDPs obey a factored structure, we can learn this family using our
Algorithm 3 and its guarantees in Theorem 8 immediately applies, which proves the second claim.
Then, the first claim is proved in Appendix C.2.2, where we leverage the definition of model-free
algorithm (Definition 1) to induce information-theoretic hardness.
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Figure 1: An example of the factored MDP construction in the proof of Theorem 2, with d = 2 and
H = 4. All models are deterministic, and each model is uniquely indexed by a sequence
of actions p. (Here p = {−1,−1}, as indicated by the black arrows.) The first coordinate
in each state encodes the level h. Each state at level h ≤ H − 1 encodes the sequence
of actions leading to it using bits from the second to the last (padded with 0’s). The last
transition is designed such that the agent always lands in a state that contains “2” unless it
follows path p.

C.2.1. MODEL CLASS CONSTRUCTION AND SAMPLE EFFICIENCY OF ALGORITHM 3

Model Class Construction. We prove the claim by constructing a family of factored MDPs (recall
(1)) that share the same reward function R but differ in their transition operators. The set of such
transition operators is denoted as P , and we use P ∈ P to refer to an MDP instance.

Fix d > 2 and set H , d + 2. The state variables take values in O = {−1, 0, 1, 2}. The
state space is X = [H] × Od with the natural partition across time steps and the action space is
A = {−1,+1}. The initial state is fixed as x = 1 ◦ [0]d, where [a]d stands for a d-dimensional
vector where every coordinate is a and ◦ denotes concatenation. Our model class contains 2d models,
each of which is uniquely indexed by an action sequence (or a path) of length d, p = {p1, . . . , pd}
with pi ∈ {−1, 1}. Fixing p, we describe the transition dynamics for P p below. All models share
the same reward function, which will be described afterwards.

In P p, the parent of the ith factor is itself so that each factor evolves independently. Furthermore,
all transitions are deterministic, so we abuse notation and let P p,i

h (·, ·) denote the deterministic value
of the ith factor at time step h+ 1, as a function of its value at step h and action a. That is, if at time
step h we are in state (h, x1, . . . , xd), upon taking action a we will transition deterministically to
(h+ 1, P p,1

h (x1, a), . . . , P p,d
h (xd, a)).
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Levels 1 to H − 1 form a complete binary tree; see Figure 1 for an illustration. For any layer
h ≤ H − 2,

P p,i
h (v, a) = v, ∀v ∈ O, a ∈ A, i 6= h;

P p,i
h (v, a) = a, ∀v ∈ O, a ∈ A, i = h.

In words, any internal state at level h ≤ H − 1 simply encodes the sequence of actions that leads to
it. These transitions do not depend on the planted path p and are identical across all models. Note
that it is not possible to have xi = 2 for any i ∈ [d], h ≤ H − 1.

Now we define the transition from level H − 1 to H , where each state only has 1 action, say +1:

P p,i
H−1(pi,+1) = pi, ∀i ∈ [d], and P p,i

H−1(p̄i,+1) = 2, i ∈ [d].

Here p̄i is the negation of pi. In words, the state at level H simply copies the state at level H − 1,
except that the ith factor will take value 2 if it disagrees with pi (see Figure 1). Thus, the agent arrives
at a state without the symbol “2” at level H only if it follows the action sequence p.

The reward function is shared across all models. Non-zero rewards are only available at level
H , where each state only has 1 action. The reward is 1 if x does not contain the symbol “2" and the
reward is 0 otherwise. Formally

R((h, x1, . . . , xd)) , 1 {h = H}
d∏
i=1

1 {xi 6= 2} . (16)

Sample Efficiency of Algorithm 3 For this family of factored MDPs, we have K = 2 and
d = H − 2. The remaining parameter of interest is L, on which we provide a coarse upper bound:
L ≤ dH|A||O|2 = O(H2) since |pai| = 1 for all i and |O| = 4. Given that our Algorithm 3 works
for factored MDPs of any structure, the guarantees in Theorem 8 immediately applies and we obtain
a sample complexity that is polynomial in H and log(1/δ). This proves the first claim of Theorem 2.

C.2.2. SAMPLE INEFFICIENCY OF MODEL-FREE ALGORITHMS

We prove the second claim by showing that any model-free algorithm—that is, any algorithm that
always accesses state x exclusively through [f(x, ·)]f∈G—will incur exponential sample complexity
when given G = OP(P) as input. To show this, we construct another class of non-factored models,
such that (1) learning in this new class is intractable, and (2) the two families are indistinguishable to
any model-free algorithm. The new model class is obtained by transforming each P p ∈ P into P̃ p.
P̃ p has the same state space and transitions as P p, except for the transition from level H − 1 to H .
This last transition is:

P̃ p
h ((H − 1, x1, . . . , xd)) =

{
(H,x1, . . . , xd) if xi = pi ∀i ∈ [d]

H ◦ [2]d otherwise.

The reward function is the same as in the original model class, given in (16). This construction is
equivalent to a multi-armed bandit problem with one optimal arm among 2H−2 arms, so the sample
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complexity of any algorithm (not necessarily restricted to model-free ones) is Ω(2H).13 In fact this
model class is almost identical to the one used in the proof of Proposition 4.

To prove that the two model families are indistinguishable for model-free algorithms (Defini-
tion 1), we show that the G-profiles in P p are identical to those in P̃ p. This implies that the behavior
of a model-free algorithm is identical in P p and P̃ p, so that the sample complexity must be identical,
and hence Ω(2H).

LetM = {P p}p∈{−1,1}d and M̃ = {P̃ p}p∈{−1,1}d . LetQ,Π to be the Q class and policy classs

from OP(M), Q̃ and Π̃ be the policy class from OP(M̃). Since all MDPs of interest have fully
deterministic dynamics, and non-zero rewards only occur at the last step, it suffices to show that for
any deterministic sequence of actions, a, (1) the final reward has the same distribution for P p and
P̃ p, and (2) the Q-profiles [Q(xh, ·)]Q∈Q and [Q(xh, ·)]Q∈Q̃ are equivalent at all states generated by
taking a in P p and P̃ p, respectively.14 The reward equivalence is obvious, so it remains to study the
Q-profiles.

In P p and at level H , since the reward function is shared, the Q-profile is [1]|Q| for the state
without “2" and [0]|Q| otherwise. Thus, upon taking a = p we see the Q-profile [1]|Q| and otherwise
we see [0]|Q|. Similarly, in P̃ p the Q-profile is [0]|Q̃| if the state is H ◦ [2]d and it is [1]|Q̃| otherwise.
The equivalence here is obvious as |Q| = |Q̃| = 2d.

For level H − 1, no matter the true model path p, the Qp′ associated with path p′ has value
Qp′(a,+1) = 1 {a = p′} at state a. Hence theQ-profile at a can be represented as [1 {a = p′}]p′∈{−1,1}d ,
for both P p and P̃ p. Note that the Q-profile does not depend on the true model p because all models
agree on the dynamics before the last step. Similarly, for h < H−1 where each state has two actions
{−1, 1}, we have:

Qp′(a1:h−1,−1) = 1
{

a1:h−1 ◦ -1 = p′1:h

}
, Qp′(a1:h−1, 1) = 1

{
a1:h−1 ◦ 1 = p′1:h

}
.

Hence, the Q-profile can be represented as:

[(1
{

a1:h−1 ◦ -1 = p′1:h

}
, 1
{

a1:h−1 ◦ 1 = p′1:h

}
)]p′∈{−1,1}d ,

again with no difference between P p and P̃ p. Thus, the model P p and P̃ p induce exactly the same
Q-profile for all paths, implying that any model-free algorithm (in the sense of Definition 1), must
behave identically on both. Since the family M̃ = {P̃ p}p admits an information-theoretic sample
complexity lower bound of Ω(2H), this same lower bound applies toM = {P p}p for model-free
algorithms.

C.3. Circumventing the Lower Bound via Overparameterization

In Theorem 2, the G-profile resulting from the class M (Appendix C.2.1) obfuscates the true
context, a property critical for the separation result. In this section, we show that by increasing the
expressiveness of the model class, the induced G-profile could reveal the context and circument the
lower bound. More directly, the lower bound is sensitive to the choice of G.

13. Note that the reward function is known and non-random, so we do not have any dependence on an accuracy parameter
ε.

14. Since each π ∈ Π is just derived from some Q ∈ Q, the equivalence between two Q-profiles implies the equivalence
between two Π-profiles, which further implies equivalence in G-profiles.
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This sensitivity raises the question: what is the right choice of G for comparing model-based and
model-free methods? Since our construction considers only a small subset of all possible factored
MDPs in correspondence with M, the class G = OP(M) is the smallest class that guarantees
(Q?, π?) ∈ G. Therefore, this choice amounts to proper learning, which we argue is a natural choice
for the purpose of proving lower bounds. On the other hand, in this section we show that improper
learning or “overparametrization” can circumvent the lower bound.

Recall that in Appendix C.2.1, every model M ∈ M uses the same true reward function
from (16). Here we create a larger model classM′ and take G′ = OP(M′). First define a set of new
reward functions:

R
(−1)
i (H, x) , 1{xi 6= −1}, R(1)

i (H, x) , 1{xi 6= 1}, R(2)
i (H, x) , 1{xi 6= 2} ∀i ∈ [d] (17)

We set M′ = M∪ {(P,R(j)
i ) : P ∈ P, i ∈ [d], j ∈ {−1, 1, 2}}. Namely for every transition

structure P ∈ P , we pair it with each new reward function. Note that |M′| = (3d+ 1) |M|.
To circumvent the lower bound, we simply show that with G′ = OP(M′), the G′-profile actually

reveals the context x. Let us focus on a single coordinate i ∈ [d], and pick any transition operator
P ∈ P . Observe that at level H the Q function corresponding to transition operator P is just the
associated reward, and so the G-profile revealsR(−1)

i , R
(1)
i , R

(2)
i . Since we know that xi = {−1, 1, 2}

exactly one of these will evaluate to zero, allowing us to recover the ith bit. In particular this allows
us to immediately identify the correct action for time step h = i. Since we can do this for every
i ∈ [d], using G′ = OP(M′), we can easily obtain an algorithm with O(1) sample complexity.

Appendix D. G-profiles in tabular settings

Here we show that the G-profile yields no information loss in tabular environments. Thus from the
perspective of Definition 1, model-based and model-free algorithms are information-theoretically
equivalent.

In tabular settings, the state space X and action space A are both finite and discrete. It is also
standard to use a fully expressive Q-function class, that is Q = {Q : X ×A → [0, 1]}, where the
range here arises due to the bounded reward. We simply set G = Q here. For each state x ∈ X
define the function Qx such that for all a ∈ A, Qx(x′, a) = 1 {x = x′}. Observe that since Q is
fully expressive, we are ensured that Qx ∈ Q, ∀x ∈ X .

At any state x′ ∈ X , from the Q-profile ΦQ(x′) we can always extract the values [Qx(x′, a)]x∈X
for some fixed action a. By construction of the Qx functions, exactly one of these values will be one,
while all others will be zero, and thus we can recover the state x′ simply by examining a few values
in ΦQ(x′). In other words, the mapping x 7→ ΦQ(x) is invertible in the tabular case, and so there is
no information lost through the projection. Hence in tabular setting, one can run classic model-free
algorithms such as Q-learning (Watkins and Dayan, 1992) under our definition.

Our definition can also be applied to parameterized Q-function class Q , {Q(·, ·|θ) : θ ∈ Θ ⊂
Rd}. To perform gradient-based update on the parameter θ, we can use Q-profile as follows. Given
any state-action pair (x, a), we can approximate ∇θiQ(x, a|θ),∀i ∈ [d], to an arbitrary accuracy,
using finite differencing:

∇θiQ(x, a|θ) = lim
δ→0

Q(x, a|θ + δei)−Q(x, a|θ − δei)
2δ

,
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Algorithm 3 Variant of Algorithm 1 for factored MDPs. Arguments: (M, n, ne, ε, δ, φ)

1: Run Algorithm 1 with F in (18), except in line 8, estimate ŴF (M t,M ′, ht) via (19).

where ei is the vector with zero everywhere except one in the i-th entry, and Q(x, a|θ + δei) and
Q(x, a|θ − δei) can be extracted from the Q-profile ΦQ(x).

TheQ-profile can also be used to estimate policy gradient on policies induced from the parameter-
ized Q functions. Denote ΠQ as the policy class induced from Q, e.g., π(a|x; θ) ∝ exp(Q(x, a|θ)).
Policy gradient method often involves computing the gradient of the log likelihood of the policy (e.g.,
REINFORCE (Williams, 1992)): ∇θi log(π(x|a; θ)), ∀i ∈ [d], which via chain rule, is determined
by ∇θQ(x, a|θ). Hence, with the finite differencing technique we introduced above for computing
∇θQ(x, a|θ), we can use Q-profile to compute∇θ log π(x|a; θ).

Appendix E. Proof of Theorem 8

Here we prove Theorem 8, which states that Algorithm 3 can handle factored MDPs, whereM
is the infinite class of all possible factored MDPs under the given structure (i.e., {pai} are known).
Since the only difference between two models is their transitions, we use P = {P : (R?, P ) ∈M}
to represent the model class, and use P and M interchangeably sometimes.

As an input to the algorithm, we supply an F tailored for factored MDPs that always guarantees
Bellman domination (up to a multiplicative constant; see Lemma 26). In particular,

F = {g1 + . . . gd : gi ∈ Gi}, (18)

where each Gi = (O|pai|×A× [H]×O → {−1, 1}). Note that functions in F operate on (x, a, r, x′)
and here we are using a slightly incorrect but intuitive notation: gi ∈ Gi takes (x, a, r, x′) as input,
and only looks at (x[pai], h, a, x

′[i]) to determine a binary output value, and Gi is the set of all
functions of this form. The IPM induced by F is the sum of total variation for each factor, and

|F| =
d∏
i=1

2HK|O|
1+|pai| = 2L,

so its logarithmic size is polynomial in L and allows uniform convergence. One slightly unusual
property of F , compared to how it is used in other results in the main text, is that functions in F has
`∞ norm bounded by d instead of a constant, and this magnitude will be manifested in the sample
complexity through concentration bounds.

Besides the specific choice of F , we also need an important change in how we estimate the
model misfitWF defined in (7). SinceWF is defined w.r.t. uniformly random actions, we change
our estimate accordingly by simply dropping the importance weight in line 8: Given dataset
{(x(i)

h , a
(i)
h , r

(i)
h , x

(i)
h+1)}ni=1 generated in line 7 of Algorithm 1 using roll-in policy πM , the new

estimator is

ŴF (M,M ′, h) , max
f∈F

1

n

n∑
i=1

(
E

(r,x′)∼M ′h
[f(x

(i)
h , a

(i)
h , r, x

′)]− f(x
(i)
h , a

(i)
h , r

(i)
h , x

(i)
h+1)

)
. (19)
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We now state a formal version of Theorem 8, which includes the specification of input parameters
to Algorithm 3, and prove it in the remainder of this section.

Theorem 20 (Formal version of Theorem 8) Let M? be a factored MDP with known structure
(1). For any ε, δ ∈ (0, 1], set β = O(L/K), κ = 1/K, Wκ,F = Lh/|O|,15 φ = κε

48H
√

Wκ,F
, and

T = HWκ,F log(β/2φ)/ log(5/3). Run Algorithm 3 with inputs (M, ne, n, ε, δ, φ), whereM is
the infinite class of all possible factored MDPs with the given structure, and

ne = Θ

(
H2 log(HT/δ)

ε2

)
, n = Θ

(
d2(L log(dKLε ) + log(3T/δ))

|O|ε2
LHK2

)
,

then with probability at least 1− δ, the algorithm outputs a policy π such that vπ ≥ v? − ε, using at
most the following number of sample trajectories:

Õ

(
d2L3HK2 log(1/δ)

ε2

)
.

E.1. Concentration Result

E.1.1. COVER CONSTRUCTION

We prove uniform convergence by discretizing the CPTs in facotred MDPs and constructing a cover
of P . Let α ∈ (0, 1) be the discretization resolution, whose precise value will be set later. For
convenience we also assume that 2/α is an odd integer. Recall that a factored MDP is fully specified
by the CPTs:

{P (i)[o |x[pai], a, h] : o ∈ O, x[pai] ∈ O|pai|, a ∈ A, h ∈ [H]}di=1.

Since each of these probabilities takes value in [0, 1], we start with an improper cover of P by
discretizing this range and considering cover centers {α/2, 3α/2, 5α/2, . . . , 1 − α/2} for each
o ∈ O, x[pai] ∈ O|pai|, a ∈ A, h ∈ [H], i ∈ [d]. Note that any number in [0, 1] will be (α/2)-close
to one of these (1/α) values. Altogether the discretization yields

d∏
i=1

(1/α)HK|O|
1+|pai| = (1/α)L

(possibly unnormalized) CPTs. For the purpose of cover construction, the distance between two
CPTs P and P ′ is defined as

max
o∈O,x[pai]∈O|pai|,a∈A,h∈[H]

|P (i)[o |x[pai], a, h]− P ′(i)[o |x[pai], a, h]|. (20)

Under this distance, any MDP in P will be (α/2)-close to one of the discretized CPTs, hence we say
the discretization yields a (α/2)-cover of P with size (1/α)L.

Note that the above cover is improper because many cover centers violate the normalization
constraints. We convert this improper cover to a proper one by (1) discarding all cover centers whose
α/2 radius ball contains no valid models, and (2) replacing every remaining invalid cover center with

15. Here we treat Wκ,F as an algorithm parameter, and its value is an upper bound on the actual witness rank (27).
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a valid model in its α/2 radius ball. This yields an α-cover with size (1/α)L whose cover centers
are all valid models. We denote the set of cover centers as Pc.

E.1.2. UNIFORM CONVERGENCE OF ŴF

Recall the definition of ŴF from (19). Our main concentration result is the following lemma.

Lemma 21 (Concentration of ŴF in factored MDPs) Fix h and model P ∈ P . Sample a dataset
D =

{
(x

(i)
h , a

(i)
h , r

(i)
h , x

(i)
h+1)

}n
i=1

with x(i)
h ∼ πM , a(i)

h ∼ U(A), (r
(i)
h , x

(i)
h+1) ∼ M?

h of size n. Fix

any φ and δ > 0. With probability at least 1− δ, we have for all P ′ ∈ P:∣∣∣ŴF (M,M ′, h)−WF (M,M ′, h)
∣∣∣ ≤ φ, as long as

n ≥
8d2(L log(8d|O|

φ ) + log(2/δ))

φ2
.

We first prove a helper lemma, which quantifies the error introduced by approximating P with
Pc.

Lemma 22 For any P ′ ∈ P , let P ′c be its closest model in Pc. For any f ∈ F and any x, a,

| E
(r,x′)∼M ′

(x,a)

[f(x, a, r, x′)]− E
(r,x′)∼(M ′c)(x,a)

[f(x, a, r, x′)]| ≤ d|O|α, (21)

where (r, x′) ∼M ′(x,a) is the shorthand for r ∼ R′(x, a), x′ ∼ P ′(x,a).

Proof Recall the definition of f ∈ F tailored for factored MDPs: f = g1 + · · · + gd, with each
‖gi‖∞ ≤ 1. By triangle inequality, we have:

LHS ≤
d∑
i=1

∣∣∣∣∣ E
r,x′∼M ′

(x,a)

[gi(x, a, r, x
′)]− E

r,x′∼(M ′c)(x,a)

[gi(x, a, r, x
′)]

∣∣∣∣∣
≤

d∑
i=1

∥∥∥(P ′)(i)
x,a − (P ′c)

(i)
x,a

∥∥∥
TV
, (Hölder)

=
d∑
i=1

∑
o∈O

∣∣∣(P ′)(i)[o|x[pai], a, h]− (P ′c)
(i)[o|x[pai], a, h]

∣∣∣
≤ d|O|α. (Pc yields α-cover under distance defined in (20))

Now we are ready to prove the main concentration result for factored MDPs.
Proof [Proof of Lemma 21] To argue uniform convergence for P , we first apply Hoeffding’s
inequality and union bound to Pc. For any fixed f , ŴF is the average of i.i.d. random variables with
range [−‖f‖∞, ‖f‖∞]. For the F that we use for factored MDPs, ‖f‖∞ ≤ d, so with probability at
least 1− δ, ∀P ′c ∈ Pc,∣∣∣ŴF (M,M ′c, h)−WF (M,M ′c, h)

∣∣∣ ≤ 2d

√
log (2|Pc||F|/δ)

2n
.
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We then follow a standard argument to decompose the estimation error for any P ′ ∈ P into three
terms: ∣∣∣ŴF (M,M ′, h)−WF (M,M ′, h)

∣∣∣ ≤ ∣∣∣ŴF (M,M ′c, h)−WF (M,M ′c, h)
∣∣∣

+
∣∣∣ŴF (M,M ′, h)− ŴF (M,M ′c, h)

∣∣∣+
∣∣WF (M,M ′, h)−WF (M,M ′c, h)

∣∣ .
We have an upper bound on the first term , so it suffices to upper-bound the other two terms. For the
second term,∣∣∣ŴF (M,M ′, h)− ŴF (M,M ′c, h)

∣∣∣
≤ 1

n
max
f∈F

∣∣∣∣∣
n∑
i=1

E
(r,x′)∼M ′h

[f(x
(i)
h , a

(i)
h , r, x

′)]−
n∑
i=1

E
(r,x′)∼(M ′c)h

[f(x
(i)
h , a

(i)
h , r, x

′)]

∣∣∣∣∣ .
where we use the fact that for any functionals µ1, µ2, we have |maxf µ1(f)−maxf µ2(f)| ≤
maxf |µ1(f)− µ2(f)|. Now using Lemma 22, we can show that:∣∣∣ŴF (M,M ′, h)− ŴF (M,M ′c, h)

∣∣∣ ≤ 1

n
(nd |O|α) = d |O|α.

|WF (M,M ′, h)−WF (M,M ′c, h)| has the same upper bound using exactly the same argument.
So finally we conclude that for all P ′ ∈ P ,∣∣∣ŴF (M,M ′, h)−WF (M,M ′, h)

∣∣∣ ≤ 2d

√
log (2|Pc||F|/δ)

2n
+ 2d|O|α.

To guarantee that the deviation is no more than φ, we back up the necessary sample size n from the
above expression. Let α = φ

4d|O| , so 2d|O|α ≤ φ/2. We then want

2d

√
log (2(8d|O|/φ)L/δ)

2n
≤ φ/2.

It is easy to verify that the sample size given in the lemma statement satisfies this inequality.

E.2. Low Witness Rank and Bellman Domination

In this subsection we establish several important properties ofWF which will be directly useful in
proving Theorem 8. To start, we provide a form ofWF that is equivalent to the definition provided
in (7). The proof is elementary and omitted.

Lemma 23 (Alternative definition ofWF )

WF (M,M ′, h) = E

[
d∑
i=1

∥∥∥P ′(i)(·|xh[pai], ah)− P ?(i)(·|xh[pai], ah)
∥∥∥

TV
|xh ∼ πP , ah ∼ U(A)

]

Using this lemma, we show two important properties ofWF : (1) that the matrixWF has rank at
most

∑d
i=1K |O|

|pa(i)| (Proposition 24), which is less than L, the description length of the factored
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MDP, and (2) that we can upper-bound EB usingWF (Lemma 26). For the remainder, it will be
convenient to use the notation Lh =

∑d
i=1K|O|

1+|pa(i)| to be the number of parameters needed to
specify the conditional probability table at a single level h.

Proposition 24 There exists ζh : P → RLh/|O| and χh : P → RLh/|O|, such that for any
P, P ′ ∈ P , and h ∈ [H], (recall that M = (R,P ) and M ′ = (R,P ′))

WF (M,M ′, h) =
〈
ζh(M), χh(M ′)

〉
,

and ‖ζh(M)‖2 · ‖χh(M ′)‖2 ≤ O(Lh/K).

Proof Given any policy π, let us denote ηπh(x) ∈ ∆(Xh) as the state distribution resulting from π at
time step h. Then we can write ηπh(x) = ηπh(x[u])ηπh(x[−u]|x[u]), where for a subset u ⊂ [d], we
write x[u] to denote the corresponding assignment of those state variables in x, and −u = [d] \ u is
the set of remaining variables. We use ηπh to denote the probability mass function and we use Pπh to
denote the distribution.

For any P, P ′ ∈ P , we can factorizeWF (M,M ′, h) as follows:

WF (M,M ′, h) = E

[
d∑
i=1

∥∥∥P ′,(i)(·|xh[pai], ah)− P ?,(i)(·|xh[pai], ah)
∥∥∥

TV
|xh ∼ πM , ah ∼ U(A)

]

=
1

K

d∑
i=1

∑
xh,a

ηπMh (xh)
∥∥∥P ?,(i)(·|xh[pai], a)− P ′,(i)(·|xh[pai], a)

∥∥∥
TV

=
1

K

d∑
i=1

∑
xh,a

ηπMh (xh[pai])η
πM
h (xh[−pai]|xh[pai])

∥∥∥P ?,(i)(·|xh[pai], a)− P ′,(i)(·|xh[pai], a)
∥∥∥

TV

=
1

K

d∑
i=1

∑
a

∑
u∈O|pai|

PπMh [xh[pai] = u]
∥∥∥P ?,(i)(·|u, a)− P ′,(i)(·|u, a)

∥∥∥
TV

=
〈
ζh(M), χh(M ′)

〉
.

Here ζh(M) is indexed by (i, a, u) ∈ [d]×A×O|pai| with value

ζh(i, a, u;M) , PπMh (xh[pai] = u)/K.

χh(M ′) is also indexed by i, a, u, with value

χh(i, a, u;M ′) ,
∥∥∥P ?,(i)(·|u, a)− P ′,(i)(·|u, a)

∥∥∥
TV
.

Note that ζh’s value only depends on M , while χh’s values only depend on M ′. Moreover the
dimensions of ζh and χh are

∑d
i=1K|O||pai| = Lh/|O|, each entry of ζh is bounded by 1/K, and

each entry of χh is at most 2. Hence, we must have β = supζ,χ ‖ζ‖2 · ‖χ‖2 ≤ O(L/K). Note that
we omit |O| from the denominator as Lh has a higher exponent on |O| and the quantity is being
treated as a constant in the big-oh notation.

We now proceed to prove Bellman domination (up to a constant), which relies on the following
lemma on the tensorization property of total variation:
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Lemma 25 Let P1, . . . , Pn and Q1, . . . , Qn be distributions where Pi ∈ ∆(Si) for finite sets Si.
Define the product measures P (n), Q(n) as P (n)(s1, . . . , sn) ,

∏n
i=1 Pi(si). Then∥∥∥P (n) −Q(n)

∥∥∥
TV
≤

n∑
i=1

‖Pi −Qi‖TV .

Proof Define Wi ∈ ∆(S1 × · · · × Sn) with Wi(s1:n) =
∏i
j=1 Pj(sj)

∏n
j=i+1Qj(sj), with i ∈

{0, . . . , n}. This gives W0 = Q(n), and Wn = P (n). Now, by telescoping, we have

∥∥∥P (n) −Q(n)
∥∥∥

TV
= ‖W0 −Wn‖TV ≤

n−1∑
i=0

‖Wi −Wi+1‖TV .

For ‖Wi −Wi+1‖TV, we have

‖Wi −Wi+1‖TV =

∥∥∥∥∥∥
i∏

j=1

Pj

n∏
j=i+1

Qj −
i+1∏
j=1

Pj

n∏
j=i+2

Qj

∥∥∥∥∥∥
TV

= ‖Qi+1 − Pi+1‖TV .

With this helper lemma, the following lemma shows the Bellman domination.

Lemma 26 1
K EB(QM , QM ′ , h) ≤ WF (M,M ′, h).

Proof

EB(QM , QM ′ , h) = E
[
Q′(xh, ah)− rh −Q′(xh+1, ah+1)

∣∣xh ∼ πM , ah:h+1 ∼ πM ′
]

= E

[
E

xh+1∼P ′xh,ah
[VM ′(xh+1)]− E

xh+1∼P ?xh,ah
[VM ′(xh+1)] | xh ∼ πM , ah ∼ πM ′

]

≤ E

[∑
ah

πM ′(ah|xh)

∣∣∣∣∣ E
xh+1∼P ′xh,ah

[VM ′(xh+1)]− E
xh+1∼P ?xh,ah

[VM ′(xh+1)]

∣∣∣∣∣ | xh ∼ πM
]

≤ E

[∑
ah

πM ′(ah|xh)
∥∥P ′xh,ah − P ?xh,ah∥∥TV | xh ∼ πM

]
(Hölder and boundedness of VM ′)

≤ K E
[
Eah∼U(A)

[∥∥P ′xh,ah − P ?xh,ah∥∥TV

]
| xh ∼ πM

]
≤ KWF (M,M ′, h).

The first step follows as we expand the definition of Q′(xh, ah) by Bellman equation in M ′, and
realize that the immediate reward cancels out with rh in expectation as the reward function is known.
The last step follows from Lemma 25 and Lemma 23.

Combining Proposition 24 and Lemma 26 we arrive at the following corollary:

Corollary 27 Recall the definition of witness rank in Definition 5. Set κ = 1
K , we have

Wκ,F , W( 1
K , β,M,F , h) ≤ Lh/|O|,16 for β = O(L/K).

16. Note that we abuse the definition of W to useWF instead ofW in Definition 5 here.
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Algorithm 4 Guessing Wκ?/κ
?, Arguments: (M,F , ε, δ)

1: for epoch i = 1, 2, ... do
2: Set Ni = 2i−1 and δi = δ/(i(i+ 1))
3: for j = 1, 2, . . . do
4: Set κi,j = (1/2)j−1, δi,j = δi/(j(j + 1)), and Wi,j = Niκi,j
5: if Wi,j < 1 then
6: Break
7: end if
8: Set Ti,j = HWi,j log(β/(2φ))/ log(5/3) and φi,j = εκi,j/(48H

√
Wi,j)

9: Set nei,j = Θ
(
H2 log(6HTi,jδi,j)

ε2

)
and ni,j = Θ

(
H2KWi,j log(12Ti,j |M||F|δi,j)

κ2i,jε
2

)
10: Run Algorithm 1 with (M,F , ni,j , nei,j , ε, δi,j , φ) for Ti,j iterations
11: If Algorithm 1 returns a policy, then break and return the policy
12: end for
13: end for

E.3. Proof of Theorem 8

The proof is largely the same as that of Theorem 6, and the only difference is that we use ŴF as the
estimator and handle infiniteM, whose uniform convergence property is provided in Section E.1.2.
Following the proof of Theorem 6, within the high probability events,the algorithm must terminate
in T = Wκ,FH log(β/(2φ))/ log(5/3) iterations, where κ = 1/K and Wκ,F ≤ Lh/|O| (Corol-
lary 27) . As in the previous proof we still set φ = κε

48H
√

Wκ,F
. Plugging this value into Lemma 21

and requiring that each of these estimation events succeeds with probability at least 1− δ/3T , we
have

n = Θ

(
d2(L log(dKLε ) + log(3T/δ))

|O|ε2
LHK2

)
= Õ

(
d2L2HK2 log(1/δ)

ε2

)
.

Here the |O|2 on the denominator is dropped due to its negligible magnitude compared to L. The rest
of the proof is unchanged: Since estimatingWF requires much more samples than other estimation
events, the order of the overall sample complexity is determined by the above expression multiplied
by T , which gives the desired sample complexity.

Appendix F. Extension to Unknown Witness Rank

Algorithm 1 and its analysis assumes that we know κ and Wκ (in fact any finite upper bound of Wκ),
which could be a strong assumption in some cases. In this section, we show that we can apply a
standard doubling trick to handle the situation where κ and Wκ are unknown.

Let us consider the quantity Wκ/κ. Let us denote κ? = arg minκ∈(0,1] Wκ/κ. Note that the
sample complexity of Algorithm 1 is minimized at κ?. Algorithm 4 applies the doubling trick to
guess Wκ? and κ? jointly with Algorithm 1 as a subroutine. In the algorithm, Ni in the outer loop
denotes a guess for W/κ as a whole, and in the inner loop we use κi,j to guess κ, while setting
Wi,j = Niκi,j , which we use to set the parameter φ and n. The following theorem characterizes the
its sample complexity.
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Theorem 28 For any ε, δ ∈ (0, 1), withM and F satisfying Assumption 1 and Assumption 2, with
probability at least 1− δ, Algorithm 4 terminates and outputs a policy π with vπ ≥ v? − ε, using at
most

Õ

(
H3KW2

κ? log(|M||F|/δ)
(κ?ε)2

)
trajectories.

Proof Consider the jth iteration in the ith epoch. Based on the value of φi,j , nei,j , ni,j , us-
ing Lemma 12 and Lemma 11, with probability at least 1 − δi,j , for any t ∈ [1, Ti,j ] during
the run of Algorithm 1, we have

|vπt − v̂πt | ≤ ε/8, (22)

|ÊB(M t,M t, h)− EB(M t,M t, h)| ≤ ε/(8H), ∀h ∈ [H], (23)

|Ŵ(M t,M ′, ht)−W(M t,M ′, ht)| ≤ φi,j ,∀M ′ ∈M. (24)

The first condition above ensures that if Algorithm 1 terminates in the jth iteration and the ith epoch
and outputs π, then π must be near-optimal, based on Lemma 14. The third inequality above together
with the elimination criteria in Algorithm 1 ensures that M? is never eliminated.

Denote i? as the epoch where 2Wκ?/κ
? ≤ Ni? ≤ 4Wκ?/κ

?, and j? as the iteration inside the ith?
epoch where κ?/2 ≤ κi?,j? ≤ κ?. Since Wi?,j? = Ni?κi?,j? , we have:

Wκ? ≤ Wi?,j? ≤ 4Wκ? . (25)

Below we condition on the event that M? is not eliminated during any epoch before i?, and any
iteration before j? in the ith? epoch. We analyze the jth

? iteration in the ith? epoch below. Since
Ni? = 2i?−1 and Ni? ≤ 4Wκ?/κ

?, we must have i? ≤ 1 + log2(4Wκ?/κ
?). Also note that we have

with these settings that Wi?,j?/(κi?,j?)
2 ≥ Wκ?/(κ

?)2, so that the number of samples we use at
round (i?, j?)is at least as large, and the parameter φ is no larger than what we would have if we
knew κ? and used it in Algorithm 1.

Based on the value of φi?,j? , ni?,j? , nei?,j? and Ti?,j? , we know with probability at least 1−δi?,j? ,
for any t ∈ [1, Ti?,j? ] in the execution of Algorithm 1, inequalities (22), (23), and (24) hold.
Conditioned on this event and since φi?,j? is small enough as observed above, similar to the proof
of Lemma 17, we can show that Algorithm 1 must terminate in at most HWκ? log(β/2φ)/ log(5/3)
many rounds in this iteration.

From (25), we know that Wi?,j? ≥ Wκ? , which implies that Ti?,j? ≥ HWκ? log(β/2φ)/ log(5/3).
In other words, in the jth

? iteration of the ith? epoch, we run Algorithm 1 long enough to guarantee
that it terminates and outputs a policy. We have already ensured that if it terminates, it must output a
policy π with vπ ≥ v? − ε (this is true for any (i, j) pair).

Now we calculate the sample complexity. In the ith epoch, since we terminate when Wi,j < 1,
the number of iterations is at most log2Ni < i. Hence the number of trajectories collected in this
epoch is at most

i∑
j=1

(nei,j + ni,j)Ti,j =

i∑
j=1

O
(
H3KW2

i,j log(Ti,j |M||F|/δi,j)/(εκi,j)2
)

= O
(
iH3KN2

i log(Ti,1|M||F|/δi,i)/ε2
)
,
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where we used the fact that Ni = Wi,j/κi,j , Ti,1 ≥ Ti,j , and δi,i ≤ δi,j . Note that
∑i?−1

i=1 iN2
i =∑i?−1

i=1 i(2i−1)2 ≤ (i? − 1)(2i?−1)2/3 = O(i?N
2
i?

). Hence the sample complexity in the ith? epoch
dominates the total sample complexity, which is

Õ
(
(1 + log2(4Wκ?/κ

?))H3KW2
κ? log(Ti?,0|M||F|/δi?,i?)/(κ?ε)2

)
,

where we used the fact that i? ≤ 1+log2(2Wκ?/κ
?), andNi? ≤ 2Wκ?/κ

?. Applying a union bound
over (i, j), with i ≤ i?, since we have

∑i?
i=1

∑i
j=1 δi,j ≤

∑i?
i=1 δi?,1 =

∑i?
i=1 δ/(i(i+ 1)) ≤ δ, the

failure probability is at most δ, which proves the theorem.

Appendix G. Details on Exponential Family Model Class

For any modelM ∈M, conditioned on (x, a) ∈ X×A, we assumeMx,a , exp(〈θx,a,T(r, x′)〉)/Z(θx,a)
with θx,a ∈ Θ ⊂ Rm. Without loss of generality, we assume ‖θx,a‖ ≤ 1, and Θ = {θ : ‖θ‖ ≤ 1}.
We design V = {X × A → Θ}, i.e., V contains all mappings from (X × A) to Θ. We design
F = {(x, a, r, x′) 7→ 〈v(x, a),T(r, x′)〉 : v ∈ V}. Using Definition 3, we have:

W(M,M ′, h) = sup
f∈F

E
xh∼πM ,ah∼πM′

[
E

(r,x′)∼M ′h
[f(xh, ah, r, x

′)]− E
(r,x′)∼M?

h

[f(xh, ah, r, x
′)]

]

= E
xh∼πM ,ah∼πM′

[
sup
θ∈Θ

(
E

(r,x′)∼M ′h

[
〈θ,T(r, x′)〉

]
− E

(r,x′)∼M?
h

[
〈θ,T(r, x′)〉

])]

= E
xh∼πM ,ah∼πM′

[∥∥∥∥∥ E
(r,x′)∼M ′h

[T(r, x′)]− E
(r,x′)∼M?

h

[T(r, x′)]

∥∥∥∥∥
?

]
,

where the second equality uses the fact that V contains all possible mappings from X ×A → Θ.
We assume that for any θ ∈ Θ, the hessian of the log partition function ∇2 log(Z(θ)) is positive

definite with eigenvalues bounded between [γ, β] with 0 ≤ γ ≤ β. Below, we show that under the
above assumptions, Bellman domination required for Assumption 2 still holds up to a constant.

Claim 29 (Bellman Domination for Exponential Families) In the exponential family setting, we
have

γ

2
√

2β
EB(M,M ′, h) ≤ W(M,M ′, h).

Proof We leverage Theorem 3.2 from Gao et al. (2018), which implies that

γ√
β

E
xh∼πM ,ah∼πM′

√
DKL(M ′xh,ah ||M?

xh,ah
) ≤ W(M,M ′, h).

By Pinsker’s inequality, we have:

γ√
2β

E
xh∼πM ,ah∼πM′

∥∥M ′xh,ah −M?
xh,ah

∥∥
TV ≤ W(M,M ′, h),

where the LHS is the witness model misfit defined using total variation directly (3).
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On the other hand, we know that r + VM (x) for any M ∈ M is upper bounded by 2 via our
regularity assumption on the reward. Hence, the TV-based witness model misfit upper bounds
Bellman error as follows:

2 E
xh∼πM ,ah∼πM′

∥∥M ′xh,ah −M?
xh,ah

∥∥
TV ≥ EB(M,M ′, h),

which concludes the proof.

Note that the constant γ/(2
√

2β) can be absorbed into κ in the definition of witness rank
(Definition 5).
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