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1Abstract
We study the complexity of training neural network models with one hidden nonlinear activa-
tion layer and an output weighted sum layer. We analyze Gradient Descent applied to learning a
bounded target function on n real-valued inputs. We give an agnostic learning guarantee for GD:
starting from a randomly initialized network, it converges in mean squared loss to the minimum
error (in 2-norm) of the best approximation of the target function using a polynomial of degree at
most k. Moreover, for any k, the size of the network and number of iterations needed are both
bounded by nO(k) log(1/ε). The core of our analysis is the following existence theorem, which
is of independent interest: for any ε > 0, any bounded function that has a degree k polynomial
approximation with error ε0 (in 2-norm), can be approximated to within error ε0 + ε as a linear
combination of nO(k) ·poly(1/ε) randomly chosen gates from any class of gates whose correspond-
ing activation function has nonzero coefficients in its harmonic expansion for degrees up to k. In
particular, this applies to training networks of unbiased sigmoids and ReLUs. We also rigorously
explain the empirical finding that gradient descent discovers lower frequency Fourier components
before higher frequency components.

We complement this result with nearly matching lower bounds in the Statistical Query model.
GD fits well in the SQ framework since each training step is determined by an expectation over the
input distribution. We show that any SQ algorithm that achieves significant improvement over a
constant function with queries of tolerance some inverse polynomial in the input dimensionality n
must use nΩ(k) queries even when the target functions are restricted to a set of nO(k) degree-k poly-
nomials, and the input distribution is uniform over the unit sphere; for this class the information-
theoretic lower bound is only Θ(k log n).

Our approach for both parts is based on spherical harmonics. We view gradient descent as an
operator on the space of functions, and study its dynamics. An essential tool is the Funk-Hecke
theorem, which explains the eigenfunctions of this operator in the case of the mean squared loss.

1. Introduction

It is well known that artificial neural networks (NNs) can approximate any real-valued function.
Fundamental results Hornik et al. (1989); Cybenko (1989); Barron (1993) show that a NN with a
single hidden layer provides a universal representation up to arbitrary approximation, with the num-
ber of hidden units needed depending on the function being approximated and the desired accuracy.
In practice, NNs today effectively capture a wide variety of information with remarkably accurate
predictions.
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Besides their generality, an important feature of NNs is the ease of training them — gradient
descent (GD) is used to minimize the error of the network, measured by a loss function of the
current weights. This seems to work across a range of labeled data sets. Yet despite its tremendous
success, there is no satisfactory explanation for the efficiency or effectiveness of this generic training
algorithm.

In this paper we give nearly matching upper and lower bounds that help explain the phenomena
seen in practice when training NNs. The upper bounds are for GD and the lower bounds are for all
statistical query algorithms.

We consider NNs with n-dimensional inputs, a single hidden layer with m units having some
nonlinear activation φ : R → R, and a single linear output unit. All units are without additive bias
terms. We will consider inputs drawn from the uniform distribution on Sn−1. We initialize our
NNs by choosing the vectors for each hidden-layer unit uniformly and indpenently from Sn−1 and
setting all output-layer weights to 0. The specific GD procedure we consider is as follows: in each
iteration, the gradient of the loss function is computed using a finite sample of examples, with the
entire sample reused for each iteration. The output-layer weights are then modified by adding a
fixed multiple of the estimated gradient, and the hidden-layer weights are kept fixed.

Our algorithmic result is an agnostic upper bound on the approximation error and time and
sample complexity of GD with the standard mean squared loss function. Despite training only the
output layer weights, our novel proof techniques avoid using any convexity in the problem. Since
our analysis does not rely on reaching a global minimum, there is reason to hope the techniques will
extend to nonconvex settings where we can in general expect only to find a local minimum. Prior
results along this line were either for more complicated algorithms or more restricted settings; the
closest is the work of Andoni et al. Andoni et al. (2014) where they assume the target function is a
bounded degree polynomial. We illustrating the power of our proof technique by obtaining, as an
immediate corollary of our convergence analaysis, a rigorous proof of the “spectral bias” of gradient
descent observed experimentally in Rahaman et al. (2018).

The upper bound shows that to get close to the best possible degree k polynomial approximation
of the data, it suffices to run GD on a NN with nO(k) units, using the same number of samples. It
suffices to train the output layer weights alone. This is an agnostic guarantee. We prove a matching
lower bound for solving this polynomial learning problem over the uniform distribution on the unit
sphere, for any statistical query algorithm that uses tolerance inversely proportional to nΩ(k). Thus,
for this general agnostic learning problem, GD is as good as it gets.
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