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Abstract
Stochastic approximation (SA) is a classical approach for stochastic convex optimization. Previ-
ous studies have demonstrated that the convergence rate of SA can be improved by introducing
either smoothness or strong convexity condition. In this paper, we make use of smoothness and
strong convexity simultaneously to boost the convergence rate. Let λ be the modulus of strong
convexity, κ be the condition number, F∗ be the minimal risk, and α > 1 be some small constant.
First, we demonstrate that, in expectation, an O(1/[λTα] + κF∗/T ) risk bound is attainable when
T = Ω(κα). Thus, when F∗ is small, the convergence rate could be faster than O(1/[λT ]) and
approaches O(1/[λTα]) in the ideal case. Second, to further benefit from small risk, we show that,
in expectation, an O(1/2T/κ + F∗) risk bound is achievable. Thus, the excess risk reduces expo-
nentially until reaching O(F∗), and if F∗ = 0, we obtain a global linear convergence. Finally, we
emphasize that our proof is constructive and each risk bound is equipped with an efficient stochastic
algorithm attaining that bound.
Keywords: Stochastic Approximation, Stochastic Convex Optimization, Excess Risk, Smoothness,
Strong Convexity

1. Introduction

Stochastic optimization (SO) is frequently encountered in a vast number of areas, including telecom-
munication, medicine, and finance, to name but a few (Shapiro et al., 2014). SO aims to minimize
an objective function which is given in a form of the expectation. Formally, the problem can be
formulated as

min
w∈W

F (w) = Ef∼P [f(w)] (1)

where f(·) : W 7→ R is a random function sampled from a distribution P. A well-known special
case is the risk minimization in machine learning, whose objective function is

F (w) = E(x,y)∼D
[
`
(
y, 〈w,x〉

)]
where (x, y) denotes a random instance-label pair sampled from certain distribution D, w is the
model for prediction, and `(·, ·) is a loss that measures the prediction error (Vapnik, 1998).

In this paper, we focus on stochastic convex optimization (SCO), in which both the domainW
and the expected function F (·) are convex. A basic difficulty of solving stochastic optimization
problem is that the distribution P is generally unknown, or even if known, it is hard to evaluate the
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expectation exactly (Nemirovski et al., 2009). To address this challenge, two different ways have
been proposed: sample average approximation (SAA) (Kim et al., 2015) and stochastic approxi-
mation (SA) (Kushner and Yin, 2003). SAA collects a set of random functions f1, . . . , fT from
P, and constructs the empirical average

∑T
i=1 fi(·)/T to approximate the expected function F (·).

In contrast, SA tackles the stochastic optimization problem directly, at each iteration using a noisy
observation of F (·) to improve the current iterate.

Compared with SAA, SA is more efficient due to the low computational cost per iteration, and
has received significant research interests from optimization and machine learning communities
(Zhang, 2004; Duchi et al., 2011; Ge et al., 2015; Wang et al., 2017). The performance of SA
algorithms is typically measured by the excess risk:

F (wT )− min
w∈W

F (w)

where wT is the solution returned after T iterations. For Lipschitz continuous convex functions,
stochastic gradient descent (SGD) achieves the unimprovableO(1/

√
T ) rate of convergence. Alter-

natively, if the optimization problem has certain curvature properties, then faster rates are sometimes
possible. Specifically, for smooth functions, SGD is equipped with anO(1/T+

√
F∗/T ) risk bound,

where F∗ = minw∈W F (w) is the minimal risk (Srebro et al., 2010). Thus, the convergence rate
for smooth functions could be faster than O(1/

√
T ) when the minimal risk is small. For strongly

convex functions, the convergence rate can also be improved to O(1/[λT ]), where λ is the modulus
of strong convexity (Hazan and Kale, 2011).

From the above discussions, we observe that either smoothness or strong convexity could be ex-
ploited to improve the convergence rate of SA. This observation motivates subsequent studies that
boost the convergence rate by considering smoothness and strong convexity simultaneously. Ho-
wever, existing results are unsatisfactory because they either rely on strong assumptions (Mahdavi
and Jin, 2013; Schmidt and Roux, 2013), are only applicable to unconstrained domains (Moulines
and Bach, 2011; Needell et al., 2014), or limited to the special problems (Roux et al., 2012; Shalev-
Shwartz and Zhang, 2013; Zhang et al., 2013a; Dieuleveut et al., 2017). This paper demonstrates
that for the general SO problem, the convergence rate of SA could be faster thanO(1/T ) when both
smoothness and strong convexity are present and the minimal risk is small. Our work is similar
in spirit to a recent study of SAA (Zhang et al., 2017a), which also establishes faster rates under
similar conditions. The main contributions of our paper are summarized below.
• First, we propose a fast algorithm for stochastic approximation (FASA), which applies epoch

gradient descent (Epoch-GD) (Hazan and Kale, 2011) with carefully designed initial solution
and step size. Let κ be the condition number and α > 1 be some small constant. Our theoreti-
cal analysis shows that, in expectation, FASA achieves an O (1/[λTα] + κF∗/T ) risk bound
when the number of iterations T = Ω(κα). As a result, the convergence rate could be faster
than O(1/[λT ]) when F∗ is small, and approaches O(1/[λTα]) when F∗ = O(1/Tα−1).
• Second, to further benefit from small risk, we propose to use a fixed step size in Epoch-GD,

and establish an O(1/2T/κ + F∗) risk bound which holds in expectation. Thus, the excess
risk reduces exponentially until reaching O(F∗), and if F∗ = 0, we obtain a global linear
convergence.

2. Related Work

In this section, we review related work on SA and SAA.
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2.1. Stochastic Approximation (SA)

For brevity, we only discuss first-order methods of SA, and results of zero-order methods can be
found in the literature (Nesterov, 2011; Wibisono et al., 2012).

For Lipschitz continuous convex functions, stochastic gradient descent (SGD) exhibits the op-
timal O(1/

√
T ) risk bound (Nemirovski and Yudin, 1983; Zinkevich, 2003). When the random

function f(·) is nonnegative and smooth, SGD (with a suitable step size) has a risk bound of
O(1/T +

√
F∗/T ), becoming O(1/T ) if the minimal risk F∗ = O(1/T ) (Srebro et al., 2010,

Corollary 4). If the expected function F (·) is λ-strongly convex, some variants of SGD (Hazan
and Kale, 2011, 2014; Rakhlin et al., 2012; Shamir and Zhang, 2013; Zhang et al., 2013b) achieve
an O(1/[λT ]) rate which is known to be minimax optimal (Agarwal et al., 2012). For the square
loss and the logistic loss, an O(1/T ) rate is attainable without strong convexity (Bach and Mou-
lines, 2013). When the random function f(·) is η-exponentially concave, the online Newton step
(ONS) is equipped with an Õ(d/[ηT ]) risk bound, where d is the dimensionality (Hazan et al., 2007;
Mahdavi et al., 2015). When the expected function is both smooth and strongly convex, we still have
the O(1/T ) convergence rate but with a smaller constant (Ghadimi and Lan, 2012). Specifically,
the constant in the big O notation depends on the variance of the stochastic gradient instead of the
maximum norm.

There are some studies that have established convergence rates that are faster thanO(1/T ) when
both smoothness and strong convexity are present. Moulines and Bach (2011) and Needell et al.
(2014) demonstrate that the distance between the SGD iterate and the optimal solution decreases at
a linear rate in the beginning, but their results are limited to unconstrained problems. When an upper
bound of F∗ is available, Mahdavi and Jin (2013) show that it is possible to reduce the excess risk
at a linear rate until certain level. Under a strong growth condition, Schmidt and Roux (2013) prove
that SGD could achieve a global linear rate. A variety of variance reduction techniques have been
proposed and yield faster rates for SA (Roux et al., 2012; Shalev-Shwartz and Zhang, 2013; Johnson
and Zhang, 2013; Zhang et al., 2013a). However, these methods are restricted to the special case
that the expected function is a finite sum, and thus cannot be applied if the distribution is unknown.
Recent studies have established fast rates for least squares (Dieuleveut et al., 2017; Jain et al., 2018),
but the extension to general problems remains open.

As can be seen, existing fast rates of SA are restricted to special problems or rely on strong
assumptions. We will provide detailed comparisons in Section 3 to illustrate the advantage of this
study—our setting is more general and our convergence rates are faster. While our paper focuses
on stochastic convex optimization, we note there has been a recent surge of interests in developing
SA algorithms for non-convex problems (Ge et al., 2015; Allen-Zhu and Hazan, 2016; Reddi et al.,
2016; Zhang et al., 2017b).

2.2. Sample Average Approximation (SAA)

SAA is also referred to as empirical risk minimization (ERM) in machine learning. In the literature,
there are plenty of theories for SAA (Kim et al., 2015) or ERM (Vapnik, 1998). In the following,
we only discuss related work on SAA in the past decade.

To present the results in SAA, we use T to denote the total number of training samples. When the
random function f(·) is Lipschitz continuous, Shalev-Shwartz et al. (2009) establish an Õ(

√
d/T )

risk bound. When f(·) is λ-strongly convex and Lipschitz continuous, Shalev-Shwartz et al. (2009)
further prove an O(1/[λT ]) risk bound which holds in expectation. When f(·) is η-exponentially
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concave, an Õ(d/[ηT ]) risk bound is attainable (Koren and Levy, 2015; Mehta, 2016). Lower
bounds of ERM for stochastic optimization are investigated by Feldman (2016). In a recent work,
Zhang et al. (2017a) establish an Õ(d/T +

√
F∗/T ) risk bound when f(·) is smooth and F (·) is

Lipschitz continuous. The most surprising result is that when f(·) is smooth and F (·) is Lipschitz
continuous and λ-strongly convex, Zhang et al. (2017a) prove an O(1/[λT 2] + κF∗/T ) risk bound,
when T = Ω̃(κd). Thus, the convergence rate of ERM could be faster than O(1/[λT ]) when both
smoothness and strong convexity are present and the number of training samples is large enough.

3. Our Results

We first introduce assumptions used in our analysis, then present our algorithms and theoretical
guarantees.

3.1. Assumptions

Assumption 1 The random function f(·) is nonnegative.

Assumption 2 The random function f(·) is (almost surely) L-smooth overW , that is,∥∥∇f(w)−∇f(w′)
∥∥ ≤ L‖w −w′‖, ∀w,w′ ∈ W. (2)

Assumption 3 The expected function F (·) is λ-strongly convex overW , that is,

F (w) + 〈∇F (w),w′ −w〉+
λ

2
‖w′ −w‖2 ≤ F (w′), ∀w,w′ ∈ W. (3)

Assumption 4 The gradient of the random function is (almost surely) upper bounded by G, that
is,

‖∇f(w)‖ ≤ G, ∀w ∈ W. (4)

Remark 1 We have the following comments regarding our assumptions.
• The above assumptions hold for many popular machine learning problems, such as (regulari-

zed) linear regression or logistic regression.
• Based on Assumptions 2 and 3, we define the condition number κ = L/λ, which will be used

to characterize the performance of our methods. For simplicity, we assume L is a constant,
and thus κ and 1/λ are on the same order.
• Let w∗ = argminw∈W F (w) be the optimal solution to (1). Assumption 3 implies (Hazan

and Kale, 2011)
λ

2
‖w −w∗‖2 ≤ F (w)− F (w∗), ∀w ∈ W (5)

which is referred to as the quadratic growth condition (Necoara et al., 2019). Actually, in our
analysis, we only make use of (5) instead of (3).
• The bounded gradient condition in Assumption 4 is not essential to our analysis. We introduce

this assumption because our first algorithm uses Epoch-GD (Hazan and Kale, 2011) as a
subroutine and Epoch-GD relies on Assumption 4. However, Epoch-GD can be replaced
with any optimal algorithm for strongly convex stochastic optimization. In particular, if we
choose the AC-SA algorithm of Ghadimi and Lan (2012), Assumption 4 can be dropped.

4



FAST RATES FOR STOCHASTIC APPROXIMATION

Algorithm 1 Epoch Gradient Descent (Epoch-GD)
Input: parameters η1, T1, T , and w0

1: Initialize w1
1 = w0, and set k = 1

2: while
∑k

i=1 Ti ≤ T do
3: for t = 1 to Tk do
4: Sample a random function fkt (·) from P
5: Update

wk
t+1 = ΠW

[
wk
t − ηk∇fkt (wk

t )
]

6: end for
7: wk+1

1 = 1
Tk

∑Tk
t=1w

k
t

8: Tk+1 = 2Tk and ηk+1 = ηk/2
9: k = k + 1

10: end while
11: return wk

1

Algorithm 2 Fast Algorithm for Stochastic Approximation (FASA)
Input: parameters L, λ, T , and α

1: Let w̄ be any point inW , and set κ = L/λ
2: Invoke Epoch-GD(1/λ,4,T/2, w̄), and denote the solution by ŵ
3: Invoke Epoch-GD(1/4L,2α+3κ,T/2, ŵ), and denote the solution by w̃
4: return w̃

3.2. A General Algorithm

We first introduce a general algorithm for SA, which always achieves anO(1/λT ) rate, and becomes
faster when F∗ is small.

3.2.1. FAST ALGORITHM FOR STOCHASTIC APPROXIMATION (FASA)

Our fast algorithm for stochastic approximation (FASA) takes epoch gradient descent (Epoch-GD)
as a subroutine. Although Hazan and Kale (2011) have established the convergence rate of Epoch-
GD under the strong convexity condition, they did not utilize smoothness in their analysis. The
procedures of Epoch-GD and FASA are described in Algorithm 1 and Algorithm 2, respectively.

Epoch-GD is an extension of stochastic gradient descent (SGD). It divides the optimization
process into a sequence of epochs. In each epoch, Epoch-GD applies SGD multiple times, and the
averaged iterate is passed to the next epoch. In the algorithm, we use ΠW [·] to denote the projection
onto the nearest point inW . There are 4 input parameters of Epoch-GD: (1) η1, the step size used in
the first epoch; (2) T1, the size of the first epoch; (3) T , the total number of stochastic gradients that
can be consumed; and (4) w0, the initial solution. In each consecutive epoch, the step size decreases
exponentially and the size of epoch increases exponentially.

In FASA, we first invoke Epoch-GD with an arbitrary initial solution, and the number of sto-
chastic gradients is set to be T/2. The purpose of this step is to get a good solution ŵ at the expense
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of T/2 stochastic gradients.1 Then, Epoch-GD is invoked again with ŵ as its initial solution and a
budget of T/2 stochastic gradients. This time, we set a large epoch size to utilize the fact that the
initial solution is of high quality. The convergence rate of FASA is given below.

Theorem 1 Suppose
T ≥ κα (6)

where α > 1 is some constant. Under Assumptions 1, 2, 3 and 4, the solution w̃ returned by
Algorithm 2 satisfies

E [F (w̃)]− F∗ ≤
2α

2+5α+5G2

λTα
+

22α+5κF∗
(2α−1 − 1)T

where F∗ = F (w∗) = minw∈W F (w) is the minimal risk.

Remark 2 The above theorem implies that when T is large enough, i.e., T = Ω(κα), FASA
achieves an

O

(
1

λTα
+
κF∗
T

)
rate of convergence, which is faster than O(1/[λT ]) when the minimal risk is small. In particular,
when F∗ = O(1/Tα−1), the convergence rate is improved to O(1/[λTα]). Note that the upper
bound has an exponential dependence on α, so it is meaningful only when α is chosen as a small
constant.

Remark 3 Note that our algorithm is translation-invariant, i.e., it does not change if we translate
the function by a constant. Since the upper bound in Theorem 1 depends on the minimal risk F∗, one
may attempt to subtract a constant from the function to make the bound tighter. However, because
of the nonnegative requirement in Assumption 1, the best we can do is to redefine

f(w)← f(w)− ess inf
f∼P

inf
w∈W

f(w)

and replace F∗ in Theorem 1 with F∗ − ess inff∼P infw∈W f(w).
To simplify Theorem 1, we provide the following corollary by setting α = 2.

Corollary 2 Suppose T ≥ κ2. Under the same conditions as Theorem 1, we have

E [F (w̃)]− F∗ ≤
219G2

λT 2
+

29κF (w∗)

T
= O

(
1

λT 2
+
κF∗
T

)
.

Finally, we present the excess risk when α is set to be the largest possible value, i.e., α = logκ T ,
and then the first term in the upper bound of Theorem 1 decreases at a very fast rate.

Corollary 3 Suppose α = logκ T > 1. Under the same conditions as Theorem 1, we have

E [F (w̃)]− F∗ ≤
25G2

λT (1−logκ 2−5 logT 2) logκ T
+

25κF∗
(2logκ T−1 − 1)T 1−2 logκ 2

=O

(
1

λT (1−logκ 2−5 logT 2) logκ T
+

κF∗
T 1−2 logκ 2

)
.

1. In this step, Epoch-GD can be replaced with any algorithm that achieves the optimal O(1/λT ) rate for strongly
convex stochastic optimization, e.g., the AC-SA algorithm (Ghadimi and Lan, 2012) and SGD withα-suffix averaging
(Rakhlin et al., 2012).
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Remark 4 Note that any constant that is larger than κ can also be used as the condition number.
Thus, without loss of generality, we can assume logκ 2 is much smaller than 1. Furthermore, as T
goes to infinity, 5 logT 2 converges to 0. So, when F∗ is sufficiently small, the convergence rate will
approach O(1/[λT c logκ T ]) where c = 1− logκ 2.

3.2.2. COMPARISONS WITH PREVIOUS RESULTS

In the following, we compare our Theorem 1 and Corollary 2 with related work in SA (Ghadimi
and Lan, 2012; Dieuleveut et al., 2017; Jain et al., 2018; Moulines and Bach, 2011; Needell et al.,
2014) and SAA (Zhang et al., 2017a).

For smooth and strongly convex functions, Ghadimi and Lan (2012, Proposition 9) have esta-
blished an O(1/T 2 + σ2/[λT ]) rate for the expected risk, where σ2 is the variance of the stochastic
gradient. Note that this rate is worse than that in Corollary 2 because σ2 is a constant in general,
even when F∗ is small. For example, consider the problem of least squares

min
w∈W

F (w) = E(x,y)∼D

[
(x>w − y)2

]
,

and assume y = x>w∗ + ε where ε ∼ N (0, ρ2) is the Gaussian random noise and w∗ ∈ W . Then,
F∗ = E[ε2] = ρ2, which approaches zero as ρ→ 0. On the other hand, the variance of the stochastic
gradient at solution wt can be decomposed as

σ2 =E

[∥∥∥2(x>wt − y)x− E
[
2(x>wt − y)x

]∥∥∥2]
=4E

[∥∥∥(xx> − E[xx>]
)
(wt −w∗)

∥∥∥2]+ 4E
[
‖εx‖2

]
.

As can be seen, even when there is no noise, i.e., ρ = 0, the variance is nonzero due to the rand-
omness of x. We note that recent studies of least squares do not suffer this limitation, and in
particular, Dieuleveut et al. (2017, Theorem 2) and Jain et al. (2018, Corollary 2) have proved
O(d/T 2 + dρ2/T ) and O(exp(−T/κ) + dρ2/T ) rates, respectively. These results have a similar
spirit with our Corollary 2, but they are limited to least squares.

For unconstrained problems, Moulines and Bach (2011) and Needell et al. (2014) have analyzed
the distance between the SGD iterate and the optimal solution under the smoothness and strong
convexity condition. In particular, Theorem 1 of Moulines and Bach (2011) (with α = 1 and
µC = 2) implies the following convergence rate for the expected risk

O

(
exp(κ2)

n2
+
F∗ log T

λ2T

)
which is worse than our Corollary 2 because of the additional log T/λ factor in the second term.
Theorem 2.1 of Needell et al. (2014) leads to the following rate

O

((
1− λ

T

)T
+
κF∗
T

)
(7)

which is also worse than our Corollary 2 because (1 − λ/T )T becomes a constant when T → ∞.
We note that it is possible to extend the analysis of Needell et al. (2014) to constrained problems, but
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Algorithm 3 Epoch Gradient Descent with Fixed Step Size (Epoch-GD-F)
Input: parameters η, T ′, T , and w0

1: Set w1
1 = w0 and k = 1

2: while k ≤ T/T ′ do
3: for t = 1 to T ′ do
4: Sample a random function fkt (·) from P
5: Update

wk
t+1 = ΠW

[
wk
t − η∇fkt (wk

t )
]

6: end for
7: wk+1

1 = 1
T ′
∑T ′

t=1w
k
t

8: k = k + 1
9: end while

10: return w̃ = wk
1

the convergence rate becomes slower, and thus is worse than our rate. Detailed discussions about
how to simplify and extend the result of Needell et al. (2014) are provided in Appendix E.

The convergence rate in Corollary 2 matches the state-of-the-art convergence rate of SAA
(Zhang et al., 2017a). Specifically, under similar conditions, Zhang et al. (2017a, Theorem 3) have
proved an O(1/[λT 2] +κF∗/T ) risk bound for SAA, when T = Ω̃(κd). Compared with the results
of Zhang et al. (2017a), our theoretical guarantees have the following advantages:
• The lower bound of T in our results is independent from the dimensionality, and thus our re-

sults can be applied to infinite dimensional problems, e.g., learning with kernels. In contrast,
the lower bound of T given by Zhang et al. (2017a, Theorem 3) depends on the dimensiona-
lity.
• For the special problem of supervised learning, Zhang et al. (2017a, Theorem 7) shows that

the lower bound on T can be replaced with Ω(κ2). However, it does not support the case
T ∈ (κ, κ2), which is covered by our Theorem 1.
• The convergence rate in Theorem 1 keeps improving as α increases. As a result, when α > 2,

the convergence rate in Theorem 1 is faster than that of SAA given by Zhang et al. (2017a).

3.3. A Special Algorithm for Small Risk

The convergence rate of FASA cannot go beyond O(1/[λTα]), even when F∗ is 0. In the following,
we develop a special algorithm for the case that F∗ is small. The new algorithm achieves a linear
convergence when F∗ is small, although it may not perform well otherwise.

3.3.1. EPOCH GRADIENT DESCENT WITH FIXED STEP SIZE (EPOCH-GD-F)

The new algorithm is a variant of Epoch-GD, in which the step size, as well as the size of each
epoch, is fixed. We name the new algorithm as epoch gradient descent with fixed step size (Epoch-
GD-F), and summarize it in Algorithm 3. Epoch-GD-F has 4 parameters: (1) η, the fixed step size;
(2) T ′, the size of each epoch; (3) T , the total number of stochastic gradients that can be consumed;
and (4) w0, the initial solution. We bound the excess risk of Epoch-GD-F in the following theorem.
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Theorem 4 Set
η =

1

4βL
, T ′ = 16βκ (8)

where β > 1 is some constant, and w0 be any point in W . Under Assumptions 1, 2 and 3, the
solution w̃ returned by Algorithm 3 satisfies

E [F (w̃)]− F∗ ≤
F (w0)− F∗

2k†
+

2F∗
β

where k† = bT/T ′c.

Remark 5 From the above theorem, we observe that the excess risk is upper bounded by two
terms: the first one decreases exponentially w.r.t. the number of epoches and the second one depends
on F∗. When β = O(1), the excess risk is on the order of

O

(
1

2T/κ
+ F∗

)
which means it reduces exponentially until reaching O(F∗). Note that if F∗ = 0, we obtain a global
linear convergence.

To better illustrate the convergence rate in Theorem 4, we present the iteration complexity of
Epoch-GD-F.

Corollary 5 Assume

T = Ω

(
βκ log

1

ε

)
.

Under the same condition as Theorem 4, the solution w̃ returned by Algorithm 3 satisfies

E [F (w̃)]− F∗ ≤ ε+
2F∗
β
.

3.3.2. COMPARISONS WITH PREVIOUS RESULTS

In the following, we compare our Theorem 4 and Corollary 5 with related work in SA (Mahdavi
and Jin, 2013; Schmidt and Roux, 2013; Moulines and Bach, 2011; Needell et al., 2014).

When a prior knowledge εprior ≥ F∗ is given beforehand, Mahdavi and Jin (2013) show that
when

T = Ω

(
dβ3κ4 log

1

ε

)
,

their stochastic algorithm is able to find a solution ŵ such that with high probability

F (ŵ) ≤ εprior + ε+
2εprior
β

.

Although our Corollary 5 only holds in expectation, it is stronger than that of Mahdavi and Jin
(2013) in the following aspects:
• Their algorithm needs a prior knowledge εprior ≥ F∗, while our algorithm does not.
• The final risk of their solution is upper bounded in terms of εprior, while in our case, the risk

is upper bounded in terms of F∗, which is smaller than εprior.
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• Their sample complexity has a linear dependent on the dimensionality d, in contrast ours is
dimensionality-independent. Thus, our results can be applied to the non-parametric setting
where hypotheses lie in a functional space of infinite dimension.
• The dependence of their sample complexity on β and κ is much higher than ours.
Under a strong growth condition (Solodov, 1998), Schmidt and Roux (2013) have established

the following linear convergence rate for SGD when applied to unconstrained problems:

O

((
1− 1

κ

)T)
.

This strong growth condition requires that all stochastic gradients are 0 at w∗, which is itself a
necessary condition for F∗ = 0, because all the random functions are nonnegative. In this case, our
Theorem 4 also achieves a linear rate at the same order. However, our results have the following
advantages:
• Our Theorem 4 is more general because it covers the cases that F∗ is nonzero.
• Our results are applicable even when there is a domain constraint.
For unconstrained problems, Theorem 2.1 of Needell et al. (2014) with a suitable step size also

implies the following rate

O

((
1− 1

κ

)T
+ κF∗

)
(9)

which is slower than our O(2−T/κ + F∗) rate in Theorem 4, because of the additional dependence
on κ in the second term. Besides, Needell et al. (2014, (2.4) and (2.2)) provided the iteration
complexity of their algorithm, as well as that of Moulines and Bach (2011) when the minimal risk
F∗ is known. Specifically, the iteration complexities of Moulines and Bach (2011) and Needell et al.
(2014) for finding an ε-optimal solution are

Ω

(
log

1

ε

(
κ2 +

κ2F∗
ε

))
and Ω

(
log

1

ε

(
κ+

κ2F∗
ε

))
, (10)

respectively. In this case, our Theorem 4 with β = max(1, 4F∗/ε) implies the following iteration
complexity

Ω

(
log

1

ε

(
κ+

κF∗
ε

))
. (11)

Compared with the lower bounds in (10), our iteration complexity is better because (i) it has a
smaller dependence on κ, and (ii) it holds for constrained problems.

4. Analysis

Due to the limitation of space, we only prove Theorem 1 and Corollary 3. The omitted proofs
are provided in the appendices. Our analysis follows from well-known and standard techniques,
including the analysis of stochastic gradient descent (Zinkevich, 2003), self-bounding property of
smooth functions (Srebro et al., 2010), and the quadratic growth condition of strong convexity
(Hazan and Kale, 2011).

10
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4.1. Proof of Theorem 1

We first state the excess risk of ŵ, the solution returned by the first call of Epoch-GD. From Theorem
5 of Hazan and Kale (2014), we have

E [F (ŵ)]− F (w∗) ≤
32G2

λT

(6)
≤ 32G2

λκα
. (12)

We proceed to analyze the solution returned by the second call of Epoch-GD. In each epoch,
the standard stochastic gradient descent (SGD) (Zinkevich, 2003) is applied. The following lemma
shows how the excess risk decreases in each epoch.

Lemma 1 Apply T iterations of the update

wt+1 = ΠW
[
wt − η∇ft(wt)

]
where ft(·) is a random function sampled from P, and η < 1/(2L). Assume F (·) is convex and
Assumptions 1 and 2 hold, for any w ∈ W , we have

E [F (w̄)]− F (w) ≤ 1

2ηT (1− 2ηL)
E
[
‖w1 −w‖2

]
+

2ηL

(1− 2ηL)
F (w)

where w̄ = 1
T

∑T
t=1wt.

Compared with the traditional analysis of SGD, e.g., Lemma 7 of Hazan and Kale (2011), the
main difference is that Lemma 1 exploits smoothness to control the squared norm of stochastic
gradients, and in this way, the excess risk depends on the function value instead of the upper bound
of stochastic gradients.

Based on the above lemma, we establish the following result for bounding the excess risk of the
intermediate iterate.

Lemma 2 Consider the second call of Epoch-GD with parameters (1/4L,2α+3κ,T/2, ŵ). For any
k, we have

E[F (wk+1
1 )]− F (w∗) ≤

2α
2+2α+5G2

λ(Tk)α
+

2α+3κF (w∗)

Tk

(
k∑
i=1

1

2(i−1)(α−1)

)
. (13)

The number of epochs made is given by the largest value of k satisfying
∑k

i=1 Ti ≤ T/2, i.e.,

k∑
i=1

Ti = T1

k∑
i=1

2i−1 = T1(2
k − 1) ≤ T

2
.

This value is

k† =

⌊
log2

(
T

2T1
+ 1

)⌋
,

11
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and the final solution is w̃ = wk†+1
1 . From Lemma 2, we have

F (wk†+1
1 )− F (w∗)

≤2α
2+2α+5G2

λ(Tk†)
α

+
2α+3κF (w∗)

Tk†

 k†∑
i=1

1

2(i−1)(α−1)


≤2α

2+2α+5G2

λ(Tk†)
α

+
2α+3κF (w∗)

Tk†

2α−1

2α−1 − 1

≤2α
2+5α+5G2

λTα
+

22α+5κF (w∗)

(2α−1 − 1)T

where the last step is due to

Tk† = T12
k†−1 ≥ T1

4

(
T

2T1
+ 1

)
≥ T

8
.

4.2. Proof of Corollary 3

Since α = logκ T = log2 T/ log2 κ, we have

2α = 2log2 T/ log2 κ = T 1/ log2 κ = T logκ 2, and logκ 2 =
logT 2

logT κ
= logT 2 · logκ T = α logT 2.

Then,

2α
2+5α

Tα
=
Tα logκ 2+5 logκ 2

Tα
=
Tα logκ 2+5α logT 2

Tα
=

1

T (1−logκ 2−5 logT 2) logκ T
,

22α

(2α−1 − 1)T
=

T 2 logκ 2

(2α−1 − 1)T
=

1

(2logκ T−1 − 1)T 1−2 logκ 2
.

We obtain Corollary 3 by substituting the above equations into Theorem 1.

5. Conclusion and Future Work

This paper aims to boost the convergence rate of stochastic approximation (SA) by exploiting
smoothness and strong convexity simultaneously. First, we prove an O (1/[λTα] + κF∗/T ) risk
bound when T = Ω(κα). Thus, the convergence rate could approach O(1/[λTα]) when the mini-
mal risk is small. Second, we establish an O(1/2T/κ +F∗) risk bound to further benefit from small
risk. Thus, the excess risk reduces exponentially until reaching O(F∗).

One limitation of this paper is that our risk bounds only hold in expectation. Although we can
get a high-probability bound by introducing concentration inequalities (Lugosi, 2009), an O(1/T )
confidence term will appear in the upper bound, making it impossible to be faster than O(1/T ). To
establish high-probability risk bounds, we may need more advanced mathematical tools or stronger
assumptions, which will be investigated in the future.
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Appendix A. Proof of Lemma 1

We first introduce the self-bounding property of smooth functions (Srebro et al., 2010, Lemma 4.1).

Lemma 3 For an H-smooth and nonnegative function f :W 7→ R,

‖∇f(w)‖ ≤
√

4Hf(w), ∀w ∈ W.

Assumptions 1 and 2 imply ft(·) is nonnegative and L-smooth. From Lemma 3, we have

‖∇fi(w)‖2 ≤ 4Lfi(w), ∀w ∈ W. (14)

Let w′t+1 = wt − η∇ft(wt). Following the analysis of online gradient descent (Zinkevich,
2003), for any w ∈ W , we have

F (wt)− F (w)

≤〈∇F (wt),wt −w〉
=〈∇ft(wt),wt −w〉+ 〈∇F (wt)−∇ft(wt),wt −w〉

=
1

2η

(
‖wt −w‖2 − ‖w′t+1 −w‖2

)
+
η

2
‖∇ft(wt)‖2 + 〈∇F (wt)−∇ft(wt),wt −w〉

≤ 1

2η

(
‖wt −w‖2 − ‖wt+1 −w‖2

)
+
η

2
‖∇ft(wt)‖2 + 〈∇F (wt)−∇ft(wt),wt −w〉

(14)
≤ 1

2η

(
‖wt −w‖2 − ‖wt+1 −w‖2

)
+ 2ηLft(wt) + 〈∇F (wt)−∇ft(wt),wt −w〉

where the second inequality is due to the nonexpanding property of the projection operator (Nemi-
rovski et al., 2009, (1.5)).

Summing up over all t = 1, . . . , T , we get

T∑
t=1

(
F (wt)− F (w)

)
≤ 1

2η
‖w1 −w‖2 + 2ηL

T∑
t=1

ft(wt) +
T∑
t=1

〈∇F (wt)−∇ft(wt),wt −w〉.

Recall that F (·) = E[ft(·)] and wt is independent from ft. Taking expectation over both sides, we
have

E

[
T∑
t=1

(
F (wt)− F (w)

)]
≤ 1

2η
E
[
‖w1 −w‖2

]
+ 2ηLE

[
T∑
t=1

F (wt)

]
.

16
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Rearranging the above inequality, we obtain

E

[
T∑
t=1

(
F (wt)− F (w)

)]
≤ 1

2η(1− 2ηL)
E
[
‖w1 −w‖2

]
+

2ηLT

(1− 2ηL)
F (w).

Dividing both sides by T , we have

1

2ηT (1− 2ηL)
E
[
‖w1 −w‖2

]
+

2ηL

(1− 2ηL)
F (w)

≥ 1

T
E

[
T∑
t=1

(
F (wt)− F (w)

)]
≥ E [F (w̄)]− F (w)

where the last step is due to Jensen’s inequality.

Appendix B. Proof of Lemma 2

Recall that the following parameters are used in the second call of Epoch-GD

η1 =
1

4L
, T1 = 2α+3κ, Tk+1 = 2Tk, ηk+1 =

ηk
2
, k ≥ 1.

Then, we have

ηkL ≤ η1L =
1

4
, (15)

ληkTk = 2α+1. (16)

We prove this lemma by induction on k. When k = 1, from Lemma 1, we have

E
[
F (w2

1)
]
− F (w∗)

≤ 1

2η1T1(1− 2η1L)
E
[
‖w1

1 −w∗‖2
]

+
2η1L

(1− 2η1L)
F (w∗)

(15)
=

1

η1T1
E
[
‖w1

1 −w∗‖2
]

+ 4η1LF (w∗)

(16)
=

λ

2α+1
E
[
‖w1

1 −w∗‖2
]

+
2α+3κF (w∗)

T1
(5)
≤ λ

2α+1

2

λ
E
[
F (w1

1)− F (w∗)
]

+
2α+3κF (w∗)

T1
(12)
≤ 1

2α

(
32G2

λκα

)
+

2α+3κF (w∗)

T1

(T1=2α+3κ)
=

2α
2+2α+5G2

λ(T1)α
+

2α+3κF (w∗)

T1
.
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Assume that (13) is true for some k ≥ 1, and we prove the inequality for k + 1. According to
Lemma 1, we have

E
[
F (wk+2

1 )
]
− F (w∗)

≤ 1

2ηk+1Tk+1(1− 2ηk+1L)
E
[
‖wk+1

1 −w∗‖2
]

+
2ηk+1L

(1− 2ηk+1L)
F (w∗)

(15)
≤ 1

ηk+1Tk+1
E
[
‖wk+1

1 −w∗‖2
]

+ 4ηk+1LF (w∗)

(16)
=

λ

2α+1
E
[
‖wk+1

1 −w∗‖2
]

+
2α+3κF (w∗)

Tk+1

(5)
≤ λ

2α+1

2

λ
E
[
F (wk+1

1 )− F (w∗)
]

+
2α+3κF (w∗)

Tk+1

(13)
≤ 1

2α

(
2α

2+2α+5G2

λ(Tk)α
+

2α+3κF (w∗)

Tk

(
k∑
i=1

1

2(i−1)(α−1)

))
+

2α+3κF (w∗)

Tk+1

=
2α

2+2α+5G2

λ(Tk+1)α
+

2α+3κF (w∗)

Tk+1

(
k+1∑
i=1

1

2(i−1)(α−1)

)
.

Appendix C. Proof of Theorem 4

We first establish the following lemma for bounding the excess risk of the intermediate iterate.

Lemma 4 For any k, we have

E[F (wk+1
1 )]− F (w∗) ≤

F (w1
1)− F (w∗)

2k
+
F (w∗)

β

(
k∑
i=1

1

2i−1

)
. (17)

The number of epochs made is given by k† = bT/T ′c and the final solution is w̃ = wk†+1
1 .

From Lemma 4, we have

F (wk†+1
1 )− F (w∗)

≤F (w1
1)− F (w∗)

2k†
+
F (w∗)

β

 k†∑
i=1

1

2i−1


≤F (w1

1)− F (w∗)

2k†
+

2F (w∗)

β
.

Appendix D. Proof of Lemma 4

From (8), we know that

ηL =
1

4β
≤ 1

4
, (18)

ληT ′ = 4. (19)
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We prove this lemma by induction on k. When k = 1, from Lemma 1, we have

E
[
F (w2

1)
]
− F (w∗)

≤ 1

2ηT ′(1− 2ηL)
‖w1

1 −w∗‖2 +
2ηL

(1− 2ηL)
F (w∗)

(18)
≤ 1

ηT ′
‖w1

1 −w∗‖2 +
F (w∗)

β

(19)
=
λ

4
‖w1

1 −w∗‖2 +
F (w∗)

β

(5)
≤ f(w1

1)− f(w∗)

2
+
F (w∗)

β
.

Assume that (17) is true for some k ≥ 1, and we prove the inequality for k + 1. According to
Lemma 1, we have

E
[
F (wk+2

1 )
]
− F (w∗)

≤ 1

2ηT ′(1− 2ηL)
E
[
‖wk+1

1 −w∗‖2
]

+
2ηL

(1− 2ηL)
F (w∗)

(18)
≤ 1

ηT ′
E
[
‖wk+1

1 −w∗‖2
]

+
F (w∗)

β

(19)
=
λ

4
E
[
‖wk+1

1 −w∗‖2
]

+
F (w∗)

β
(5)
≤λ

4

2

λ
E
[
F (wk+1

1 )− F (w∗)
]

+
F (w∗)

β

(17)
≤ 1

2

(
F (w1

1)− F (w∗)

2k
+
F (w∗)

β

(
k∑
i=1

1

2i−1

))
+
F (w∗)

β

=
F (w1

1)− F (w∗)

2k+1
+
F (w∗)

β

(
k+1∑
i=1

1

2i−1

)
.

Appendix E. Comparison with Needell et al. (2014)

First, we provide the following basic inequality that allows us to bound the excess risk by the
distance. From Assumption 2, we have

F (wt)− F (w∗) ≤ 〈∇F (w∗),wt −w∗〉+
L

2
‖wt −w∗‖2. (20)

Using notations of our paper, Theorem 2.1 of Needell et al. (2014) establishes the following
convergence rate for unconstrained problems:

E
[
‖wt −w∗‖2

]
≤ [1− 2γλ(1− γL)]T ‖w0 −w∗‖2 +

4γLF∗
λ(1− γL)

(21)
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where wt is the SGD iterate in the t-th round and γ < 1/λ is the step size. Note that ∇F (w∗) = 0
in the unconstrained case. Combining (20) and (21), we bound the expected risk as

E [F (w̃)]− F (w∗)

(20)
≤ L

2
E
[
‖wt −w∗‖2

]
(21)
≤ L

2
[1− 2γλ(1− γL)]T ‖w0 −w∗‖2 +

2γL2F∗
λ(1− γL)

.

(22)

We have different ways to set the step size γ, and the convergence rate in (22) is always slower than
ours.
• By setting γ = 1/T , we obtain an O

(
[1 − λ/T ]T + κF∗/T

)
rate, as shown in (7). This rate

is worse than our O
(
1/[λT 2] + κF∗/T

)
rate in Corollary 2 because [1 − λ/T ]T becomes a

constant when T →∞.
• By setting γ = 1/(2L), the convergence rate is O

(
[1 − 1/κ]T + κF∗

)
, as shown in (9).

Although the first term decreases linearly, the second term has a linear dependence on κ. So,
it is slower than our O(2−T/κ + F∗) rate in Theorem 4.
• When F∗ is known, we set

γ =
ελ

2ελL+ 8L2F∗
and T = Ω

(
log

1

ε
· 1

λγ

)
= Ω

(
log

1

ε

(
κ+

κ2F∗
ε

))
to find an ε-optimal solution. However, the above iteration complexity is higher than ours in
(11).

For constrained problems, we can use projected SGD

wt+1 = ΠW [wt − γ∇ft(wt)]

to enforce the domain constraint. Based on the nonexpanding property of the projection operator
(Nemirovski et al., 2009), it is easy to verify that (21) also hold when projected SGD is used for
constrained problems. Then, according to (20), we have the following upper bound for the expected
risk

E [F (w̃)]− F (w∗)

(20)
≤ ‖∇F (w∗)‖E [‖wt −w∗‖] +

L

2
E
[
‖wt −w∗‖2

]
≤‖∇F (w∗)‖

√
E [‖wt −w∗‖2] +

L

2
E
[
‖wt −w∗‖2

] (23)

where the last step is due to Jensen’s inequality (Boyd and Vandenberghe, 2004). Then, we can
bound the expected risk by substituting (21) into (23). However, because of the square root opera-
tion, the convergence rate is slower than that in (22) of the unconstrained case, and thus slower than
our rate which holds for both constrained and unconstrained problems.
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