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Abstract
This paper introduces hierarchical quasi-
clustering methods, a generalization of hierar-
chical clustering for asymmetric networks where
the output structure preserves the asymmetry of
the input data. We show that this output structure
is equivalent to a finite quasi-ultrametric space
and study admissibility with respect to two
desirable properties. We prove that a modified
version of single linkage is the only admis-
sible quasi-clustering method. Moreover, we
show stability of the proposed method and we
establish invariance properties fulfilled by it.
Algorithms are further developed and the value
of quasi-clustering analysis is illustrated with a
study of internal migration within United States.

1. Introduction
Given a network of interactions, hierarchical clustering
methods determine a dendrogram, i.e. a family of nested
partitions indexed by a resolution parameter. Clusters that
arise correspond to sets of nodes that are more similar to
each other than to the rest and, as such, can be used to study
the formation of communities (Shi & Malik, 2000; Newman
& Girvan, 2002; 2004; Von Luxburg, 2007; Ng et al., 2002; Lance
& Williams, 1967; Jain & Dubes, 1988). For asymmetric net-
works, in which the dissimilarity from node x to node x

0

may differ from the one from x

0 to x (Saito & Yadohisa,
2004), the determination of said clusters is not a straight-
forward generalization of the methods used to cluster sym-
metric datasets (Hubert, 1973; Slater, 1976; Boyd, 1980; Tarjan,
1983; Slater, 1984; Murtagh, 1985; Pentney & Meila, 2005; Meila
& Pentney, 2007; Zhao & Karypis, 2005).

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

This difficulty motivates formal developments whereby hi-
erarchical clustering methods are constructed as those that
are admissible with respect to some reasonable properties
(Carlsson & Mémoli, 2010; 2013; Carlsson et al., 2013). A fun-
damental distinction between symmetric and asymmetric
networks is that while it is easy to obtain uniqueness results
for the former (Carlsson & Mémoli, 2010), there are a variety
of methods that are admissible for the latter (Carlsson et al.,
2013). Although one could conceive of imposing further
restrictions to winnow the space of admissible methods for
clustering asymmetric networks, it is actually reasonable
that multiple methods should exist. Since dendrograms are
symmetric structures one has to make a decision as to how
to derive symmetry from an asymmetric dataset and there
are different stages of the clustering process at which such
symmetrization can be carried out (Carlsson et al., 2013). In
a sense, there is a fundamental mismatch between having a
network of asymmetric relations as input and a symmetric
dendrogram as output.

This paper develops a generalization of dendrograms and
hierarchical clustering methods to allow for asymmetric
output structures. We refer to these asymmetric structures
as quasi-dendrograms and to the procedures that gener-
ate them as hierarchical quasi-clustering methods. Since
the symmetry in dendrograms can be traced back to the
symmetry of equivalence relations we start by defining
a quasi-equivalence relation as one that is reflexive and
transitive but not necessarily symmetric (Section 3). We
then define a quasi-partition as the structure induced by a
quasi-equivalence relation, a quasi-dendrogram as a nested
collection of quasi-partitions, and a hierarchical quasi-
clustering method as a map from the space of networks
to the space of quasi-dendrograms (Section 3.1). Quasi-
partitions are similar to regular partitions in that they con-
tain disjoint blocks of nodes but they also include an influ-
ence structure between the blocks derived from the asym-
metry in the original network. This influence structure de-
fines a partial order over the blocks (Harzheim, 2005).
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We proceed to study admissibility of quasi-clustering meth-
ods with respect to the directed axioms of value and trans-
formation. The Directed Axiom of Value states that the
quasi-clustering of a network of two nodes is the net-
work itself. The Directed Axiom of Transformation states
that reducing dissimilarities cannot lead to looser quasi-
clusters. We show that there is a unique quasi-clustering
method admissible with respect to these axioms and that
this method is an asymmetric version of the single link-
age clustering method (Section 3.4). The analysis in
this section hinges upon an equivalence between quasi-
dendrograms and quasi-ultrametrics (Section 3.2) that gen-
eralizes the well-known equivalence between dendrograms
and ultrametrics (Jardine & Sibson, 1971).

Exploiting the fact that quasi-dendrograms can be repre-
sented by quasi-ultrametrics, we propose a quantitative no-
tion of stability of quasi-clustering methods (Section 3.5).
We prove that the unique method from Section 3.4 is sta-
ble in the sense that we propose. We also establish several
invariance properties enjoyed by this method.

In order to apply the quasi-clustering method to real data,
we derive an algorithm based on matrix powers in a dioid
algebra (Gondran & Minoux, 2008) (Section 3.6). As an
example, we cluster a network that contains information
about the internal migration between states of the United
States for the year 2011 (Section 4). The quasi-clustering
output unveils that migration is dominated by geographical
proximity. Moreover, by exploiting the asymmetric influ-
ence between clusters, one can show the migrational influ-
ence of California over the West Coast.

Proofs of results in this paper not contained in the main
body can be found in the supplementary material.

2. Preliminaries
A network N is a pair (X,A

X

) where X is a finite set of
points or nodes and A

X

: X ⇥ X ! R+ is a dissimilar-
ity function. The value A

X

(x, x0) is assumed to be non-
negative for all pairs (x, x0) 2 X ⇥ X and 0 if and only
if x = x

0. However, A
X

need not satisfy the triangle in-
equality and may be asymmetric in that it is possible to
have A

X

(x, x0) 6= A

X

(x0
, x) for some x 6= x

0. We further
define N as the set of all networks. Networks N 2 N can
have different node sets X and different dissimilarities A

X

.

A conventional non-hierarchical clustering of the set X is
a partition P , i.e., a collection of sets P = {B1, . . . , BJ

}
which are pairwise disjoint and required to cover X . The
sets B1, B2, . . . BJ

are called the blocks of P and repre-
sent clusters. A partition P = {B1, . . . , BJ

} of X induces
and is induced by an equivalence relation ⇠ on X such that
for all x, x0

, x

00 2 X we have that x ⇠ x, x ⇠ x

0 if and
only if x0 ⇠ x, and x ⇠ x

0 combined with x

0 ⇠ x

00 im-

plies x ⇠ x

00. In hierarchical clustering, the output is not a
single partition P but a nested collection D

X

of partitions
D

X

(�) of X indexed by a resolution parameter � � 0. For
a given D

X

, we say that two nodes x and x

0 are equiv-
alent at resolution � � 0 and write x ⇠

DX(�) x

0 if and
only if nodes x and x

0 are in the same cluster of D
X

(�).
The nested collection D

X

is termed a dendrogram (Jardine
& Sibson, 1971). The interpretation of a dendrogram is that
of a structure which yields different clusterings at different
resolutions. At resolution � = 0 each point is in a cluster of
its own and as the resolution parameter � increases, nodes
start forming clusters. We denote by [x]

�

the equivalence
class to which the node x 2 X belongs at resolution �, i.e.
[x]

�

:= {x0 2 X

�

�

x ⇠
DX(�) x

0}.

Given a network (X,A

X

) and x, x

0 2 X , a chain C(x, x0)
is an ordered sequence of nodes in X ,

C(x, x0) = [x = x0, x1, . . . , xl�1, xl

= x

0], (1)

which starts at x and ends at x0. We say that C(x, x0) links
or connects x to x

0. The links of a chain are the edges
connecting consecutive nodes of the chain in the direction
given by the chain. We define the cost of a chain (1) as
the maximum dissimilarity max

i|xi2C(x,x0) AX

(x
i

, x

i+1)
encountered when traversing its links in order.

3. Quasi-Clustering methods
A partition P = {B1, . . . , BJ

} of a set X can be inter-
preted as a reduction in data complexity in which varia-
tions between elements of a group are neglected in favor
of the larger dissimilarities between elements of different
groups. This is natural when clustering datasets endowed
with symmetric dissimilarities because the concepts of a
node x 2 X being close to another node x

0 2 X and x

0

being close to x are equivalent. In an asymmetric network
these concepts are different and this difference motivates
the definition of structures more general than partitions.

Considering that a partition P = {B1, . . . , BJ

} of X is
induced by an equivalence relation ⇠ on X we search for
the equivalent of an asymmetric partition by removing the
symmetry property in the definition of the equivalence re-
lation. Thus, we define a quasi-equivalence as a binary
relation that satisfies the reflexivity and transitivity proper-
ties but is not necessarily symmetric as stated next.

Definition 1 A binary relation  between elements of a
set X is a quasi-equivalence if and only if the following
properties hold true for all x, x0

, x

00 2 X:

(i) Reflexivity. Points are quasi-equivalent to them-
selves, x x.
(ii) Transitivity. If x x

0 and x

0  x

00 then x x

00.
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Figure 1. A quasi-partition P̃ = (P,E) on a set of nodes. The
vertex set P of the quasi-partition is given by a partition of
the nodes P = {B1, B2, . . . , B6}. The edges of the directed
graph P̃ = (P,E) represent unidirectional influence between the
blocks of the partition.

Quasi-equivalence relations are more often termed pre-
orders or quasi-orders in the literature (Harzheim, 2005). We
choose the term quasi-equivalence to emphasize that they
are a modified version of an equivalence relation.

We define a quasi-partition of the set X as a directed, un-
weighted graph P̃ = (P,E) with no self-loops where the
vertex set P is a partition P = {B1, . . . , BJ

} of the space
X and the edge set E ✓ P ⇥ P is such that the following
properties are satisfied (see Fig. 1):

(QP1) Unidirectionality. For any given pair of distinct
blocks B

i

, B
j

2 P we have at most one edge between
them. Thus, if for some i 6= j we have (B

i

, B

j

) 2 E

then (B
j

, B

i

) /2 E.

(QP2) Transitivity. If there are edges between blocks B
i

and B

j

and between blocks B
j

and B

k

, then there is an
edge between blocks B

i

and B

k

.

The vertex set P of a quasi-partition P̃ = (P,E) repre-
sents sets of nodes that can influence each other, whereas
the edges in E capture the notion of directed influence from
one group to the next. In the example in Fig. 1, nodes
which are drawn together can exert influence on each other.
This gives rise to the blocks B

i

which form the vertex set
P of the quasi-partition. Additionally, some blocks have
influence over others in only one direction. E.g., block B1

can influence B4 but not vice versa. This latter fact moti-
vates keeping B1 and B4 as separate blocks in the partition
whereas the former motivates the addition of the directed
influence edge (B1, B4). Likewise, B1 can influence B3,
B2 can influence B3 and B4 can influence B5 but none of
these influences are true in the opposite direction. Block
B1 need not be able to directly influence B5, but can in-
fluence it through B4, hence the edge from B1 to B5, in
accordance with (QP2). All other influence relations are
not meaningful, justifying the lack of connections between
the other blocks.

Requirements (QP1) and (QP2) in the definition of quasi-
partition represent the relational structure that emerges
from quasi-equivalence relations as we state in the follow-
ing proposition.

Proposition 1 Given a node set X and a quasi-
equivalence relation on X [cf. Definition 1] define the
relation $ on X as

x $ x

0 () x x

0 and x

0  x, (2)

for all x, x0 2 X . Then, $ is an equivalence relation. Let
P = {B1, . . . , BJ

} be the partition of X induced by $.
Define E ✓ P ⇥ P such that for all distinct B

i

, B

j

2 P

(B
i

, B

j

) 2 E () x

i

 x

j

, (3)

for some x

i

2 B

i

and x

j

2 B

j

. Then, P̃ = (P,E) is a
quasi-partition of X . Conversely, given a quasi-partition
P̃ = (P,E) of X , define the binary relation  on X so
that for all x, x0 2 X

x x

0 () [x] = [x0] or ([x], [x0]) 2 E, (4)

where [x] 2 P is the block of the partition P that con-
tains the node x and similarly for [x0]. Then, is a quasi-
equivalence on X .

Proof: See Theorem 4.9, Ch. 1.4 in (Harzheim, 2005). ⌅

In the same way that an equivalence relation induces and is
induced by a partition on a given node set X , Proposition
1 shows that a quasi-equivalence relation induces and is in-
duced by a quasi-partition on X . We can then adopt the
construction of quasi-partitions as the natural generaliza-
tion of clustering problems when given asymmetric data.
Further, observe that if the edge set E contains no edges,
P̃ = (P,E) is equivalent to the regular partition P when
ignoring the empty edge set. In this sense, partitions are
particular cases of quasi-partitions having the generic form
P̃ = (P, ;). To allow generalizations of hierarchical clus-
tering methods with asymmetric outputs we introduce the
notion of quasi-dendrogram in the following section.

3.1. Quasi-dendrograms
Given that a dendrogram is defined as a nested set of par-
titions, we define a quasi-dendrogram D̃

X

of the set X as
a nested set of quasi-partitions D̃

X

(�) = (D
X

(�), E
X

(�))
indexed by a resolution parameter � � 0. Recall the def-
inition of [x]

�

from Section 2. Formally, for D̃
X

to be a
quasi-dendrogram we require the following conditions:

(D̃1) Boundary conditions. At resolution � = 0 all nodes
are in separate clusters with no edges between them and
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for some �0 sufficiently large all elements of X are in a
single cluster,

D̃

X

(0) =
⇣

�{x}, x 2 X

 

, ;
⌘

,

D̃

X

(�0) =
⇣

{X}, ;
⌘

for some �0 � 0. (5)

(D̃2) Equivalence hierarchy. For any pair of points x, x0

for which x ⇠
DX(�1) x

0 at resolution �1 we must have
x ⇠

DX(�2) x
0 for all resolutions �2 > �1.

(D̃3) Influence hierarchy. If there is an edge
([x]

�1 , [x
0]
�1) 2 E

X

(�1) between the equivalence
classes [x]

�1 and [x0]
�1 of nodes x and x

0 at resolution �1,
at any resolution �2 > �1 we either have ([x]

�2 , [x
0]
�2) 2

E

X

(�2) or [x]
�2 = [x0]

�2 .

(D̃4) Right continuity. For all � � 0 there exists ✏ > 0
such that D̃

X

(�) = D̃

X

(�0) for all �0 2 [�, � + ✏].

Requirement (D̃1) states that for resolution � = 0 there
should be no influence between any pair of nodes and that,
for a large enough resolution � = �0, there should be
enough influence between the nodes for all of them to be-
long to the same cluster. According to (D̃2), nodes become
ever more clustered since once they join together in a clus-
ter, they stay together in the same cluster for all larger res-
olutions. Condition (D̃3) states for the edge set the analo-
gous requirement that (D̃2) states for the node set. If there
is an edge present at a given resolution �1, that edge should
persist at coarser resolutions �2 > �1 except if the groups
linked by the edge merge in a single cluster. Requirement
(D̃4) is a technical condition that ensures the correct defi-
nition of a hierarchical structure [cf. (8) below].

Comparison of (D̃1), (D̃2), and (D̃4) with the three proper-
ties defining a dendrogram (Carlsson & Mémoli, 2010) im-
plies that given a quasi-dendrogram D̃

X

= (D
X

, E

X

)
on a node set X , the component D

X

is a dendrogram
on X . I.e, the vertex sets D

X

(�) of the quasi-partitions
(D

X

(�), E
X

(�)) for varying � form a nested set of parti-
tions. Hence, if the edge set E

X

(�) = ; for every reso-
lution parameter, D̃

X

recovers the structure of the dendro-
gram D

X

. Thus, quasi-dendrograms are a generalization of
dendrograms, or, equivalently, dendrograms are particular
cases of quasi-dendrograms with empty edge sets. Regard-
ing dendrograms D

X

as quasi-dendrograms (D
X

, ;) with
empty edge sets, we have that the set of all dendrograms D
is a subset of D̃, the set of all quasi-dendrograms.

A hierarchical clustering method H : N ! D is defined as
a map from the space of networks N to the space of den-
drograms D. This motivates the definition of a hierarchical
quasi-clustering method as follows.

Definition 2 A hierarchical quasi-clustering method H̃ is
defined as a map from the space of networks N to the space
of quasi-dendrograms D̃,

H̃ : N ! D̃. (6)

Since D ⇢ D̃ we have that every clustering method is a
quasi-clustering method but not vice versa. Our goal here is
to study quasi-clustering methods satisfying desirable ax-
ioms that define the concept of admissibility. In order to
facilitate this analysis, we introduce quasi-ultrametrics as
asymmetric versions of ultrametrics and show their equiv-
alence to quasi-dendrograms in the following section.

Remark 1 Unidirectionality (QP1) ensures that no cy-
cles containing exactly two nodes can exist in any quasi-
partition P̃ = (P,E). If there were longer cycles, transi-
tivity (QP2) would imply that every two distinct nodes in
a longer cycle would have to form a two-node cycle, con-
tradicting (QP1). Thus, conditions (QP1) and (QP2) imply
that every quasi-partition P̃ = (P,E) is a directed acyclic
graph (DAG). The fact that a DAG represents a partial or-
der shows that our construction of a quasi-partition from a
quasi-equivalence relation is consistent with the known set
theoretic construction of a partial order on a partition of a
set given a preorder on the set (Harzheim, 2005).

3.2. Quasi-ultrametrics
We define a quasi-ultrametric ũ

X

on a given node set X as
follows.

Definition 3 Given a node set X , a quasi-ultrametric ũ

X

is a non-negative function ũ

X

: X ⇥ X ! R+ satisfying
the following properties for all x, x0

, x

00 2 X:

(i) Identity. ũ

X

(x, x0) = 0 if and only if x = x

0.
(ii) Strong triangle inequality. ũ

X

satisfies

ũ

X

(x, x0)  max(ũ
X

(x, x00), ũ
X

(x00
, x

0)). (7)

Quasi-ultrametrics may be regarded as ultrametrics where
the symmetry property is not imposed. In particular, the
space Ũ of quasi-ultrametric networks, i.e. networks with
quasi-ultrametrics as dissimilarities, is a superset of the
space of ultrametric networks U ⇢ Ũ . See (Gurvich & Vya-
lyi, 2012) for structural properties of quasi-ultrametrics.

The following constructions and theorem establish a struc-
ture preserving equivalence between quasi-dendrograms
and quasi-ultrametrics. Consider the map  : D̃ ! Ũ
defined as follows: for a given quasi-dendrogram D̃

X

=
(D

X

, E

X

) over the set X write (D̃
X

) = (X, ũ

X

), where
we define ũ

X

(x, x0) for each x, x

0 2 X as the smallest
resolution � at which either both nodes belong to the same
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equivalence class [x]
�

= [x0]
�

, i.e. x ⇠
DX(�) x

0, or there
exists an edge in E

X

(�) from the equivalence class [x]
�

to
the equivalence class [x0]

�

,

ũ

X

(x, x0) := min
n

� � 0
�

�

�

(8)

[x]
�

= [x0]
�

or ([x]
�

, [x0]
�

) 2 E

X

(�)
o

.

We also consider the map ⌥ : Ũ ! D̃ constructed as fol-
lows: for a given quasi-ultrametric ũ

X

on the set X and
each � � 0 define the relation ⇠

ũX(�) on X as

x ⇠
ũX(�) x

0 () max
�

ũ

X

(x, x0), ũ
X

(x0
, x)

�  �. (9)

Define further D

X

(�) :=
�

X mod ⇠
ũX(�)

 

and the
edge set E

X

(�) for every � � 0 as follows: B1 6= B2 2
D

X

(�) are such that

(B1, B2) 2 E

X

(�) () min
x12B1
x22B2

ũ

X

(x1, x2)  �. (10)

Finally, ⌥(X, ũ

X

) := D̃

X

, where D̃

X

:= (D
X

, E

X

).

Theorem 1 The maps  : D̃ ! Ũ and ⌥ : Ũ ! D̃ are
both well defined. Furthermore,  �⌥ is the identity on Ũ
and ⌥ � is the identity on D̃.

Theorem 1 implies that quasi-dendrograms D̃
X

can be rep-
resented as quasi-ultrametric networks defined on the same
underlying node set X . This allows us to reinterpret hier-
archical quasi-clustering methods [cf. (6)] as maps

H̃ : N ! Ũ , (11)

from the space of networks to the space of quasi-ultrametric
networks. Apart from the theoretical importance of The-
orem 1, this equivalence result is of practical importance
since quasi-ultrametrics are mathematically more conve-
nient to handle than quasi-dendrograms. However, quasi-
dendrograms are more convenient for representing data as
illustrated in Section 4.

Given a quasi-dendrogram D̃

X

= (D
X

, E

X

), the value
ũ

X

(x, x0) of the associated quasi-ultrametric for x, x0 2 X

is given by the minimum resolution � at which x can influ-
ence x

0. This may occur when x and x

0 belong to the same
block of D

X

(�) or when they belong to different blocks
B,B

0 2 D

X

(�), but there is an edge from the block con-
taining x to the block containing x

0, i.e. (B,B

0) 2 E

X

(�).
Conversely, given a quasi-ultrametric network (X, ũ

X

), for
a given resolution � the graph D̃

X

(�) has as a vertex set
the classes of nodes whose quasi-ultrametric is less than �

in both directions. Furthermore, D̃
X

(�) contains a directed
edge between two distinct equivalence classes if the quasi-
ultrametric from some node in the first class to some node
in the second is not greater than �.

x2

x3x1

3

2

1
1
3
2

D̃X(�)

x2

x3x1

0  � < 1

x2

x3x1

1  � < 2

x{1,2}

x3

2  � < 3

x{1,2,3}

� � 3

�

1 2 3

x1

x2

x3

DX
ũX

0 1 2 3
�

Figure 2. Equivalence between quasi-dendrograms D̃X =
(DX , EX) and quasi-ultrametrics ũX .

In Fig. 2 we present an example of the equivalence be-
tween quasi-dendrograms and quasi-ultrametric networks
stated by Theorem 1. At the top left of the figure, we
present a quasi-ultrametric ũ

X

defined on a three-node set
X = {x1, x2, x3}. At the top right, we depict the den-
drogram component D

X

of the quasi-dendrogram D̃

X

=
(D

X

, E

X

) equivalent to (X, ũ

X

) as given by Theorem 1.
At the bottom of the figure, we present graphs D̃

X

(�) for
a range of resolutions � � 0. To obtain D̃

X

from ũ

X

,
we first obtain the dendrogram component D

X

by sym-
metrizing ũ

X

to the maximum [cf. (9)], nodes x1 and x2

merge at resolution 2 and x3 merges with {x1, x2} at res-
olution 3. To see how the edges in D̃

X

are obtained, at
resolutions 0  � < 1, there are no edges since there is
no quasi-ultrametric value between distinct nodes in this
range [cf. (10)]. At resolution � = 1, we reach the first
non-zero values of ũ

X

and hence the corresponding edges
appear in D̃

X

(1). At resolution � = 2, nodes x1 and
x2 merge and become the same vertex in graph D̃

X

(2).
Finally, at resolution � = 3 all the nodes belong to the
same equivalence class and hence D̃

X

(3) contains only
one vertex. Conversely, to obtain ũ

X

from D̃

X

as de-
picted in the figure, note that at resolution � = 1 two edges
([x1]1, [x2]1) and ([x3]1, [x2]1) appear in D̃

X

(1), thus the
corresponding values of the quasi-ultrametric are fixed to
be ũ

X

(x1, x2) = ũ(x3, x2) = 1. At resolution � = 2,
when x1 and x2 merge into the same vertex in D̃

X

(2),
an edge is generated from [x3]2 to [x1]2 the equivalence
class of x1 at resolution � = 2 which did not exist before,
implying that ũ

X

(x3, x1) = 2. Moreover, we have that
[x2]2 = [x1]2, hence ũ

X

(x2, x1) = 2. Finally, at D̃
X

(3)
there is only one equivalence class, thus the values of ũ

X

that have not been defined so far must equal 3.

3.3. Admissible quasi-clustering methods
We encode desirable properties of quasi-clustering meth-
ods into axioms which we use as a criterion for admis-
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sibility. The Directed Axiom of Value (Ã1) and the Di-
rected Axiom of Transformation (Ã2) winnow the space
of quasi-clustering methods by imposing conditions on
their output quasi-ultrametrics which, by Theorem 1, is
equivalent to imposing conditions on the output quasi-
dendrograms. Defining an arbitrary two-node network
~�2(↵,�) := ({p, q}, A

p,q

) with A

p,q

(p, q) = ↵ and
A

p,q

(q, p) = � for some ↵,� > 0,

(Ã1) Directed Axiom of Value. H̃(~�2(↵,�)) =
~�2(↵,�) for every two-node network ~�2(↵,�).

(Ã2) Directed Axiom of Transformation. Consider two
networks N

X

= (X,A

X

) and N

Y

= (Y,A
Y

) and a
dissimilarity-reducing map � : X ! Y , i.e. a map
� such that for all x, x

0 2 X it holds A

X

(x, x0) �
A

Y

(�(x),�(x0)). Then, for all x, x0 2 X , the outputs
(X, ũ

X

) = H̃(X,A

X

) and (Y, ũ
Y

) = H̃(Y,A
Y

) sat-
isfy

ũ

X

(x, x0) � ũ

Y

(�(x),�(x0)). (12)

The Directed Axiom of Transformation (Ã2) states that no
influence relation can be weakened by a dissimilarity re-
ducing transformation. That is, if relations in the network
are strengthened, the tendency of nodes to cluster cannot
decrease. The Directed Axiom of Value (Ã1) simply recog-
nizes that in any two-node network, the dissimilarity func-
tion is itself a quasi-ultrametric and that there is no valid
justification to output a different quasi-ultrametric.

3.4. Existence and uniqueness of admissible
quasi-clustering methods: directed single linkage

We call a quasi-clustering method H̃ admissible if it satis-
fies axioms (Ã1) and (Ã2) and we want to find methods that
are admissible with respect to these axioms. This is not dif-
ficult. Define the directed minimum chain cost ũ⇤

X

(x, x0)
between nodes x and x

0 as the minimum chain cost among
all chains connecting x to x

0. Formally, for all x, x0 2 X ,

ũ

⇤
X

(x, x0) = min
C(x,x0)

max
i|xi2C(x,x0)

A

X

(x
i

, x

i+1). (13)

Define the directed single linkage (DSL) hierarchical
quasi-clustering method H̃⇤ as the one with output quasi-
ultrametrics (X, ũ

⇤
X

) = H̃⇤(X,A

X

) given by the directed
minimum chain cost function ũ

⇤
X

. The DSL method is valid
and admissible as we show in the following proposition.

Proposition 2 The hierarchical quasi-clustering method
H̃⇤ is valid and admissible. I.e., ũ⇤

X

defined by (13) is a
quasi-ultrametric and H̃⇤ satisfies axioms (Ã1)-(Ã2).

We next ask which other methods satisfy (Ã1)-(Ã2) and
what special properties DSL has. As it turns out, DSL is

the unique quasi-clustering method that is admissible with
respect to (Ã1)-(Ã2) as we assert in the following theorem.

Theorem 2 Let H̃ be a valid hierarchical quasi-clustering
method satisfying axioms (Ã1) and (Ã2). Then, H̃ ⌘
H̃⇤ where H̃⇤ is the DSL method with output quasi-
ultrametrics as in (13).

In (Carlsson & Mémoli, 2010), it was shown that single link-
age is the only admissible hierarchical clustering method
for finite metric spaces. Admissibility was defined by three
axioms, two of which are undirected versions of (Ã1) and
(Ã2). In (Carlsson et al., 2013), they show that when replac-
ing metric spaces by more general asymmetric networks,
the uniqueness result is lost and an infinite number of meth-
ods satisfy the admissibility axioms. In our paper, by con-
sidering the more general framework of quasi-clustering
methods, we recover the uniqueness result even for asym-
metric networks. Moreover, Theorem 2 shows that the
only admissible method is a directed version of single link-
age. In this way, it becomes clear that the non-uniqueness
result for asymmetric networks in (Carlsson et al., 2013)
is originated in the symmetry mismatch between the in-
put asymmetric network and the output symmetric dendro-
gram. When we allow the more general asymmetric quasi-
dendrogram as output, the uniqueness result is recovered.

DSL was identified as a natural extension of single linkage
hierarchical clustering to asymmetric networks in (Boyd,
1980). In our paper, by developing a framework to study
hierarchical quasi-clustering methods and leveraging the
equivalence result in Theorem 1, we show that DSL is the
unique admissible way of quasi-clustering asymmetric net-
works. Furthermore, stability and invariance properties are
established in the following section.

Remark 2 (Axiomatic strength and chaining effect)
DSL, having a strong resemblance to single linkage
hierarchical clustering on finite metric spaces, is likely
to be sensitive to a directed version of the so called
chaining effect (Jain & Dubes, 1988). By requiring a weaker
version of (Ã2), the most stringent of our two axioms,
the uniqueness result in Theorem 2 is lost and density
aware methods, that do not suffer from the chaining effect,
become admissible. This direction, shown to be successful
for finite metric spaces (Carlsson & Mémoli, 2013), appears
to be an interesting research avenue.

3.5. Stability and invariance properties of DSL
DSL is stable in the sense that if it is applied to similar
networks then it outputs similar quasi-dendrograms. This
notion has been used to study stability of clustering meth-
ods for finite metric spaces (Carlsson & Mémoli, 2010). More
precisely, we define a notion of distance between networks
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dN which is an analogue to the Gromov-Hausdorff distance
(Gromov, 2007) between metric spaces and defines a legiti-
mate metric on N (see A.4 in supplementary material for
details). Since we may regard DSL as a map N �! Ũ and
Ũ is a subset of N , we are in a position in which we can
use dN to express the stability of H̃⇤.

Theorem 3 For all N
X

, N

Y

2 N ,

dN
�H̃⇤(N

X

), H̃⇤(N
Y

)
�  dN (N

X

, N

Y

).

Theorem 3 states that the distance between the output
quasi-ultrametrics is upper bounded by the distance be-
tween the input networks. Thus, for DSL, nearby networks
yield nearby quasi-ultrametrics. In particular, Theorem 3
ensures that noisy dissimilarity data has limited effect on
quasi-dendrograms. Also, the theorem implies that DSL is
permutation invariant; see A.7 in supplementary material.

For a non-decreasing function  : [0,1) ! [0,1) such
that  (a) = 0 if and only if a = 0, and N

X

= (X,A

X

) 2
N we write  (N

X

) to denote the network (X, (A
X

)).
Any such  will be referred to as a change of scale func-
tion. Then, DSL is a scale invariant method as the follow-
ing proposition asserts.

Proposition 3 For all N
X

2 N and all change of scale
functions  one has  

�H̃⇤(N
X

)
�

= H̃⇤�
 (N

X

)
�

.

Since Proposition 3 asserts that the quasi-ultrametric out-
come is transformed by the same function  that alters
the dissimilarity function in the original network, DSL is
invariant to change of units. More precisely, in terms
of quasi-dendrograms, a transformation of dissimilari-
ties through  results in a transformed quasi-dendrogram
where the order in which influences between nodes arise is
the same as in the original one while the resolution at which
they appear changes according to . For further invariances
of DSL, see A.7 in the supplementary materials.

3.6. Algorithms
In this section we interpret A

X

as a matrix of dissimi-
larities and ũ

⇤
X

as a symmetric matrix with entries corre-
sponding to the quasi-ultrametric values ũ

⇤
X

(x, x0) for all
x, x

0 2 X . By (13), DSL quasi-clustering searches for
directed chains of minimum infinity norm cost in A

X

to
construct the matrix ũ

⇤
X

. This operation can be performed
algorithmically using matrix powers in the dioid algebra
(R+ [ {+1},min,max) (Gondran & Minoux, 2008).

In the dioid algebra (R+ [ {+1},min,max) the reg-
ular sum is replaced by the minimization operator and
the regular product by maximization. Using � and ⌦ to
denote sum and product on this dioid algebra we have
a � b := min(a, b) and a ⌦ b := max(a, b) for all

a, b 2 R+[{+1}. The matrix product A⌦B is therefore
given by the matrix with entries

⇥

A⌦B

⇤

ij

=

n

M

k=1

�

A

ik

⌦B

kj

�

= min
k2[1,n]

max
�

A

ik

, B

kj

�

.

(14)
Dioid powers A(k)

X

:= A

X

⌦A

(k�1)
X

with A

(1)
X

= A

X

of a
dissimilarity matrix are related to quasi-ultrametric matri-
ces ũ. For instance, the elements of the dioid power ũ(2) of
a given quasi-ultrametric matrix ũ are given by

⇥

ũ

(2)
⇤

ij

= min
k2[1,n]

max
�

ũ

ik

, ũ

kj

�

. (15)

Since ũ satisfies the strong triangle inequality we have
that ũ

ij

 max(ũ
ik

, ũ

kj

) for all k. In particular, for
k = j we have that max(ũ

ij

, ũ

jj

) = max(ũ
ij

, 0) =
ũ

ij

. Combining these two observations it follows that
the result of the minimization in (15) is [ũ(2)]

ij

= ũ

ij

.
This being valid for all i, j implies ũ

(2) = ũ. Further-
more, a matrix satisfying ũ

(2) = ũ is such that ũ

ij

=
[ũ(2)]

ij

= min
k2[1,n] max(ũ

ik

, ũ

kj

)  max(ũ
ik

, ũ

kj

) for
all k, which is just a restatement of the strong triangle in-
equality. Therefore, a non-negative matrix ũ represents a
finite quasi-ultrametric space if and only if ũ(2) = ũ and
only the diagonal elements are null. Building on this fact,
we develop the following algorithm to implement DSL.

Proposition 4 For every network (X,A

X

) with |X| = n,
the quasi-ultrametric ũ

⇤
X

is given by

ũ

⇤
X

= A

(n�1)
X

, (16)

where the operation (·)(n�1) denotes the (n � 1)st matrix
power in the dioid algebra (R+ [ {+1},min,max) with
matrix product as defined in (14).

Matrix powers in dioid algebras are tractable operations.
Indeed, there exist sub cubic dioid power algorithms (Vas-
silevska et al., 2009; Duan & Pettie, 2009) of complexity
O(n2.688). Thus, Proposition 4 shows computational
tractability of DSL. There exist related methods with lower
complexity. For instance, Tarjan’s method (Tarjan, 1983),
which takes as input an asymmetric network but in contrast
to our method enforces symmetry in its output, runs in time
O(n2 log n) for complete networks. It seems of interest to
ascertain whether Tarjan’s method can be modified to suit
our (asymmetric) output construction. In the following sec-
tion we use (16) to quasi-cluster a real-world network.

4. Applications
The number of migrants from state to state in the U.S. is
published yearly (United States Census Bureau, 2011). We de-
note by S the set of all states and by A

S

: S ⇥ S ! R+

a migrational dissimilarity such that A
S

(s, s) = 0 for all
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s 2 S and A

S

(s, s0) for all s 6= s

0 2 S is a monotonically
decreasing function of the fraction of immigrants to s

0 that
come from s (see A.9 in supplementary material for de-
tails). A small dissimilarity from state s to s

0 implies that,
among all the immigrants into s

0, a high percentage comes
from s. We then construct the network N

S

= (S,A
S

) with
node set S and dissimilarities A

S

. The application of hier-
archical clustering to migration data has been extensively
investigated by Slater, see (Slater, 1976; 1984).

The outcome of applying DSL to the migration network
N

S

is computed via (16). By Theorem 1, the output quasi-
ultrametric is equivalent to a quasi-dendrogram D̃

⇤
S

=
(D⇤

S

, E

⇤
S

). By analyzing the dendrogram component D⇤
S

of the quasi-dendrogram D̃

⇤
S

, the influence of geographical
proximity in migrational preference is evident; see Fig. 4
in Section A.9 of the supplementary material.

To facilitate display and understanding, we do not present
quasi-partitions for all the nodes and resolutions. Instead,
we restrict the quasi-ultrametric to a subset of states rep-
resenting an extended West Coast including Arizona and
Nevada. In Fig. 3, we depict quasi-partitions at four rele-
vant resolutions of the quasi-dendrogram equivalent to the
restricted quasi-ultrametric. States represented with the
same color in the maps in Fig. 3 are part of the same clus-
ter at the given resolution and states in white form singleton
clusters. Arrows between clusters for a given resolution �

represent the edge set E⇤
S

(�) which we interpret as a mi-
grational influence relation between the blocks of states.

The DSL quasi-clustering method H̃⇤ captures not only the
formation of clusters but also the asymmetric influence be-
tween them. E.g. the quasi-partition in Fig. 3 for resolu-
tion � = 0.859 is of little interest since every state forms a
singleton cluster. The influence structure, however, reveals
a highly asymmetric migration pattern. At this resolution
California has migrational influence over every other state
in the region as depicted by the four arrows leaving Califor-
nia and entering each of the other states. This influence can
be explained by the fact that California contains the largest
urban areas of the region such as Los Angeles. Hence,
these urban areas attract immigrants from all over the coun-
try, reducing the proportional immigration into California
from its neighbors and generating the asymmetric influence
structure observed. Since this influence structure defines a
partial order over the clusters, the quasi-partition at reso-
lution � = 0.859 permits asserting the reasonable fact that
California is the dominant migration force in the region.

At larger resolutions we can ascertain the relative impor-
tance of clusters. At resolution � = 0.921 we can say
that California is more important than the cluster formed
by Oregon and Washington as well as more important than
Arizona and Nevada. We can also see that Arizona pre-
cedes Nevada in the migration ordering at this resolution

� = 0.859 � = 0.921

� = 0.922 � = 0.923

WA

OR

NV

CA
AZ

Figure 3. Directed single linkage quasi-clustering method applied
to the extended West Coast migration flow.

while the remaining pairs of the ordering are undefined. At
resolution � = 0.922 there is an interesting pattern as we
can see the cluster formed by the three West Coast states
preceding Arizona and Nevada in the partial order. At this
resolution the partial order also happens to be a total order
as Arizona is seen to precede Nevada.

For further applications, refer to Section A.9 in the supple-
mentary material.

5. Conclusion
When clustering asymmetric networks, requiring the out-
put to be symmetric – as in hierarchical clustering – might
be undesirable. Hence, we defined quasi-dendrograms, a
generalization of dendrograms that admits asymmetric re-
lations, and developed a theory for quasi-clustering meth-
ods. We formalized the notion of admissibility by intro-
ducing two axioms. Under this framework, we showed that
DSL is the unique admissible method. We pointed out that
less stringent frameworks that give rise to new admissible
methods can be explored by weakening the Directed Ax-
iom of Transformation. Furthermore, we proved an equiv-
alence between quasi-dendrograms and quasi-ultrametrics
that generalizes the well-known equivalence between den-
drograms and ultrametrics, and established the stability and
invariance properties of the DSL method. Finally, we illus-
trated the application of DSL to a migration network.
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