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Abstract

Excellent variational approximations to Gaussian
process posteriors have been developed which
avoid the O

(
N3
)

scaling with dataset size N .
They reduce the computational cost to O

(
NM2

)
,

with M � N the number of inducing variables,
which summarise the process. While the com-
putational cost seems to be linear in N , the true
complexity of the algorithm depends on how M
must increase to ensure a certain quality of ap-
proximation. We show that with high probability
the KL divergence can be made arbitrarily small
by growing M more slowly than N . A particu-
lar case is that for regression with normally dis-
tributed inputs in D-dimensions with the Squared
Exponential kernel, M = O(logDN) suffices.
Our results show that as datasets grow, Gaussian
process posteriors can be approximated cheaply,
and provide a concrete rule for how to increase
M in continual learning scenarios.

1. Introduction
Gaussian processes (GPs) [Rasmussen & Williams, 2006]
are distributions over functions that are convenient priors
in Bayesian models. They can be seen as infinitely wide
neural networks [Neal, 1996], and are particularly popular
in regression models, as they produce good uncertainty esti-
mates, and have closed-form expressions for the posterior
and marginal likelihood. The most well known drawback
of GP regression is the computational cost of the exact
calculation of these quantities, which scales as O

(
N3
)

in
time and O

(
N2
)

in memory where N is the number of
training examples. Low-rank approximations [Quiñonero
Candela & Rasmussen, 2005] choose M inducing variables
which summarise the entire posterior, reducing the cost to
O
(
NM2 +M3

)
time and O

(
NM +M2

)
memory.
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While the computational cost of adding inducing variables is
well understood, results on how many are needed to achieve
a good approximation are lacking. As the dataset size in-
creases, we cannot expect to keep the capacity of the approx-
imation constant without the quality deteriorating. Taking
into account the rate at which M must increase with N to
achieve a particular approximation accuracy, as well as the
cost of initializing or optimizing the inducing points, deter-
mines a more realistic sense of the costs of scaling Gaussian
processes.

Approximate GPs are often trained using variational infer-
ence [Titsias, 2009], which minimizes the KL divergence
from an approximate posterior to the full posterior process
[Matthews et al., 2016]. We use this KL divergence as our
metric for the approximate posterior’s quality. We show
that under intuitive assumptions the number of inducing
variables only needs to grow at a sublinear rate for the KL
between the approximation and the posterior to go to zero.
This shows that very sparse approximations can be used for
large datasets, without introducing much bias into hyperpa-
rameter selection through evidence lower bound (ELBO)
maximisation, and with approximate posteriors that are ac-
curate in terms of their prediction and uncertainty.

The core idea of our proof is to use upper bounds on the
KL divergence that depend on the quality of a Nyström
approximation to the data covariance matrix. Using existing
results, we show this error can be understood in terms of
the spectrum of an infinite-dimensional integral operator. In
the case of stationary kernels, our main result proves that
priors with smoother sample functions, and datasets with
more concentrated inputs admit sparser approximations.

Main results We assume that training inputs are drawn
i.i.d. from a fixed distribution, and prove bounds of the form

KL
(
Q‖P̂

)
≤ O

(
g(M,N)

σ2
nδ

(
1 +

c‖y‖22
σ2
n

)
+Nε

)
with probability at least 1 − δ, where P̂ is the posterior
Gaussian process, Q is a variational approximation, and y
are the training targets. The function g(M,N) depends on
both the kernel and input distribution, and grows linearly in
N and generally decays rapidly in M . The quality of the
initialization determines ε, which can be made arbitrarily
small (e.g. an inverse power of N ) at some additional com-
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putational cost. Theorems 1 and 2 give results of this form
for a collection of inducing variables defined using spectral
information, theorems 3 and 4 hold for inducing points.

2. Background and notation
2.1. Gaussian process regression

We consider Gaussian process regression, where we observe
training data, D = {xi, yi}Ni=1 with xi ∈ X and yi ∈ R.
Our goal is to predict outputs y∗ for new inputs x∗ while
taking into account the uncertainty we have about f(·) due
to the limited size of the training set. We follow a Bayesian
approach by placing a prior over f , and a likelihood to relate
f to the observed data through some noise. Our model is

f ∼ GP(ν(·), k(·, ·)), yi=f(xi) + εi, εi ∼ N (0, σ2
n),

where ν : X → R is the mean function and k : X ×
X → R is the covariance function. We take ν ≡ 0; the
general case can be derived similarly after first centering
the process. We use the posterior for making predictions,
and the marginal likelihood for selecting hyperparameters,
both of which have closed-form expressions [Rasmussen &
Williams, 2006]. The log marginal likelihood is of particular
interest to us, as the quality of its approximation and our
posterior approximation is linked. Its form is

L = −1

2
yTK−1n y − 1

2
log|Kn| −

N

2
log(2π) , (1)

where Kn = Kff + σ2
nI, and [Kff ]i,j = k(xi,xj).

2.2. Sparse variational Gaussian process regression

While all quantities of interest have analytic expressions,
their computation is infeasible for large datasets due to
the O

(
N3
)

time complexity of the determinant and in-
verse. Many approaches have been proposed that rely on
a low-rank approximation to Kff [Quiñonero Candela &
Rasmussen, 2005; Rahimi & Recht, 2008], which allow
the determinant and inverse to be computed in O

(
NM2

)
,

where M is the rank of the approximating matrix.

We consider the variational framework developed by Tit-
sias [2009], which minimizes the KL divergence from the
posterior process to an approximate GP

GP
(
k·uK−1uuµ, k·· + k·uK−1uu(Σ−Kuu)K

−1
uuku·

)
, (2)

where [ku·]i = k(·, zi), [Kuf ]m,i := k(zm,xi) and
[Kuu]m,n := k(zm, zn). This variational distribution is
determined through defining the density of the function
values u ∈ RM at inducing inputs Z = {zm}Mm=1 to be
q(u) = N (µ,Σ). Z, µ, and Σ are variational parameters.
Titsias [2009] solved the convex optimization problem for
µ and Σ explicitly, resulting in the evidence lower bound

(ELBO):

Llower=−
1

2
yTQ−1n y− 1

2
log|Qn|−

N

2
log(2π)− t

2σ2
n

(3)

where Qn = Qff + σ2
nI, Qff = KT

ufK
−1
uuKuf and t =

Tr(Kff −Qff ). Hensman et al. [2013] proposed optimising
over {µ,Σ} numerically, which allows minibatch optimiza-
tion. In both cases, L = Llower + KL(Q||P̂ ) [Matthews
et al., 2016], so any bounds on the KL-divergence we prove
hold for Hensman et al. [2013] as well, as long as {µ,Σ}
is at the optimum value.

Titsias [2009] suggests jointly maximizing the ELBO (eq. 3)
w.r.t. the variational and hyperparameters. This comes at
the cost of introducing bias in hyperparameter estimation
[Turner & Sahani, 2011], notably the overestimation of the
σ2
n [Bauer et al., 2016]. Adding inducing points reduces the

KL gap [Titsias, 2009], and the bias is practically eliminated
when enough inducing variables are used.

2.3. Interdomain inducing features

Lázaro-Gredilla & Figueiras-Vidal [2009] showed that one
can specify the distribution q(u), on integral transforma-
tions of f(·). Using these interdomain inducing variables
can lead to sparser representations, or computational bene-
fits [Hensman et al., 2018]. Interdomain inducing variables
are defined by

um =

∫
X
f(x)g(x; zm)dx .

When g(x; zm) = δ(x − zm) the um are inducing points.
Interdomain features require replacing ku· and Kuu in eq. 2
with integral transforms of the kernel. In later sections,
we investigate particular interdomain transformations with
interesting convergence properties.

2.4. Upper bounds on the marginal likelihood

Combined with eq. 3, an upper bound on eq. 1 can show
when the KL divergence is small, which indicates inference
has been successful and hyperparameter estimates are likely
to have little bias. Titsias [2014] introduced an upper bound
that can be computed in O

(
NM2

)
:

Lupper :=−
1

2
yT(Qn+tI)

−1
y−1

2
log(|Qn|)−

N

2
log 2π. (4)

This gives a data-dependent upper bound, that can be com-
puted after seeing the data, and for given inducing inputs.

2.5. Spectral properties of the covariance matrix

While for small datasets spectral properties of the covariance
matrix can be analyzed numerically, we need a different
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approach for understanding these properties for a typical
large dataset. The covariance operator, K, captures the
limiting properties of Kff for large N . It is defined by

Kg(x′) =
∫
X
g(x)k(x,x′)p(x)dx, (5)

where p(x) is a probability density from which the inputs are
assumed to be drawn. We assume that K is compact, which
is the case if k(x,x′) is bounded. Under this assumption,
the spectral theorem tells us that K has a discrete spectrum.
The (finite) sequence of eigenvalues of 1

NKff converges to
the (infinite) sequence of eigenvalues of K [Koltchinskii &
Giné, 2000]. Mercer’s Theorem [Mercer, 1909] tells us that
for continuous kernel functions,

k(x,x′) =

∞∑
m=1

λmφm(x)φm(x′), (6)

where the (λm, φm)
∞
i=1 are eigenvalue-eigenfunction pairs

of the operator K, with the eigenfunctions orthonormal in
L2(X )p. Additionally,

∑∞
m=1 λm <∞.

2.6. Selecting the number of inducing variables

Ideally, the number of inducing variables should be selected
to make the KL(Q||P̂ ) small. Currently, the most common
advice is to increase the number of inducing variables M
until the lower bound (eq. 3) no longer improves. This is a
necessary, but not a sufficient condition for the ELBO to be
tight and the KL to be small. Taking the upper bound (eq. 4)
into consideration, we can guarantee a good approxima-
tion when difference between the upper and lower bounds
converges to zero, as this upper bounds the KL.

Both these procedures rely on bounds computed for a given
dataset, and a specific setting of variational parameters.
While practically useful, they do not tell us how many in-
ducing variables we should expect to use before observing
any data. In this work, we focus on a priori bounds, and
asymptotic behavior as N →∞ and M grows as a function
of N . These bounds guarantee how the variational method
scales computationally for any dataset satisfying intuitive
conditions. This is particularly important for continual learn-
ing scenarios, where we incrementally observe more data.
With our a priori results we can guarantee that the growth in
required computation will not exceed a certain rate.

3. Bounds on the KL divergence for
eigenfunction inducing features

In this section, we prove a priori bounds on the KL diver-
gence using inducing features that rely on spectral informa-
tion about the covariance matrix or the associated operator.
The results in this section form the basis for bounds on the
KL divergence for inducing points (section 4).
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Figure 1. Increasing N with fixed M increases the expected KL
divergence. t/2σ2

n is a lower bound for the expected value over the
KL divergence when y is generated according to our prior model.

3.1. A Posteriori Bounds on the KL Divergence

We first consider a posteriori bounds on the KL divergence
that hold for any y, derived by looking at the difference
between Lupper and Llower. We will use these bounds in later
sections to analyze asymptotic convergence properties.

Lemma 1. Let K̃ff = Kff −Qff , t = Tr(K̃ff ) and λ̃max
denote the largest eigenvalue of K̃ff . Then,

KL
(
Q‖P̂

)
≤ 1

2σ2
n

(
t+

λ̃max‖y‖22
σ2
n+λ̃max

)
≤ t

2σ2
n

(
1+
‖y‖22
σ2
n+t

)
.

The proof bounds the difference between a refinement of
Lupper also proven by Titsias [2014] and Llower through an
algebraic manipulation and is given in appendix A. The
second inequality is a consequence of t ≥ λ̃max. We typ-
ically expect ‖y‖22 = O(N), which is the case when the
variance of the observed ys is bounded, so if t� 1/N the
KL divergence will be small.

3.2. A priori bounds: averaging over y

Lemma 1 is typically overly pessimistic, as it assumes y can
be parallel to the largest eigenvector of K̃ff . In this section,
we consider a bound that holds a priori over the training
outputs, when they are drawn from the model. This allows
us to bound the KL divergence for a ‘typical’ dataset.

Lemma 2. For any set of {xi}Ni=1, if the outputs {yi}Ni=1

are generated according to our generative model, then

t

2σ2
n

≤ Ey
[
KL
(
Q‖P̂

)]
≤ t

σ2
n

(7)

The lower bound tells us that even if the training data is
contained in an interval of fixed length, we need to use
more inducing points for problems with large N if we want
to ensure the sparse approximation has converged. This
is shown in Figure 1 for data uniformly sampled on the
interval [0, 5] with 15 inducing points.
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Sketch of Proof.

Ey
[
KL
(
Q‖P̂

)]
=

t

2σ2
n

+

∫
N (y; 0,Kn)

× log

(N (y; 0,Kn)

N (y; 0,Qn)

)
dy

The second term on the right is a KL divergence between
centered Gaussian distributions. The lower bound follows
from Jensen’s inequality. The proof of the upper bound
(appendix B) bounds this KL divergence above by t/(2σ2

n).

3.3. Minimizing the upper bound: an idealized case

We now consider the set of M interdomain inducing fea-
tures that minimize the upper bounds in Lemmas 1 and 2.
Taking into account the lower bound in Lemma 2, they must
be within a factor of two of the optimal features defined
without reference to training outputs under the assumption
of Lemma 2. Consider

um :=

N∑
i=1

w
(m)
i f(xi)

where w(m)
i is the ith entry in the mth eigenvector of Kff .

That is, um is a linear combination of inducing points placed
at each data point, with weights coming from the entries of
the mth eigenvector of Kff . We show in appendix C that

cov(um, uk) = w(m)TKffw(k) = λk(Kff )δm,k, (8)

cov(um, f(xi)) =
[
Kffw(m)

]
i
= λm(Kff )w

(m)
i . (9)

Inference with these features can be seen as the variational
equivalent of the optimal parametric projection of the model
derived by Ferrari-Trecate et al. [1999].

Computation with these features requires computing the ma-
trices Kuf and Kuu. Kuu contains the first M eigenvalues
of Kff ,Kuf contains the corresponding eigenvectors. Com-
puting the first M eigenvalues and vectors (i.e. performing
atruncated SVD of Kff ) can be done inO(N2M) using, for
example, Lanczos iteration [Lanczos, 1950]. With these fea-
tures Qff is the optimal rank-M approximation to Kff and
leads to λ̃max = λM+1(Kff ) and t =

∑N
m=M+1 λm(Kff ).

3.4. Eigenfunction inducing features

We now modify the construction given in section 3.3 to
no longer depend on Kff explicitly (which depends on the
specific training inputs) and instead depend on assumptions
about the training data. This construction is the a priori
counterpart of the eigenvector inducing features, as it is
defined prior to observing a specific set of training inputs.

Consider the limit as we have observed a large amount
of data, so that 1

NKff → K. This leads us to replace the
eigenvalues, {λm(Kff )}Mm=1, with the operator eigenval-
ues, {λm}Mm=1, and the eigenvectors, {w(m)}Mm=1, with
the eigenfunctions, {φm}Mm=1, yielding

um =

∫
X
f(x)φm(x)p(x)dx. (10)

Note that p(x) influences um. In appendix C, we show

cov(um, uk)=λmδm,k and cov(um, f(xi))=λmφm(xi).

These features can be seen as the variational equivalent of
methods utilizing truncated priors proposed in Zhu et al.
[1997], which are the optimal linear M dimensional para-
metric GP approximation defined a priori, in terms of mini-
mizing expected mean square error.

In the case of the SE kernel and Gaussian inputs, closed
form expressions for eigenfunctions and values are known
[Zhu et al., 1997]. For Matérn kernels with inputs uniform
on [a, b], expressions for the eigenfunctions and eigenvalues
needed in order to compute Kuf and Kuu can be found
in Youla [1957]. However, the formulas involve solving
systems of transcendental equations limiting the practical
applicability of these features for Matérn kernels.

3.5. A priori bounds on the KL divergence for
eigenfunction features

Having developed the necessary preliminary results, we now
prove the first a priori bounds on the KL divergence. We
start with eigenfunction features, which can be implemented
practically in certain instances discussed above.

Theorem 1. Suppose N training inputs are drawn i.i.d. ac-
cording to input density p(x). For inference with M eigen-
function inducing variables defined with respect to the prior
kernel and p(x), with probability at least 1− δ,

KL
(
Q‖P̂

)
≤ C

2σ2
nδ

(
1 +
‖y‖22
σ2
n

)
(11)

where we have defined C = N
∑∞
m=M+1 λm, and the λm

are the eigenvalues of the integral operator K associated to
the prior kernel and p(x).

Theorem 2. With the assumptions and notation of Theo-
rem 1 if y is distributed according to a sample from the
prior generative model, with probability at least 1− δ,

KL
(
Q‖P̂

)
≤ C

δσ2
n

, (12)

Sketch of Proof of Theorems 1 and 2. We first prove a
bound on t that holds in expectation over input data
matrices of size N with entries drawn i.i.d. from p(x).
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A direct computation of Qff shows that [Qff ]i,j =∑M
m=1 λmφm(xi)φm(xj). Using the Mercer expansion of

the kernel matrix and subtracting,[
K̃ff

]
i,i

=

∞∑
m=M+1

λmφ
2
m(xi).

Summing this and taking the expectation,

EX[t] = N

∞∑
m=M+1

λmExi

[
φ2m(xi)

]
= N

∞∑
m=M+1

λm.

The second equality follows from the eigenfunctions having
norm 1. Applying Markov’s inequality and Lemmas 1 and 2
yields Theorems 1 and 2 respectively.

3.6. Squared exponential kernel and Gaussian inputs

For the SE kernel in one-dimension with hyperparameters
(v, `2) and p(x) ∼ N (0, σ2),

λm = v
√
2a/ABm−1

where a = 1/(4σ2), b = 1/(2`2), c =
√
a2 + 2ab, A =

a+b+c andB = b/A [Zhu et al., 1997]. In this case, using
the geometric series formula,

∞∑
m=M+1

λm =
v
√
2a

(1−B)
√
A
BM .

Using this bound with Theorems 1 and 2, we see that by
choosing M = O(logN), under the assumptions of either
theorem, we can obtain a bound on the KL divergence that
tends to 0 as N tends to infinity.

3.7. Matérn kernels and uniform measure

For the Matérn k + 1/2 kernel, λm � m−2k−2 [Ritter
et al., 1995], so

∑∞
m=M+1 λm = O(M−2k−1). In order

for the bound in Theorem 2 to converge to 0, we need
lim
N→∞

N
M2k+1 → 0. This holds if M = Nα for α > 1

2k+1 .

For k > 0, this bound indicates the number of inducing
features can grow sublinearly with the amount of data.

4. Bounds for inducing points
We have shown that using spectral knowledge of either Kff

or K we obtain bounds on the KL divergence indicating that
the number of inducing features can be much smaller than
the number of data points. While mathematically conve-
nient, the practical applicability of the interdomain features
used is limited by computational considerations in the case
of the eigenvector features and by the lack of analytic expres-
sions for Kuf in most cases for the eigenfunction features,
as well not knowing the true input density, p(x).

Figure 2. Determinant based sampling, with a SE kernel with ` = 2
(top) and with ` = .5 (middle) leads to more dispersed inducing
points than uniform sampling (bottom).

In contrast, inducing points can be efficiently applied to any
kernel. In this section, we show that with a good initializa-
tion based on the empirical input data distribution, inducing
points lead to bounds that are only slightly weaker than the
interdomain approaches suggested so far.

Proving this amounts to obtaining bounds on the trace of
the error of a Nyström approximation to Kff . The Nyström
approximation, popularized for kernel methods by Williams
& Seeger [2001], approximates a positive semi-definite sym-
metric matrix by subsampling columns. If M columns,
{ci}Mi=1, are selected from Kff , the approximation used is
Kff ≈ CC

−1
CT, where C = [c1, c2, . . . , cM] and C is

the M ×M principal submatrix associated to the {ci}Mi=1.
Note that if inducing points are placed at the points associ-
ated to each column in the data matrix, then Kuu = C and
KT

uf = C, so Qff = CC
−1

CT.

Lemma 3. [Belabbas & Wolfe, 2009] Given a symmetric
positive semidefinite matrix, Kff , ifM columns are selected
to form a Nyström approximation such that the probability
of selecting a subset of columns, Z, is proportional to the
determinant of the principal submatrix formed by these
columns and the matching rows, then,

EZ [Tr(Kff −Qff )] ≤ (M + 1)

N∑
m=M+1

λm(Kff ). (13)

This means that on average well-initialized inducing points
lead to bounds within a factor of M + 1 of eigenvector
inducing features.

The selection scheme described introduces negative correla-
tions between inducing points locations, leading the zi to be
well-dispersed amongst the training data, as shown in fig. 2.
The strength of these negative correlations is determined by
the particular kernel.
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The proposed initialization scheme is equivalent to sam-
pling Z according to a discrete k-Determinantal Point Pro-
cess (k-DPP), defined over Kff . Belabbas & Wolfe [2009]
suggested that sampling from this distribution, which has
support over

(
N
M

)
subsets of columns, may be computation-

ally infeasible. Kulesza & Taskar [2011] provided an exact
algorithm for sampling from k-DPPs given an eigendecom-
position of the kernel matrix. In our setting, we require
our initialisation scheme to have similar computational cost
to computing the sparse GP bounds, which prohibits us
from performing eigendecomposition. Instead, we rely on
cheaper “ε close” sampling methods. We therefore provide
the following corollary of lemma 3, proven in appendix D.
Corollary 1. Suppose the inducing points, Z, are sampled
from an ε k-DPP, ν, i.e a distribution over subsets of X of
size M satisfying, d(µ, ν)TV ≤ ε where d(·, ·)TV denotes
total variation distance and µ is a k-DPP on Kff . Suppose
the k(x,x) < v for all x ∈ X . Then

EZ∼ν [t] ≤ (M + 1)

N∑
m=M+1

λm(Kff ) + 2Nvε. (14)

4.1. A priori bounds for inducing points

We show analogues of theorems 1 and 2 for inducing points.
Theorem 3. Suppose N training inputs are drawn i.i.d
according to input density p(x), and k(x,x) < v for all
x ∈ X . Sample M inducing points from the training data
with the probability assigned to any set of size M equal to
the probability assigned to the corresponding subset by an
ε k-DPP with k =M . With probability at least 1− δ,

KL
(
Q‖P̂

)
≤ C(M + 1) + 2Nvε

2σ2
nδ

(
1 +
‖y‖22
σ2
n

)
(15)

where C = N
∑∞
m=M+1 λm, and λm are the eigenvalues

of the integral operatorK associated to kernel, k, and p(x).
Theorem 4. With the assumptions and notation of theorem 3
and if y is distributed according to a sample from the prior
generative model, with probability at least 1− δ,

KL
(
Q‖P̂

)
≤ C(M + 1) + 2Nvε

δσ2
n

. (16)

Proof. We prove theorem 4. Theorem 3 follows the same
argument, replacing the expectation over y with the bound
given by lemma 1.

EX

[
EZ|X

[
Ey

[
KL
(
Q‖P̂

)]]]
≤ σ−2n EX

[
EZ|X[t]

]
≤ σ−2n (M + 1)EX

[
N∑

m=M+1

λm(Kff )

]
+ 2Nvε

≤ σ−2n (M + 1)N

∞∑
m=M+1

λm + 2Nvε.

The first two inequalities use lemma 2 and corollary 1. The
third follows from noting that the sum inside the expectation
is the error in trace norm of the optimal rank M approx-
imation to the covariance matrix for any given X, and is
bounded above by the error from the rank M approximation
due to eigenfunction features. We showed that this error is
in expectation equal to N

∑∞
m=M+1 λm so this must be an

upper bound on the expectation in the second to last line.1

We apply Markov’s inequality, yielding for any δ ∈ (0, 1)
with probability at least 1− δ,

KL
(
Q‖P̂

)
≤ (M + 1)N

∑∞
m=M+1 λm + 2NV ε

δσ2
n

.

Figure 3 compares the actual KL divergence, the a posteriori
bound derived by Lupper − Llower, and the bounds proven
in theorems 3 and 4 on a dataset with normally distributed
training inputs and y drawn from the generative model.

5. Consequences of theorem 3 and theorem 4
We now investigate implications of our main results for
sparse GP regression. Our first two corollaries consider
Gaussian inputs and the squared exponential (SE) ker-
nel, and show that in D dimensions, choosing M =
O(logD(N)) is sufficient in order for the KL divergence to
converge with high probability. We then briefly summarize
convergence rates for other stationary kernels. Finally we
point out consequences of our definition of convergence for
the quality of the pointwise posterior mean and uncertainty.

5.1. Comparison of consequences of theorems

Using the explicit formula for the eigenvalues given in sec-
tion 3.6, we arrive at the following corollary:

Corollary 2. Suppose that ‖y‖22 ≤ RN. Fix γ > 0, and
take ε =

δσ2
n

vNγ+2 . Assume the input data is normally dis-
tributed and regression in performed with a SE kernel. Un-
der the assumptions of theorem 3, with probability 1− δ,

KL
(
Q‖P̂

)
≤ N−γ

(
2R/σ2

n + 2/N
)
. (17)

when inference is performed with M = (3+γ) log(N)+logD
log(B−1) ,

where D = v
√
2a

2
√
Aσ2

nδ(1−B)
.

The proof is given in appendix E. If the lengthscale is much
shorter than the standard deviation of the data then B will
be near 1, implying that M will need to be large in order for
the bound to converge.

1 Shawe-Taylor et al. [2005, Proposition 4] gives a different
proof of the final inequality.
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Figure 3. Rates of convergence as M increases on fixed dataset of
size N = 1000, with a SE-kernel with ` = .6, v = 1, σn = 1 and
x ∼ N (0, 1) and y sampled from the prior.
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Figure 4. We increase N and take M = C log(N) for a one-
dimensional SE-kernel and normally distributed inputs. The KL
divergence decays rapidly, as predicted by Corollary 2.

Remark 1. The assumption ‖y‖22 ≤ RN for someR is very
weak. For example, if y is a realization of an integrable
function with constant noise,

N∑
i=1

y2i ≤
N∑
i=1

f(xi)
2 +

N∑
i=1

ε2i + o(N)

The first sum is asmyptotically N
∫
f(x)p(x)dx, and the

second is asymptotically Nσ2
n.

The consequence of corollary 2 is shown in fig. 4, in which
we gradually increase N, choosing M = C log(N) + C0,
and see the KL divergence converges as an inverse power of
N. The training outputs are generated from a sample from
the prior generative model. Note that as theorem 4 assumes
y is sampled from the prior and is not derived using the
upper bound (eq. 4); it may be tighter than the a posteriori
bound in cases when this upper bound is not tight.

For the SE kernel and Gaussian inputs, the rate that we prove
M must increase for inducing points and eigenfunction fea-
tures differs by a constant factor. For the Matérn k + 1/2
kernel, we need to choose M = Nα with α > 1/(2k) in-
stead of α > 1/(2k + 1). This difference is particularly
stark in the case of the Matérn 3/2 kernel, for which our
bounds tell us that inference with inducing points requires
α > 1/2 as opposed to α > 1/3 for the eigenfunction
features. Whether this is an artifact of the proof, the initial-
ization scheme, or an inherent limitation for inducing points
is an interesting area for future work.

5.2. Multidimensional data, effect of input density and
other kernels

If X = RD, it is common to choose a separable kernel, i.e a
kernel that can be written as a product of kernels along each
dimension. If this choice is made, and input densities factor
over the dimensions, the eigenvalues of K are the product
of the eigenvalues along each dimension. In the case of the
SE-ARD kernel and Gaussian input distribution, we obtain
an analogous statement to corollary 2 in D-dimensions.

Corollary 3. For any fixed ε′, δ > 0 under the assumptions
of corollary 2, with a SE-ARD kernel in D dimensions, p(x)
a multivariate Gaussian, M = O(logDN) inducing points
and ε = O(N−γ) for some fixed γ > 2, with probability at

least 1− δ, KL
(
Q‖P̂

)
≤ δ−1ε′.

The proof uses ideas from Seeger et al. [2008] and is given
in appendix E. While for the SE kernel and Gaussian input
density M can grow polylogarithmically in N, and the KL
divergence still converges, this is not the case for regression
with other kernels or input distribution.

Closed form expressions for the eigenvalues of operators
associated to many kernels and input distributions are not
known. For stationary kernels and compactly supported
input distributions, the asymptotic rate of decay of the eigen-
values of K is well-understood [Widom, 1963; 1964; Ritter
et al., 1995]. The intuitive summary of these results is
that smooth kernels, with concentrated input distributions
have rapidly decaying eigenvalues. In contrast, kernels
such as the Matérn-1/2 that define processes that are not
smooth have slowly decaying eigenvalues. For Lebesgue
measure on [a, b] the Sacks-Ylivasker conditions of order r
(appendix F), which can be roughly thought of as meaning
that realizations of the process are r times differentiable
with probability 1 [Ritter et al., 1995], implies an eigen-
decay of λm � m−2r−2. Table 1 summarizes the spectral
decay of several stationary kernels, as well as the implica-
tions for the number of inducing points needed for inference
to provably converge with our bounds.

5.3. Computational complexity

We now have all the components necessary for analyzing the
overall computational complexity of finding an arbitrarily
good GP approximation. To understand the full compu-
tational complexity, we must consider the cost of initial-
izing the inducing points using an exact or approximate
k-DPP, as well as the O(NM2) time complexity of varia-
tional inference. Recent work of Dereziǹski et al. [2019]
indicate that an exact algorithm for sampling a k-DPP can
be implemented in O(N log(N)poly(M)). We base our
method on Anari et al. [2016], who show that an ε k-DPP
can be sampled via MCMC methods in O(NM4 log(N)+
NM3 log( 1ε )) time with memoryO(N+M2) (see appendix



Rates of Convergence for Sparse Variational Gaussian Process Regression

Table 1. The number of features needed for our bounds to converge in D−dimensions these hold for some fixed α > 0 and any εD > 0.

KERNEL INPUT DISTRIBUTION DECAY OF λm M, THEOREM 3 M, THEOREM 4

SE-KERNEL COMPACT SUPPORT O
(
exp(−αm

d
log m

d
)
)

O(logD(N)) O(logD(N))
SE-KERNEL GAUSSIAN O

(
exp(−αm

d

)
) O(logD(N)) O(logD(N))

MATÉRN k+1/2 UNIFORM ON INTERVAL O
(
M−2k−2 log(M)2(d−1)(k+1)

)
O
(
N1/k+εD

)
O
(
N1/(2k)+εD

)
D).2 We can choose ε to be any inverse power of N which
only adds a constant factor to the complexity. For the SE
kernel, taking M = O(logDN) inducing points leads to
a complexity of O(N log4D+1N), a large computational
saving compared to the O(N3) cost of exact inference. For
the Matérn k+ 1

2 kernel and the average case analysis of
theorem 4 we need to take M = O(N1/(2k)+εD ) imply-
ing a computational complexity ofO(N1+2/k+4εD log(N))
which is an improvement over the cost of full inference for
k>1. Improvements in methods for sampling exact or ap-
proximate k-DPPs (e.g. recent bounds on mixing time [Her-
mon & Salez, 2019]) or bounds on other selection schemes
for Nyström approximations directly translate to improved
bounds on the computational cost of convergent sparse Gaus-
sian process approximations through this framework.

5.4. Pointwise approximate posterior

In many applications, pointwise estimates of the posterior
mean and variance are of interest. It is therefore desirable
that the approximate variational posterior gives similar es-
timates of these quantities as the true posterior. Huggins
et al. [2019] derived an approximation method for sparse GP
inference with provable guarantees about pointwise mean
and variance estimates of the posterior process and showed
that approximations with moderate KL divergences can still
have large deviations in mean and variance estimates. How-
ever, if the KL divergence converges to zero, estimates of
mean and variance converge to the posterior values. By the
chain rule of KL divergence [Matthews et al., 2016],

KL(µX ‖νX ) = KL(µx∗‖νx∗)

+ Eµx∗

[
KL
(
µX\x∗|x∗‖νX\x∗|x∗

)]
≥ KL(µx∗‖νx∗).

Therefore, bounds on the mean and variance of a one-
dimensional Gaussian with a small KL divergence imply
pointwise guarantees about posterior inference when the KL
divergence between processes is small.

Proposition 1. Suppose q and p are one dimensional Gaus-
sian distributions with means µ1 and µ2 and variances σ1
and σ2, such that 2KL(q‖p) = ε ≤ 1

5 , then

|µ1 − µ2| ≤ σ2
√
ε ≤ σ1

√
ε√

1−
√
3ε

and |1− σ2
1/σ

2
2 | <

√
3ε.

2Open source implementations of approximate k-DPPs are
available (e.g. [Gautier et al., 2018]).

The proof is in appendix B. If ε→ 0, proposition 1 implies
µ1 → µ2 and σ1 → σ2. Using this and theorems 3 and 4,
the posterior mean and variance converge pointwise to those
of the full model using M � N inducing features.

6. Related work
Statistical guarantees for convergence of parametric GP ap-
proximations [Zhu et al., 1997; Ferrari-Trecate et al., 1999],
lead to similar conclusions about the choice of approximat-
ing rank. Ferrari-Trecate et al. [1999] showed that given
N data points, using a rank M truncated SVD of the prior
covariance matrix, such that λM � σ2

n/N results in almost
no change in the model, in terms of expected mean squared
error. Our results can be considered the equivalent for varia-
tional inference, showing that theoretical guarantees can be
established for non-parametric approximate inference.

Guarantees on the quality Nyström approximations have
been used to bound the error of approximate kernel meth-
ods, notably for kernel ridge regression [Alaoui & Mahoney,
2015; Li et al., 2016]. The specific method for selecting
columns in the Nyström approximation plays a large role in
these analyses. Li et al. [2016] use an approximate k-DPP,
nearly identical to the initialization we analyze; Alaoui &
Mahoney [2015] sample columns according to ridge lever-
age scores. The substantial literature on bounds for Nyström
approximations [e.g. Gittens & Mahoney, 2013] motivates
considering other initialization schemes for inducing points
in the context of Gaussian process regression.

7. Conclusion
We proved bounds on the KL divergence between the vari-
ational approximation of sparse GP regression to the pos-
terior, that depend only on the decay of the eigenvalues of
the covariance operator. These bounds prove the intuitive
result that smooth kernels with training data concentrated
in a small region admit high quality, very sparse approxima-
tions. These bounds prove that truly sparse non-parametric
inference, with M � N, can provide reliable estimates of
the marginal likelihood and pointwise posterior.

Extensions to models with non-conjugate likelihoods, espe-
cially within the framework of Hensman et al. [2015], pose
a promising direction for future research.
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