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Abstract

In this paper, a comparative study of six well-known post-pruning methods is presented. Each method is briefly
describedandits weaknesses and strengths arepointed out. Moreover, someresults on anew experimentation on pruning

methods have been reported. Eleven databases available via ftp at the UCI Machine Leaming Repository have been

selected- By comparing eror rates of pruned rees with the corresponding unpruned trees we have found no clue
supporting Mngers' claim that pruning methods exploiting an independent pruning set perform better than the others.
On the contrary, our results confirm Holte's observation that even simple rules perfum well on most commonly used

dara sets in the machine learning community.

l. Introduction

The poblem of inducing the smallest decision tree consistent with a training set has been proven !o be NP-complete when

ree complexity is measured as the extemal path length, that is, the sum, over all leaves, of the number of edges on &e
path from the root ro that leaf (Hyafil & Rivest, 1976). The NP-completeness has also been conjectured for other

complexity measures, such as the number of bis necessary to encode a decision tree (Quinlan & Rivest, 1989). For
this reason, various heuristic methods have been proposed for the construction of a decision tree, among which the

most widely lnown is the top-downapproach. In topdown induction of decision trees (TDIDT) it is possible to identify
ttnee asks @reiman et al., 1984):

l) definition of a decision process associated with the tree,

2) determination of the test to associate with each edge coming out from a node,

3) detsmination of the leaves.

This paper is mainly concerned with the thLd one. There are two different ways to cope with ir eitrer deciding when

to stop the growth of a tree or reducing the size of a fully expanded tree, T*, by pruning some branches. Methods

that connol the growth of a decision tree during its construction are called pre-przzizg methods, while the others are

calld posrprnnizg methods (Cestnik et al., 1987). The former methods establish sopping rules for preventing the

growth of branches that do not seem to improve the predictive accuracy of the decision tree. One problem is that the search

myopia of the hill-climbing search strategy adopted in TDIDT algorithms may prevent from finding a decision ree that

is consistent wittr the training set, even though one exisB. One way around this short-sightedness is that of considering
muttivaiate (pa lytlwtic) tests when no univ aiate (rnonothellc) test seems good enough (Fisher & CtEn, 1990). Another

way, which is implemented in many TDIDT systems, consists in keeping on growing a tree T* in any case, and then

rerospectively pruning those branches thatseem superfluous with respecttopredictiveaccuracy (Niblett, 1987). The

final effect is that in this way the intelligibility of a decision tree is improved, without really affecting is predictive

accuracy.

Some authors push forward by claiming that tree pruning is a way of improving predictive accuracy of the tree, since

it eliminates even harmful branches (Cesmik et al., 1987; Mingers, 1989). Informally, a branch can be defined harmful

when it tests irrelevant attributes, fitting the noise in the training data and lowering accuracy on unseen cases. Thus, the

presence of harmful branches, not only reduces ttre comprehensibility of a tree by making it more complex, but it also

degrades the classification performance on new observations. When this happens, we say that the complex tree overfits

thedaa. Recently, Schafferhas shownthatoverfining avoidanceby meansof reepruning isaform ofblas Oere intended
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as a set of factors that influence hypothesis selection) rather than a statistical improvement of ttre classifier (Schaffer,

1993).Infact,thedefinitionofacomplexitymeasureforadecisiontreeamountstoacceptingacertainpriorprobability
disribution over the set ofpossible subtrees (lvlalerba etal.,1994).

Thevariety of post-pruning (orsimply pruning) mettrodsproposedin literature does notencouragethecomprehension

of both the common and the individual aspects. In fact, while some methods proceed from the root towards the leaves

of T_ when they examine the branches to prune (top-down approach), other methods follow the opposite direction,
il

stating the analysis from the leaves and finishing it with ttre root node (bottom-up approach).Frrthermore, while some

methods useonly thetrainingser in orderto evalu,atetheaccuracy of adecision tree, othermethods exploitan additional
pruning set,sometimes improperly calledtest set, thatallows them togetless biasedestimates of the pedictiveaccuracy

ofapruned ree.

In thispaper, wecompare six of the mostrenowned pruning methods, by emphasizing their weaknesses and strengths.

In particular, we point out the main assumptions underlying the metlod, the appropriateness of some eror rate

estimations, as well as the behaviour of the method under conditions different from those considered by the proposing

author($. Then, weprovide a summary of some empirical results we obtained by using an experimental procedure fairer
ttun that a&pted in a previous work by Mingers (1989).

2. A critical review of some pruning methods

This section is devoted to the presentation of six pnrning methods we test€d in our experiments. In particular, each

method is firstly explained by means of a bnief description that reflects its original formulation, then it is criticized with

the aim of emphasizing properties and limits.

2.1 Re&rced enor pruniag (REP)

This method, proposed by Quinlan (1987), uses an independent set of examples, here calledpruning set, in order to

evaluatethegoodness of a subtree of T*.Itworks as follows: foreach intemal node t, thenumberof classification enors

made ur the pruning set, when the subtree T, rooted in r is kept, is compared with the number of misclassifications made

when t is turned into a leaf and associated wittr the best class. Sometimes, it may happen that ttre ree obtained by pruning

t has a better performance than the original tree, that is, the number of errors on the pruning set made by the pruned

decision ree is lower than the number of errors made by the origind ree. In this latter case the harmful branch is removed.

The branch pruning operation is repeated until furtherpruning increases the classification erorrate on the pruning ser
It is worthwhile to recall that Quinlan limits the pruning condition given above by imposing a further constraint a branch

T, canbeprunedonly if thatbranch contains no subtree thatresults in alower errorrate than T,itsr,lf (bouom-np method).

This contrasts with the description of ttre same method reported in (Mingers, 1989). In fact, Mingen maintains that"

among all ttre nodes, the one having the largest difference between the number of errors when the subtree is kept and the

number of errors when the node is pruned must be chosen. This variant causes the loss of an important property of
Quinlan's original method, namely the generation of the smallest subtree with the lowest error rate wittr respect to the

pnrning set. As we will see larer, such a property can be effectively exploited in the experimental comparison in order

!o ftid the optimally pruned tree with respect to the test set.

22 Pessimistic enor pruning (PEP)

This pnrning metlod, proposed by Quinlan (1987) as the previous one, does not need an independent pruning set.

However, since the misclassification rate estimate on the training set is optimistically biased, Quinlan innoduces the

continuity correction for the binomial disribution that, in his opinion, should provide a more realistic estimate of the

classificationerrorrate.Lete(r) bethenumberoftrainingexamplesenoneouslyclassifiedatthenodere T.Then, according

to the continuity correction, the number of errors made in t is given by:

n'(t)=e(t)+112
while for the subtree { it is:

n'(T)= E(e(s)+l12)
where the summation is intended on the set of leaves of l.

It strould be observed that, if the development of a tree goes on until all its leaves do not make elrors on the raining
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set, then e(s) = g for each leaf s. As a consequence, in that case n'('t) only represents a measure of the tree complexity
tlat associates each leaf with a cost equal to 1/2.

As expected, the subtree T, makes less errors on the uaining set than the node r when r is transformed into a leaf, that
is, e(t) > E e(s). Nevertheless, it may happen that n'(t) < n'(7,) due to the continuity correction, since the complexity of
T,isalsotaken into account. In thatcase, thenode roughttobe pruned, but unfortunately, theestimate n'(T ) of.thenumber
of misclassifications made by the subtree remains optimistic. This is the reason for which Quinlan weakens the condition
that rules the pruning of a subtree T, and requires that:

n'(t) < n'(T ) + SE(n'(T,))

where

SEfu'(Q) = [n'(7,) .(N(t) - n'17)) tN(t)|t,2

is the sandard error for the subtree T, under the assumption that errors on the training set are binomially distributed. The
algorithm evaluates each node starting from the root of the ree and, if a subtree is chosen for pruning, its internal nodes
arc not examined. 'I\is top-down approach grves the pruning technique a high run speed.

Thismethodraises someperplexities. First, theintroduction of thecontinuityconection has no theoreticaljustification.
In statistics, it is used to approximate a binomial distribution with a normal one, but it has never been applied to correct
optimistic estimates of errorrates.In fact, the continuity correction is useful only to inroduce *re treecomplexity factor.
Nonetheless, in the method, this factor is improperly compared to an error rate. It follows that results are not always the
expectedones. Forinstance,let usconsidera sampleof 1024 rainingexamples,describedby 20binary feanresrandomly
generated,that are assigned to two distinctclasses with equal probability.In this siuration, itwouldbepossibleto induce
a binary tree T* with 990 leaves that correctly classifies all examples but does not have any predictive capability due
totherandomgeneration. Agoodprwingmethodshouldreducethetreejusttooneleaf.Nevertheless,thePEPmethod
will never prune the root to since n'(h) = 512.5, n'(T* ) = 495 and SE(n'(T* ))=16.

Finally, the op-down approach m ree pruning is not jusffied when there is no guarantee that all subrees of a pruned
branch \ should be pruned. Indeed, it is not difficult to find examples in which ttris method prunes subnees which
contain other subtrees ttrat should not be pruned according to the same criterion @sposito et al., 1993).

23 Mhimum enor pruning (MEP)

Nibler and Bratko (1986) proposed a bottom-up approach seeking for a single tree that minimizes the expected error
rate on an independent data set. In the following, we will refer to an improved version of the minimum error pruning
reported in (Cestnik & Bratko, 1991).

For a t-class problem, the expected probability that an observation reaching a node r belongs to the i-th class is the
following:

p{t) = [n,(t) + p^.ml I [N(t) + m]
where:

. nit) is the number of training examples in t classified ino the i-th class,

. p isthe a prioi probability of the i-th class,

. m is a parameter of the estimate method,

. N(t) is the number of training examples reaching r.

Theparametermdetermines the contributionof theaprioriprobability of thei-th class tottreestimateof theconditional
probability of the i-th class in a node t computed as tle relative frequency nt(t) / N(t). For the sake of simplicity, n is
assumed to be equal for all the classes. Cestnik and Bratko namep ( | as m-probabiliry estimate.When a new observation
reaching r is classified, the expected error rate is given by:

EER(I)=*:{l-p,(t)}=ru,n{1-[n,(t)+p*.m]l[N(t)+m]]=min{tN(l-n{l+(I-p-).mll[N(t)+m]]

In the minimum error pruning method, the expected error rate for each intemal node t is computed. It is called sraac
enor,STE(I).Then,tlteexpected errorrate when ris notprunel,callddynamic(orbacktd-np)error,DYE(I), iscomputed.
It is given by a weighted sum of the expected error rates of the chil&en, where the weights are the probabilities that an

observation will reach the corresponding child. In the following, the weighs4 will be estimated by the proportion of
training e:ramples reaching tie i-th child, as originally proposed by Niblett and Bratko.
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Ilavingobtained several subtrees fordistinctvaluesof rn,wearefacedby theproblem of choosingthebestone. Cestnik
and Bratko suggest the intervention of a domain expert who can choose the right value of m according to the level of noise
in the data or even study the selection of produced trees. Since we do not dispose of an expert" in our experiments we
adopted a different criterion. The classification rccuracy of the trees has been evaluated on an independent pruning set
and the smallest tree with the lowest error rate on the pruning set has been selected.

The newer version of the minimum enu pruning seems to overcome two problems that affect the original proposal

by Nibleu and Bratko: optimistic bias (Watkins, 1987) and dependence of the expected error rate on the number of
classes (Mingers, 1989).

As o the first problem, let us consider a set of high-dimensional binary feanre vectors. Each feature vector is an

example of one of two classes: the class is assigned randomly to each example. If we induce a decision tree from ttris
set, then tllc true error rate of the ree would be 507o since the tree has no predictive power. Let us suprpose that each

leaf of the ree covers a single training example (this hypothesis seems quite realistic since no binary auribute has a
predictive power for the problem, thus, an exact classification of an example can only be obtained by looking at its
feanre vector as a whole). In the original version of the minimum error pruning the satic error of the root equals ttre
true enor rate, while the dynamic error of ttre root itself is at most 33.33Vo. Therefue, the tree can never be pruned

in the root, even if this is desirable. In the improved version of the method we have:

STE(root) = fi024-512+(1-112).mll(1024+m) = 112 DYE(root) = [0+(1-ll2).m]l(1+m) = nl[2.(m+1)l
therefore the root will be pruned when we recognize tlreit the degree of noise is very high and we set m to infrnity.

As o the second problem, we observe that, in the improved version, the expected eror rate is not affected by the
number of classes but by a free parameter, rz, whose choice is committed to an expert or based on an independent daa
seL

2.4 Critical value prunins GVP)

Thisbotom-up method, proposedby Mingers (1987),operates as follows. Athrestpld, callelcriticalvalze, forthenode
selection measure is initially set. Then, an internal node of the ree is pruned if the value taken by the selection measure

in that node does not exceed the critical value. Nevertheless, it may happen that the pruning condition is met by a node
r but not by all is children. In that case, the branch T, is kept because it contains relevant nodes. Obviously, the higher
the critical value the more drastic the pruning.

The method proposed by Mingers consists of two main steps:

l) prune T_- for increasing critical values!E

2) choose the best tree among the sequence of the pruned rees by measuring both the significance of the tree as

a whole andis predictive abiliry.

As to the first phase, if the evaluation mea$re used for developing the tree is the gain rarra (Quinlan, 1993), and the
ree is grown until all examples in each node belong to the same class, then all nodes that are parent of leaves will have

a gain ratio equal to 1 .0 while the others will have a lower value. This means that, with the gain ratio as selection measure,

we can choose only between two trees: T* and the root tree. Thus, the method does not seem sufficiently general o be

applied to rees built by using any criterion for auribute selection. Nonetheless, this is in contrast with the experimental
results provided by Mingers (1989, Table l).

For ttre second phase, the author proposes to measure the significance of the tree by means of the G statistics. It is
cunputed for a large contingency table having a row for each leaf in the tree and a column for each class. It evaluates
the degree of interdependence between the leaves of a tree and the classes of the problem, so that it is high for fully
expandedteesthatcorrectly classify thewhole setofexamples. Mingerspresents alsoateston thesignificance measure,

but unforonately, such a test is only able o establish whether the predictive ability of a tree is meaningful, but it cannot

beusedo chooseamong trees thatpassthetest.Indeed, itisnotenough tocompare theG values taken by twocontingency
tables, since such values depend on the degrees of freedom of the G statistics, so that they are usually higher in unpruned
trees,because of thehighernumberofrows in the contingency able (obviously thenumberof columns does notchange).

For what concems the evaluation of the predictive accuracy, two altemative solutions are proposed:

. to estimat€ the probabiliry of a correct prediction p and then to estimate the probability that the number of conect
predictions equals the number of observations correctly classified by the pruned ree,
. !o compute the error rate by using an independent test set.
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The formulation provided by Mingers for the first solution is rather weak. Indeed, he estimate s the probability that class

C, is correctly predicted as follows:

P(xeC, a x is classifud as an instance of C1 = P(xeC,).P( x is classified as an instance of C,l xeC,) = nln ' n/n = nlfi
While approximating P(xe C,) by means of the relative frequency of the examples of class C, is plausible, using such

a frequency to approximatelhe a postenori probability is untenable.

Finally, we observe that Mingers also suggested to estimate the error rate on an independent pruning set and to use

this measure to choose the best subtree in the resulting sequence of trees. Nevertheless, the sequence detected in the

first step of this method might not contain the best tree with respect !o the pruning seL therefore we have no gwrantee

of finding the smallest and most accurate subtree as for the reduced error pruning.

25 Coshcomplcxity Pruning (CCP)

This method, proposed by Breiman et al. (198a) and called cost-complexity pruning, is characterized by two phases:

1) selectionof afamilyof subtreesof T*, iT*=To,T,,Tr,...,Tr),accordingtosomeheuristics,
2) ctnice of the best tree T according to an estimate of the true eror rates of the trees in the family.

In the first phass, each T.*, is obtained from ! by pruning those branches that show tie lowest increase in apparent

eror rate per pnrned leaf. In other words, grven !, the following ratio is computed for each internal node r:

s=(r(t)_r(T))/(L,_ t)
where r(t) and r(T) are apparent error rates of the node t and the branch \ respectively, while \ is the number of leaves

in the branch T,. Then, T is pruned in all nodes with the lowest value of o, and a new @ l*r of the family is obtained.

The pocess stops when the root nee is obtained. It is possible to prove that each ree ! is characterized by a distinct
valueq,suchtlrate<o,.,.Therefore,{To,T,,Tr,..,Tr}isactuallyapararnetricfamilyofrees,denotedasT*(o).

The second phase chooses the best tree in T*(o) wittr respect o predictive accufircy. Breiman et al. propose two
distinct ways of estimating ttre true error rate of each ree in the family, one based on the use of an independent pruning

set as for the reduced+rror pruning, while the other based on cross-validation sets. In the first case, however, the cost-

complexity pruning method is theoretically under a disadvantage with respect to the reduced-enor pruning because

it can only choose a tree in the set [To, T,, T2, ..., T.) instead of the set of all possible subEees of T* , with the

consequence that, if the most accurat€ subtree with respect to the pruning set is not in [To, T,, Tr, ..., Tr], it, cannot

be selected. On the other hand, when cross-validation sets iue used, the tree selection process is based on a strong

assumption whose amount of bias is unpredictable (Malerba et al., 1994).

There is another aspect of the pruning method adopted in CART that deserves special atrention. Breiman et al.

decide to choose the smallest tree in the set [To, T, T2, ..., Tr] such ttrat is eror rate is not greater than one standard-

enor with respect to the lowest error observed for trees T . As we will see later, the effect of such a nrle of thumb, called

lSE, is a strong tendency to overprune.

2.6 Enor-Based Pruning (EBP)

This pnuring method has been implemented in C4.5 (Quinlan, 193) and presents a novelty with respect to the others

seen so far, since it allows the replacement of a subtree by one of its branches. In this way it is possible !o overcome

a limitof the botrom-up strategy that does not prune ancestors of nodes which appear o be good. Indeed, if t is a node

that should be pruned according to some criterion, while r' is a child of I that should not be pruned according to the

same criterion, botrom-up pruning methods generally avoid pruning t since T, contains sub-branches with significant

classification performance. On the contrary, the error-based pruning acts by grafting I onto the place of ,, so saving

ttrc good sub-branch and deleting the useless node t.

Unfortunately, tre main weakness of such a method is the criterion used to predict the error rate of nodes and branches.

Indeeq if a node I makes eO enors on n(t) training cases that reach it, Quinlan estimates the upper confidence limit of
the expected error probability of the node by means of e(t) and n(t) themselves. The underlying assumption is that the

same sample used o build the classifier can be considered as a random sample on which to test the tree. As the same author

admits, such an assumption is untenable, but, strangely enough, Quinlan himself claims tlnt C4.5 employs a far more

pessimistic estimate of errors than the pessimistic error pruning. As we will show in the next section, ftrom our

experimenal results we draw the very opposite conclusion.
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3. Experimental results

Theneedof making someexperimentson pruning methods arises from the factthat the experimental proceduredesigrred
by Mingers (1989) forhis empirical study is notvery fair (see @sposito etal., 1993) foradetaileddiscussion). Moreover,
since we are conscious ttrat different pruning method3 represent different biases, we will avoid to draw conclusions on
which is ttre "best" method, b,ut, following the main stream of the analytical comparison between methods pursued in
the paper, we will try !o understand which are the biases that affect them.

In our experimentation, each data set is still randomly divided into tlree subsets, according o the following criterion:
growhg xt (497o), pruning set (2l%o) nd test set (307o). The union of the growing and pruning set is called taining
set, and its size is just 70Vo of the whole data set. The growing set contains the 70Vo of cases of the training set, while
the pruning set the remaining 307o. Bottr the growing set and the raining set are used o learn decision trees, that, for
simplicity of naming, we will call grown tree and trainedtee, respectively. The former is used by those metlrods that
need an independent pruning set in order to prune a decision tree, namely REP,IVIEP, CVP, and the ECP based on
an independent test set and adopting the 1SE rule (lSE) or not (0SE). The lauer is used by those methods that exploit
thetraining setonly, suchasPEP,EBP,andtheCCPbasedon cross-validation setsandadoptingthe lSErule (CV-ISE)
or not (CV4SE). The evaluation of the error rane is always made on the test set.

For each data set considered, 25 experiments are made by randomly partitioning the data set into tlree subses.
Moreover, in each experiment two statistics are recorded for pruned, grown and trained trees: the number of leaves (aze)
of the resulunt uee and the eror rate (e.r.) of the tree on the test sel A rwo-tailed paired t-test can be used o evaluate
the significance ofthe errorrate difference between each pruned tree and the conesponding trained ree.

As to the MEP, the following n values have been chosen: 0.5, 1, 2,3, 4,8, 12, 16,32, &, 128, 512 and, 1024.
Experimens on the CVP were made by seuing a maximum critical value equal to 1.0 and a step equal to 0.01. The only
selection measure considered is the gain ratio.

In Table 1, the main characteristics of the databases considered in our experiments are reported. They are available
at the UCI lvlachine Learning Reposiory (Murphy & Aha, 1994) and some of them have even been used !o compare
differentpruningmethods (Quinlan, 1987; Mingers, 1989). ThedatabaseHeart-Disease is actually thejoin of fourdata
sets wittr the same number of attributes but collected in four distinct places (Hungary, Switzerland, Cleveland and long
Beach). Ofthe 76 original attributes, only 14 have been considered, since they are the only ones to be considered useful
fortheclassification.Moreover,exampleshavebeenassignedotwodistinctclasses: nopresence(value0)andpresence
of heartdiseases (values 1,2,3A).

Table 1. Main characteristics of the databases used for the experimentation

150 3 4 4 0 no 6.67 low yes

214 7 9 9 0 no 64.49 low no

1000 l0 7 0 0 no 90 tw yes

3n2 4 29 I yes 7.7 no no

105 2 51 0 s7 no 50 no yes

155 2 19 6 0 yes 20.65 no no

303 ) 14 5 5 yes 45.21 yeslow

l4 52%. ) 5 yes 36.05 low no

IB 2 14 5 5 yes 6.5 low no

26 ) t4 5 5 yes 25.5 low no

nb 2 14 5 5 yes 4.67 low yes
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Table 2. Enor rate variations for different pruning
methods (significance level 0.10)

'table 3. Tree size variations for different pruning
methods (significance level: 0.10)

lnordertostudytheeffectofpruningonpredictiveaccuracyofdecisionnees,wecomparethe enorrateofeachpruned
tree with that of the corresponding (unpruned) trained tree. Tables 2 reports the result of a 1v,'e-tailsd paired t-test with
a 0.1 confidence level. A (+) means that the application of the pruning method acnrally improves, on average, the
predictive accurury of the decision tree, while a (-) indicates a significant decrease in predictive accuracy. When the
effect of pruning is neither good nor ba( a 0 is reported. It is easy to see that pruning does not generally decrease predictive
accuacy. The only exception is represented by the application of the I SE rule with both an independent pruning set and
cross-validation sets. Moreover, there is no indication that methods exploiting an independent pruning set perform
definitely better than the others, as claimed by Mingers (1989).

Another interesting characrcristic of pruning methods is their tendency to overprune decision trees. In order to study
such a problem, we produced two decision trees for each experiment , c,alld opimally pruned grown-tree (OPGT) and
optinully pruned trained-tree (OPTT), respectively. The former is a grown tree that has been prund by using the
reduced error pruning on the test set. Thus, it is the best pruned tree we could produce from the grown tree because

of the property of the reduced error pruning we mentioned in Section 2. I . Similarly, the OPTT is the best tree we could
obain by pruning some branches of the trained nee. Obviously, OPGTs are suitable to compare trees obtained with
pruning methods tlrort do use an independent pruning set, while OPTTs are more appropriate to compare resuls of
pruning methods tltxdo notnelapntning set. Therefore, by comparing the sizeof reesproduced by apruning method
with the size of the corresponding optimal Eee, we can have an indication of the tendency of each method. In Table

3, a summary of the two-tailed paired t-tests at a significance level 0.1 is shown. Here, (u) stands for significant
underpruning, (o) for significant overpnrning, while C) stands for no significant difference. At a glance, we can

immediately conclude that MEP, CVP and EBP tend to underprune, while REP, lSE and CV-ISE tend to overprune.
We would be tempted to conclude that the predictive accuracy is improved whenever a pruning method does not produce

uees with significant difference in size from the coneqponding optimally pruned ree. However, this is not true for two
reasons. First of all, it is not always true that an optimally pruned tree is more accurate than the corresponding grown/
trainedtree.Inotherwords, pruning mayhelp o simplify trees withoutimprovingitspredictive accuracy. Secondly, tree

size is a global feahre that can provide us witl an idea of what is happening, but it is not detailed enough to guaftrntee

that only over or underpruning occurred. For instance, if a method overprunes a branch but underprunes another one,
then it is actually increasing the error rate with respect to the optimal tree, but not necessarily ilre size. This problem can

be observed with the database Glass and the method CV-0SE. Indeed, in this case there is a decrease in accuracy (see

Table 2) but the size of pruned trees is close to the optimal value (see Table 3).

By ideally superimposing Tables 2 and3 it is also possible to draw some otler interesting conclusion. For instance,
in some databases, such as Hungary and Heart, overpruning produces better trees than underpruning. This laaer
surprising result confirms Holte's observation that even simple rules perform well on most commonly used data sets in
tte machine learning community (1993). In any case, we have also indications that overpruning may have undesirable
effecs when too extremist, as in the case of the application of the rule lSE.
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4. Conclusions

In this paper, a comparative study of six well-known post-pruning mettrods has been presented. Each method is briefly
dqscribed and its weaknesses and strengths are pointed oul Moreover, some results concerning a redesigned
experimentationonpruningmethodshavebeenreported. Bycomparingerorratesofprunedrees with thecorresponding
grodrained trees we have found no clue supporting Mingers' claim that pruning methods exploiting an independent
pruningsetperform better than the ottrers. On the contrary, ourresults confirm Holte's observation thateven simplerules
perform well on most commonly used data sets in the machine learning community. Indeed, in several cases we noticed
that a modemte overpruning is better than not pruning at all. Future work should consider a more extensive
experimentation in which more daabases as well as several selection measures are considered.

Pruning me&ods have been implemented as an extension of C4.5, a system distributed by Morgan Kaufmann. Only
additional source files developed at the Department of Informatics of the University of Bari are available upon request

by sending an e-mail at malerbad@vm.csata.it.
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