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l. Introduction

Bayesian belief networks (causal networks) have been extensively studied in the past ten years. It
has been shown that they provide a sound formalism for probabilistic reasoning, especially if
uncertainry is to be represented. A probabiliry space can be modelled as a Bayesian belief
network of propositional variables (nodes) which may be pairwise connected by directed arcs.

The interpretation is that if an arc exists from node A to node B, tlre probability of node B
assuming a given state b, depends on the acual state of node A (A is a direct cause of B). The

absence of an arc between nvo nodes implies that there is no such direct dependence. Thus, in a
Bayesian belief networh probabilistic dependencies are modelled as arcs between nodes,

independencies are implied by the absence of arcs. If for a given probability space, for all states

of the root nodes the prior probabilities are known, and in addition, for all non-root nodes the
conditionai probabilities, given the parent states, the joint probability distribution is completely
known. Textbooks on Bayesian belief networks are [1] and [2].

A Bayesian belief network for which no variables are instantiated is in is prior probability state.

Since the joint probability distribution is completely defined by the network" the probabilities of
all states of all variables may be calculated. The same is tnre in siuations where one or more
variables are instantiated to given values. Such computations are known as probability
propagation. The complexiry of probability propagation depends on &e structure of the network:
If the graph representing the network is a tree, probability propagation is fairly straighforward.
If the graph is singly connected, meaning that there is at most e11s sfuain between any pair of
variables (a chain is a connection over undirected arcs), the complexity increases only
moderately. If the graph is not singiy connected, however, the complexity increases dramatically.
It has been shown that in general in such nerworks probability propagation is M-hard [3].

A special class of problems in Bayesian belief networks is abductive reasoning. Abductive
reasoning is inferencing from effects to their best explanations. In the context of Bayesian belief
networks this corresponds to finding the maximum a posteriori probability (MAP) instantiation of
all the nodes, given the instantiated nodes. Whereas probability propagation gives the conditional
probabilities of all individual variables given that some (or none) variables are instantiated, in
general it does not give aR answer to the question of the state of the network with the highest
overall probabiliry. It has been shown that abductive reasoning in non-singly connected Bayesian
belief networks is also NP-hard [a].

Since probability propagation and abductive reasoning in non-singly connected Bayesian belief
networks is NP-hard, much research has gone into the possibilities of obtaining approximate
solutions. The purpose of this paper is to suggest such an approximate solution to abductive
reasoning, using a genetic algorithm. In section 2, the mapping of the problem of abductive
inference onto a genetic algorithm will be described. Section 3 describes a computational
exercise designed to verifu whether genetic algorithms can be used for the purpose of abductive
reasoning and to establish the efficiency of such an inference scheme. In section 4, results are
presented; Finally, the results obtained are discussed in section 5.
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2. Abductive reasoning as a genetic algorithm problem.

Genetic algorithms [6] are well known for their ability to efficiently explore large search spaces.

In order to tailor a problem to a genetic algorithm strucue, three steps must be taken:

o The mapping of candidate solutions onto linear chromosomal strucftres;
o The definition of genetic operators;
o The definition of a fitness function describing the quality of candidate solutions

2.1 Mapping onto chromosomal strucnlres.
Consider the Bayesian belief network of Figure i:

0.1 02 0.4 03 0.3 02

05 0.3

Figure I: Belief network for tlv classical diagnostic probkm

This netrnork depicts the classical diagnostic problem. In the exarnple, the nodes d, through d
may be thought of as representing six different diseases, each possibly causing a subset of the
flve symptoms s, through sr. The stnxcnrre of the Eetwork, i.e. the presence or absence of arcs

between pairs of nodes describes the presence or absence of causal relationships. This gualitative,
sernantic part of the network must be supplemented by quantitative, probabilistic information: the
prior probabilities of the states of the root nodes (dr,...,dJ and the conditional probabilities of the
non-root nodes (s,,...,s5) given the states of their parents. It is often diffrcult to supply estimates
of these latter conditional probabilities. However, they may be computed from the probabilities P
((+srl+() of the causation events (-+s, for all relevant combinations of i and j. The causation
event q+sj as introduced by Peng and Reggra [5] is the event that ( is the cause of s.;, given
that both zlre present. See also Neapolitan [2]. It must be noted, however, that in more
complicated networks it may no longer be possible to obtain the rcquired conditional
probabilities from the probabilities of the causation events.

In the example above, each of the nodes may be in exactly one of two states: state = 0 (absent)

or state = I (present). Although this is a restriction in this example, the genetic algorithmic
method proposed here is not restricted to such networl$. lncreasing the number of possible states

of one or more nodes merely increases the complexity of the search space.

It is now easy to map the state of the network onto a chromosomal structure. Assigning each of
the nodes to a gene with possible values 0 or 1, the state of the network can be expressed by a
string of 11 bits:

0.20.10.7

0.60.9

drEdrd4dsd6srqqs4ss

0r100010000

The string above expresses the state of the network in which diseases 4 and d, are present in
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combination and sr is the only symptom present.

2.2 Definition of genetic operators
In genetic algorithms, recombination is the process by which individuals from one generation (as

expressed by their chromosomes) are combined to produce offspring for the next generation. In
addition to recombination, mutation also plays a role in the creation of a new generation. The

genetic operators contain the rules governing the processes of recombination and mutation.

o recombination:
The most widely used recombination operator is the t'ro point cross-over oPerator: on the

chromosomes of two parcnt individulas, two cut points are randornly selected (in both

parents at the same location) and the chromosomal material between the cut-points is

swapped, producing rwo offspring individuals.

01010011101
tt

10111010101

01111011101

10010010101

two parents two offspring individuals

mutation:
Whenever offspring individuals are created, their chromosomes may be altered by

muration. Mutation is the process by which a gene is altered to another of its possible

states. In this example, mutation changes a gene to a 0 if it is a 1, or vice versa. Mutations

are usually invoked with a small probability.

2.3 Definition of a fitness function
ln genetic algorithms a fitness function must be specified , which assigns a fihess value to each

individual in the current populuion. The fitness expresses the quality of the individual according

to some appropriate criterion. The fitness values are used to favour high-fitness individuals over

low-fitness individuals to take part in the process of reproduction.

In the current application, an individual represents a possible state of the entire network. For the

purpose of abductive reasoning, the most logical choice for a fitness function is the overall

probabiliry associated with the state of the network as represented by the individual. This overall

probabiliry is straighdorwardly calculated as a product of n multipliers, one for each of the n
nodes in the network. The multiplier is the prior probability for a root node and the applicable

conditional probability for a non-root node.

In Fig. 1, the prior probabilities of the nodes dr,...d6 being in state present are given in the top

row. The numbers associated with the arcs d,s, represent the probabilities P (d,+s,l+d,) of the

causation events (d,+s). Absence of an arc from d, to s, implies that the presence or absence of
d, has no influence on the state of node sr. As mentioned above, all required conditional
probabilities of the symptom nodes may be derived from the causation event probabilities.

3. The abductive reasoning exercise

The goals of abductive reasoning in Bayesian belief networks may be one of the following:

Given a state of instantiation of the network, find the state(s) with the highest overall a
posteriori probability.
Given a state of instantiation of the network, find the most probable explanation(s).

These goals differ in an important way. An explanation is usually defined as a certain

247

o

o



o

o
o

configuration of root node states, irrespective of the states of the non-root nodes, except the
instantiated ones. The probability of an explanation is calculated as the sum of the probabilities
of all states with the given configuration of root node states.

The fitness function as defined above allows to rank all states in a population according to
overall probability. If the Bayesian belief network is in its prior probability state, the
corresponding overall probabilities can be computed. If the network is in a state with one or
more nodes instantiated, the overall probabilities can be calculated only up to a proportionaliry
factor, thus still allowing to rank the solutions. Finding a ranking of the most probable
explanations is more problematic but it is also attempted in the exercise described below.

The execution of a genetic algorithm consists of the following steps:

generation of an initial population;
transition from one generation to the next;
iteration control.

3.1 Generation of the initial population
An initid population was generated as follows: For each individual to be generated, the genes

corresponding to instantiated nodes in the network were given their corresponding values. Then,
for each gene corresponding to a non-instantiated root node, a value of 0 or I was randomly
generated with equal probability. Finally, for each gene corresponding to a non-instantiated, non-
root node, a value of 0 or I was generated with probability equal to the corresponding
conditional probabilities. This procedure ensures that the exploration of the search space starts in
promising regions. In the experiments, population sizes of 50 and 25 were used.

3.2 Transition from one generation to the next
All individuals in each generation are evaluated on the basis of the fitress function as defined in
section 2. ^Ihe best n different individuals are prcserved for the next generation, where n is a
parameter of the procedure, in all experiments described here set to n = 5. If the total population
size is fixed at 50 for all generations, 45 new individuals are created by the process of cross-over
and mutation as explained in Section 2. Genes corresponding to instantiated nodes must prcserve
their assigned values throughout the generations. The process of cross-over does not alter the
values of such genes, since they have the same value in both parcnts selected for reproduction.
However, genes corresponding to instantiated nodes are excluded from the process of mutation.
Parent selection for cross-over is done as follows: based on the value of the fitness function, all
individuals are assigned a rank order. The rank orders are used in a roulette wheel selection
procedure [6].

While the process described above yields, in each generation, the five best different solutions,
establishing the best explanations is more complicated. Since an explanation is a set of states of
the network with the same root node configuration, the merit of each explanation in each
generation was approximated by adding the fitnesses of all different members encountered in &at
generation. Since with increasing generation number, the fittest members are expected to
dominate, this procedure is expected to give a good estimate of the probabilities of the best
explanations.

3.3 Iteration control
In order to control the process of reproduction, the sum of all fitnesses of different individuals in
each generation was calculated. The process of reproduction was terminated when from one
generation to the next, the total fitness did not change more than L Vo. T\e best five solutions
and the best five explanations werc then recorded as the frnal result.
For each experiment described below, the genetic algorithm was executed 50 times.
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The experiment was performed in the following three situations

the network in is prior probability state with a population size of 50;

the network in a state with node s, instantiated to "present" with a population size of 50;
the network in a state with nodes s, and s, instantiated to "present" with population size of
25.

The total search space has a cardinality of 2048, 1024, and 512, respectively in these three

situations.

4. Resuls

At the end of each run in each experiment, the best five solutions and the best five explanations

were recorded. In the tables below, the best five solutions and the best five explanations

encountered in experiment 1 after 50 complete nrns are recorded. For each of these, it is

indicated in which fraction of the total number of 50 runs it appeared as number 1,2, ..., 5.

Moreover, having identified the overall best five solutions and explanations, for each run it was

counted how many of these appeared in the group of five best for that run. Tables listing the

fractions of runs with 21, >2,..., =5 overall best in the group of five best are also given.
Corresponding statistics were collected for experiments 2 and 3.

5. Discussion and conclusions

Given a state of instantiation of a Bayesian network, finding the set of n best solutions, i.e. the n
solutions with the highest overall probability, for n > 2 is not a trivial matter. The results
presented in the previous section indicate that the method using a genetic algorithm in most

cases yields highly probable solutions. A comparison of the efficiency of the method with
random sampling will be given below.

Solutions:
In experiment 1, with no nodes instantiate4 the search space has a cardinality of 2tt = 2M8. The
average number of generations requircd up to convergence is 6.54. In 6.54 generations, a number
of 50 + 5.54 x 45 = 300 solutions (not necessarily different ones) has been explored. ln 90?o of
the 50 runs, the best true solution is found. One may calculate the probabiliry of frnding the best,

the nvo best, etc. solutions if one were to randomly sample the search space, taking 300 samples.

Comparing these probabilities with the probabilities as found in the experiment, one may then

calculate how many of such random sampling experiments (each time sampling 300 solutions)
are required to reach the probabilities. as found using the genetic algorithm. This number will be
called the efficiency of the method. The efEciencies which depend on the number of best

solutions to be found, for all three experiments are listed in the table below.

goal Exp.1 Exp.Z Exp.3

frnd the best solution
fnd 2 best solutions
f,rnd 3 best solutions
find 4 best solutions
find 5 best solutions

L7

60
255
982

3324

7

19

82
r87
450

6
7

36
172
334

It appears that with increasing complexity of the search space, the efficiency of the genetic
algorithm as compared to random sampling increases. Also, the efficiency increases with
increasing complexiry of the goal.
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Details of the results for Exoeriment 1:

Nodes instantiated:
Cardinality search space:

Population size:
Number of runs:

0.169
0.M7
0.M2
0.034
0.u29

0.169
0.113
0.069
0.067
0.04

none

#t

0.90
0.@
0.@
0.00
0.02

#1

0.90
0.04
0.00
0.00
0.00

fraction

0.62
0.24
0.08
0.02

0.00
0.s6
0.28
0.10
0.02

0.40
0.t2
0.32

2048
50
50

Average number of generations:

Solutions found:

best solution prob.

6.54 (range 4-10)

#3#2

00000000000
00010000100
00100001100
00001000010
00000100000

best
explanation

000000
001000
000100
000010
001 100

#4 #5

i,,
0.14

0.00
0.10
0.02
0.20
0.30

0.10

Fraction of runs with )1, >J, >3, )-4, =5 of the overall best solutions amongst the five best found
in that run.

>1 >) x >_4

1.00 0.96 0.84 0.36 0.10

Explanations found:

prob fraction

#2 #3 #4 #5

0.00
0.16
0.36
o.t2
0.12

0.00
0.@
0.02
0.20
0.18

Fraction of runs with 21, >),>3,24, =J of the overall best explanations amongst the five best
found in that run.

>1 >2 >3 >4

0.961.00 1.00
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Exolanations:
In a medical diagnostic problem, one may be primarily interested in the best explanation,
regardless of the states of the unobserved symptoms. However, when presented with a set of best

solutions, one may extract information on the symptoms most critical for discrimination and try
to establish the presence/absence of these. The algorithm may then be rerun in a different state of
instantiation.
In Experiment 1 and 2, for at least 967o of the runs, the set of 5 best explanations found contains

at least 3 of the 5 overall best. This result no longer holds for Experiment 3. This is probably a

result of the reduced populatoin size, even though the search space is correspondingly less

complex.

One may again compare the efficiency of finding the n best explanations with random sampling.

It should be noted that, although the total number of possible explanations is much smaller than

the number of possible solutions, the search space is not corespondingly less complex: in order
to establish the merit of an explanation, the space of all possible solutions has to be searched.

EfFrciencies calculated from the probabilities of finding explanations are comparable to those

found for solutions.

In this contribution, it has been shown that genetic algorithms can be used for the purpose of
abductive reasoning in Bayesian belief nerworks. In the example given, good quality solutions

are frequently found. The effrciency of the algorithm compares favourably with random

sampling, especially in the higher complexity regions. This justifies the exPectation that the

results will scale to larger networks, although this remains to be shown.

It is a well-known fact that the performance of genetic algorithms is strongly dependent on the

parameters (population size, selection strategy, convergence criterion). No attempt was made to

carefully tune these. Also, the variant of a static genetic algorithm, in which the population is

updated after each single recombination may prove to perform bener than the generation variant

used here. These aspects of scaling and nrning are the subject of fuuue research.

It should also be mentioned that although the method has been illustrated for the case of the

classical diagnostic problem, it can equally well be applied to more complex belief networks.

Also, the methodology used here can be easily modified to be applicable to influence diagrams.

In that case, the utiliry function is a nanrral choice to play the role of fitness function.
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