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Abstract (ii) All components are relevant.

We consider the problem of identifying the state
of an n component coherent system, where each
component can be working or Joiled. It is costly
to determine the states of the components. The
goal is to find a decision tree which specifies the
order of the components to be tested with min-
imum expected cost. The problem is known to
be NP-hard. We present an extremely promis-
ing heuristic method for creating effective deci-
sion trees, and computatioual results show that
the method obtains optimal solutions for 95% of
the cases tested.

1 Introduction

Following the definition of [1], a coherent sys-
tem is composed of a set of n components E :
€1,€2,... ,en each of which can be in one of two
states - working or failed. Component i has a
state ualue r, such that

1 if component i is functioning,
0 if component i is failed.

We call a 0,1-vector X : (rr,r2t-.. ,an) a state
uectorif ri is the state value of component ,i, fori :
1,.-. ,fl. The structure tunction @(X) is defined as

^t v\ _ [ 1 if the system i is functioning,vt^/-\ 0 if thesystemiisfailed.

The ith component is irreleuont to the structure
6 lf. 6(ar,... ,oi-r,l,oi+r,--.,an) : 6(sr,---,
ri-r,01 ri+1t... ,fin) for any 0,l-vector (rr,...,
ri-1, ti+t,.. . ,frn). Otherwise, the ith component
is releuont to the structure {. (.8, r/) is called a co-
herent systemlf

(i) If X(Y(i.e., UlU;forf :1,..',n),then
0r() :0v).

When /(X) is defined by a linear inequality
wrrt * w2o2 * " - * tunfin > k with positive coef-
ficients, i.e.,

^,or, _ I 7 If wtrr*w2a2+...+ wnan/k,Y\^/-I0 otherwise

then the system is called a linear threshold, system.
As special cases, when rtL = ... : ,un: 1, the
system is called a k-out-of-n system. When tu1 =
. -. 3 'tDn = L and k : l, it is called a parallel
systern. When u,r1 = -.. = un : I and k = n, it is
called a series system.

For each component ei of. a coherent system
(8,0), denote by p; and Q; = L - p; the work-
ing and failed probabilities, respectively. In other
word, for i, = L,2,. - . 

, n, let

Pr{xi - 1}: p;; Pr{aa = 0} = gr.

We assume that the random variables fr1,...,nn
are independent. We also assume that there is a
cost q to inspect the state of the ith component.

An inspection strategy can be described as a bi-
nary d,ecision tree which is a labeled rooted binary
tree. The internal nodes are labeled by the com-
ponents to be tested, and the leaves of the tree are
Iabeled by the states of the system. Each internal
node u with label f has two sons which are labeled
by the components to be tested if the ith compo-
nent is found to be working or failing. The two
sons axe caJled the l-son and }-son of u respec-
tively and tr is called the father of its sons. Thus
the first component to be tested is the one given
by the root label. If this component is found to
be functioning (failed) and the state ofthe system
is still unknown, then the next component to be
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tested is the one labeled by the L-son (0-son) of
the root. As an example, for the following linear
threshold system

,,ur,_l I if 3rr*2r2*e,3+r,4>5,vr^/:\ 0 otherwise

A decision tree is shown in Figure 1. Circles repre-
sent internal nodes with labels inside, 1-son on the
right, and 0-son on the left. The squares represent
leaves with labels "F" and "'W' which mean that
the whole system is failed, and working, respec-
tively. The letters on the right side of the nodes
are the node names. Node r is the root.

h a

for any leaf, the path from the root to the leaf
contains no pair of nodes which are labeled by the
same component. So if we already observed the
state values of some components (which form a
partiol tree), then we need only consider the sub-
system restricted by these values. Known heuris-
tics all focus on methodologies to grow a partially
defined tree [3, 4], using which, a decision tree can
be easily built up. But there has been no method
to improve the decision tree found, simply because
there has been no way to move from one tree to an-
other in the space of all decision trees. This paper
develops a new method to improve a given deci-
sion tree, which can be either a trivial one, or the
one found by heuristic procedures. The key idea
is the delete/add ( DA ) move'defined in Section
2. We shall prove that, in the space of all decision
trees for a given coherent system, any tree can be
obtained from another by a series of DA moves.
Thus, DA moves makes it possible to utilize the
idea of hill climbing in the space of all decision
trees.

Section 3 shows that our heuristic actually gives

the optimum solutions for parallel and series sys-
tems. Computational results are reported in Sec-
tion 4.

2 The DA move

For a coherent system (8, O), a poth set is defined
as any set of component rralues for a state vector
X that guaxantees 6(X) = 1. A. rninimal path set
is a path set that ceases to be one if any of the
component values in it are removed [3]. Similarly,
a cut set is defined as any set of component values
for a state vector X that gua.rantees 6(X) : 0,
and a minirnal cut set is a cut set containing no
proper subsets that are also cut sets.

Now consider a decision tree 7, and a path P
from the root r to a leaf u labeled "F" ("W"). It
can be seen that the set of the component values
determined by the path P form a path (cut) set of
the system. A path P from the root to a leaf of the
tree ? is a minimal poth of the tree if the corre-
sponding path (cut) set is minimal. The following
lemma can be easily seen.

r
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Figure 1: An example of a decision tree

For any decision tree, define the cost of the
leaves to be zero. For any internal node u with
label i, let r,6 and u1 be its Gson and 1-son re-
spectively. Define the cost C(u) of node u is by
ci + piO(a) + q;C(as). The cost of the tree is
defined to be the cost of its root.

With these definitions, our problem now ca^n be
stated as: Given €m n component coherent system
(E,@) and Ptrpzr- - - rPn, cL,Cz,-..,crr, find a deci-
sion tree with minimum expected cost. An optimal
decision tree is also called an optimal inspection
strotegy.

The problem arises in many logical inference,
reliability testing, pattern recognition, and statis-
tical classification applications. It has been proved
to be NP-hard [3]. The only known polynomial-
time solvable case is k-out-of-n system[l, 2], which
includes series and parallel systems.

It is obvious that an optimal decision strategy
does not test any component twice, which implies

Jk
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Lemma 2.1 Suppose T i,s a ilecision tree and P
is a path lrom the root to a luf labeled by "F"
("W"). If P has a cornponent i which hos aolue 1
(0) in poth P, then P is not minimal.

Visually, for any decision tree drawn on the
plane, if we place 1-sons under the right and 0-sons
under the left of their fathers, then any path ex-
cept the extreme left and right ones is not minimal.
For any non-minimal path P, there is a node with
label component i such that after i is deleted from
the path P, the values of the other components of
P still identify the state of the system. Thus, it
is unnecessary to test the component i if the ac-
tual system state is determined by the path P. In
this case, we say that component i is inessential
to path P. For a path P with a.n inessential com-
ponent i of a decision tree 7, we can build a new
tree Tp1 in which component z is deleted from P.
We then add the component i to other paths of ?,
and use subtrees of ? to build the new tree ?r,;
in a way described below. This is the main idea
of the DA move, i.e., Delete a component from
a path, and Add it to other paths if necessary.

We now give a formal definition of the DA move.
Consider a decision tree ? with root r, and a path
P: ur,l)2,"'tu, such that u1 - r and uo is a
Ieaf (P is shown by the dotted line in Figure 2).
Assume P is not minimal with an inessential com-
ponent i aud node u1 has label z (note that there
is only one such node in P). For any I such that
k < I < p, assume j is the label of node u; of P.
Denote by ti the value of the component j deter-
mined by the path P, and let sj : 1 - ti. Denote
by Q the subtree of o1 rooted at the sj-son of ?rl.

Since z is inessential in path P, we may build a
new tree in which node or will be deleted from P,
For any I such that ,t I I 1 p, us will be also a
node in the new tree, and having the same label
as in the old tree ?. Since we want P remain a
path of the new tree, the ti-son of o1 is still tr1".1.

The s7-son of u; in the new tree will be a new node
u1 with label i (see Figure 3). Obviously, we may
still use ?j as the t1-son of u; (strictly speaking, as
the subtree rooted at the t;-son of u;). The si-son
of ur will be deriaed from the subtree ?r in the
following way.

We can not simply use Q as the s, son of ur

ut+1
Tp

3j

Figure 2: Current tree

since otherwise some paths may contain the some
components twice.

Let h be the label of t;a1 in ?. Consider the
subtree N1ru1 rooted at the st-son of u111 in the
new tree Tp,;, atd the subtree 7* of the old tree
7. Both subtrees assume exactly the same state
values of the components labeled by ur, -..,'uk-L.
The difference between them is that Neal assumes
that the state value of component h is also known.
Therefore, we can use the same strategy specified
by T* to test the sub-system restricted by the val-
ues of the components labeled by ur , . . . , u;-u1 , onlf
remembering that we do not have to test compo-
nent h. Denote Ay Tt*'the new subtree corrq.
sponding to the strategy specified by T*. The new
subtree ff+1 witt be the s;-son of u141 in the new
tree.

In terms of trees, {+1 can be obtained from
ft by replacing all subtrees rooted at those nodes
which have the sa,me label h as or+t by the corre-
sponding subtrees rooted at its s;r-son. We sha^ll

say that ff+t is d,eriued from Tp by assuming the
value of h to be srr.

In general, for any I such that ft + 1 < I < p, we
can build a subtree ?j from ft as the si-son of ur
in the new tree. For the sequence T[+' ,. . . ,TI-'
of new subtrees built in this way, each one can
be obtained from the previous one by assuming

!k
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ut+1

,!+l

Figure 3: New tree after one DA move

only one more state value of a component. Thus
TI*' ,. . . ,TI-' can be derived by letting Tt = Tx,
arrd for I : k * 1,. - 

.- ,? - 1, let ?j be equai to the
tree derive from {-1 by assuming the value of
component j to be si, where j is the label of node
At.

from a given decision tree 7. Assume P =
'u1,... ,uo is a path of 7 from the root to a leaf
which is not minimal with an inessential node up
labeled with component i. Define a new tree ?p,6

by the following rules.

(a) If ,t ) 1, then replace the t;-son of u; by up.u1;

Else replace the root of 7 by u1..1 .

(b) For each node ,,(k < I < p) of. P with label j:
If the set of component values defined by si
ard ti, for every node u1,(1 < ,' < l) with
label j'form a path (cut) set, then add a s7-
leaf to 7p,6 with label "F" ("w,,);

Else add a new node u; with label i, and let
T!,T1be its s1-son and ti-son respectively.

(c) All other nodes will be unchanged.

The following lemma holds

Lemma 2.2 The new tree Tp,; is also a decision
tree for the same uherent system.

Proof : The definitions of Tt*' ,- - - ,Tf,-L , to-
gether with rules (a) and (b) guarantee that no
path of the tree contains the same component more
than once. Rules (b) and (c) guarantee that the
leaf labels of.Tpl identify the states of the system.
tr

In the space of all decision trees, the move from
7 to the new decision E*, Tp,; constitutes a DA
moae. A. given decision tree can be improved by
a hill-climbing heuristics using DA moves. One
(greedy) approach is to always move to the next
tree which has the ma:rimum amount of improve-
ment. Another method is to move to the first di-
rection in which an improvement is found. The
two algorithms are presented in Figures 4 and 5.

ALGOHITHM: DA-dimb

aad adecision tueeT.
OUTPUT: An improved decision tree T.

Step 1. Find a path P which is aot miairrlal
with aa inesseatial coaponent i such that
C(Tr,) < C(T).
If there rb no such path, then stop a,nd out-
putT; Ebe go to Step 2.

Step 2. LetT :Tp,;, aad go to Step 1.

Figure 4: DA-climb heuristics

ALGOHITHM : Greedy DA-cIiab
Step 1. Find apath P wbich is not, minimal with a,a

inessentia,l component i su& that C(T) -
C (Te,;) is u,aximized,.

If the the auciauaa r's Q thea stop and out-
putT; Else go to Step 2.

Step 2. Let T : Tp,;, aad go to Step 7.

Figure 5: Greedy DA-climb heuristics

The following theorem theoretically guarantees
the quality ofthe solutions found by the heuristics.

Theorem 2.1 LetTl and,T2 be ang two d,ecis,i,on

trees of the same coherent system. Then T1 can
be always transfortned to Tz by a series of DA
rnoaes.

Proof: Let i1 be the label of the root 11 of fi,

!l
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and iz be that of the root12 of T2,By the definition
of coherent system, ?1 must have a node u with
label iz. If iL * i2, then the node u of fi must
have a father u. By Lemma 2.1, there is a path
P in Tr such that u is inessential for P. It can
be seen that in the tree ?r,, obtained by a single
DA move, the depth of u which has a label f2 is
decrease by 1. After a series of such DA moves,
eventually we will have a tree T' whose root has
the same label i2 as 72.

Now the two subtrees of the root of 7' define the
same sub-systems a.s that of 72, respectively. The
theorem then follows by induction on the number
of the components in the coherent system. tr

3 Series and parallel systems

For these special systems, the decision tree corre.
sponds to a permutation of all components of the
system. Therefore, we have

Lemma 3.1 For series and, porallel systerns, one
DA moue is equiuolent to switching the order of
two adjacent nodes of the permutation tree.

Propositiot S.l Both heuristics DA-cfimb and,
Greedy DA-climb giae the optimum decision tree
for series and, parallel systems.

Proof : This is a direct conclusion of Lemma 3.1
and the known fact that [1] the optimal test or-
der for series system is the permutation ntt,. . . ,rn
such that

cot 
- - cnn

Qnt - Qr^

4 Computationalresults

Both hill-climbing heuristics were coded in C, and
run on a Sparc 10 workstation. The optimal de-
cision tree is found by a dynamic programming
recursion [3].

Heuristic DA-climb uses a d,epth-first seorch 16)
method to find if there is a path P which is not
minimal with an inessential component i such that

C(Tp,,.) < Cg). If such a path P a^nd i are found,
then we immediately replace T by Tp,;. Greedy
DA-cIimb uses the same search method to exhaust
all paths of current tree, and finds the maximum
defined in Step 1.

Our heuristics have been tested on linear thresh-
old systems, which are an important class of prob-
lems [5]. The structure functions are generated
using linear inequalities wrrr * '- - * wnan ) k
whose coefficients are uniformly distributed in the
interval [1,99], and k is set to la^rgest integer not
larger than |Di:rwr.

Flom lemma 2.1, a minimal path (cut) set can
not contain components with value 0 (1). To check
if a subset of components with value 1's form a
minimal path set, we need only check if the sum
the coefficients tui of these components is not less
than ,t, and if arly proper subsets with one com-
ponent less also has such property. Similarly, to
check if a subset of components with value 0's form
a minimal cut set, we need only check if the sum
the coeff.cients tu; of the components not in the
subset is not less than ,t, and if a^ny subsets with
one more component also has such property.

The probabilities p1, ...,pn are uniformly gen-
erated in the interval (0.01,0.95). The costs
cL,...tcn are real numbers uniformly distributed
in the interval (1.00,99.00).

The initial decision tree is constructed based on
the strategy which examines all components in the
order 7r1, ...,7n such that 7Dn, ) -. - ) .u*^.

For each n = 5,6,7, both heuristics were run
for 100 problems. Iu Table L, 0 :0.3. The left
and right column under Opt(%) show the number
of times heuristic DA-climb and Greedy DA-climb
obtain the optimum solutions. The columns un-
der Ave.Err(%) show the average errors relative to
the optimum solutions of the two heuristics. The
columns under Larg.Err(%) show the largest er-
ror relative to the optimum solutions of the two
heuristics.

Table 2 shows the same measures for 100 ran-
domly generated problems generated using B -
0.5.

Since we can find the exact optimum of ,k-out-of-
n system for any n [1], we compared our heuristic
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n Optl 7c Ave.Err(% Lare.Err(%)
5
b

7

98 99
98 97
97 96

0.01
0.01
0.01

0.00
0.01
0.04

0.94 0.06
0.60 L.07
0.48 2.84

310

300

290

280

270

260

250

z4

-DA-CIi16'
"creedy oA-cI irb-

Table 1: A :0.3

n opt(%) Ave.Err(% Larg.Err(70
5

6
7

99 99
95 93
95 95

0.03
0.01
0.02

0.03
0.01
0.02

2.69
0.38
1.43

2.69
0.38
1.43

Table 2: A :0.5

solutions with optimum for larger n.. In Table 3,
we can see that for all problems we tested, both
heuristics find optimum solutions. The columns
under Ave.CPU show the average CPU time in
seconds. The columns under Ave.Iter show the
number of steps each heuristic took to reach a local
optimum. Since Greedy DA-climb needs to search
the whole tree it is not surprising to see that it
takes more CPU time than DA-cfimb, but takes
fewer steps to reach a local optimum.

n Opt(%) Ave.CPU Ave.Iter
5

6
7
8
I

10

100 100

100 100
100 100
100 100
100 100
100 100

0.01
0.14
0.61
1.91
9.15

23.69

0.02
0.31
1.39
5.40

3L.27
78.11

8.6
22.L

39.6
64.8

102.3
163.2

5.0
LL.7
L9.2
30.4
46.6
69.5

Table 3: k-out-of-n system, 0 = 0.8

Flom these computational experiments it ap-
pears that, in a short CPU time, DA-climb gives
better solutions. But in the long run, the Greedy
method gives better solutious. Figure 6 shows the
result for one particular problem with rz = 14 and
0 = 0.5, where the horizonta.l a><is is the CPU time
in seconds, and the vertical a:cis is the value found
by the two heuristics. Depending on whether com-
putational time requirement is critical, the user
may choose DA-climb or Greedy DA-climb.

r000 't 500 2000 2S0(

Figure 6: DA-climb vs. Greedy DA-climb

5 Conclusion

We have developed a method to search the space
of binary decision trees for a coherent system using
locally improving (hill-climbing) search. In most
cases the heuristics give optimal solutions. While
hill-climbing is ubiquitously used on continuous
optimization problems, the possibility of applying
it to classification trees has not previously been
recognized.

Compared to the dyna,mic programming proce.
dure, which may take a long time without grving
any clue of an optimal solution, our hill-climbing
heuristics always maintain a feasible solution. Al-
though the heuristic may also take long time be.
cause of the size of the classification tree, it ca^n

be terminated at any time and output a feasible
solution.
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