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Abstract

Online active learning (AL) algorithms of-
ten assume immediate access to a label once
a query has been made. However, due
to practical constraints, the labels of these
queried examples are generally only available
in “batches”. In this work, we present an
analysis for a generic class of batch online AL
algorithms, which reveals that the e↵ects of
batching are in fact mild and only result in an
additional label complexity term that is quasi-
linear in the batch size. To our knowledge,
this provides the first theoretical justification
for such algorithms and we show how they can
be applied to batch variants of three canoni-
cal online AL algorithms: iwal, oriwal, and
dhm. Finally, we also present empirical re-
sults across several benchmark datasets that
corroborate these theoretical insights.

1 Introduction

Large labeled datasets are often used to train models in
supervised learning. However, in some domains, such
as those that require domain experts, labeling is a very
costly. Active learning directly tackles the important
task of training accurate models while at the same time
minimizing the number of labeled points.

Previous work in active learning often analyzes the
online, or streaming, setting where a learner observes a
single unlabeled example at a time and decides whether
or not to request the label of the example, receiving the
label immediately if queried, and typically updating
the learner with the additional label before receiving
the next sample point. Generally, obtaining the label
of just a single point is entirely impractical due to, for
example, the overhead of assembling a pool of qualified
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raters and assigning enough work to each rater in order
for their time to be well spent. Additionally, there is a
considerable overhead in updating an active learner, e.g.
computing a new version space, with one additional in-
stance at a time. Thus, in practice, labels are requested
only once a large enough batch of requests has been
queued. As an example, consider remote sensors with
a finite bu↵er that process a stream of unlabeled data,
a subset of which may be useful for training a machine
learning model. Due to the practical reasons discussed
above, as well as potential communication costs, the
sensor only sends batches of points to a labeling service
once the bu↵er is full.

Motivated by these practical constraints, we analyze
the batch online active learning setting. A common
approach is to convert o↵-the-shelf online active learn-
ing algorithms to operate in the batch setting. This
can be accomplished by delaying label feedback to the
algorithm until a su�ciently large number of label re-
quests are made. However, the e↵ect of batching on
the active learning algorithm’s generalization and label
complexity guarantees is not well understood. Since
the batch framework is a substantially more restric-
tive setting, the main questions we seek to answer are:
in what ways will batching impact known theoretical
guarantees? How strongly do label complexity and
generalization guarantees depend on the batch size?

To that end, we present a label complexity analysis,
that is a bound on the number of requested labels, for
a generic batch online active meta-algorithm that is
assumed to satisfy a mild time-decreasing labeling rate

condition. This condition states that the probability
of requesting the label of point decreases as a function
of time, which is a natural property for any active
learning algorithm that admits non-trivial bounds on
label complexity. Crucially, our theoretical analysis
shows that the label complexity of such batch active
learning algorithms, ignoring logarithmic terms, admit
a linear dependence on the batch size. This reveals
that the e↵ects of batching are minimal as long as
the batch size is a constant independent of the total
number of observations. We show that this result can
be applied to batch variants of three well studied online
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active learning algorithms: iwal, oriwal, and dhm
[Beygelzimer et al., 2009, Cortes et al., 2019a, Dasgupta
et al., 2008]. Moreover, we prove that the theoretical
guarantees of these algorithms are not a↵ected by batch
size and empirically verify the insights provided by both
the label complexity and generalization bounds. To
our knowledge, this is the first work proving theoretical
guarantees for batch online active learning.

Below, we review related work. In Section 2, we present
our generic batch online active learning framework and
in Section 3, we provide a novel theoretical analysis
of its label complexity. Then, we show applications of
this generic batch online AL framework along with the
derivations of the generalization guarantees in Sections
4 and an empirical verification in Section 5. Most of
the proofs of our analysis are found in the appendix.

Related Work: Most theoretical work in (non-batch)
active learning considers the online setting with a focus
on proving generalization guarantees for the hypothesis
returned by an active learning algorithm and bounds
on the active learner’s label complexity. In the case of
separable data, Cohn et al. [1994] derived an algorithm
that exhibits an exponential decrease in label complex-
ity when compared to passive learning. The main idea
of this algorithm is to trim the hypothesis set of all clas-
sifiers that are inconsistent with the currently labeled
data and to only ask for the labels of points the hypothe-
ses in this set disagree on. The amount of disagreement
among a set of hypothesis can be characterized by the
disagreement coe�cient, which was first introduced by
Hanneke [2007]. These ideas on disagreement are the
core of many active learning algorithms and the label
complexity guarantees of these algorithms are often
in terms of the disagreement coe�cient [Balcan et al.,
2006, Dasgupta et al., 2008, Beygelzimer et al., 2009,
2010, Cortes et al., 2019a,b]. Similar quantities will
appear in the bounds we present, although we arrive at
them in a significantly di↵erent fashion. Another line
of work has focused on algorithms based on requesting
labels along the margin of a linear separator, which
only under certain distributional assumptions admit
theoretical guarantees [Dasgupta et al., 2005, Balcan
et al., 2007, Balcan and Long, 2013, Awasthi et al.,
2014, 2015, Zhang, 2018].

Active learning has also been analyzed in pool-based
setting where the entire pool of unlabeled data is avail-
able and the algorithm must choose subsets of this pool
to be sent to raters for labeling. Unlike the batch online
active learning setting, the algorithms in the pool based
setting do not have limited memory and thus are qual-
itatively very di↵erent than the algorithms analyzed
in this paper. Several authors have studied the pool-
based setting, but the focus was primarily on finding
solutions for specific tasks. For example, Kurihara and

Sugiyama [2012] derives sampling objectives tailored
to linear regression for choosing a single batch of exam-
ples to be labeled, Bach [2007] presents an asymptotic
analysis for misspecified generalized linear models, and
McCallum and Nigam [1998], Hoi et al. [2006a,b, 2008]
focus on text and image classification tasks. Other
work has focused on incorporating di↵erent definitions
of diversity and informativeness, but without deriv-
ing any generalization and label complexity guarantees
[Brinker, 2003, Xu et al., 2007, Guo and Schuurmans,
2008]. Dasgupta and Hsu [2008] develops an active
learning algorithm with theoretical guarantees under
specific assumptions on the ability to cluster the data.

Chen and Krause [2013] analyze the batch active learn-
ing problem, albeit in the pool based setting, and show
that a greedy batch construction strategy is competi-
tive with an optimal batch selection when the problem
exhibits an adaptive submodularity condition. Our
work is significantly di↵erent, in that we consider the
online setting and make no submodularity assumption.

Online learning with delayed feedback has been studied
in the general partial-monitoring setting. Joulani et al.
[2013] demonstrate that in non-adversarial settings the
price of delayed feedback is an additive regret term that
is linear (ignoring log factors) in the length of the feed-
back delay. This strongly mirrors the label-complexity
result we achieve in our setting as we bound the num-
ber of additional label requests made by an amount
that is also linear (ignoring log factors) in the length
of feedback delay. However, we emphasize that one
setting does not subsume the other. In online learning
with delayed feedback, the learner eventually receives
feedback for every decision, while in active learning,
there are some rounds where the learner never receives
feedback at all (i.e., when a label is not requested).
Moreover, in contrast to online learning, where there is
a single objective (minimizing regret), active learning
admits a bicriterion of bounding label complexity and
generalization error.

2 Batch Active Learning Framework

Let Z = X ⇥ Y denote an example space and Z? =
X⇥ (Y [ {?}) denote the same example space except
where examples can be label-free (denoted by ?). We
assume that the data is drawn stochastically, that
is the data points are drawn i.i.d. from an unknown
distribution D over Z and define a hypothesis set H
where each function h 2 H maps from X to W ✓ R.
The quality of a hypothesis function is measured by
a loss function, ` : W ⇥ Y ! [0, 1], and we denote by
L(h) = E[`(h(x), y)] the expected loss of hypothesis h.

Let A denote an online active learning algorithm. At
each time step t 2 [T ] := {1, . . . , T}, algorithm A
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maintains an internal state !t 2 ⌦, where ⌦ denotes a
universe of possible internal states. Given an example
xt 2 X, the algorithm first decides whether or not to
receive the true label of xt. We denote by ȳt 2 Y [{?}
either the true revealed label yt or the decision not
to request the label, ?, at time t. Given this new
information, the algorithm then updates its state to
!t+1. Both the decision of requesting the label and the
update of its state may be a probabilistic process.

An online active learning algorithm can be fully char-
acterized by its state, a function that decides whether
to request for a label, and a function that updates the
state of the algorithm. More formally, we define two
functions Labeler : ⌦⇥X ! [0, 1] which maps a state
!t and an example xt to the probability of requesting
a label and Updater : ⌦⇥Z? ! �(⌦) which maps the
feedback received during a timestep to a distribution
over next states, where �(⌦) denotes the probability
simplex over ⌦. Given an initial state !1, an online ac-
tive learning algorithm is then defined by the following
triplet: A = (!1, Labeler, Updater).

In order to convert such an online active learning al-
gorithm A into an algorithm AB for the batch setting,
we “freeze” the state of A until B labels have been
requested. That is, the algorithm makes decisions on
a sequence of points without updating its state until
B labels have been requested. We call a sequence of
timesteps where the state remains unchanged a round.
At the end of the round, the algorithm receives the B
labels of the requested points and it updates its state
accordingly.1 This continues until the time horizon T is
met, at which point the algorithm selects a hypothesis
using information from the final state. Note that in
the sequel, during the execution of the algorithm, we
denote the current round index using the variable r.
Algorithm 1 defines the batch algorithm in detail.

In Section 3 we will provide a su�cient condition in
order to analyze the label complexity of Algorithm 1.
Then in Section 4, we argue that this condition holds for
batch variants of many existing online active learning
algorithms and therefore our label complexity bounds
can be applied directly. In Section 4, we also show that
for these same algorithms, generalization guarantees
are completely una↵ected by batching.

3 Label Complexity

In this section, we show that converting an online
active algorithm to a batch online active algorithm
results in a label complexity bound that contains only

1
The only exception is the last round, which allows for a

batch of fewer than B labels. One could instead ignore the

requests made in the last round. This does not materially

change the results, but would complicate the presentation.

Algorithm 1 Batch Online AL Algorithm AB .

Inputs : A = (!1, Labeler, Updater), batch size
B � 1, time horizon T � 1.
Set : current round r = 1, number labels requested
in round C1 = 0, previous round boundary ⌧0 = 0.
for t = 1, 2, . . . , T do
Receive xt.
Draw Qt ⇠ Bernoulli(Labeler(!r, xt)).
Update Cr = Cr +Qt.
#B requests or final timestep, end round.
if Cr = B or t = T then

#Receive batched labels.
for t0 = ⌧r�1 + 1, . . . , t do

if Qt0 = 1 then
Receive yt0 .
Set ŷt0 = yt0 .

else
Set ŷt0 = ?.

#Perform batched state updates.
Initialize !0 = !r.
for t0 = ⌧r�1 + 1, . . . , t do

Draw !0 ⇠ Updater(!0, xt0 , ŷt0)
Update : round r = r + 1, previous round
boundary ⌧r�1 = t, frozen state !r = !0.
Reset label count Cr = 0.

return bhT hypothesis learned with state !r.

a mild dependence on batch size. More specifically,
the additional label complexity cost over the online
active learning algorithm is an additive Õ(B) term in
the batch size B. Ignoring log factors, this is the best
one can hope for, since a batch active algorithm must
request ⌦(B) labels in order to receive any labels at
all. In order for this general result to hold, the active
learning algorithm must satisfy a natural condition,
which we called time-decreasing labeling rate.

3.1 Time-Decreasing Labeling Rate

Let r(t) be a random variable denoting the round corre-
sponding to timestep t, that is r(t) = min{s | ⌧s � t},
and let Ft denote the sigma algebra containing all
random variables up to time t. A batch active learn-
ing algorithm has time-decreasing labeling rate if the
probability of requesting a label can be upper bounded
by a decreasing function p+� that depends only on the
timesteps required for the previous round to elapse,
⌧r(t)�1 and a failure parameter �. Note that ⌧r(t)�1 is
known at time t � 1, meaning it is Ft�1-measurable
(see the appendix for proof of this statement).

Definition 1 (Time-Decreasing Labeling Rate)
For any � > 0, we say AB has time-decreasing labeling

rate if there exists a non-negative strictly decreasing

function p+� (t) : N! [0, 1] such that for all t � 1 with
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probability 1� �,

P(Qt = 1 | Ft�1)  p+� (⌧r(t)�1).

In the following, we will elide the dependence on � and
write p+, unless we wish to make the dependence ex-
plicit. The requesting probability of the active learning
algorithm could be non-monotonic at each iteration,
but the condition implies there is a monotonic de-
creasing upper bound, which is natural for any active
learning algorithm with nontrivial label complexity.

3.2 Theoretical Analysis

In this section, we conduct a label complexity analy-
sis for algorithm AB that admits the time-decreasing
labeling rate property and which was derived from an
arbitrary online active algorithm A via Algorithm 1. As
we will see, the label complexity analysis of batch algo-
rithms departs significantly from the standard analysis
for online active learning algorithms since the length of
a round is itself a random variable with a particularly
intricate dependence on all previous rounds.

Given a horizon T � 1, the number of labels requested
by algorithm AB will be bounded by r(T )B since AB

requests exactlyB labels every time a round elapses and
the algorithms halts after round r(T ) (except the last
round, which may request fewer than B labels). Thus,
the goal of this analysis is to prove a high probability
upper bound on r(T ).

Understanding r(T ), depends on analyzing the bound-
aries ⌧0, ⌧1, ⌧2, . . . of the subsequent rounds. If this se-
quence grows quickly, it takes relatively few rounds (and
therefore few labels) to reach T timesteps. We hence-
forth focus on the length-of-round, Wr = ⌧r � ⌧r�1,
where Wr is a random variable denoting the waiting
time for the rth round to elapse. The crux of the proof
focuses on showing a lower bound on Wr that holds
with high probability. Equivalently, we argue that the
lengths of rounds become increasingly longer.

Concretely, the argument proceeds in three stages. We
first relate the length-of-round, Wr, to a simpler conser-
vative random process, W̃r, that can be directly defined
as a sequence of dependent negative binomial variables.
The process is conservative in the sense that the round
lengths will, with high probability, be smaller compared
to the Wr necessitating additional rounds and therefore
more labels before seeing T examples. We then relate
this conservative process to an idealized deterministic
sequence, which loosely corresponds to the mean of the
stochastic conservative process. Finally, we analyze the
behavior of this deterministic sequence. At a high level,
this analysis reduces the problem of lower bounding
Wr to the problem of lower bounding the growth of a
deterministic process.

Step 1: Relating Wr to conservative process W̃r

First recall N/q is the expected value of a negative bino-
mial distribution NB(q,N) which counts the number of
independent Bernoulli trials with success parameter p
until exactly B successes occur. Now, note that for any
round r, if we condition on the value of ⌧r�1, then Def-
inition 1 implies with high probability that for any t
occurring in round r, P(Qt = 1 | ⌧r�1)  p+� (⌧r�1).
Since the length of the round Wr is equal to the
number of Bernoulli trials (with success parameter
at most p+� (⌧r�1)) before B labels are queried, its
conditional expectation is lower bounded as follows
E[Wr | ⌧r�1] � B/p+� (⌧r�1).

We construct a new process W̃r defined explicitly in
terms of a negative binomial distribution with parame-
ter p+� (⌧̃r), specifically

W̃1 = B ⌧̃r =
rX

s=1

W̃s W̃r+1 ⇠ NB(p+� (⌧̃r), B) ,

and relate it to Wr. The subsequent lemma proves that
the conservative process W̃r is upper bounded by the
length-of-round Wr.

Lemma 1 Fix � > 0, and suppose that AB has time-

decreasing labeling rate. Then with probability at least

1� �, for all r, it holds that W̃r Wr, where W̃r has

a dependence on � via the parameter p+� (⌧̃r).

The lemma is proven via a coupling argument along
with the fact that AB has time-decreasing labeling rate.

Step 2: Relating W̃r to deterministic seq. wr

Although the distribution of W̃r conditioned on a fixed
⌧̃r�1 can be directly related to a negative binomial
distribution, the unconditioned distribution does not
have this direct relationship. To help with this, we
consider the trajectory of the process W̃1, W̃2, . . . that
occurs if every variable W̃r is equal to its mean condi-
tioned on the past. In particular define the following
deterministic sequence,

w1 = B̂ wr
1 =

rX

s=1

ws wr+1 =
B̂

p+(wr
1)

, (1)

then letting B̂ = B recovers the trajectory just de-
scribed. We stress that even the expectation of the
stochastic process W̃r does not follow the particular
deterministic trajectory of wr, i.e. E[W̃r] 6= wr in gen-
eral.2 However, if we let B̂ = B/4, we can show that
with high probability the deterministic process wr lower
bounds the stochastic process W̃r.

First, we define a collection of independent
non-identical negative binomial random variables

2
In particular, even after two rounds, we have E[W̃3] =

E[E[W̃3 | ⌧̃2]] 6= E[W̃3 | ⌧̃2 = w1 + w2] = w3.
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N(1), . . . , N(T ), where N(t) ⇠ NB(p+(t), B) and
where µ(t) = E[N(t)] = B/p+(t) is the expected value
of N(t) and also define r̃(T ) = min{r | ⌧̃r � T}. Then
by definition we have W̃1 = B, and W̃r = N(⌧̃r�1) for
up to round r̃(T ).

Given that {W̃r} can be defined in terms of this collec-
tion of independent negative binomials N(·), we argue
that the growth of W̃r is well-behaved as long as N(·) is
well-behaved, specifically each N(t) is not much smaller
than its mean. To this end, let Tbad count the number of
negative binomials that are significantly smaller than
their means, that is, Tbad =

PT
t=1 1[N(t) < 1

4µ(t)].
Moreover, consider the deterministic sequence wr de-
fined in equation (1) with B̂ = B/4. As long as the
process N(·) is well-behaved, W̃r grows faster than wr.
The next lemma states for a horizon R, in the worst
case, W̃r grows like wr for the first R � Tbad rounds,
and then like B for the final Tbad rounds (since the
outcome of any N(·) is at least B).

Lemma 2 Fix a horizon T � 1. Let wr be the se-

quence defined in equation 1 with B̂ = B/4. On

any outcome of N(1), . . . , N(T ), and any R satisfy-

ing Tbad  R  r̃(T ), wR�Tbad
1 + TbadB  ⌧̃R, which

implies wR�Tbad
1  ⌧̃R.

Next, we bound Tbad with high probability. Specifically,
we apply a Cherno↵ argument to bound the probability
than an individual N(t) takes a value of less than 1/4 of
its mean and then use Bernstein’s inequality to bound
the number of times that this can occur.

Lemma 3 For any � <
p

1/e, and B � 2 log(T ), it
follows that P (Tbad > 1 + 3 log(1/�)) < �.

We now state a main theorem, which relates the total
number of labels requested by a batch active learner
AB with time decreasing labeling rate p+ to the de-
terministic process wr generated by p+. In particular,
we relate the label complexity to R⇤, the number of
rounds su�cient for the deterministic process to satisfy
wR⇤

1 � T , which we analyze in the final step.

Theorem 1 Fix � > 0, and time horizon T � 1. Let

AB be a batch active sampling algorithm with time

decreasing labeling rate p+, and batch size B � 2 log(T ).
Let wr be the deterministic sequence defined in equation

1 with B̂ = B/4. Let R⇤
be a number large enough such

that wR⇤

1 � T , then with probability at least 1� 2�, the
total labels requested by AB is bounded by:

Br(T )  BR⇤ + 3B log(1/�) + 2B.

Proof. We want to show an upper bound on r(T ) that
depends on R⇤ and that holds with high probability.
We first relate r̃(T ) to r(T ) by considering the event E 0

that W̃r Wr for all r. This event implies that ⌧̃r  ⌧r

since ⌧̃r and ⌧r equal the sum of the length-of-rounds
W̃r0 and Wr0 for r0 2 [r], respectively. This in turn
implies that r(T )  r̃(T ) by definition. Next, we focus
on proving an upper bound on r̃(T ).

Define the event E as Tbad  Z and consider outcomes
where it holds. For the sake of contradiction, suppose
that R⇤ + Z < r̃(T )� 1 where Z = 1 + 3 log(1/�). By
definition of R⇤, we have T  wR⇤

1 . Combining this
with the fact that wr

1 is monotonic and that Tbad  Z,

it then follows that T  wR⇤

1  wR⇤+(Z�Tbad)
1 (call this

Fact-1). Again by the event E and the contradiction
assumption, it holds Tbad  Z  R⇤ + Z < r̃(T ) �
1  r̃(T ). Then, we can apply Lemma 2 by taking

r = R⇤ + Z to conclude that wR⇤+Z�Tbad
1  ⌧̃R⇤+Z

(call this Fact-2). Combining Fact-1, Fact-2 and the
contradiction assumption, respectively, we have T 
wR⇤+Z�Tbad

1  ⌧̃R⇤+Z  ⌧r̃(T )�1. The inequality T 
⌧r̃(T )�1 contradicts the definition of r̃(T ) = min{r |
⌧̃r � T} and thus, on the event E , it holds that r̃(T ) 
R⇤ + Z + 1.

Taking a union bound and using Lemmas 1 and 3, with
probability at least 1 � 2�, both E and E 0 hold, and
therefore r(T )  r̃(T )  R⇤+Z+1 = R⇤+3 log(1/�)+2.
Observing that the label complexity of AB is at most
Br(T ) completes the proof. ⇤
Next, we show that BR⇤ is on the same order as stan-
dard active learning bounds; therefore, the above the-
orem shows that the e↵ects of batching only costs an
additional 3B log(1/�) + 2B in label complexity.

Step 3: Behavior of deterministic seq. wr

First, let us recall the label complexity bounds of stan-
dard online active learning algorithms, which can be
written in the form of a⇤T + f(T ). Here, f(T )/T is
o(1) and a⇤ 2 [0, 1] is a problem-specific constant that
typically contains quantities such as the disagreement
coe�cient and/or the loss L⇤ of the best hypothe-
sis. Most active learning algorithms admit a time-
decreasing labeling rate either of p+(t) = O(1/

p
T ) or

p+(t) = O(1/T ) resulting in label complexity bounds
of a⇤T +O(

p
T ) and a⇤T +O(log T ), respectively. In

our analysis, we study these two labeling rates and
show that the cost of batching on labeling is at most a
single additive Õ(B) on top of the standard rate.

Specifically, we consider p+(t) = a + bt�↵, where
↵ 2 {1/2, 1}, a 2 [0, 1] and b � 0. Returning to
the deterministic sequence defined in equation (1), re-
call that w1 begins at B and then converges to B/a as
t!1. In the appendix, we give a general theorem for
studying deterministic sequences that asymptote, but
exhibit non-trivial growth before convergence. Utiliz-
ing this theorem, we can bound the number of rounds
R⇤ before wR⇤

1 � T , thus allowing us to apply Theorem
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1 when the functional form of p+ is known.

Theorem 2 Fix � <
p
1/e, time horizon T � 1, and

B > max{16b, 16, 2 log(T )}. Let wt be the determinis-

tic sequence defined in equation (1) by taking B̂ = B/4,
and p+� (t) = a + bt�↵

for values a 2 [0, 1], b � 0 and

↵ > 0, where a, b may depend on �, B, T (but not t).
Then, for ↵ = 1 and

R⇤
1 =

8aT

B
+ log2(T ),

it holds that w
R⇤

1
1 � T . Furthermore, for ↵ = 1

2 , and

b0 = max{b, 1}:

R⇤
1/2 =

1

B

⇣
8aT+32b0

p
T + 4b2

⌘
+ log log(B/4) + 2,

it holds that w
R⇤

1/2

1 � T .

The theorem shows that BR⇤
1 and BR⇤

1/2 are, indeed,
of the same order as standard active learning bounds.
This implies that in the batch setting we pay only an
additive Õ(B) cost over the standard non-batch label
complexity. Using this theorem in combination with
Theorem 1, we attain the label complexity for several
canonical algorithms in the following section.

4 Applications

We analyze the iwal, oriwal, and dhm algorithms
where for each algorithm, we show how to extend it
to the batch setting via Algorithm 1. For these batch
variants, we prove that their generalization guarantees
are of the same order as the original non-batch versions
and that the theorems of the previous section can be
leveraged to bound the label complexity with only a
modest dependence on the batch size. In the next
subsection, we provide a full description of the batch
variant of the iwal algorithm, generalization guarantee,
bound on time-decreasing labeling rate, and resulting
label complexity bound. Due to space constraints, we
only provide the label complexity for the batch variants
of the oriwal, and dhm algorithms in the body of the
paper, but still provide the full algorithm description
and corresponding guarantees in the appendix.

4.1 The IWAL algorithm

We start by recalling the iwal algorithm of [Beygelz-
imer et al., 2009]. At each time t 2 [T ], the iwal
algorithm observes a single point xt and to determine
whether to request its label, the algorithm flips a coin
Qt 2 {0, 1} with bias pt = P(Qt = 1). If Qt = 1, then
the algorithm requests the label of the point xt while,
if Qt = 0, it passes on this request. The bias probabil-
ity is defined as pt = maxf,g2Ht maxy2Y |`(f(xt), y)�

Algorithm 2 Labeler(Hr, xt) for b-iwal

pr(xt) max
f,g2Hr

max
y2Y

|`(f(xt), y)� `(g(xt), y)|

return pr(xt)

Algorithm 3 Updater(Hr,Zr
?) for b-iwal

Hr+1  
�
h 2 Hr : L⌧r (h)  min

h02Hr

L⌧r (h
0) +�⌧r

 

return Hr+1

`(g(xt), y)| where Ht ✓ H is the version space at time
t maintained by the algorithm. At each time t, the
algorithm reduces the version space by removing any
hypothesis far from the empirical best-in-class: Ht =�
h 2 Ht�1 : Lt�1(h)  minh02Ht�1 Lt�1(h0) +�t�1

 
,

where Lt(f) =
1
t

Pt
s=1

Qs

ps
`(f(xs), ȳs) is the weighted

empirical loss and �t is a slack term.

The b-iwal algorithm extends the iwal algorithm to
our setting by freezing the version space for the length-
of-round. More concretely, by recalling Algorithm 1,
the state for the b-iwal algorithm is defined in terms
of the version space, that is !r = Hr for round r and
initially, we set H1 = H. The Labeler, which returns
the probability of requesting a point, and Updater,
which updates the state, are defined in Pseudocode 2
and Pseudocode 3. Due to a technicality, the slack
term used in the version space is defined as �t =p

8 log(2T 2(T + 1)|H|2/�)/t, which deviates slightly
from slack term of iwal as it contains T 2 instead
of T . The following theorem provides generalization
guarantees for the b-iwal algorithm.

Theorem 3 Let bhT denote the hypothesis returned

by b-iwal after T time steps and let h⇤ =
argminh2H L(h). For any � > 0, with probability at

least 1� �, L(bhT )  L(h⇤) +O
⇣q

log(T |H|/�)
T

⌘
.

The theorem states that the expected loss of the best-
in-class h⇤ is close to that of the hypothesis returned
by the algorithm. As T grows, the di↵erence in the
expected loss of these two hypotheses decreases at
the typical rate of O(1/

p
T ). Thus, despite the fact

that the version space is updated less frequently, the
generalization bound of the b-iwal algorithm is of
the same order as that of the iwal algorithm. At a
high level, this follows from the fact that, although
the version space is updated less frequently, when it
is updated it will still “catch up” to the analogous
hypothesis class that is updated immediately after each
time step. However, the algorithm may request more
labels due to maintaining a frozen state.

The label complexity of the active learning algorithm
will depend on the disagreement coe�cient ✓(DX , H),
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which is defined as the infimum value of ✓ > 0 such
that for all ⇤ � 0:

E
x2DX

h
max

h2B(h⇤,⇤)
max
y2Y

|`(h(x), y)� `(h⇤(x), y)|
i
 ✓⇤ ,

where B(h0,⇤) = {h 2 H : ⇢(h, h0)  ⇤} is the ball of
radius ⇤ � 0 and ⇢(h, h0) = E[|`(h(x), y)� `(h0(x), y)|]
is the distance between two functions in h, h0 2 H.
Note, this definition of ⇢ is taken from Cortes et al.
[2019b] which allows for a tighter label complexity. For
simplicity, we use ✓ instead of ✓(DX , H) in this section.
The next lemma bounds the probability of the b-iwal
algorithm requesting a point and thereby implies that
the time-decreasing labeling rate property is satisfied.

Lemma 4 For � > 0, with probability at least 1 � �,
at any round r, Ex[pr(x)|⌧r�1]  4✓(L(h⇤) +�⌧r�1).

Now, to attain the label complexity bound, we ap-
ply the general theory from Section 3. Lemma 4
implies an upper bound on the sampling probabil-
ity of the form p+� (t) = a + bt�↵ with a = 4✓L(h⇤),

b = 4✓
p
8 log(2T 2(T + 1)|H|2/�), and ↵ = 1/2. We

then apply Theorem 2 with R⇤
1/2 and Theorem 1 along

with simplifying terms to prove the following corollary.

Corollary 1 Fix � <
p
1/e, time horizon T � 1, and

batch size B > max{16b, 16, 2 log(T )}. Then with prob-

ability at least 1�2�, the total labels requested by b-iwal
is bounded by: eO

�
✓L(h⇤)T + ✓

p
T +B

�
, where eO(·) is

hiding absolute constants, log(T |H|) and log(1/�).

Notice that an additive ⌦(B) term is necessary since
the algorithm must request at least B points to see any
labels. Thus, for practical label batch sizes, the bound
is nearly optimal except for constants and log terms.

4.2 The ORIWAL algorithm

At a high level, the oriwal algorithm of Cortes et al.
[2019a] works by partitioning the space into regions and
running a separate active learning algorithm in each
region while carefully allocating the labeling resources
across regions. Specifically, in each region, the oriwal
runs the algorithm eiwal, which is an enhanced version
of iwal with stronger theoretical guarantees.

We first present some needed notation and recall the
algorithm. We denote by Xk for k 2 [n] the regions
that partition in the input X and by Hk the hypothesis
used in each region. The oriwal algorithm returns a
hypothesis from the following region-based hypothesis
set: H[n] = {

Pn
k=1 1x2Xkhk(x) : hk 2 Hk}. We define

L⇤
k = minh2Hk E[`(h(x), y)|x 2 Xk] be the regional

best-in-class and ✓k = ✓(DXk , Hk) to be the regional
disagreement coe�cient where DXk is the conditional
distribution of x given region k.

At each time t 2 [T ], oriwal receives the points xt,
finds the region kt it belongs to, and decides whether
to pass this point to the sub-routine eiwal in region
kt by flipping a coin At 2 {0, 1} with bias ↵kt . This
bias probability carefully chosen to minimize the label

complexity across the regions: ↵k = (ck/pk)
1/3

maxk2[n](ck/pk)1/3

where ck = log[ 16T
2|Hk|2 log(T )n

� ] and where pk = P[Xk].
If At = 1, then the point xt is passed to the eiwal
instance in region kt, which decides whether to request
the label yt, and updates its internal state.

In the appendix, we present the pseudo-code used to
convert oriwal to its batch version, b-oriwal, and
show that it exhibits a time-decreasing labeling rate of
the order O(1/T ) in the case that L⇤

k = 0 for all k and
O(1/

p
T ) otherwise. This results in the following label

complexity guarantee for b-oriwal.

Corollary 2 Fix � <
p
1/e, time horizon T � 1,

and batch size B > max{16b, 16, 2 log(T ), 4 log(2n/�)
mink2[n] qk

}.
Then with probability at least 1 � 2�, the total labels

requested by b-oriwal is bounded as follows:

when L⇤
k = 0 for all k 2 [n],

O
�
B log2(T ) +B log(1/�) +B

�

and when 9k 2 [n] such that L⇤
k > 0,

eO
�Pn

k=1 qk✓kL
⇤
kT + ✓k

p
T +B

�
,

where qk = pk↵k/
Pn

k0=1 pk0↵k0 .

The above label complexity matches that of oriwal
modulo additive Õ(B) terms. Crucially, as in the case
of b-iwal, the generalization guarantee is una↵ected
by batching, which is proven in the appendix.

4.3 The DHM algorithm

We extend the dhm algorithm [Dasgupta et al., 2008]
to the batch setting. Given a point xt, the dhm algo-
rithm decides to either request the label or assigns it a
carefully chosen pseudolabel. Specifically, it constructs
two sets, bSt and Tt, such that bSt contains examples
with pseudolabels consistent with the best-in-class h⇤

and Tt contains examples with requested labels. The
union of these two sets is thus an i.i.d. sample from the
underlying marginal distribution on the input space.
To decide whether pseudo-label or request the label for
given a point xt, the algorithm checks if the di↵erence
of the empirical error on (bSt�1, Tt�1) of two hypoth-
esis learned via hby = LEARNH(bSt�1 [ {xt, by}, Tt�1)
for by 2 {±1} is large enough. The LEARNH(A,B)
denotes a learning algorithm that either returns hy-
pothesis h 2 H consistent with A and with minumum
error on B.
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Figure 1: Each column displays the behavior of a di↵erent online active learning algorithm on the phishing

dataset under various batch size constraints. A batch size of 1 (blue curve) corresponds to the setting where the
active learner receives a label as soon as it is requested. The top row shows the mean number of points labeled
by the respective algorithm, while the bottom row measures the mean test accuracy of the selected model, and
error bars indicate the standard error.

The pseudocode for the batch version of dhm, called
b-dhm, and the proof that this algorithm satisfies the
time-decreasing labeling rate of O(1/T ) is in the ap-
pendix. Then, the following label complexity bound
holds where ✓0 is given by Definition 2 in Dasgupta
et al. [2008].

Corollary 3 Fix � <
p
1/e, constant c > 0, time hori-

zon T � 1, and batch size B > max{16b, 16, 2 log(T )}.
Then with probability at least 1 � 2�, the total labels

requested by b-dhm is bounded by: O
�
c✓0L(h⇤)T +

B log2(T ) +B log(1/�) +B
�
.

Once again, the label complexity of this batch algorithm
admits, ignoring logarithmic terms, an additive linear
dependence on the batch size B. In the appendix, we
prove that the generalization guarantee of b-dhm is of
the same order as dhm.

5 Empirical Verification

We empirically measure the e↵ect of batching on online
active learning algorithms, in the particular case of
iwal, oriwal, and dhm algorithms discussed in the
previous section. We conduct the evaluation using six
di↵erent publicly available benchmark datasets: a9a,
cod-rna, covtype, HIGGS, mnist, and phishing.3 For
each dataset, the features are normalized to have zero
mean and unit variance and subsequently scaled to
ensure the maximum feature vector has unit norm.
Furthermore, for each dataset, a finite hypothesis set of
logistic regression models is generated to serve as the
hypothesis set H. Each evaluation averages 10 trials,
each with a random unlabeled pool and test set split.

3
https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/

For details on the size of unlabeled pool and test fold,
the number of features, the numbers of hypotheses,
and hyperparameter settings used for each dataset,
please refer to Appendix C. Details regarding plotting
methodology are also found in the same appendix.

Figure 1 displays performance on the phishing dataset.
Ignoring lower-order dependencies on T and logarith-
mic factors, Corollaries 1, 2 and 3 predict that the
cumulative number of labels requested should appear
as aT + B for some problem-dependant constant a.
Indeed, for each algorithm, the number of labels re-
quested increases with at most an additive dependence
on the label query batch size, as is suggested by the
additive dependence found in their respective label
complexity bounds. Furthermore, we also observe that
the test accuracy is essentially una↵ected by the batch
size, as suggested by the corresponding generalization
guarantees. Due to space constraints, results for the re-
mainder of the datasets for all three algorithms, which
show similar behavior, are presented in Appendix C.
Overall, we find that the empirical results corroborate
the theoretical results of the previous sections.

6 Conclusion

We presented an analysis of the batch online active
learning setting, which is directly motivated by prac-
tical constraints. We bound the label complexity of a
generic batch online active learning algorithm, showed
that the result can be applied to several well-studied
online active learning algorithms, and verified the find-
ings empirically. Future directions include analyzing
batching e↵ects in pool-based settings. In such settings,
additional requirements, such as enforcing diversity of
examples within a batch, may be necessary.
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