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Abstract accuracy fails to account for the behaviour of a model in ad-

We investigate adversarial robustness of Gaus-
sian Process Classification (GPC) models. Given
a compact subset of the input space 7 C R¢
enclosing a test point * and a GPC trained on
a dataset D, we aim to compute the minimum
and the maximum classification probability for
the GPC over all the points in 7. In order to
do so, we show how functions lower- and upper-
bounding the GPC output in 7" can be derived,
and implement those in a branch and bound op-
timisation algorithm. For any error threshold
e > 0 selected a priori, we show that our al-
gorithm is guaranteed to reach values e-close to
the actual values in finitely many iterations. We
apply our method to investigate the robustness
of GPC models on a 2D synthetic dataset, the
SPAM dataset and a subset of the MNIST dataset,
providing comparisons of different GPC training
techniques, and show how our method can be
used for interpretability analysis. Our empirical
analysis suggests that GPC robustness increases
with more accurate posterior estimation.

1 INTRODUCTION

Adversarial examples (i.e. input points intentionally
crafted to trick a model into misclassification) have raised
serious concerns about the security and robustness of mod-
els learned from data (Biggio & Roli, POTR). Since test
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versarial settings, the development of techniques capable of
quantifying the adversarial robustness of machine learning
models is an essential pre-condition for their application in
safety-critical scenarios (Kibeiro ef-al’, ZOT6). In particular,
Gaussian Processes (GPs), thanks to their favourable ana-
lytical properties, allow for the computation of the uncer-
tainty over model predictions in Bayesian settings, which
can then be propagated through the decision pipeline to
facilitate decision-making (Rasmussen, 2004). However,
while techniques for the computation of robustness guaran-
tees have been developed for a variety of non-Bayesian ma-
chine learning models (Kafzefall, 20T7; Huang et al., 2017,
Biggio & Roli, POTR), to the best of our knowledge studies
of adversarial classification robustness of GPs have been
limited to statistical (i.e. input distribution dependent) (Ab-
delaziz, POT7) and heuristic analyses (Grosse ef all, DOTS;
Bradshaw ef all, D(017), and methods for the computation of
adversarial robustness guarantees are missing.

In this work, given a trained GP Classification (GPC)
model and a compact subset of the input space T C R<,
we pose the problem of computing the maximum and mini-
mum of the GPC class probabilities over all z € T. We
show that such values naturally allow us to compute ro-
bustness properties employed for analysis of deep learning
models (Ruanefal’, Z0TR), e.g. can be used to provide guar-
antees of non-existence of adversarial examples and for the
computation of classification ranges for sets of input points.
Unfortunately, exact direct computation of the maximum
and minimum class probabilities over compact sets is not
possible, as these would require providing an exact solu-
tion of a global non-linear optimisation problem, for which
no general method exists (Neumaier, P20004)). We show how
upper and lower bounds for the maximum and minimum
classification probabilities of GPCs can be computed on
any given compact set 7', and then iteratively refine these
bounds in a branch and bound algorithmic scheme until
convergence to the minimum and maximum is obtained.
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Specifically, through discretisation of the GPC latent space,
we derive an upper and lower bound on the GPC class con-
fidence output by analytically optimising a set of Gaussian
integrals, whose parameters depend upon extrema of the
GPC posterior mean and variance in 7. We show how the
latter can be bounded by solving a set of convex quadratic
and linear programming problems, for which solvers are
readily available (Boyd & Vandenberghe, P0004). Finally,
for any given error tolerance € > 0, we prove that there ex-
ists a discretisation of the latent space that ensures conver-
gence of the branch and bound to values e-close to the ac-
tual maximum and minimum class probabilities in finitely
many steps. The method we propose is anytime (the bounds
provided are at every step an over-estimation of the actual
classification ranges over 7', and can hence be used to pro-
vide guarantees) and e-exact (the actual values are retrieved
in finitely many steps up to an error e selected a-priori).

We apply our approach to analyse the robustness profile
of GPCs on a two-dimensional dataset, the SPAM dataset,
and a feature-based analysis of a binary and a 3-class sub-
set of the MNIST dataset. In particular, we compare the
guarantees computed by our method with the robustness
estimation approximated by adversarial attack methods for
GPCs (Grosse“ef al, POTX), discussing in which settings
the latter fails. Then, we analyse the effect of approximate
Bayesian inference techniques and hyper-parameter optimi-
sation procedures on the GPC adversarial robustness. In-
terestingly, across the three datasets analysed here, we ob-
serve that approximation based on Expectation Propagation
(Minka, P00T) gives more robust classification models than
Laplace approximation (Rasmussen, P004), and that GPC
robustness increases with the number of training epochs.
Finally, we show how robustness can be used to perform in-
terpretability analysis of GPC predictions and compare our
methodology with LIME (Ribeira ef-all, DUTH).

In summary, the paper presents the following contributions:

o We develop a method for computing lower and upper
bounds for GPC probabilities over compact sets.

e We incorporate the bounding procedure in a branch
and bound algorithm, which we show to converge for
any specified error € > 0 in finitely many steps.

e We empirically evaluate the robustness of a variety of
GPC models on three datasets, and demonstrate how
our method can be used for interpretability analysis.

Related Work Different notions of robustness have been
studied for GPs. For instance, Kim & Ghahramani (200X)
consider robustness against outliers, while Hernindez-
LCobafo ef al] (Z0TT) study robustness against labelling er-
rors. In this paper we consider robustness against local ad-
versarial perturbations, whose quantification for Bayesian
models is a problem addressed in several papers. Heuris-
tic approaches based on studying adversarial examples are

developed by Grosse et all (20T8); Feinman ef al] (Z0T7).
Formal guarantees are derived by Cardelli_efal” (Z0T9H);
Bogunovic et al] (Z01X); Smifh_ef all (Z0T9) for GPs and
by Cardelli"ef-al’ (2(1192a) for Bayesian neural networks. In
particular, Cardelli"ef all (Z0T9H) derive an upper bound on
the probability that there exists a point in the neighbour-
hood of a given test point of a GP such that the prediction
of the GP on the latter differs from the initial test input
point by at least a specified threshold, whereas Bogunovic
ef all (POIX) consider a GP optimisation algorithm in which
the returned solution is guaranteed to be robust to adversar-
ial perturbations with a certain probability. The problem
and the techniques developed in this paper are substantially
different from both of these. First, we consider a classi-
fication problem, for which the bounds in the referenced
papers cannot be applied due to its non-Gaussian nature.
Then, the approach in this paper gives stronger (i.e., non-
probabilistic) guarantees, is guaranteed to converge to any
given error € > 0 in finite time, and is anytime (i.e., at any
time it gives sound upper and lower bounds of the classifi-
cation probabilities). This also differs from Cardelli"ef al’
(20T92a), where the authors consider statistical guarantees
that require the solution of many non-linear optimisation
problems (one for each sample from the posterior distribu-
tion). Our approach also differs from that in Smifh"ef al
(20719), where the authors give guarantees for GPC in a bi-
nary classification setting under the Ly-norm and only con-
sider the mean of the distribution in the latent space with-
out taking into account the uncertainty intrinsic in the GPC
framework. In contrast, our approach also considers multi-
class classification, takes into account the full posterior dis-
tribution and allows for exact (up to € > 0) computation
under any L,-norm.

2 BAYESIAN CLASSIFICATION WITH
GAUSSIAN PROCESSES

In this section we provide background for classification
with GP priors. We consider the classification problem as-
sociated to a dataset D = {(z,y) |z € RY,y € {1,...,C}}.
In GPC settings, given a test point z* € RY, the probability
assigned by the GPC to z* belonging to class c is given by:

7 (a"|D) = / o (Dp(f () = FID)IF, (1)

where f(z*) = [f'(z*),..., f¢(z*)] is the latent func-
tion vector, ¢ : RY — [0, 1] is the likelihood function
for class ¢, p(f(z*) = f|D) is the predictive posterior dis-
tribution of the GP, and the integral is computed over the
C-dimensional latent space (Rasmmnssen, 2004). The vector
of class probabilities, I1(z*) = [7'(z*|D), ..., 7% (z*|D)],
can be computed by iterating Eqn (0) for each class ¢ =
1,...,C. Of particular interest in applications is the binary
classification case (i.e., when C=2), which leads to a sig-
nificant simplification of the inference equations and tech-
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niques, while still encompassing important practical appli-
cations (Nickisch & Rasmussen, P00X) (notice that the bi-
nary case can be used for multi-class classification as well
by means of, e.g., one-vs-all classifiers (Rasmussen, D004
Hsu & Tin, D0072)). More specifically, in this case it suf-
fices to compute 7 (x*|D) = [ o(f)p(f(a*) = f|D)df :=

7l(2*|D), with f being a univariate latent function and set-
ting 7%(2*|D) := 1 — n(2*|D). In other words, when C' =
2 the latent space of the GPC model is one-dimensional.

Unfortunately, even under the GP prior assumption, the
posterior distribution in classification settings, p(f(z*) =
fID), is non-Gaussian and intractable (Rasmiissen, 2004).
Several approximation methods have been developed to
perform GPC inference, either by sampling (e.g. Markov
Chain Monte Carlo), or by developing suitable analytic
approximations of the posterior distribution. In this work
we focus on Gaussian analytic approximations, that is, we
employ GPC methods that perform approximate inference
of p(f(z*) = f|D) by estimating a Gaussian distribution
a(f(@*) = JID) = N(f|p(e*),(x")). The latter is
then used at inference time in Eqn () in place of the exact
posterior p(f(x*) = f|D)". In particular, in Section B we
will give experimental results for when ¢ is derived using
either Laplace approximations (Williams_& Barbet, T99R)
or Expectation Propagation (EP) (Minka, P0O01). However,
we remark that the methods presented in this paper do not
depend on the particular Gaussian approximation method
used and can be trivially extended to the case where ¢ is a
mixture of Gaussian distributions.

3 ADVERSARIAL ROBUSTNESS

Given a GPC model trained on a dataset D and a test point
x*, we are interested in quantifying the adversarial robust-
ness of the GPC in a neighborhood of z*. To do so, for
a compact set T and a class ¢ € {1,...,C}, we pose the
problem of computing the minimum and the maximum that
the GPC assigns to the probability of class c in 7, that is:

e (T):=

min

T):= max m(z|D) (2)

min 7 (@D) Ty
The computation of the classification extrema in 7" allows
us to determine the reachable interval of class probabilities
over T'. In the case in which T is defined as a neighborhood
around a test point z*, Eqn (I) provides a quantification of
the local GPC robustness at x*, that is, against local adver-
sarial perturbations. Unfortunately, exact computation of
Eqgn (D) involves the solution of two non-linear optimisa-
tion problems, for which no general solution method exists.
Nevertheless, in Section B we derive a branch and bound
scheme for the anytime computation of the classification
ranges of Eqn (D) that is guaranteed to converge in finitely
many iterations up to any arbitrary error tolerance € > 0.

"'With an abuse of notatlon 1n the rest of the paper we will
consider ¢ =[o° z*) = f|D)df.

In what remains of this section we discuss two notions of
adversarial robustness employed for the analysis of deep
learning models (Ruan_ef-all, POTS) that arise as particular
instances of Eqn (B), which will be investigated in the ex-
perimental results discussed in Section B.

Definition 1. (Adversarial Local Robustness) Let T C R?
and x* € T. Then, for § > 0 we say that the classification
of x* is 6—robust in T iff Vx € T, [II(z*) — (z)| < 4,
where | - | is a given norm.

If T is a y—ball around a test point x*, then robustness de-
fined in Definition [ allows one to quantify how much, in
the worst case, the prediction in z* can be affected by in-
put perturbations of radius no greater than . Adversarial
examples are defined in terms of invariance of the classifi-
cation in 7" w.r.t. the label of a test point x*. For the case of
the Bayesian optimal classifier, this is defined as follows.

Definition 2. (Adversarial Local Safety) Let T C R¢
and x* € T. Then, we say that the classification of x*
is safe in T iff Vo € T, argmax.cqy . oy 7(x|D) =
argmax,c () oy (" |D).

Adpversarial local safety establishes whether adversarial ex-
amples exist in 7', yielding formal guarantees against ad-
versarial attacks for GPCs. If we again consider 7' to be
a y—ball around z*, the satisfaction of Definition @ guar-
antees that it is not possible to cause a misclassification by
perturbing 2* by a magnitude of up to 2.

4 BOUNDS FOR BINARY
CLASSIFICATION

In this section we show how the classification ranges of a
two-class GPC model in any given compact set 7 C R?
can be computed up to any arbitrary precision € > 0. As
explained in Section [, the latent space of the GPC model
is one-dimensional in this case, and we thus omit the class
superscript ¢ in this section. The extension to the multi-
class scenario is then described in Section B. Proofs for the
results stated are given in the Supplementary Material.

Outline of Approach An outline of our approach is de-
picted in Figure [ for the computation of 7, (T') over a
one-dimensional set 7" plotted along the x-axis (the method
for the computation of 7.y (7") is analogous). For any
given region 7" we aim to compute lower and upper bounds
on both 7y, (T') and 7ax (T'), that is, we compute real val-

ues 7Tanin (T)’ Trg;in( )’ max( ) and Trmax(T) such that:
ﬂ-ll;lin( ) <7rmln( ) Tin (T) (3)
,/Tfrllax( ) <7TmaX(T) max(T)‘ (4)

’In the multiclass case to check if z* is safe in 7', for
¢ = argmax., ¢} 7 (z7|D), we need to check that
minger (7°(z|D) — maxcxz 7°(z|D)) > 0, which can be com-
puted with a trivial extension of the results presented in this paper.
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Figure 1: Left: Computation of upper and lower bounds on 7y, (T°), i.e. the minimum of the classification range on the
search region T'. Right: The search region is repeatedly partitioned into sub-regions according to Algorithm [ (only first
partitioning visualised), reducing the gap between best lower and upper bounds until convergence (up to €) is reached.

In order to do so, we compute a lower and an upper
bound function (the lower bound function is depicted with
a dashed red curve in Figure ) to the GPC output (solid
blue curve) in the region 7. We then find the minimum
of the lower bound function, 71, (T) (shown in the plot),
and the maximum of the upper bound function, wgwx (T
(not shown). Then, valid values for 7. (T) and 7L, (T)
can be computed by evaluating the GPC on any point in T’
(a specific 7Y, (T') is depicted in Figure 0). Finally, we
iteratively refine the lower and upper bounds computed in
T with a branch and bound algorithm. Namely, the region
T is recursively subdivided into sub-regions, for which we
compute new (tighter) bounds, until these converge up to a
desired tolerance € > 0.

Computation of Bounds In this paragraph we show how to
compute 7Y (T), an upper bound on the maximum, and
L

7o (1), @ lower bound on the minimum of the GPC out-
puts. We work on the assumption that the likelihood func-
tion o(f) is a monotonic, non-decreasing, and continuous
function of the latent variable (notice that this is satisfied by
commonly used likelihood functions, e.g., logistic and pro-
bit (Kim & (Ghahramani, P00G)). In the following proposi-
tion we show how the GPC output can be upper- and lower-

bounded in 7" by a summation of Gaussian integrals.
Proposition 1. Ler S = {S; | i € {1,...N}} be a partition
of R (the latent space) in a finite set of intervals. Call a; =
infreg fandb; =supgcg, [. Then, it holds that:

N b;
>3 ola)mip [ N(luta)

Tmin (T 2 min X(z)df (5)
N b;
max f E d _7
s (T) < 3 o0 mas | M) 2waf. @
where p(z) and %(x) are mean and variance of the predic-

D).

Proposition M guarantees that the GPC output in 7' can
be bounded by solving N optimisation problems. Each
of these problems seeks to find the mean and variance

tive posterior q(f(z) =

that maximise or minimise the integral of a Gaussian over
T. This has been studied by Caunchi ef—all (2019) for
variance-independent points and is generalised in the fol-
lowing proposition. We introduce the following notation
for lower and upper bounds on mean and variance in 7":

pr <minp(e)  pp > max p(z) @)
nh< » > »
7 < min () Xp > max (), ®)

Then by inspection of the derivatives of the integrals in

Eqns (B) and (B) the following proposition follows.
Proposition 2. Let p™ b and ¥™(p) =

W=l == 7o it holds that:

2log =2
b - b -
max [ N (fluto), S@)df < [ N(fimS)af
= 1 (erf B —a> — erf M_b>> )
2 2% 2%
b b
min [ N (Fluo), S@)if = [ ATl S)af
1 p—a pn—">
=3 (erf m) erf (\/ﬁ)) (10)
where: [ = argmin,ep,z v lu™ — u| and 2

[a,b], otherwise Y =
Y|. Analogously, for the min-

is equal to E:Lp if w €
arg mingc sz wuy |57 () —
imum we have: i = argmaxcp,L ,u vy |p™ — | and
X = argmingesr yuy[erf(blp, X) — erf(a|ﬁ7 %))

That is, given lower and upper bounds for the a-posteriori
mean and variance in 7', Proposition [ allows us to ana-
lytically bound the N optimisations of Gaussian integrals
posed by Equations (8) and (6). Through this, we can com-
pute values for 72, (T) and 75, (T), which satisfy the
LHS of Eqn (B) and the RHS of Eqn (8). Furthermore, note
that by definition of Tmin(7T) and 7max(7T'), we have that,
for every # € T, setting 77, (T) = £, (T) = =(z)

provides values which satisfy the RHS of Eqn (B) and the
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LHS of Eqn (8) (in the Supplementary Material we discuss
how to pick values for z to speed up convergence). De-
tails on the computation of bounds for the a-posteriori mean
and variance are discussed in the Supplementary Material.
Interestingly, when the (scaled) probit function is chosen
for the likelihood, o(f), then the inference integral over
q(f(z*) = f|D) can be expressed in closed form (Ras-
mussen, 2004), which leads to a simplification of Proposi-
tion [Il. Details are given in the Supplementary Material.

Branch and Bound Algorithm In this paragraph we im-
plement the bounding procedure into a branch and bound
algorithm and prove convergence up to any a-priori spec-
ified ¢ > 0. We summarise our method for computation
Of 7min (T) in Algorithm 0, which we now briefly describe
(analogous arguments hold for m,,x(7")). After initialis-
ing 7L, (T) and 7Y, (T) to trivial values and initialising
the exploration regions stack R to the singleton {T'}, the
main optimisation loop is entered until convergence (lines
2-9). Among the regions in the stack, we select the region
R with the most promising lower bound (line 3), and refine
its lower bounds using Propositions [0 and O (lines 4-5) as
well as its upper bounds through evaluation of points in R
(line 6). If further exploration of R is necessary for con-
vergence (line 7), then the region R is partitioned into two
smaller regions 1?; and Ry, which are added to the regions
stack and inherit R’s bound values (line 8). Finally, the
freshly computed bounds local to R C T are used to up-
date the global bounds for T' (line 9). Namely, 7. (T) is
updated to the smallest value among the %, (R) values for
R € R, while 77, (T) is set to the lowest observed value

yet explicitly computed in line 6.

Algorithm 1 Branch and bound for i, (7')

Input: Input space subset T'; error tolerance € > 0; latent
mean/variance functions u(-) and X(-) of ¢(f(z) = f|D)

Output: Lower and upper bounds on 7y (7)) with
Tionin(T) = Thin(T) <€

1: Initialisation: ~ Stack of regions R <+ {T};

Trlllllin(T) < —003 TrnUlin(T) — +0o0
2: while 7Y, (T) — =L, (T) > edo

3:  Selectregion R € R with lowest bound 7%, (R)
and delete it from stack

4:  Find bounds [, u%] and [SE, U] for latent
mean and variance functions over R
5: Compute 7L, (R) from [uk, u¥] and [ELXY)

using Propositions 0 and

6:  Find 7Y, (R) by evaluating GPC in a point in R
7: if 77, (R) — wL. (R) > ¢ then

®

Split R into two sub-regions R, Ro, add them
to stack and use 7. (R), 7Y, (R) as initial

min s 'min

bounds for both sub-regions
9:  Update 7. (T) and 7Y, (T') with current best

bounds found
10: return [rL, (T), 7Y, (T)]

min

For our approach to work, it is crucial that Algorithm 1 con-
verges, i.e. that the loop of lines 2 — 9 terminates. Given an
a-priori specified threshold e, Theorem [ ensures that there
exists a latent space discretisation such that the bounding er-
ror (i.e. the difference between the upper and lower bound)
vanishes. Thanks to the properties of branch and bound al-
gorithms (Balakrishnan_ef all, T991), this guarantees that
our method converges in finitely many iterations.

Theorem 1. Assume 11 : R* — Rand ¥ : R* — R are
Lipschitz continuous in T C R™. Then, for ¢ > 0, there
exists a partition of the latent space S and r > 0 such that,
for every R C T of side length of less than r, it holds that
|Tiin (R) — T (R)| < € and |7, (R) — m, (R)| < e
Computational Complexity Proposition D implies that
the bounds in Proposition [ can be obtained in O(NV), with
N being the number of intervals the real line is being par-
titioned into (this scales like % as discussed in the proof
of Theorem ). Computation of uk and 1Y is performed
in O(|D|), while obtaining X% involves the solution of a
convex quadratic problem in d + |D| variables, where d is
the dimension of the input space. Solving for Z% requires
the solution of 2|D| + 1 linear programming problems in
d+|D| dimensions. Refining through branch and bound has
a worst-case cost exponential in the number of non-trivial
dimensions of 7. The CPU time required for convergence
of our method is analysed in the Supplementary Material.

S MULTICLASS CLASSIFICATION

In this section we show how the results for binary classifi-
cation can be generalised to the multi-class case. Given a
classindex ¢ € {1,...,C}, we are interested in computing
upper and lower bounds on 7¢(x|D) for every x € T. In
order to do so, we extend Proposition [ to the multi-class
case in Proposition B, and show that the resulting multi-
dimensional integrals can be reduced to the two-class case
by marginalisation (Proposition ).

Proposition 3. Let S = {S; | i € {1,..N}} be a finite
partition of RY (the latent space). Then, forc € {1, ...,C}:

Proposition B guarantees that, for all z € T, 7¢(x|D) can
be upper- and lower-bounded by solving 2N optimisation
problems. In Proposition B, we show that upper and lower
bounds for the integral of a multi-dimensional Gaussian dis-
tribution, such as those appearing in Proposition B, can be
obtained by optimising uni-dimensional integrals over both
the input and latent space. In what follows, we call p;.;(z)
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the subvector of 11(x) containing only the components from
i to j, and similarly we define X;.1, j.;(x), the submatrix of
Y (x) containing rows from ¢ to k& and columns from j to .

Proposition 4. Ler S = [[ 1[k}, k?] be an axis-parallel
hyper-rectangle. Fori € {1, .. —1}and f € RC—17,
defineZ :=i1+1:C and:

il (@) = piw) = Siz(@)S7 7 (f ~ pz ()
o/ (2) = Tii(x) - i ()T 55 ().
Let St = H] i1 [k}, K3], then we have that:
ke
mise [ N(elta). 2(a) < ma | Nelne(w),
Yo,o(z))dz H meaxl/ N (zlpd (), 21 (2))dz

i=1 fegit

i [ N(elua). 5(@)) = min [ N( lHo(@),

c-1
Yo.olx))dz H min J\/( 2|ud (z), 21 (2))dz.
=1 fzgl‘F k

Proposition B reduces the computation of the bounds for
the multi-class case to a product of extrema of univariate
Gaussian distributions for which Proposition @ can be iter-
atively applied. Analogously to what we discussed for the
binary case, the resulting bound can be refined through a
branch and bound algorithm to ensure convergence up to
any desired tolerance € > 0. Notice that the computational
complexity for the multi-class case is exponential in C'.

6 EXPERIMENTAL RESULTS

We employ our methods to experimentally analyse the ro-
bustness profile of GPC models in adversarial settings®.
We give results for three datasets: (i) Synthetic2D, gen-
erated by shifting a two-dimensional standard-normal ei-
ther along the first dimension (class 1) or the second one
(class 2); (ii) the SPAM dataset (Dua"& Gratt, DOT7); (iii) a
subset of the MNIST dataset (LeCun, T998) with classes
3 and 8 (MNIST38) and a subset with classes 3, 5 and
8 (MNIST358). For scalability, results for MNIST38 are
given for feature-level analysis (as done in Ruan_ef al
(PO1R) for deep networks). Namely, we analyse either
salient patches detected by SIFT (Cowe, 2004) or we se-
lect the relevant pixels corresponding to the shortest GP
length-scales.

6.1 Adversarial Local Safety

We depict the local adversarial safety results for four points
selected from the Synthethic2D, SPAM, and MNIST38

3Code: hitps://github.com/andreapatane/check-GPclass
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Figure 2: First row: Contour plot and test points for Syn-
thetic2D (left); projected contour plot and test points for 2
dimensions of SPAM (right, dimensions 2 and 8 as selected
by L:-penalised logistic regression); red dots mark selected
test points. Second row: Safety analysis for the two se-
lected test point. Shown are the upper and lower bounds
for tolerance € = 0.02 on Tyax(7") (solid and dashed blue
curves) and the GPFGS adversarial attack (pink curve).

datasets in Figures @ and B. To this end, we set ' C R¢
to be a L, v—ball around the chosen test point and itera-
tively increase +y (x-axis in the second row plots), checking
whether there are adversarial examples in 7". Namely, if
the point is originally assigned to class 1 (respectively class
2) we check whether the minimum classification probabil-
ity in 7' is below the decision boundary threshold, that is,
if Tmin(T) < 0.5 (resp. Tmax(T) > 0.5). We compare
the values provided by our method (blue solid and dashed
line for class 2, green solid and dashed line for class 1)
with GPFGS (Grosse’ef all, DOIR), a gradient based heuris-
tic attack for GPC (pink line). Naturally, as v increases,
the neighborhood region T becomes larger, hence the confi-
dence for the initial class can decrease. Interestingly, while
our method succeeds in finding adversarial examples in
all cases shown (i.e. both the lower and upper bound on
the computed quantity cross the decision boundary), the
heuristic attack fails to find adversarial examples in the
Synthetic2D and in the MNIST38 case. This happens as
GPFGS builds on linear approximations of the GPC func-
tion, hence failing to find solutions to Eqn (J) when there
are non-linearities. In particular, near the point selected for
the Synthetic2D dataset (red dot in the contour plot) the gra-
dient of the GPC points away from the decision boundary.
Hence, no matter the value of v, GPFGS will not go above
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Figure 3: First row: Sample of 8§ from MNIST38 along
with 10 pixels selected by SIFT (left) and sample of 3
from MNIST38 along with the 3 pixels that have the short-
est lengthscales after GPC training (right). Second row:
Safety analysis for the two images. Shown are the up-
per and lower bounds for ¢ = 0.02 on either 7,5 (T") or
Tmin (T) (solid and dashed blue resp. green curves) and the
GPFGS adversarial attack (pink curve).

0.5 in this case (pink line of the bottom-left plot). On the
other hand, for the SPAM dataset, the GPC model is locally
linear around the selected test point (red dot in top right
contour plot). Interestingly, the MNIST38 examples (Fig-
ure B)) provide results analogous to those of Synthetic2D.
While our method finds adversarial examples on both occa-
sions, GPFGS fails to do so (even with v = 1.0 which is
the maximum region possible for normalised pixel values).

6.2 Adversarial Local Robustness

We evaluate the empirical distribution of §-robustness (see
Definition M) on 50 randomly selected test points for each
of the three datasets considered. That is, given T', we com-
pute § = Tmax(T) — Tmin(7T'). Notice that a smaller value
of § implies a more robust model. In particular, we analyse
how the GPC model robustness is affected by the training
procedure used. We compare the robustness obtained when
using either the Laplace or the EP posterior approximations
technique. Further, we investigate the influence of the num-
ber of marginal likelihood evaluations (epochs) performed
during hyper-parameter optimisation on robustness.

Results are depicted in Figure 8, for 10, 40 and 100 hyper-
parameter optimisation epochs. Note that the analyses for
the MNIST38 samples are restricted only to the most in-

fluential SIFT feature, and thus ¢ values for MNIST38 are
smaller in magnitude than for the other two datasets (for
which all the input variables are simultaneously changed).
Interestingly, this empirical analysis demonstrates that
GPCs trained with EP are consistently more robust than
those trained using Laplace. In fact, for both Synthetic2D
and MNIST38, EP yields a model about 5 times more ro-
bust than Laplace. For SPAM, the difference in robust-
ness is the least pronounced. While Laplace approxima-
tion works by local approximations, EP calibrates mean
and variance estimation by a global approach, which gener-
ally results in a more accurate approximation (Rasmussen,
2004). We compare Laplace and EP posterior approxima-
tions with that made by Hamiltonian Monte Carlo (HMC)
- that is, as in Minka (Z001) we use HMC as gold stan-
dard. The empirical distances found on the posterior ap-
proximation w.r.t. HMC are on average as follows (smaller
values are better): (i) Synthetic2D - Laplace: 1.04, EP:
0.14; (ii) SPAM - Laplace: 0.35, EP: 0.32; (iii)) MNIST38 -
Laplace: 0.52, EP: 0.32. This shows a correlation between
the robustness and the posterior approximation quality in
the datasets considered. These results quantify and con-
firm for GPCs that a more refined estimation of the poste-
rior is beneficial for model adversarial robustness (Cardell:
ef_all, D019a). Interestingly, the values of § decrease as
the number of training epochs increases, thus robustness
improves with training epochs. This is in contrast to what
is observed in the deep learning literature ([[sipras et all,
20T8). More training in the Bayesian settings may imply
better calibration of the latent mean and variance function
to the observed data.

6.3 Interpretability Analysis

Finally, we show how adversarial robustness can be used
for interpretability analysis for GPC models. We provide
comparison with pixel-wise LIME (Ribeiro"ef all, DOTH),
a model-agnostic interpretability technique that relies on
local linear approximations. Given a test point * consider
the one-sided intervals T (z*) = [z*,2* 4 ~ve;] (with e;
being the vector of Os except for 1 at dimension 7). We
compute how much the maximum and minimum values can
change over the one-sided intervals in both directions:

Al (%) = (Tamax(TE(@*)) = Tmax (T, (%))
+ (Tanin (T3(2)) = Toin (T2 (27))) -

Intuitively, this provides a non-linear generalisation of nu-
merical gradient estimation (more details in Supplementary
Material) which is close to the metric used in Ribeiro_ef all
(P0186) as ~y shrinks to 0. While A’ (z*) is local to a given
x*, following LIME, global interpretability information is
obtained by averaging local results over M test points, i.e.
by computing A%, = Z;wzl AL (27).
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Figure 4: Boxplots for the distribution of robustness on the three datasets, comparing Laplace and EP approximation.

) e

Figure 5: First row: Samples selected from MNIST358.
Second row: Interpretability metric estimation using our
method. Third row: Results obtained using LIME.

Local Interpretability for MNIST358 Figure B shows
the results for three samples selected from MNIST358
(top row), with the heat maps depicting the results of
our method (second row) and those for LIME (third row,
greyed out pixels are marked as irrelevant by LIME). The
colour gradient varies from red (positive impact, pixel
value increase causing increased class probability of shown
digit) to blue (negative impact, pixel value increase decreas-
ing the class probability). For digit 3, our method obtains
for example a contiguous blue patch on the left. Increasing
the values of these pixels would modify the 3 into an 8. In-
deed, when whitening the pixels of the blue patch, the class
3 probability assigned by the model decreases from 0.58
to 0.40. Similarly, for digit 5, our methods identify a blue
patch that would change the 5 into an 8 and again the GPC
model indeed lowers its class 5 probability when the patch
is whitened. Similarly, for digit 8, our method identifies
a blue patch of 3 pixels towards the top left, which would
turn it into something resembling digit 3 if whitened.

Global Interpretability for the Binary Datasets We
perform global interpretability analysis on the GPC models
trained on the Synthetic2D and SPAM datasets, using 50

= LIME
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Figure 6: Global feature sensitivity analysed by LIME and
our metric Afy. All values normed to unit scale for better
comparison. Top: Results for Synthetic2D dataset mapped

out on plane. Bottom: Results for SPAM dataset.

random test points. The results are shown in Figure B. For
Synthetic2D (top row), LIME suggests that a higher prob-
ability of belonging to class 1 (depicted as the direction of
the arrow in the plot) corresponds to lower values along di-
mension | and higher values along dimension 2. As can
be seen in the corresponding contour plot in Figure I (top
left), the exact opposite is true however. LIME, being built
on linearity approximations, fails to take into account the
global behaviour of the GPC. When using a small value of
~ our approach obtains similar results to LIME. However,
with v = 2.0 the global relationship between input and out-
put values is correctly captured. For SPAM, on the other
hand (Figure B, bottom), due to linearity of the dataset and
GPC, a local analysis correctly reflects the global picture.

7 CONCLUSION

We presented a method for computing, for any compact set
of input points, the class probability range of a GPC model
across all points in that set, up to any precision € > 0.
This allows us to analyse robustness and safety against ad-
versarial attacks, which we have demonstrated on multiple
datasets and approximate Bayesian inference techniques.
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