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Abstract

Thompson Sampling is a well established ap-
proach to bandit and reinforcement learn-
ing problems. However its use in contin-
uum armed bandit problems has received rel-
atively little attention. We provide the first
bounds on the regret of Thompson Sampling
for continuum armed bandits under weak
conditions on the function class containing
the true function and sub-exponential ob-
servation noise. Our bounds are realised
by analysis of the eluder dimension, a re-
cently proposed measure of the complexity
of a function class, which has been demon-
strated to be useful in bounding the Bayesian
regret of Thompson Sampling for simpler
bandit problems under sub-Gaussian obser-
vation noise. We derive a new bound on the
eluder dimension for classes of functions with
Lipschitz derivatives, and generalise previous
analyses in multiple regards.

1 Introduction

Thompson Sampling (TS) (Thompson, 1933; Russo
et al., 2018) is a Bayesian approach to sequential de-
cision making problems that has been widely applied
and found to have both strong empirical performance
and desirable theoretical properties. A major advan-
tage of TS is it can typically be extended to new prob-
lems in a straightforward manner, with empirical suc-
cess and without a need to tune parameters or rely
on detailed theory to design an algorithmic structure.
Two of its shortcomings, however, are that it may be
more challenging to analyse theoretically than related
approaches, and that for complex problems it may of-
ten only be implemented approximately, since it relies
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on draws from the distribution on the reward function.
As a result of these challenges, theoretical guarantees
on TS are mostly limited to parametric bandit prob-
lems.

Russo and Van Roy (2014) introduced a general an-
alytical technique, based on a measure of problem
complexity called the eluder dimension, and applied
it to analyse the performance of TS on a family of
parametric bandit problems. In this paper we show
how this eluder-dimension-based analysis can be gen-
eralised substantially. We provide new order-optimal
performance guarantees for TS on non-parametric
continuum-armed bandit problems whose reward func-
tions have a number of Lipschitz derivatives. These
guarantees provide insights into the performance of
exact TS which significantly advance current under-
standing, and also serve as empirical benchmarks and
analytical tools for future analyses of approximate TS.

1.1 Bandit Problems

Multi-armed bandit (MAB) problems (Lattimore and
Szepesvári, 2018) are classic models of exploration-
exploitation dilemmas in sequential decision making
problems. Among the most general of these is the
stochastic Continuum-Armed Bandit (CAB) problem
(Agrawal, 1995). The CAB models a scenario in
which a decision-maker repeatedly selects actions, rep-
resented by elements a of an action set A ⊆ Rd. Tak-
ing an action grants the decision-maker a reward which
is a noisy perturbation of some function f : A → R,
called the reward function, at the selected action a.
The decision-maker’s objective is to maximise the sum
of the rewards they receive over some finite number of
actions, without knowledge of f .

Effective strategies toward realising this objective will
exhibit an appropriate balance between selecting ‘ex-
ploratory’ actions, which aim to learn the function
f across A to gain confidence in the location of its
maximum, and ‘exploitative’ actions, which target re-
gions where f is empirically suggested to take large
values in order to maximise the sum of rewards. This
need to balance between exploration and exploitation
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is present in simpler bandit problems (e.g. those where
the set A is finite, or where the function f is known to
have a simple parametric form). However in the more
general CAB setting, where we have limited assump-
tions on f , realising this balance has historically been
more challenging.

1.2 Thompson Sampling

Thompson Sampling (TS), also referred to as posterior
sampling, is a Bayesian approach to sequential decision
making problems which aims to achieve an appropriate
balance between exploration and exploitation through
randomisation (Thompson, 1933; Russo et al., 2018).

Over a sequence of rounds t ∈ N, the decision-maker
utilising TS selects actions by sampling a function f̃t
from their current posterior belief on the form of the
true reward function f , and then selecting an action
at ∈ A which maximises f̃t - i.e. an action that would
be expected to contribute optimally to the cumulative
reward if f̃t were the true reward function. Figure 1
illustrates a single step of TS on a CAB.

TS therefore encourages exploration since the poste-
rior distribution has more uncertainty on the value of
f in regions of A where few actions have been selected.
TS gradually favours exploitation as the posterior dis-
tribution naturally contracts around f and sampled
functions have maxima in similar locations to f .

TS has been shown empirically to be highly effective
in a wide range of bandit problems (Chapelle and Li,
2011; Russo et al., 2018), and theoretical results (May
et al., 2012; Kaufmann et al., 2012; Agrawal and Goyal,
2012; Russo and Van Roy, 2014, etc.) have confirmed
this in numerous settings where the reward function
may be written in terms of a finite set of parameters.
The idea of TS extends readily to nonparametric re-
ward functions, but has received little attention in the
literature. We believe that this is, in part, due to the
challenges of theoretical analysis and precise inference
in complex Bayesian models.

Recently, tools have been developed that mean these
challenges are not as insurmountable as they once
were. Algorithms for approximate Bayesian inference,
such as sequential Monte Carlo and variational infer-
ence, have become increasingly sophisticated in recent
years, to the point that high quality approximations to
TS are now feasible (Lu and Van Roy, 2017; Urteaga
and Wiggins, 2018a,b).

On the theoretical side, Russo and Van Roy (2014) in-
troduce a general analytical approach for deriving per-
formance guarantees for TS in bandit problems. This
method is based on characterising the entropy of the
function class in which possible reward functions are

contained, via a quantity called the eluder dimension.
In Russo and Van Roy (2014) this technique was suc-
cessfully used to analyse the performance of TS on
bandit problems with (generalised) linear reward func-
tions.

Russo and Van Roy’s technique can be applied much
more widely. In this paper, we show that the method
for deriving performance guarantees in terms of the
eluder dimension can be extended to CABs whose re-
ward functions are members of non-parametric func-
tion classes. We show that TS achieves order opti-
mal performance subject to sufficient conditions on
the smoothness of these functions (that they have in-
finitely many Lipschitz derivatives). We further for-
malise the framework in which this is achievable in
the following subsection.

1.3 Model

We specify a general CAB problem as a tuple
(A, f0, pη), where A is the set of available actions,
f0 : A → R is the unknown reward function, and pη is
the distribution of the reward noise. We model f0 as
being a sample from p0, a non-parametric prior on a
function class F whose nature we will specify later.

In a sequence of rounds t ∈ [T ] ⊆ N, the decision-
maker selects an action at ∈ A and receives a reward
Rt = f0(at) + ηt, which is a noisy perturbation of the
reward function at at with noise terms ηt distributed
according to pη. Let Ht = σ(a1, R1, . . . , at, Rt) be the
σ-algebra induced by the history of the first t actions
and rewards. We assume that for t ∈ [T ], ηt is (σ2, b)-
sub-exponential conditioned on at, meaning

E
(
eληt |Ht−1, at

)
≤ eλ

2σ2

2 , ∀ |λ| ≤ 1

b
. (1)

The noise terms ηt are also assumed to be conditionally
independent given the actions at, t ∈ [T ].

We are interested in the performance of TS as a policy
to select actions at for t ∈ [T ]. Let pt denote the
posterior distribution on f0 conditioned on Ht and let
f̃t be a sample from pt. The TS approach is the one
which chooses an action at ∈ argmaxa∈A f̃t−1(a) in
round t, breaking ties arbitrarily if the maximiser is
non-unique.

We principally concern ourselves with the Bayesian re-
gret of TS in T rounds, given as

BR(T ) = Ep0
( T∑
t=1

max
a∈A

f0(a)− f0(at)

)
, (2)

where Ep0 denotes expectation with respect to the
prior p0. In particular, we are interested in bounding
the Bayesian regret as a function of T for particular
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Figure 1: Illustrative example of Thompson Sampling in a round t ∈ N. The first (leftmost) pane displays
a credible interval of a posterior pt−1 on F in green, and a true reward function f0 ∈ F in black. In the
second pane the blue curve represents a function f̃t sampled from pt−1. In the third pane, the choice of action
at ∈ argmaxa∈[0,1] f̃t(a) is highlighted in red, along with a reward observation R(at) highlighted as a red dot.
Finally, the fourth pane displays the posterior πt updated on the basis of (at, R(at)).

A and F , and the order with respect to T that such
bounds possess. We will also derive lower bounds on
the frequentist regret of any algorithm. The frequen-
tist regret,

Reg(T ) = T max
a∈A

f0(a)−
T∑
t=1

E
(
f(at) | f = f0

)
,

is similar to the Bayesian regret (2), the only difference
being that the expectation is (as the name suggests) a
frequentist expectation conditioned on a fixed reward
function f0, whereas the Bayesian regret additionally
takes the expectation of the frequentist regret with
respect to this reward function f0. Frequentist regret
bounds which are available for any function f0 may
then be seen as uniform bounds on the Bayesian regret
for any prior. We will assess the performance of TS
by considering the gap (if any) between the order of
the upper and lower bounds. We note that while the
analytical tools to upper bound the frequentist regret
of non-parametric TS are not currently available, the
Bayesian regret is still a useful, and indeed natural,
metric to consider in the Bayesian framework.

1.4 Related Work

Numerous authors have studied the frequentist re-
gret of TS in bandit problems, with varying assump-
tions on the action set, feedback mechanism and re-
ward noise distribution (May et al., 2012; Agrawal and
Goyal, 2012; Kaufmann et al., 2012; Korda et al., 2013;
Komiyama et al., 2015; Wang and Chen, 2018). None
of these works address the fully nonparametric CAB.

Study of the Bayesian regret of TS originated with
Russo and Van Roy (2014). Using the eluder dimen-
sion measure of the complexity of the reward function
class they derived a bound on the Bayesian regret of
TS for general action sets and parametric reward func-
tion classes. They specialise this to bandit problems
with (generalised) linear reward functions. Quadratic

functions and applications in model-based reinforce-
ment learning are considered by Osband and Van Roy
(2014). Our paper considers a more substantial exten-
sion of this technique to reward functions with Lips-
chitz derivatives.

As already noted, one challenge in deploying Thomp-
son sampling is that sampling from the requisite pos-
terior distributions can only be carried out approxi-
mately, thus rendering the theoretical results obsolete.
Recently, Phan et al. (2019) have studied the regret of
approximations of TS, demonstrating a link between
the (assumed to be fixed) error of the approximation
and the regret of TS for K-armed bandit problems.
We do not address this aspect of the theory in the
current article.

The main alternatives to TS in CAB problems, are
upper confidence bound (UCB) approaches. These
methods, which follow from ideas in Lai and Robbins
(1985) and Auer et al. (2002) for simpler K-armed
bandits, encourage exploration by making decisions
with respect to optimistic estimates of the reward func-
tion. Certain UCB methods have been shown to have
order-optimal regret bounds in certain CAB problems.
These approaches typically employ an adaptive dis-
cretisation structure, where the action space available
at time t is limited to some At ⊂ A to force an appro-
priate level of exploration.

In particular, the ‘zooming algorithm’ of Kleinberg
et al. (2008) maintains a finite set of ‘active arms’ in A
and only selects actions from within this set. The size
of this set is gradually increased by adding arms with
high exploitative or exploratory value. The frequen-
tist regret of the zooming algorithm can be shown to
be bounded as O(T 2/3) for the CAB with Lipschtiz re-
ward function and sub-Gaussian noise. Lu et al. (2019)
extend these results to heavy-tailed reward noise dis-
tributions. This rate is known to be optimal, as Klein-
berg (2005) demonstrate that the best achievable re-
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gret is Ω(T 2/3) across all possible problem instances.

A similar approach is the Hierarchical Online Opti-
misation (HOO) algorithm of Bubeck et al. (2011a),
which discretises the action space according to a tree-
based algorithm. In Bubeck et al. (2011a) a yet more
general bandit problem is studied where the action
set may be any appropriate metric space. HOO is
shown to have frequentist regret bounded with order
O(T (d′+1)/(d′+2)) where d′ > 0 is a parameter related
to the covering number of the metric space, and na-
ture of the possible reward functions. Recent works
of Slivkins (2019) and Kleinberg et al. (2019) provide
more extensive summaries of bandits on metric spaces.

Apart from this, the special case of a CAB problem
with sub-Gaussian noise whose reward function is a
sample from a Gaussian process (GP), sometimes re-
ferred to as GP optimisation, has received particular
attention. This setting is more restrictive than ours,
but is popular because of its intersection with com-
mon modelling assumptions in Bayesian optimisation
(Shahriari et al., 2016). The GP-UCB approach of
Srinivas et al. (2010, 2012) exploits the closed-form
of the GP posterior to calculate an upper confidence
function (a combination of the mean and variance of
the posterior GP) at each round which is optimised
to select actions and enjoys optimal order regret. In
this setting both GP-UCB and a GP-based variant of
TS can be shown to have O(

√
T log(T )) Bayesian re-

gret (Srinivas et al., 2012; Russo and Van Roy, 2014),
which is optimal for the problem up to a logarithmic
factor.

1.5 Key Contributions and Structure

Our main contribution is a bound on the Bayesian
regret of Thompson Sampling applied to Continuum-
armed Bandits where the reward function is a sam-
ple from a prior distribution on the class of bounded
functions functions with M ∈ N Lipschitz smooth
derivatives and the reward noise is sub-exponentially
distributed. As far as we are aware this is the first
analysis of the performance of TS based on nonpara-
metric inference that considers such a general frame-
work. We derive a O(T (2M2+11M+10)/(4M2+14M+12))
Bayesian regret bound, which approaches O(

√
T ) as

M →∞.

In the process of proving this result we give the first
bound on the ε-eluder dimension of Lipschitz function
classes, and we extend bounds on the Bayesian regret
of Thompson Sampling for bandit problems with (gen-
eralised) linear reward function to the sub-exponential
reward noise setting.

Furthermore we derive an Ω(T (M+2)/(2M+3))
lower bound on regret. There is thus an

O(T (3M+2)/(4M2+14M+12)) gap between the lower
and upper bounds, which is small for large M . It is
an open question as to whether this gap is due to TS
being suboptimal, or whether the upper (or lower)
bounds we have derived are not tight.

The remainder of the material is organised as follows.
In Section 2 we present an extension of Russo and
Van Roy (2014)’s general bound on the Bayesian re-
gret. We specialise this to problems where the reward
function class has Lipschitz derivatives in Section 3,
and conclude with a discussion in Section 4. Proofs
are relegated to the Appendices.

2 General Bound on the Bayesian
Regret

We first give a bound on the Bayesian regret for gen-
eral function classes, F , and action sets, A - including
the CAB whose reward function has Lipschitz deriva-
tives. Our result is similar to, but more general than,
Proposition 10 of Russo and Van Roy (2014). Their
result holds only under sub-Gaussian noise on the re-
ward observations, and has less flexibility in terms of
being able to tune the terms based on the properties
of F . Our result has such added flexibility and applies
to sub-exponential rewards.

Both our bound and that of Russo and Van Roy (2014)
are expressed in terms of measures of the complexity
of the function class F . This is natural, since in more
complex function classes, it will be more challenging to
learn the true function. Specifically, two notions of the
complexity of F are of interest, the ε-eluder dimension,
and ball-width function, which we introduce below.

Firstly, to define the ε-eluder dimension, we introduce
the notion of ε-dependence. An action a ∈ A is called
ε-dependent of actions a1:n = {a1, . . . , an} ∈ A with
respect to F if any pair of functions f, f̃ ∈ F satisfying√∑n

i=1(f(ai)− f̃(ai))2 ≤ ε also satisfies f(a)−f̃(a) ≤
ε for some ε > 0. An action a is ε-independent of a1:n if
it is not ε-dependent of a1:n. The ε-eluder dimension
dimE(F , ε) is the length of the longest sequence of
elements in A, such that for some ε′ ≥ ε, every element
is ε′-independent of its predecessors.

Informally, the eluder dimension is a measure of the
‘wigglyness’ of the functions in F , as it quantifies how
long a sequence of actions may be such that at each
action, there exist two functions in F that take well-
separated values, but have similar (enough) values for
all actions taken previously. We will later show that
the more Lipschitz derivatives the functions in a func-
tion class have, the smaller its eluder dimension is.

Second, we introduce a ball-width function β∗n. This
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ball-width function defines the size of high-probability
confidence sets in the function class F , in terms of n,
a number of reward observations. Russo and Van Roy
(2014) introduce an analogous function, in their equa-
tion (8), for the case of sub-Gaussian noise. The prop-
erties of sub-exponential distributions mean that our
function is necessarily more complex, but its inter-
pretation is the same. In particular β∗n depends on
N(α,F , || · ||∞), the α-covering number of the function
class F with respect to the uniform norm, || · ||∞. Fur-
thermore it depends on σ2 and b, the sub-exponential
parameters of the reward noise distribution, free pa-
rameters α, δ > 0 which will be chosen to optimise the
regret bound, and λ, which retains its interpretation
as the free parameter in Equation (1).

The ball-width function has the following form:

β∗n(F , δ, α, λ) =
2α

1− 2λσ2
× (3)[

log(N(α,F , || · ||∞)/δ)

2λα
+ n(4C + α)(1− λσ2)

+
∑

i≤bn0c

√
2σ2 log(4i2/δ) +

n∑
i≥dn0e

2b log(4i2/δ)

]
,

where n0 =
√

δ
4 exp σ2

2b2 .

Together, the eluder dimension and ball-width func-
tion characterise a bound on the Bayesian regret of
TS applied to the general bandit problem with reward
function drawn from F and actions selected from A.
This bound is given in the following theorem.

Theorem 1. Consider Thompson sampling with prior
p0 on a function class F applied to the bandit prob-
lem (A, f0, pη) where the reward function f0 is drawn
from p0, all functions f ∈ F are f : A → [0, C]
for some C > 0, and the reward noise distribution
pη is (σ2, b)-sub-exponential. For all problem horizons
T ∈ N, nonincreasing functions κ : N → R+, and pa-
rameters α > 0, δ ≤ 1/(2T ), and |λ| ≤ (2Cb)−1, it is
the case that

BR(T ) ≤ Tκ(T ) + (dimE(F , κ(T )) + 1)C

+ 4
√
dimE(F , κ(T ))β∗T (F , α, δ, λ)T . (4)

The bound (4) is useful because it characterises the
regret in terms of the eluder dimension and ball-width
function of the function class F . Each of these may be
bounded in terms of T based on the properties of F .
Through judicious choice of κ, α, and δ as functions of
T , we can derive regret bound expressions which are
sublinear in T . We will do so in Section 3.

As mentioned previously, Proposition 10 of Russo and
Van Roy (2014) constructs a similar bound to (4).

The material difference between the bounds is that in
Russo and Van Roy (2014) κ(T ) is effectively fixed to
T−1, which unnecessarily constrains the results which
can be obtained for specific function classes. By allow-
ing for other choices of κ(T ) we have greater flexibility
and can achieve tighter bounds.

In the supplementary material we provide a proof of
Theorem 1. Central to the proof is a decomposition
of the Bayesian regret of TS in terms of the widths of
a sequence of high probability confidence sets for f0.
These sets are centred on a least squares estimator of
the reward function. Crucially, their widths can be
written in terms of the ball-width function and eluder
dimension regardless of whether the estimator itself
has a convenient analytical form.

We proceed, in the following section, to specify the
bound (4) in the settings where F is the class of func-
tions with M ∈ N Lipschitz derivatives. In Russo and
Van Roy (2014), the analogue of (4) is extended only
to (generalised) linear function classes. Our results
are therefore substantially more general, since we con-
sider non-parametric function classes, which include
the (generalised) linear classes as special cases. Nev-
ertheless, in the supplementary material, we demon-
strate that our results for sub-exponential noise can ex-
plicitly be extended to these (generalised) linear func-
tion classes, with no increase in the order of the regret
bound.

3 Bounds for Smoother-than-Lipschitz
Function Classes

In this section we consider the specification of the gen-
eral result to classes of functions with Lipschitz deriva-
tives. For any C,L > 0 and M ∈ N, we define FC,M,L

as the class of C-bounded functions, f : [0, 1]→ [0, C],
with M L-Lipschitz smooth derivatives. Functions in
FC,M,L satisfy

|f (m)(a)− f (m)(a′)| ≤ L|a− a′|, ∀a, a′ ∈ [0, 1],

for each m ≤M . Note that when M = 0 this is simply
the class of bounded Lipschitz functions.

For larger M , including M = ∞, all polynomial
functions are trivially included within an FC,M,L, as
are appropriately weighted combinations of sufficiently
smooth basis functions. Functions sampled from GPs
with smooth kernels can also be shown to be mem-
bers of FC,M,L, since the derivative of a GP is also a
GP (Williams and Rasmussen, 2006, Section 9.4). We
note also that each FC,M,L may be represented as a
ball within a corresponding Sobolev space, and some
readers may find it instructive to think of this inter-
pretation.
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3.1 Regret Upper Bound

Our main result, below, is a bound on the Bayesian
regret of TS applied where f0 is drawn from a prior on
FC,M,L.

Theorem 2. Consider Thompson sampling with prior
p0 applied to the bandit problem ([0, 1], f0, pη) where
f0 is drawn from a prior p0 on FC,M,L and pη is sub-
exponential. For all problem horizons T ∈ N, we have
that the Bayesian regret is bounded as

BR(T ) = O(T (2M2+11M+10)/(4M2+14M+12)). (5)

The consequence of this result is more transparent
when we consider particular values of M . We have
Bayesian regret of order O(T 5/6) when the reward
function is Lipschitz and of order O(T 23/30) when it
has a Lipschitz first derivative. As the number of Lip-
schitz derivatives M → ∞ the order of the Bayesian
regret approaches O(

√
T ). We discuss these results in

relation to lower bounds in Section 3.3

Proof of Theorem 2: The proof of Theorem 2 relies on
bounding the eluder dimension and ball-width func-
tion for the function class FC,M,L. The following the-
orem provides the necessary bound on the eluder di-
mension of Lipschitz function classes.

Theorem 3. For M ∈ N, and C,L, ε > 0 the ε-eluder
dimension of FC,M,L is bounded as follows,

dimE(FC,M,L, ε) = o((ε/L)−1/(M+1)). (6)

This result is a non-trivial extension of the existing
bounds on the eluder dimension of simpler function
classes, and is the first bound on the eluder dimension
of a non-parametric class of functions. A sketch of the
proof of this theorem is given in Section 3.2, and the
full proof is given in the supplementary material.

To use Theorem 3 within Theorem 1 we will be consid-
ering dimE(FC,M,L, κ(T )) for a nonincreasing function
κ. The effect of M in (6) demonstrates that, for large
M , the influence on the regret of κ through the eluder
dimension is minimal.

Bounding the ball-width function relies in turn on a
bound on the covering number of the Lipschitz func-
tion class. The covering numbers of Lipschitz func-
tion classes were amongst the first to be discovered
(Kolmogorov and Tikhomirov, 1961). Specifically, for
M ∈ N and FC,M,L as defined previously, the following
is known,

logN(α,FC,M,L, || · ||∞) = Θ(α−
1

M+1 ).

We wish to select α as a function of T to minimise
the order of β∗T (FC,M,L, δ, α(T ), λ) with respect to T .

Choosing α(T ) = T−(M+1)/(M+2) we have,

β∗T (FC,M,L, δ, T
−M+1
M+2 , λ) = O(T 1/(M+2)) (7)

as the best available result.

We then complete the proof by using the general bound

of (4). We choose κ(T ) = T
− 1

2
2M2+3M+2

2M2+7M+6 , and bound
the eluder dimension as in (6) and ball-width function
as in (7) to achieve the stated result. �

3.2 Eluder Dimension Bound

In this section we sketch the proof of the eluder di-
mension bound given as Theorem 3. To aid in this we
first define a related function class:

GC,M,L =

{
g = f − f ′,∀f, f ′ ∈ FC,M,L

}
,

which is the class of absolute difference functions for
all pairs of functions in FC,M,L. As the eluder di-
mension is defined in terms of difference of functions
f, f ′ ∈ FC,M,L, considering the behaviour of functions
in GC,M,L will allow us to bound the eluder dimension.
Functions g ∈ GC,M,L also possess M Lipschitz deriva-
tives. Specifically, we have the following result, which
has its proof in the supplementary material.

Proposition 1. All functions g ∈ GC,M,L are [−C,C]-
bounded and possess M 2L-Lipschitz smooth deriva-
tives.

We may also define the eluder dimension in terms of
GC,M,L, which will be useful for the proof of Theo-
rem 3. Let a1:k ∈ [0, 1]k denote a sequence of actions
(a1, . . . , ak) and define

wk(a1:k, ε
′) = sup

g∈GC,M,L

{
g(ak) :

√∑k−1
i=1 (g(ai))2 ≤ ε′

}
.

We then define the ε-eluder dimension as follows:

dimE(FC,M,L, ε) = max
τ∈N,ε′>ε

{
τ : ∃ a1:τ ∈ [0, 1]τ with

wk(a1:k, ε
′) > ε′ for every k ≤ τ

}
.

Based on this definition we will sketch the proof of
Theorem 3 in the remainder of this section. The full
proof is reserved for the supplementary material.

Sketch of Proof of Theorem 3: The proof relies on the
observation that wk(a1:k, ε

′) > ε′ may only be satis-
fied if there exists a function g ∈ GC,M,L which takes
a relatively large value at ak, i.e. with g(ak) > ε′, but
changes rapidly enough to have relatively small abso-
lute value at previous elements of the sequence, i.e.∑k−1
i=1 (g(ai))

2 ≤ (ε′)2.
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Any smooth function g with g(a) > ε′ at some a ∈
[0, 1] must have an associated region, of non-zero size,
which we call B(g) ⊆ [0, 1] where |g(x)| > ε′/3. The
smoother g is, the larger the region B(g) must be.
A necessary condition for satisfying wk(a1:k, ε

′) > ε′ is
that there exists a function g ∈ GC,M,L with g(ak) > ε′

such that there are not too many among the points
a1:k−1 within B(g), specifically fewer than nine (since√

9× (ε′/3)2 = ε′).

It follows that a necessary condition for the ε-eluder di-
mension of FC,M,L to take value at least τ is that there
exists a sequence a1:τ ∈ [0, 1] and a sequence of func-
tions g1, . . . , gτ ∈ GC,M,L with gi(ai) > ε′, i ≤ τ , such

that
∑k−1
i=1 I{ai ∈ B(gk)} < 9 for all k ≤ τ . We derive

upper bounds on the eluder dimension by bounding
the value of τ for which this necessary condition may
be satisfied. This is feasible, as the size of the re-
gion B(g) for any g ∈ GC,M,L and a ∈ [0, 1] such that
g(a) > ε′ may be related to the smoothness of the class
GC,M,L and the largest value of τ such that the neces-
sary condition can be satisfied may be related to the
size of the B regions.

For each choice of M and an a ∈ [0, 1] we can identify
a function hM,a ∈ GC,M,L which satisfies hM,a(a) > ε′

but minimises the size of Ba, i.e.

hM,a ∈ argmin
h∈GC,M,L:h(a)>ε′

∫
I{|h(x)| ≥ ε′/3}dx,

and the minimising values

B∗M,a = min
h∈GC,M,L:h(a)>ε′

∫
I{|h(x)| ≥ ε′/3}dx.

The functions hM,a can be shown to be characterised
by having zeros of their derivatives at specific loca-
tions. In particular, odd ordered derivatives should
have zeros at a and the points where hM,a(x) = −ε/3
and even ordered derivatives should have zeros at
points where hM,a(x) = ε/3. Allowing the highest or-
der derivative to be linear subject to these conditions
ensures the region Ba(hM,a) is as small as possible.
Figure 2 illustrates functions ha,0, ha,1, ha,2 and their
first derivatives. We can see the increasing width of
B∗a,M as M increases.

The minimising values B∗M,a are shown to be

o((ε/L)1/(M+1)). In turn, this means that if there is a
sequence of τ points a1:τ with τ = o((ε/L)−1/(M+1))
placed in [0, 1], it is impossible to satisfy wk(a1:k, ε

′)
for every k ≤ τ . By definition the eluder-dimension
may then be bounded as o((ε/L)1/(M+1)).

3.3 Regret Lower Bounds

The following theorem, a restatement of Theorem 1
of Bubeck et al. (2011b), gives a lower bound on the

regret of any algorithm for the CAB with a Lipschitz
reward function. It is an adaptation of the stronger
results in Kleinberg (2005); Kleinberg et al. (2008);
Bubeck et al. (2011a) which apply to bandits on met-
ric spaces. For ease of exposition, and following con-
vention, we will assume in the remainder, without loss
of generality, that the bounding constant is C = 1.

Theorem 4. Let ALG be any algorithm for Lipschitz
continuum armed bandits with time horizon T , and
Lipschitz constant L. Let M = 0, i.e. the Lip-
schitz condition apply only to the reward function,
not its derivatives. There exists a problem instance
I = I(x∗, ε) for some x∗ ∈ [0, 1] and ε > 0 such that

E(R(T )|I) ≥ Ω(L1/3T 2/3).

The proof of the Theorem relies on the construction of
a particularly challenging CAB instance I(x∗, δ) with
reward function µ where

µ(x) =

{
0.5, for x : |x− x∗| > δ/L,

0.5 + δ − L|x− x∗|, otherwise.
(8)

Theorem 4 does not apply for M > 0. This is because
the reward function µ defined as in (8) used to define
the worst-case problem instance, does not have a Lip-
schitz first derivative and thus is not a valid reward
function for the problem class being considered.

In the theorem below, we give an M -dependent lower
bound on regret, for CABs whose reward functions
have M ≥ 0 Lipschitz derivatives.

Theorem 5. Let ALG be any algorithm for the CAB
problem with reward function in FC,M,L. There exists
a problem instance I = I(x∗, δ) for some x∗ ∈ [0, 1]
and δ > 0 such that

E(R(T )|I) ≥ Ω(T (M+2)/(2M+3)).

The proof of this theorem is provided in the supple-
mentary material.

3.4 Comparing Upper and Lower Bounds

Firstly, we notice that for M = ∞, the upper and
lower bounds match up to a constant, in that they
are both order

√
T . This implies that exact TS is

an order-optimal algorithm for CAB problems with
reward function drawn from a prior on (any subset
of) FC,∞,L. This is a more general result than those
presented in Russo and Van Roy (2014), as they had
similar results only for special cases within FC,∞,L -
namely (generalised) linear reward functions and re-
ward functions modelled as samples from Gaussian
processes. Further, we even present a marginal im-
provement in those cases, as we remove a mutliplica-
tive log(T ) factor from the upper bounds.
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Figure 2: This figure displays functions g ∈ G∗C,M,L(a) for M = 0 and M = 1. These functions take value greater
than ε at a, which is well separated from 0 and 1. The functions then decrease on the left and right in to the
interval [−ε/3, ε/3] at the quickest rate possible for functions in GC,M,L.

Interestingly, for finite M , the bounds do not match.
For instance, with M = 0 the upper bound
has order O(T 5/6) and the lower bound has order
Ω(T 2/3). Generally speaking there is a gap of order

T (3M+2)/(4M2+14M+12) between the bounds for finite
M . This raises an interesting open question: are the
eluder-dimension based bounds simply not tight for
finite M , or is TS inherently suboptimal?

There would seem to be some credence to both argu-
ments. If we consider the nature of algorithms which
do achieve order optimal bounds for the Lipschitz ban-
dit problem, such as the Zooming algorithm of Klein-
berg (2005), we notice that they generally employ an
adaptive discretisation component. That is to say,
they limit the actions available to the algorithm to
some set At ⊂ A in each round t ∈ {1, . . . , T}, and in
doing so force a certain level of exploration. It could be
that the TS algorithm analysed here which has access
to the entire action set A somehow carries a greater
risk of conducting insufficient exploration.

On the other hand it is possible that the true per-
formance of the TS approach analysed here does in
fact match the lower bound, and analysis of Russo and
Van Roy (2014) which we have adapted to this setting
is too loose in this framework. The contribution of the
covering number term to the overall order for instance
in the M = 0 setting is T 1/4 and the

√
T factor from

the least squares analysis is also unavoidable. Thus,
even with a κ(T )-eluder dimension of O(1) the result-
ing bound would be suboptimal compared with the
Ω(T 2/3) lower bound. Inspection of the proof suggests
that while this technique is highly versatile, it would
not be possible to adapt it to achieve an optimal or-
der bound in CAB problems whose reward function is
drawn from FC,M,L, with finite M .

4 Conclusion

This work extends the understanding of Thompson
Sampling for stochastic bandit problems. The results
are bounds on the Bayesian regret of Thompson Sam-
pling for continuum-armed bandits where the reward
function possesses M Lipschitz derivatives and where
the reward noise is sub-exponential. We achieved these
results by extending the application of the eluder di-
mension technique of Russo and Van Roy (2014) which
allows the Bayesian regret of TS to be bounded in
terms of the complexity of the reward function class.

Our results represent a substantial advance on the gen-
erality of existing performance guarantees available
for TS. While previous results have focussed on d-
dimensionally parametrised functions or Gaussian pro-
cess priors only, our framework captures TS based on
non-parametric priors over the reward function class.
As such our results are applicable in much broader set-
tings where only limited assumptions about the reward
function are possible.

While exact sampling from the posterior distributions
on which our analysis is based may be challenging,
these fundamental results are useful in two regards.
They provide a useful benchmarking tool for subse-
quent analyses, and generally inform us as to how the
smoothness properties of the reward function class are
likely to impact the performance of TS.

Finally, our work raises interesting open questions
around the analysis of non-parametric TS. Firstly,
whether the gap between the upper and lower regret
bounds for finiteM is a feature of the eluder-dimension
based analysis (i.e. it can be improved) or of TS it-
self (i.e. it is inherent and unavoidable). Secondly, to
what extent this performance may be recovered by ap-
proximate TS algorithms, which are popular and often
necessary for complex problems.
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