
Yuguang Yue, Yunhao Tang, Mingzhang Yin, Mingyuan Zhou

Discrete Action On-Policy Learning with Action-Value Critic:
Supplementary Material

A Proof of Theorem 1

We first show the sparse ARSM for multidimensional action space case at one specific time point, then generalize
it to stochastic setting. Since ak are conditionally independent given φk, the gradient of φkc at one time point
would be (we omit the subscript t for simplicity here)

∇φkcJ(φ) = Ea\k∼∏k′ 6=k Discrete(ak′ ;σ(φk′))
[
∇φkcEak∼Cat(σ(φk))[Q(a, s)]

]
,

and we apply the ARSM gradient estimator on the inner expectation part, which gives us

∇φkcJ(φ) = Ea\k∼
∏
k′ 6=k Discrete(ak′ ;σ(φk′))

{
E$k∼Dir(1C)

[
(Q([a\k, a

c�j
k], s)− 1

C

C∑
m=1

Q([a\k, a
m�j
k], s))(1− C$kj)

]}
= E$k∼Dir(1C)

{
Ea\k∼

∏
k′ 6=k Discrete(ak′ ;σ(φk′))

[
(Q([a\k, a

c�j
k], s)− 1

C

C∑
m=1

Q([a\k, a
m�j
k], s))(1− C$kj)

]}
(6)

= E$k∼Dir(1C)

{
E∏

k′ 6=k Dir($k′ ;1C)

[
(Q(ac�j , s)− 1

C

C∑
m=1

Q(am�j , s))(1− C$kj)
]}
, (7)

where (6) is derived by changing the order of two expectations and (7) can be derived by following the proof of
Proposition 5 in Yin et al. [2019]. Therefore, if given $k ∼ Dir(1C), it is true that ac�j

k = ak for all (c, j) pairs,
then the inner expectation term in (6) will be zero and consequently we have

gkc = 0

as an unbiased single sample estimate of ∇φkcJ(φ); If given $k ∼ Dir(1C), there exist (c, j) that ac�j

k 6= ak, we
can use (7) to provide

gkc =

C∑
j=1

[
Q(s,ac�j)− 1

C

C∑
m=1

Q(s,am�j)

](
1

C
−$kj

)
(8)

as an unbiased single sample estimate of ∇φkcJ(φ).

For a specific time point t, the objective function can be decomposed as

J(φ0:∞) = EP(s0)[∏t−1

t′=0
P(st′+1 | st′ ,at′)Cat(at′ ;σ(φt′))]

{
Eat∼Cat(σ(φt))

[
t−1∑
t′=0

γt
′
r(st′ ,at′) + γtQ(st,at)

]}

= EP(s0)[∏t−1

t′=0
P(st′+1 | st′ ,at′)Cat(at′ ;σ(φt′))]

{
Eat∼Cat(σ(φt))

[
t−1∑
t′=0

γt
′
r(st′ ,at′)

]}
+ EP(s0)[∏t−1

t′=0
P(st′+1 | st′ ,at′)Cat(at′ ;σ(φt′))]

{
Eat∼Cat(σ(φt))

[
γtQ(st,at)

]}
,

where the first part has nothing to do with φt, we therefore have

∇φtkcJ(φ0:∞) = EP(st | s0,πθ)P(s0)
{
γt∇φtkcEat∼Cat(σ(φt)) [Q(st,at)]

}
.

With the result from (8), the statements in Theorem1 follow.

Discrete Action On-Policy Learning with Action-Value Critic

Figure 6: left panel: Change of policy over iterations between Gaussian policy (left) and discrete policy (right)
on toy example setting. right panel: Average density on each action along with the training iterations between
Gaussian policy and discrete policy for 100 experiments.(The Gaussian policy converges to the inferior optimal
solution 12 times out of 100 times, and discrete policy converges to the global optimum all the time).

B Experiment setup

B.1 Toy example setup

Assume the true reward is a bi-modal distribution (as shown in Figure 6 left panel red curves) with a difference
between its two peaks:

r(a) =

{
−c1(a− 1)(a−m) + ε1 for a ∈ [m, 1]
−c2(a+ 1)(a−m) + ε2 for a ∈ [−1,m],

where the values of c1, c2, and m determine the heights and widths of these two peaks, and ε1 ∼N(0, 2) and
ε2 ∼N(0, 1) are noise terms. It is clear that a∗left = (m − 1)/2 and a∗right = (1 + m)/2 are two local-optimal
solutions and corresponding to rleft := E[r((a∗left)] = c2(1 +m)2/4 and rright := E[r(a∗right)] = c1(1−m)2/4. Here
we always choose c1 and c2 such that rleft is slightly bigger than rright which makes a∗left a better local-optimal
solution. It is clear that the more closer a∗left to −1, the more explorations a policy will need to converge to a∗left.
Moreover, the noise terms can give wrong signals and may lead to bad update directions, and exploration will
play an essential role in preventing the algorithm from acting too greedily. The results shown on Section 4.1 has
m = −0.8, c1 = 40/(1.82) and c2 = 41/(0.22), which makes rleft = 10.25 and rright = 10. We also show a simple
example at Figure 6 with m = 0, c1 = 40/(0.52) and c2 = 41/(0.52), which maintains the same peak values.

The experiment setting is as follows: for each episode, we collect 100 samples and update the corresponding
parameters ([µ, σ] for Gaussian policy and φ ∈ R21 for discrete policy where the action space is discretized to
21 actions), and iterate until N samples are collected. We add a quadratic decaying coefficient for the entropy
term for both policies to encourage explorations on an early stage. The Gaussian policy is updated using
reparametrization trick [Kingma and Welling, 2013], which can be applied to this example since we know the
derivative of the reward function (note this is often not the case for RL tasks). The discrete policy is updated
using ARSM gradient estimator described in Section 2.

On the heatmap, the horizontal axis is the iterations, and vertical axis denotes the actions. For each entry
corresponding to a at iteration i, its value is calculated by v(i, a) = 1

U

∑U
u=1 pu(a | i), where pu(a | i) is the

probability of taking action a at iteration i for that policy in uth trial.

We run the same setting with different seeds for Gaussian policy and discrete policy for 100 times, where the
initial parameters for Gaussian Policy is µ0 = m,σ = 1 and for discrete policy is φi = 0 for any i to eliminate the
effects of initialization.

In those 100 trials, when m = −0.8, N = 1e6, Gaussian policy fails to find the true global optimal solution (0/100)
while discrete policy can always find that optimal one (100/100). When m = 0, N = 5e5, the setting is easier and
Gaussian policy performs better in this case with only 12/100 percentage converging to the inferior sub-optimal
point 0.5, and the rest 88/100 chances getting to global optimal solution. On the other hand, discrete policy
always converges to the global optimum (100/100). The similar plots are shown on Figure 6. The p-value for this
proportion test is 0.001056, which shows strong evidence that discrete policy outperforms Gaussian policy on this
example.

Yuguang Yue, Yunhao Tang, Mingzhang Yin, Mingyuan Zhou

B.2 Baselines and CARSM setup

Our experiments aim to answer the following questions: (a) How does the proposed CARSM algorithm perform
when compared with ARSM-MC (when ARSM-MC is not too expensive to run). (b) Is CARSM able to efficiently
solve tasks with large discrete action spaces (i.e., C is large). (c) Does CARSM have better sample efficiency
than the algorithms, such as A2C and RELAX, that have the same idea of using baselines for variance reduction.
(d) Can CARSM combined with other standard algorithms such as TRPO to achieve a better performance.

Baselines and Benchmark Tasks. We evaluate our algorithm on benchmark tasks on OpenAI Gym classic-
control and MuJoCo tasks [Todorov et al., 2012]. We compare the proposed CARSM with ARSM-MC [Yin et al.,
2019], A2C [Mnih et al., 2016], and RELAX [Grathwohl et al., 2017]; all of them rely on introducing baseline
functions to reduce gradient variance, making it fair to compare them against each other. We then integrate
CARSM into TRPO by replacing the A2C gradient estimator for ∇θJ(θ), and evaluate the performances on
MuJoCo tasks to show that a simple plug-in of the CARSM estimator can bring the improvement.

Hyper-parameters: Here we detail the hyper-parameter settings for all algorithms. Denote βpolicy and βcritic
as the learning rates for policy parameters and Q critic parameters, respectively, ncritic as the number of training
time for Q critic, and α as the coefficient for entropy term. For CARSM, we select the best learning rates
βpolicy, βcritic ∈ {1, 3} × 10−2, and ncritic ∈ {50, 150}; For A2C and RELAX, we select the best learning rates
βpolicy ∈ {3, 30} × 10−5. In practice, the loss function consists of a policy loss Lpolicy and value function loss
Lvalue. The policy/value function are optimized jointly by optimizing the aggregate objective at the same time
L = Lpolicy + cLvalue, where c = 0.5. Such joint optimization is popular in practice and might be helpful in cases
where policy/value function share parameters. For A2C, we apply a batched optimization procedure: at iteration
t, we collect data using a previous policy iterate πt−1. The data is used for the construction of a differentiable loss
function L. We then take viter gradient updates over the loss function objective to update the parameters, arriving
at πt. In practice, we set viter = 10. For TRPO and TRPO combined with CARSM, we use max KL-divergence
of 0.01 all the time without tuning. All algorithms use a initial α of 0.01 and decrease α exponentially, and
target network parameter τ is 0.01. To guarantee fair comparison, we only apply the tricks that are related to
each algorithm and didn’t use any general ones such as normalizing observation. More specifically, we replace
Advantage function with normalized Generalized Advantage Estimation (GAE) [Schulman et al., 2015b] on A2C,
apply normalized Advantage on RELAX.

Structure of Q critic networks: There are two common ways to construct a Q network. The first one is to
model the network as Q : RnS → R|A|, where nS is the state dimension and |A| = CK is the number of unique
actions. The other structure is Q : RnS+K → R, which means we need to concatenate the state vector s with
action vector a and feed that into the network. The advantage of first structure is that it doesn’t involve the issue
that action vector and state vector are different in terms of scale, which may slow down the learning process or
make it unstable. However, the first option is not feasible under most multidimensional discrete action situations
because the number of actions grow exponentially along with the number of dimension K. Therefore, we apply
the second kind of structure for Q network, and update Q network multiple times before using it to obtain the
CARSM estimator to stabilize the learning process.

Structure of policy network: The policy network will be a function of Tθ : RnS → RK×C , which feed in state
vector s and generate K ×C logits φkc. Then the action is obtained for each dimension k by π(ak | s,θ) = σ(φk),
where φk = (φk1, . . . , φkC)′. For both the policy and Q critic networks, we use a two-hidden-layer multilayer
perceptron with 64 nodes per layer and tanh activation.

Environment setup

• HalfCheetah (S ⊂ R17,A ⊂ R6)

• Hopper (S ⊂ R11,A ⊂ R3)

• Reacher (S ⊂ R11,A ⊂ R2)

• Swimmer (S ⊂ R8,A ⊂ R2)

• Walker2D (S ⊂ R17,A ⊂ R6)

• LunarLander Continuous (S ⊂ R8,A ⊂ R2)

B.3 Comparison between CARSM and ARSM-MC for fixed timestep

We compare ARSM-MC and CARSM for fixed timestep setting, with their performances shown in Figure 7

Discrete Action On-Policy Learning with Action-Value Critic

Figure 7: Performance curves for comparison between ARSM-MC and CARSM given fix timesteps

C Pseudo Code

We provide detailed pseudo code to help understand the implementation of CARSM policy gradient. There are
four major steps for each update iteration: (1) Collecting samples using augmented Dirichlet variables $t; (2)
Update the Q critic network using both on-policy samples and off-policy samples; (3) Calculating the CARSM
gradient estimator; (4) soft updating the target networks for both the policy and critic. The (1) and (3) steps are
different from other existing algorithms and we show their pseudo codes in Algorithms 1 and 2, respectively.

Algorithm 1: Collecting samples from environment
Input: Policy network π(a | s,θ), initial state s0, sampled step T , replay buffer R
Output: Intermediate variable matrix $1:T , logit variables φ1:T , rewards vector r1:T , state vectors s1:T ,
action vectors a1:T , replay buffer R
for t = 1 · · ·T do

Generate Dirichlet random variable $tk ∼ Dir(1C) for each dimension k;
Calculate logits φt = Tθ(st) which is a K × C length vector
Select action atk = argmini∈{1,··· ,C}(ln$tki−φtki) for each dimension k;
Obtain next state values st+1 and reward rt based actions at = (at1, . . . , atK)′ and current state st.
Store the transition {st,at, rt, st+1} to replay buffer R
Assign st ← st+1.

end for

Yuguang Yue, Yunhao Tang, Mingzhang Yin, Mingyuan Zhou

Algorithm 2: CARSM policy gradient for a K-dimensional C-way categorical action space.
Input: Critic network Qω, policy network πθ, on-policy samples including states s1:T , actions a1:T , intermediate
Dirichlet random variables $1:T , logits vectors φ1:T , discounted cumulative rewards y1:T .

Output: an updated policy network
Initialize g ∈ RT×K×C ;
for t = 1· · · T (in parallel) do

for k = 1· · · K (in parallel) do
Let Atk = {(c, j)}c=1:C, j<c , and initialize P tk ∈ RC×C with all element equals to atk (true action).
for (c, j) ∈ Atk (in parallel) do

Let ac�j

tk = arg mini∈{1,...,Ck}(ln$
c�j

tki −φtki)
if ac�j

tk not equals to atk then
Assign ac�j

tk to P tk(c, j)
end if

end for
end for
Let St = unique(P t1 ⊗ P t2 · · · ⊗ P tK)\{at1 ⊗ at2 · · · ⊗ atK}, which means St is the set of all unique values
across K dimensions except for true action at = {at1 ⊗ at2 · · · ⊗ atK}; denote pseudo action of swapping
between coordinate c and j as St(c, j) = (P t1(c, j)⊗ P t1(c, j) · · · ⊗ P tK(c, j)), and define It as unique pairs
contained in St.

Initialize matrix F t ∈ RC×C with all elements equal to yt;
for (c̃, j̃) ∈ It (in parallel) do

F t(c̃, j̃) = Qω(st, St(c̃, j̃))
end for
Plug in number for matrix gtkc =

∑C
j=1(F tc − F̄ tc)(1

C
−$tkj), where F tkc denotes the cth row of matrix F t and

F̄ tc is the mean of that row;
for k = 1 · · ·K do

if every element in P tk is atk then
gtkc = 0

end if
end for

end for
Update the parameter for θ for policy network by maximize the function

J =
1

TKC

T∑
t=1

K∑
k=1

C∑
c=1

gtkcφtkc

where φtkc are logits and gtkc are placeholders that stop any gradients, and use auto-differentiation on φtkc to
obtain gradient with respect to θ.

