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Abstract

Particle-optimization-based sampling (POS)
is a recently developed effective sampling tech-
nique that interactively updates a set of par-
ticles to approximate a target distribution. A
representative algorithm is the Stein varia-
tional gradient descent (SVGD). We prove,
under certain conditions, SVGD experiences
a theoretical pitfall, i.e., particles tend to col-
lapse. As a remedy, we generalize POS to a
stochastic setting by injecting random noise
into particle updates, thus termed stochas-
tic particle-optimization sampling (SPOS).
Notably, for the first time, we develop non-
asymptotic convergence theoryfor the SPOS
framework (related to SVGD), characteriz-
ing algorithm convergence in terms of the 1-
Wasserstein distance w.r.t. the numbers of par-
ticles and iterations. Somewhat surprisingly,
with the same number of updates (not too
large) for each particle, our theory suggests
adopting more particles does not necessarily
lead to a better approximation of a target dis-
tribution, due to limited computational bud-
get and numerical errors. This phenomenon
is also observed in SVGD and verified via a
synthetic experiment. Extensive experimental
results verify our theory and demonstrate the
effectiveness of our proposed framework.

1 Introduction

Recently there has been extensive development of scal-
able Bayesian sampling algorithms, such as stochas-
tic gradient MCMC (SG-MCMC) [Welling and Teh,
2011, Chen et al., 2014, Ding et al., 2014, Chen et al.,
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2015] and Stein variational gradient descent (SVGD)
[Liu and Wang, 2016]. SG-MCMC is a family of scal-
able Bayesian sampling algorithms built on Itó dif-
fusions, stochastic differential equations (SDEs) with
appropriately designed coefficients whose stationary dis-
tributions match the target distributions. One poten-
tial issue of SG-MCMC is that samples may be highly
correlated partially due to the nature of Markov chains,
leading to undesired low sample-efficiency. SVGD,
on the other hand, belongs to the family of particle-
optimization-based sampling methods that optimize
a set of interacting particles to minimize some dis-
tance metric (e.g., KL-divergence) between the target
distribution and the particle-induced approximate dis-
tribution. By optimization, one seeks to maintain
an optimal set of particles. Recent development of
SVGD has shown that the underlying mathematical
principle is based on a family of nonlinear partial
differential equations (PDEs) [Liu, 2017]. Although
achieving significant practical successes [Liu and Wang,
2016, Feng et al., 2017, Liu et al., 2017, Haarnoja et al.,
2017, Zhang et al., 2018a, Zhang et al., 2019, Liu and
Zhu, 2018], little theory is available to fully understand
its non-asymptotic convergence properties under nu-
merical errors. A recent theoretical development has
interpreted SVGD as a special type of gradient flows,
and developed theory to disclose its asymptotic conver-
gence behavior [Liu, 2017]. The asymptotic theory is
also studied in [Lu et al., 2018]. A more recent work
[Liu and Wang, 2018] investigated non-asymptotic prop-
erties of SVGD, limited to the region of finite particles
and infinite time with restricted conditions. [Şimşekli
et al., 2018] considers convergence property of the sliced-
Wasserstein flow only under an infinite-particle setting.

Recently, [Chen et al., 2018] unified SG-MCMC and
SVGD by proposing a particle-optimization-sampling
(POS) framework to interpret both as Wasserstein gra-
dient flows (WGFs). Generally, a WGF is a PDE
defined on the space of probability measures, describ-
ing the evolution of a density over time. [Chen et al.,
2018] defined a WGF by combining the corresponding
PDEs for both SG-MCMC and SVGD, and solved it
with deterministic particle approximations. However,
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due to its diffusion nature, deterministic-particle ap-
proximation leads to a hard-to-control error, making it
challenging for theoretical analysis.

Our contributions In this paper, we generalize POS
to a stochastic setting, and develop a novel analytical
framework based on granular media equations [Mal-
rieu, 2003, Cattiaux et al., 2008] to analyze its non-
asymptotic convergence properties. Our contributions
are summarized as follows: i) We first identify a pitfall
of standard SVGD, where particles tend to collapse
under certain conditions and measurement, indicat-
ing challenges in developing non-asymptotic theory for
SVGD (if possible at all). ii ) Based on the unified
framework in [Chen et al., 2018], we propose stochas-
tic particle-optimization sampling (SPOS) by injecting
Gaussian noise in particle updates to overcome the pit-
fall. iii ) For the first time, we develop nonasymptotic
convergence theory for the family of SPOS algorithms,
considering both convex- and nonconvex-energy targets.
Different from existing theory for SG-MCMC-based al-
gorithms [Teh et al., 2016, Vollmer et al., 2016, Chen
et al., 2015, Raginsky et al., 2017, Zhang et al., 2017, Xu
et al., 2018], our development relies on the theory
of nonlinear PDEs, which is more involved and less
explored in literature. Particularly, we adopt tools
from granular media equations [Malrieu, 2003, Cat-
tiaux et al., 2008] to develop non-asymptotic error
bounds in terms of 1-Wasserstein distance. More de-
tailed distinctions between our work and existing work
are discussed in Section N of the Supplementary Mate-
rial (SM). Somewhat surprisingly, our theory indicates
adopting more particles does not necessarily lead to
better approximations, due to the numerical errors in
the algorithms. This phenomenon is also observed for
SVGD empirically. iv) Our theory and advantages of
the algorithm are verified via various experiments, in-
cluding synthetic experiments, Bayesian deep learning
and Bayesian exploration for reinforcement learning.

2 Preliminaries
Notation We use bold letters to denote variables in
continuous-time di!usions and model deÞnitions (no
numerical methods included), e.g., ✓⌧ in (1) below
(indexed by “time” ⌧). By contrast, unbold lettersare
used to denote parameters in algorithms (numerical
solutions of continuous-time diffusions), e.g., ✓(i)k in (3)
below (indexed by “iteration” k). For conciseness, all
proofs, extra experimental results and a discussion on
algorithmic complexity are presented in the SM.

2.1 Stochastic gradient MCMC

In Bayesian sampling, one aims to generate ran-
dom samples from a posterior distribution p(✓|X ) /

p(X|✓)p(✓), where ✓ 2 Rd represents the model pa-
rameter with a prior distribution p(✓), and X !
{xq}Nq=1 represents the observed data with likeli-
hood p(X|✓) =

!
q p(xq |✓). Define the poten-

tial energy as: U(✓) ! � log p(X|✓) � log p(✓) =

�
" N

q=1

#
log p(xq |✓) + 1

N log p(✓)
$

!
" N

q=1 Uq(✓).
SG-MCMC algorithms belong to diffusion-based sam-
pling methods, where a continuous-time diffusion pro-
cess is designed such that its stationary distribution
matches the target posterior distribution. The diffusion
process is driven by a specific SDE. For example, in
stochastic gradient Langevin dynamic (SGLD) [Welling
and Teh, 2011], the SDE endows the following form:

d✓⌧ = ���1F (✓⌧ )d⌧ +
%
2��1dW⌧ , (1)

where F (✓) ! r! U(✓) =
" N

q=1 r! Uq(✓) !
" N

q=1 Fq(✓); ⌧ is the time index; � > 0 is the tem-
perature parameter; and W⌧ 2 Rd is a d-dimensional
Brownian motion. More instances of SDEs correspond-
ing to other SG-MCMC algorithms can be defined by
specifying different forms of F and potentially other
diffusion coefficients. We focus on SGLD and (1) in this
paper, and refer interested readers to [Ma et al., 2015]
for a more detailed description of general SG-MCMC
algorithms. Denote the probability density function
of ✓⌧ in (1) as ⌫⌧ , and let a · b ! a> b for two vectors
a and b. It is known that ⌫t is characterized by the
following Fokker-Planck (FP) equation [Risken, 1989]:

@⌧⌫⌧ = r! · (��1⌫⌧F (✓) + ��1r! ⌫⌧ ) . (2)

According to [Chiang and Hwang, 1987], the station-
ary distribution ⌫1 equals to our target distribution
p(✓|X ). As a result, SGLD is designed to generates
samples from p(✓|X ) by numerically solving the SDE
(1). For scalability, it replaces F (✓k) in each itera-
tion with an unbiased evaluation by randomly sam-
pling a subset of X , i.e., F (✓k) is approximated by:
Gk ! N

Bk

"
q2Ik

Fq(✓k), where Ik is a random sub-
set of [1, 2, · · · , N ] with size Bk in each iteration. As
a result, SGLD uses the Euler method with stepsize
hk to numerically solve (1), resulting in the update
equation: ✓k+1 = ✓k � ��1Gkhk +

%
2��1hk⇠k, with

⇠k ⇠ N (0, I ).

2.2 Stein variational gradient descent

Different from SG-MCMC, SVGD is a deterministic
particle-optimization algorithm that generates approx-
imate samples from a target distribution. In the al-
gorithm, a set of particles interact with each other,
driving them to high density regions in the parameter
space while keeping them far away from each other with
an induced repulsive force. The update equations of
the particles follow the fastest descent direction of the
KL-divergence between current particle distribution



Jianyi Zhang1, Ruiyi Zhang1, Lawrence Carin1, Changyou Chen2k

and the target distribution, on a RKHS (reproducing
kernel Hilbert space) induced by a kernel function (·, ·)
[Liu and Wang, 2016]. Formally, [Liu and Wang, 2016]
derived the following update rules for the particles
{✓(i)k }Mi=1 at the k-th iteration with stepsize hk and
G(i)

k ! N
Bk

"
q2Ik

Fq(✓
(i)
k ): for 8i, ✓(i)k+1

= ! ( i )
k +

hk

M

M!

j =1

"
" (! ( j )

k , ! ( i )
k )G( i )

k + r
! ( j )

k
" (! ( j )

k , ! ( i )
k )

#
(3)

where the first term in the bracket encourages moving
particles to the density modes, and the second
term serves as repulsive force that pushes away
different particles. Particularly, the particle evolution
(3) are numerical solutions of the ODEs: d✓(i)

⌧ =
1
M

" M
j=1

&
(✓(j)

⌧ ,✓(i)
⌧ )F (✓(i)

⌧ ) +r! ( j )
!
(✓(j)

⌧ ,✓(i)
⌧ )

'
d⌧ .

Different from SG-MCMC, typically only particles
at the current iteration, {✓(i)k }Mi=1, are used to
approximate the target distribution.

2.3 Particle-optimization based sampling

SG-MCMC and SVGD, though they may look closely
related, behave very differently as algorithms, e.g.,
stochastic and noninteractive versus deterministic and
interactive particle updates. Recently, [Chen et al.,
2018] proposed a deterministic particle-optimization
framework that unified SG-MCMC and SVGD. Specif-
ically, the authors viewed both SG-MCMC and SVGD
as solutions of Wasserstein gradient flows (WGFs) on
the space of probabilistic measures, and derived sev-
eral deterministic particle-optimization techniques for
particle evolution, like SVGD. For SG-MCMC, the FP
equation (2) for SGLD is a special type of WGFs. To-
gether with an interpretation of SVGD as a special
case of the Vlasov equation in the nonlinear PDE liter-
ature, [Chen et al., 2018] proposed a general form of
PDE to characterize the evolution of the density for
the model parameter ✓, denoted as ⌫⌧ at time ⌧ with
⌫1 matching our target (posterior) distribution, i.e.,

#" $" = r! ·
$
$" %! 1F (! ) + $" (K ⇤ $" (! )) + %! 1r! $"

%
,

(4)

where K is a function controlling the interaction of
particles in the PDE system. For example, in SVGD,
[Chen et al., 2018] showed that K and K ⇤ ⌫⌧ (✓) endow
the following forms:

K ⇤ ⌫⌧ (✓) !
(

K(✓,✓0)⌫⌧ (✓
0)d✓0 , (5)

where K(✓,✓0) ! F (✓0)(✓0,✓)�r! ! (✓0,✓) and (·, ·)
is a kernel function such as the RBF kernel. In
the following, we introduce a new unary function
K(✓) = exp(�k! k2

⌘2 ), thus (✓,✓0) can be rewritten
as (✓,✓0) = K(✓ � ✓0). Hence, (4) with K defined in
(5) is equivalently written as:

@⌧⌫⌧ =r! · (⌫⌧��1F (✓) + ⌫⌧ (EY⇠⌫! K(✓ � Y )F (Y )

�rK ⇤ ⌫⌧ (✓)) + ��1r! ⌫⌧ ) , (6)

where Y is a random sample from ⌫⌧ independent of
✓. Note our formula here is significantly different from
standard granular media equations in the literature.
Please refer to Section N of the SM for more details.

Proposition 1 ([Chen et al., 2018]) The station-
ary distribution of (6) equals to our target distribution,
which means⌫1(✓) = p(✓|X ).

[Chen et al., 2018] proposed to solve (4) numerically
with deterministic particle-optimization algorithms,
such as what is called the blob method. Specifically,
the continuous density ⌫⌧ is approximated by a set
of M particles {✓(i)

⌧ }Mi=1 that evolve over time ⌧ , i.e.
⌫⌧ ⇡ 1

M

" M
i=1 �! ( i )

!
(✓), where �! ( i )

!
(✓) = 1 if ✓ = ✓(i)

⌧

and 0 otherwise. Note r! ⌫⌧ in (4) is no longer a valid
definition when adopting particle approximation for ⌫⌧ .
Consequently, r! ⌫⌧ needs nontrivial approximations,
e.g., by discrete gradient flows or blob methods pro-
posed in [Chen et al., 2018]. We omit the details here
for simplicity.

3 Stochastic Particle-Optimization
Sampling (SPOS)

We first introduce a pitfall of SVGD, which is overcame
by SPOS. In the analysis for both SVGD and SPOS,
we impose the following basic assumptions.
Assumption 1 AssumeF and K satisfy the following
assumptions:

1.1 F is LF -Lipschitz continuous i.e., kF (✓) �
F (✓0)k  LF k✓ � ✓0k.

1.2 K is LK-Lipschitz continuous; rK is LrK-
Lipschitz continuous.

1.3 F (0) = 0 and K is an even function, i.e.,
K(�✓) = K(✓).

A few remarks: i) Assumptions 1.1 is widely adopted
in the other theoretical works such as [Dalalyan and
Karagulyan, 2017, Chatterji et al., 2018] ii ) F (0) = 0
in Assumption 1.3 is reasonable, as F in our setting
corresponds to an unnormalized log-posterior, which
can be shifted such that F (0) = 0 for a specific problem.
The assumptions of K are mild, and satisfied when
adopting the RBF Kernel.

3.1 A pitfall of SVGD

First, we motivate SPOS by discovering a pitfall of stan-
dard SVGD, i.e., particles in SVGD tend to collapse to
a local mode under some particular conditions. Inspired
by the work on analyzing granular media equations by
[Malrieu, 2003, Cattiaux et al., 2008], we measure the
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collapse by calculating the expected distance between
exact particles (without numerical errors), called ex-
pected particle distance (EPD) defined below.

Assumption 2 F andK satisfy the following assump-
tions:

2.1 There exists positive mK such that hrK(✓) �
rK(✓0),✓ � ✓0i  �mKk✓ � ✓0k2.

2.2 F is bounded byHF i.e., kF (✓)k  HF

For an RBF kernel, this assumption could be satis-
fied by setting the bandwidth large enough and only
considering the concave region. This seems a little
restrictive. However, this assumption is imposed only
for the analysis of the pitfall property. It is not needed
in the non-asymptotic convergence analysis below. Be-
sides, we point out what might happen without this
assumption in Remark 1.

Theorem 2 Under Assumptions 1 and 2, for the par-
ticles ✓(i)

⌧ deÞned in Section 2.2, the EPD for SVGD is

bounded as:EPD !
) " M

i,j Ek✓
(i)
⌧ � ✓(j)

⌧ k2  C0e�2�⌧ ,

whereC0 =
) " M

i,j k✓
(i)
0 � ✓(j)

0 k2, � = mK �HFLK .

Remark 1 1) In the case of� � 0, Theorem 2 indi-
cates that particles in SVGD would collapse to a point
when ⌧ ! 1. In practice, we usually Þnd that parti-
cles are trapped in a local mode instead of collapsing in
practice. This might be due to two reasons:i) Particles
in SVGD are numerical solutions instead of exact so-
lutions as used in EPD, which induce extra numerical
errors; ii ) Some particles might be out of the concave
region of K stated in Assumption 2 in SVGD, which
is required for the result to hold. These make the em-
pirical EPD behave not exactly the same as the true
particle distance. 2) Theorem 2 and its proof in the SM
also apply to the case of non-convex energy functions.
3) Even if the kernel is not concave, the result would
still indicate that particles in the concave regions would
collapse. 4) The pitfall indicates a challenge in devel-
oping non-asymptotic theory for SVGD (if possible at
all), motivating the development of SPOS. 5) This is
a complement to the result of [Liu et al., 2019], which
proves SVGD is ill-pose under some conditions.

3.2 Stochastic particle-optimization sampling

to mitigate the pitfall

We argue the WGF framework proposed in [Chen
et al., 2018], if solved appropriately, is able to over-
come the pitfall of SVGD. Specifically, the original
solution in [Chen et al., 2018] is based on a deter-
ministic particle-approximation method for (4), which
introduces hard-to-control approximation errors. In-
stead, we propose to solve (4) stochastically to re-
place the r! ⌫⌧ term in (4) with a Brownian motion.

Specifically, first note that the term ��1r! ·r! ⌫⌧ is
contributed from Brownian motion, i.e., solving the
SDE, d✓⌧ =

%
2��1dW⌧ , is equivalent to solving the

corresponding FP equation: @⌫⌧ = ��1r! · r! ⌫⌧ .
Consequently, we decompose the RHS of (4) into
two parts: F1 ! r! ·

#
⌫⌧��1F (✓⌧ ) + (K ⇤ ⌫⌧ )⌫⌧

$
and

F2 ! ��1r! ·r! ⌫⌧ . Our idea is to solve F1 determinis-
tically under a PDE setting, and solve F2 stochastically
based on its corresponding SDE. When adopting par-
ticle approximation for the density ⌫⌧ , both solutions
of F1 and F2 are represented in terms of particles
{✓(i)

⌧ }. Thus we can combine the solutions from the
two parts directly to approximate the original exact
solution of (4). Similar to the results of SVGD in Sec-
tion 3.3 in [Liu, 2017], we first formally show in Theo-
rem 3 that when approximating ⌫⌧ with particles, i.e.,
⌫⌧ ⇡ 1

M

" M
i=1 �! ( i )

!
(✓), the PDE can be transformed

into a system of deterministic differential equations
with interacting particles.

Theorem 3 When approximating ⌫⌧ in (4) with parti-
cles{✓(i)

⌧ }, the PDE @⌧⌫⌧ = F1 reduces to the following
system of di!erential equations describing evolutions
of the particles over time: 8i

d! ( i )
" = �%! 1F (! ( i )

" )d&� 1
M

M!

j =1

K (! ( i )
" � ! ( j )

" )F (! ( j )
" )d&

+
1

M

M!

j =1

rK (! ( i )
" � ! ( j )

" )d& (7)

Consequently, by solving @⌧⌫⌧ = F2 stochastically from
an SDE perspective, we arrive at the following dif-
ferential equation system, describing evolution of the
particles {✓(i)

⌧ } over time ⌧ : 8i

d! ( i )
" = � %! 1F (! ( i )

" � 1
M

M!

j =1

K (! ( i )
" � ! ( j )

" )F (! ( j )
" )

+
1

M

M!

j =1

rK (! ( i )
" � ! ( j )

" ))d&+
&

2%! 1dW ( i )
" (8)

Algorithm 1 Stochastic Particle-Optimization Sam-
pling

Input: Initial particles {✓(i)0 }Mi=1 with ✓(i)0 2 Rd, step
size hk, batch size Bk

1: for iteration k= 0,1,...,T do

2: Update ✓(i)k+1 with (9) for 8i.
3: end for

Output:{✓(i)T }Mi=1

Our intuition is that if the particle evolution (8) can
be solved exactly, the solution of (6) ⌫⌧ will be well-
approximated by the particles {✓(i)

⌧ }Mi=1. In our theory,
we show this intuition is true. In practice, however,
solving (8) is typically infeasible, and thus numerical
methods are adopted. Furthermore, in the case of big
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Figure 1: Comparison of SPOS (left) and SVGD (right)
on a multi-mode distribution. The circles with different
colors are the final 100 particles, which are able to
spread over all modes for SPOS.

data, following SG-MCMC, F (✓(i)k ) is typically replaced
by a stochastic version G(i)

k ! N
Bk

"
q2Ik

Fq(✓
(i)
k ) eval-

uated with a minibatch of data of size Bk for compu-
tational feasibility. Based on the Euler method [Chen
et al., 2015] with a stepsize hk, (8) leads to the follow-
ing updates for the particles at the k-th iteration: let
⇠(i)k ⇠ N (0, I ) for 8i,

✓(i)k+1 =✓(i)k � hk�
�1G(i)

k � hk

M

M*

j=1

K(✓(i)k � ✓(j)k )G(j)
k

+
hk

M

M*

j=1

rK(✓(i)k � ✓(j)k ) +
%
2��1hk⇠

(i)
k (9)

We call the algorithm with particle update equations
(9) stochastic particle-optimization sampling (Algo-
rithm 1), in the sense that particles are optimized
stochastically with extra random Gaussian noise. In-
tuitively, the added noise enhances the ability of the
algorithm to jump out of local modes, leading to better
exploration properties compared to standard SVGD.
This serves as one of our motivations to generalize
SVGD to SPOS. To illustrate the advantage of intro-
ducing the noise term, we compare SPOS and SVGD
on sampling a difficult multi-mode distribution, with
the density function given in Section A of the SM. The
particles are initialized on a local mode close to zero.
Note there are always positive probabilities to jump
between modes in this example. Figure 1 plots the final
locations of the particles along with the true density,
which shows that particles in SPOS are able to reach
different modes, while they are all trapped at one mode
in SVGD. Theorem 4 below bounds the EPD of SPOS,
in contrast with that for SVGD in Theorem 2, which
is intuitively obtained by taking the � ! 1 limit.

Theorem 4 Under Assumption 1, further assum-
ing every {✓(i)

⌧ } of (8) for approximating ⌫⌧ in (4)
has the same initial probability law ⌫0 and � !
E! ⇠⌫0 ,! ! ⇠⌫0 [k✓ � ✓0k2] < 1. Choose a� such that
� = mF

� + mK � HFLK > 0. Then the EPD of

SPOS is bounded as:EPD !
) " M

i,j Ek✓
(i)
⌧ � ✓(j)

⌧ k2 

C1e�2�⌧ + 4
)

d
�

M
� , where C1 = M(M � 1)� �

4
%
d��1M

� .

Remark 2 There are two interesting cases:i) When
C1 > 0, the EPD would decrease to the bound
4
%

d��1M/� along time t. This represents the phe-
nomenon of an attraction force between particles;ii )
When C1 < 0, the EPD would increase to the same
bound, which represents the phenomenon of a repulsive
force between particles, e.g., when particles are initial-
ized with the same value (� = 0), they would be pushed
away from each other until the EPD increases to the
aforementioned bound.

4 Non-Asymptotic Convergence
Analysis

In this section, we prove non-asymptotic convergence
rates for the proposed SPOS algorithm under the 1-
Wasserstein metric W1, a special case of p-Wasserstein
metric defined as

Wp(µ, $) =

'
inf

#" !( µ,$ )

(

Rd # Rd
kX µ � X $kpd' (X µ , X $ )

) 1/p

where �(µ, ⌫) is the set of joint distributions on Rd⇥Rd

with marginal distribution µ and ⌫. Note that SPOS
reduces to SVGD when � ! 1, thus our theory also
sheds light on the convergence behavior of SVGD,
where non-asymptotic theory is currently mostly miss-
ing, despite the asymptotic theory developed recently
[Liu, 2017, Lu et al., 2018]. For analysis, we further
impose the following assumptions.
Assumption 3 AssumeF and ⌫0 satisfy the following
assumptions:

3.1 There exists positive mF such that hF (✓) �
F (✓0),✓ � ✓0i � mF k✓ � ✓0k2.

3.2 The initial probability law of each particle has a
bounded and strictly positive density⌫0 with re-
spect to the Lebesgue measure onRd, and �0 !
log

+
Rd ek! k2

⌫0(✓)d✓ < 1

A few remarks: i) Assumption 3.1 indicates U to be con-
vex. Theory of non-convex U is presented in Section J
of the SM with some extra assumptions. ii ) Assump-
tions 3.1 is widely adopted in the other theoretical
works such as [Dalalyan and Karagulyan, 2017, Chat-
terji et al., 2018] iii ) Assumptions 3.2 has also been
adopted in [Raginsky et al., 2017]

4.1 Basic setup and extra notation

Due to the exchangeability of the particle system
{✓(i)

⌧ }Mi=1 in (8), if we initialize all the particles ✓(i)
⌧

with the same distribution ⇢0, they would endow the
same distribution for each time ⌧ . We denote the dis-
tribution of each ✓(i)

⌧ as ⇢⌧ . Similar arguments hold for
the particle system {✓(i)k }Mi=1 in (9), and thus we denote
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the distribution of each ✓(i)k as µk (k = 1, 2, · · · , T ). To
this end, our analysis aims at bounding W1(µT , ⌫1)
since ⌫1 is our target distribution p(✓|X ) according to
Proposition 1.

In the following, for conciseness, we use a summation
of stepsizes to represent the “time index” of some den-
sity, e.g., ⇢PT " 1

k =0 hk
. The high-level idea of bounding

W1(µT , ⌫1) in this section is to decompose it as follows:

W1(µT , ⌫1)  W1

,

- µT , ⇢T " 1P
k =0

hk

.

/ (10)

+W1

,

- ⇢T " 1P
k =0

hk

, ⌫T " 1P
k =0

hk

.

/ +W1

,

- ⌫T " 1P
k =0

hk

, ⌫1

.

/ .

4.2 Bounds with stochastic particle

approximation

In this section, we bound W1(⇢PT " 1
k =0 hk

, ⌫PT " 1
k =0 hk

) and
W1(⌫PT " 1

k =0 hk
, ⌫1) in (10). The first term corresponds

to a variant of granular media equation, but is much
more challenging to bound.

Theorem 5 Under Assumption 1&3 and letting ⇢0 =
⌫0, there exist positive constantsc1 and c2 independent
of (M, ⌧) and satisfying c2 < ��1 such that

W1(⇢⌧ , ⌫⌧ )  c1(�
�1 � c2)

�1M�1/2, 8⌧. (11)

Remark 3 According to Theorem 5, we can
bound the W1(⇢PT " 1

k =0 hk
, ⌫PT " 1

k =0 hk
) term as

W1(⇢PT " 1
k =0 hk

, ⌫PT " 1
k =0 hk

)  c1p
M(�" 1�c2 )

. Furthermore,

by letting ⌧ ! 1, we haveW1(⇢1, ⌫1)  c1p
M(�" 1�c2 )

,
an important result to prove the following theorem.

Theorem 6 Under Assumption 1&3, the following
holds: W1(⌫⌧ , ⌫1)  c3e�2�1 ⌧ , where �1 = ��1mF �
LF �2LK and c3 is some positive constant independent
of (M, ⌧). Furthermore, the W1(⌫PT

k =0 hk
, ⌫1) term in

(10) can be bounded as:

W1(⌫PT " 1
k =0 hk

, ⌫1)  c3 exp

0

�2�1(
T�1*

k=0

hk)

1

. (12)

To ensure W1(⌫PT " 1
k =0 hk

, ⌫1) decreases over time, one
needs to choose � small enough such that �1 > 0.
This also sheds light on a failure case of SVGD (where
� ! 1) discussed in Section 3.1.

4.3 Bounds with a numerical solution

To bound the W1(µT , ⇢PT " 1
k =0 hk

) term in (10), we adopt
techniques from [Raginsky et al., 2017, Xu et al., 2018]
on analyzing the behavior of SGLD, and derive the
following results for our SPOS algorithm:

Theorem 7 Under Assumptions 1&3, for a Þxed step
sizehk = h (8k) that is small enough, the corresponding
W1(µT , ⇢Th) is bounded as:

W1(µT , ( T h )  c4Md
3
2 %! 3(c5%2B ! 1 + c6h)

1
2 T

1
2 h

1
2 (13)

whereB is the minibatch size and(c4, c5, c6) are some
positive constants independent of(M,T, h).

Combining bounds from Theorems 5 and (7), given
T , the optimal bound over h can be seen to decrease
at a rate of O(M�1/2). Furthermore, the dependence
of T in the bound of Theorem 7 makes the bound
relatively loose. Fortunately, the bound can be made
independent of T by considering a decreasing-stepsize
SPOS algorithm, stated in Theorem 8.

Theorem 8 Under Assumptions 1&3, for a decreas-
ing step sizehk = h0/(k + 1), and letting the mini-
batch size in each iterationk be Bk = B0 + [log(k +
1)]100/99 with B0 the initial batch size, the correspond-
ing W1(µT , ⇢PT " 1

k =0 hk
) term is bounded, for some�

small enough, as:

W1

,

- µT , ⇢T " 1P
k =0

hk

.

/  c4�
�3Md

3
2

#
c7h

3
0 + c8�

3h0/B0

+c9h
2
0�

2
$1/2

, (14)

where (c4, c7, c8, c9) are positive constants independent
of (M,T, h0).

Note Bk increases at a very low speed, e.g., only by 15
after 105 iterations, thus it does not affect algorithm
efficiency. Consequently, W1(µT , ⇢PT " 1

k =0 hk
) would ap-

proach zero when h1/2
0 M ! 0.

The Overall Non-Asymptotic Bounds By di-
rectly combining results from Theorems 5–8, one can
easily bound the target W1(µT , ⌫1), stated in Theo-
rem 9 and Theorem 10.

Theorem 9 (Fixed Stepsize) Under Assump-
tion 1&3 and settinghk = h0, Bk = B0, W1(µT , ⌫1)
is bounded as:W1(µT , ⌫1) 

c1p
M(��1 � c2)

+ c6Md
3
2 ��3(c4�

2B�1 + c5h)
1
2 T

1
2 h

1
2

+ c3 exp
2
�2

#
��1mF � LF � 2LK

$
Th

3
, (15)

where(c1, c2, c3, c4, c5, c6,�) are positive constants such
that 1

� > c2 and mF
� > LF + 2LK .

Theorem 10 (Decreasing Stepsize) Denote h̃T !
" T�1

k=0 hk. Under Assumption 1&3, if we set hk =
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Figure 2: Estimation errors versus number of iterations for SPOS (left) and SVGD (right).

h0/(k+1) andBk = B0+[log(k+1)]100/99, W1(µT , ⌫1)
is bounded as:

W1(µT , ⌫1)  c1p
M(��1 � c2)

(16)

+ c3 exp{�2
#
��1mF � LF � 2LK

$
h̃T }

+ c10�
�3Md

3
2 (c9h

3
0 + c7�

3h0/B0 + c8h
2
0�

2)
1
2 .

where (c1, c2, c3, c7, c7, c8, c9, c10,�) are positive con-
stants such that 1

� > c2 and mF
� > LF + 2LK .

Remark 4 Four implications are highlighted from the
theorems: i) M and T play a similar role when bound-
ing the numerical errors (the third term in the RHS of
(15)). The bound increases with increasingM and T ,
which seems unavoidable and is consistent with the lat-
est result for SGLD, whose bound is proved to increase
w.r.t. T [Raginsky et al., 2017]. ii ) The increasing
bound w.r.t. T can be compromised by using decreasing
stepsizes shown in Theorem 10. Unfortunately, this
does not seem to eliminate the e!ect ofM . To accom-
modate this, one should either use a smallerh or a
larger �. We believe future work is needed to improve
the bound w.r.t. M . However, this is nontrivial as
recent theory shows coordinate-wise SGLD scales lin-
early w.r.t. parameter dimension [Shen et al., 2019]
(corresponding to scaling linearly w.r.t. M in our case,
consistent with our theory). iii ) When T ⇥ M (pro-
portional to computation cost) is not too large, the
error is bounded above byO(M�1/2 +M), indicating
the existence of an optimalM , i.e., one should not
choose arbitrary many particles as it would induce larger
numerical-error bounds. This is somewhat surprising
and counter-intuitive compared with the asymptotic the-
ory [Liu, 2017, Lu et al., 2018]. However, we will
demonstrate this is true with synthetic experiments be-
low, where the phenomenon is also observed in SVGD.
iv) When T ⇥M is large enough, theO(M) term dom-
inates, indicating an increasing error w.r.t. M . This is
veriÞed by the experiments in Section 5.1 (Figure 3),
although the bound might not be strictly tight.

5 Experiments
We use a simple synthetic experiments to demonstrate
the non-asymptotic convergence behaviors of SPOS

indicated by our theory. For more experiments and real
applications and comparisons of SPOS with SVGD and
SGLD on Bayesian learning of deep neural network and
Bayesian exploration in deep reinforcement learning
(RL), please refer to Section O of the SM.

5.1 Sampling a Gaussian distribution

We apply the algorithms to sample from a simple
1-D Gaussian distribution with mean 2 and vari-
ance 1. Since the 1-Wasserstein distance is infeasi-
ble to calculate, we follow [Vollmer et al., 2016, Chen
et al., 2015] and measure the convergence using err !
|E✓⇠µT [f(✓)] � E✓⇠N (2,1)[f(✓)]| with a test function
f(✓) ! ✓2. We fix T = 1000 and h = 0.03. Particles
are initialized as being drawn from N (0, 1). Figure 2
plots the estimation errors versus the number of iter-
ations for different particles M . For both SPOS and
SVGD, it is observed that when T is not too large
(⇡ 100), the errors increase w.r.t. T , and the optimal
M is around 300, consistent with our theory. When
T is large enough, the errors decrease w.r.t. T , and
larger M induces larger errors. This is also consistent
with our theory because the last term in Theorem 9
dominates when T is large, leading to increasing errors
with larger M . The only concern seems to be the tight-
ness of the bound, which might be due to technical
difficulty as current techniques for SGLD also indicate
an increasing bound w.r.t. T [Raginsky et al., 2017].
The large optimal M also suggests using a relative large
M should not be a problem in real applications.

Impact of particle number M In addition to the
above result to demonstrate the existence of an opti-
mal M , we further verify that when T ⇥ M is large
enough, for a fixed T , we observe the errors increase
with increasing M ’s. We use the same setting as above.
Figure 3 plots the curves of errors versus number of
particles. We see that errors indeed increase w.r.t. par-
ticle numbers, consistent with our theory. Although
the rate of the bound from our theory might not match
exactly with the experimental results, we believe this
is still significant as the problem has never been dis-
covered before, which is somewhat counter-intuitive.
On the other hand, the results are also reasonable, as

mailto:cchangyou@gmail.com
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Figure 3: Errors versus Number of particles. Errors
increase with increasing particle numbers.

more particles would need much more updates to fit
a distribution well. The results indicate that to get a
smaller error, one should increase number of iterations
faster than increasing the number of particles.

Table 1: Averaged RMSE with standard deviations.
Test RMSE

Dataset SGLD SVGD SPOS
Boston 3.114 ± 0.144 2.961 ± 0.109 2.829 ± 0.126

Concrete 5.508 ± 0.275 5.157 ± 0.082 5.071 ± 0.150

Energy 0.842 ± 0.060 1.291 ± 0.029 0.752 ± 0.029

Kin8nm 0.080 ± 0.001 0.090 ± 0.001 0.079 ± 0.001

Naval 0.004 ± 0.000 0.004 ± 0.000 0.004 ± 0.000

CCPP 4.059 ± 0.080 4.127 ± 0.027 3.939 ± 0.049

Wine 0.632 ± 0.022 0.604 ± 0.007 0.598 ± 0.014

Yacht 1.183 ± 0.263 1.597 ± 0.099 0.840 ± 0.087

Protein 4.281 ± 0.011 4.392 ± 0.015 4.254 ± 0.005

YearPredict 8.707 ± NA 8.684 ± NA 8.681 ± NA

5.2 BNNs for regression

We next conduct experiments for Bayesian learning of
deep neural networks (DNNs) to empirically compare
SGLD, SVGD and SPOS for posterior sampling of
BNN weights with standard Gaussian priors. We use
a RBF kernel with the bandwidth set to the medium
of particles. Following [Li et al., 2015], 10 UCI public
datasets are considered: 100 hidden units for 2 large
datasets (Protein and YearPredict), and 50 hidden
units for the other 8 small datasets. We use the same
setting as [Zhang et al., 2018b]. The datasets are
randomly split into 90% training and 10% testing. For
a fair comparison, we use the same split of data (train,
val and test) for all methods. We report the root mean
squared error (RMSE) in Table 1. The proposed SPOS
outperforms both SVGD and SGLD. More detailed
settings and results are given in Section O of the SM.

5.3 Bayesian exploration in deep RL

It is well-accepted that RL performance directly mea-
sures how well the uncertainty is learned, due to the
need for exploration. We apply SPOS for RL, and

compare it with SVPG, a SVGD version of the pol-
icy gradient method [Liu et al., 2017]. Following [Liu
et al., 2017, Zhang et al., 2018a], we define policies with
Bayesian DNNs. This naturally introduces uncertainty
into action selections, rendering Bayesian explorations
to make policy learning more effective.

We follow the same setting as in [Liu et al., 2017]
except using simpler policy-network architectures as in
[Houthooft et al., 2016]. We conduct experiments on
three classical continuous control tasks are considered:
Cartpole Swing-Up, Double Pendulum, and Cartpole.
Detailed experimental settings are given in the SM.
Figure 4 plots the cumulative rewards over time on
the Cartpole environment, which clearly shows the
advantage of our method over SVPG. More results are
provided in the SM.

Figure 4: Policy learning with Bayesian exploration in
policy-gradient methods with SVPG and SPOS-PG.

6 Conclusion

We propose an approach for particle-optimization-based
sampling that overcomes a potential pitfall of standard
SVGD. Notably, for the first time, we develop non-
asymptotic convergence theory for the proposed SPOS
framework, a missing yet important theoretical result
since the development of SVGD. Within our theoretical
framework, a pitfall of SVGD, which has been studied
empirically [Wang et al., 2017, Zhuo et al., 2018], is
formally analyzed. Our theory is practically significant
as it provides nonasymptotic theoretical guarantees
for the recently proposed particle-optimization-based
algorithms such as the SVGD, whose advantages have
also been extensively examined in real applications.
Surprisingly, our theory indicates the existence of an
optimal particle size, i.e., increasing particle size does
not necessarily guarantee performance improvement.
This is also observed for SVGD in a synthetic experi-
ment. There are a number of interesting future works.
For example, one might explore more recently devel-
oped techniques such as [Cheng et al., 2018, Liu and
Wang, 2018] to improve the convergence bound; one
can also adopt the SPOS framework for non-convex
optimization like where SG-MCMC is used, and de-
velop corresponding theory to study the convergence
properties of the algorithm to the global optimum.
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