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A Proof of Lemma 3

Proof of Lemma 3. We first prove the upper bound of
At. The essential proof is actually due to Cheung et al.
[2019a] in analyzing sliding window based approach.
For self-containedness, we restate here in the notations
of our proposed restarted strategy.∥∥∥∥∥V −1
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where (21) holds by rearranging over the index pair
of (s, p), (22) holds due to the triangle inequality, (23)
and (24) can be obtained by the same argument in
Appendix B of Cheung et al. [2019b]. We thus prove
the upper bound of At.

We proceed to prove the upper bound of Bt. From
the self-normalized concentration inequality [Abbasi-
Yadkori et al., 2011, Theorem 1], restated in Theorem 5
of Appendix C, we know that∥∥∥∥∥
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where the last inequality is obtained from the analysis
of the determinant, as shown in the proof of Lemma 4.

Meanwhile, since Vt−1 � λI, we know that

‖λθt‖2V −1
t−1

≤1/λmin(Vt−1)‖λθt‖22 ≤
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λ
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Therefore, the upper bound of Bt can be immediately
obtained by combining the above inequalities.

B Bandit-over-Bandits Mechanism
and Proof of Theorem 4

The RestartUCB algorithm requires prior informa-
tion of the path-length PT , which is generally un-
known. Such a limitation can be avoided by utilizing
the Bandits-over-bandits (BOB) mechanism, proposed
by Cheung et al. [2019a] in designing parameter-free
algorithm for non-stationary linear bandits based on
sliding window least square estimator.

In the following, we first describe how to apply the
BOB mechanism to eliminate the requirement of the
unknown path-length in RestartUCB. Then, we present
the proof of Theorem 4.

B.1 RestartUCB with BOB Mechanism

We name the RestartUCB algorithm with Bandit-over-
Bandits mechanism as “RestartUCB-BOB”, whose
main idea is illustrated in Figure 4.
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Figure 4: Illustration of Bandit-over-Bandits mecha-
nism with application to RestartUCB algorithm.

From a high-level view, although the exact value of the
optimal epoch size (or equivalently, the path-length
PT ) is not clear, we can make some random guesses
of its possible value, since the PT is always bounded.
Then, we can use a certain meta-algorithm to adap-
tively track the best epoch size, based on the returned
reward returned. Specifically, The RestartUCB-BOB
algorithm first sets an update period H0, and then
runs the RestartUCB with a particular epoch size in
each period, and the epoch size will be adaptively ad-
justed by employing EXP3 [Auer et al., 2002] as the
meta-algorithm. We refer the reader to Section 7.3
of Cheung et al. [2019b] for more descriptions of design
motivations and algorithmic details.

In the configuration of RestartUCB-BOB, we set H0 =
dd
√
T e and the pool of epoch sizes J as

J = {Hi = b(d/(2S))
2/3 · 2i−1c | i = 1, 2, · · · , N},

where N = dln(d1/3T 1/2(2S)2/3)e+ 1.

Denoted by Hmin (Hmax) the minimal (maximal) epoch
size in the pool J , we know that

Hmin = b(d/(2S))
2/3c, Hmax = bd

√
T c ≤ H0. (25)
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B.2 Proof of Theorem 4

Proof of Theorem 4. We begin with the following de-
composition of the dynamic regret.
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where H† is the best epoch size to approximate the
optimal epoch size H∗ in the pool J , and H∗ =
b(dT/(1 + PT ))2/3c. Hence, it suffices to bound terms
(i) and (ii). In the following, we consider two cases,
either (1 + PT ) ≥ d−1/2T 1/4 or (1 + PT ) < d−1/2T 1/4.

Case 1. when (1 + PT ) ≥ d−1/2T 1/4.

In this case, it is easy to verify that H∗ ≤ Hmax and
we thus conclude that H∗ lies in the the range of
[Hmin, Hmax]. Furthermore, from the configuration of
the pool J , we confirm that there exists an epoch size
H† ∈ J such that H† ≤ H∗ ≤ 2H†. So term (ii) can
be upper bounded by
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where (26) is due to Theorem 2 and Pi denotes the
path-length in the i-th update period. (27) follows by
summing over all update periods, and the last inequality
holds since the optimal epoch size H∗ is provably in the
range of [Hmin, Hmax] and satisfies H† ≤ H∗ ≤ 2H†.

Next, we bound the term (i),
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where the first inequality follows by the same argument
as in the sliding window based approach [Cheung et al.,
2019b, Lemma 13], building upon the of EXP3. In

addition, the last inequality holds due to the fact that
(1 + PT ) ≥ d−1/2T 1/4 implies,

d1/2T 3/4 = d2/3T 2/3d−1/3T 1/6 ≤ d2/3T 2/3(1 +PT )1/3.

Hence, by combining the upper bounds of term (i)
and term (ii), we know that the dynamic regret

of RestartUCB-BOB is bounded by Õ(d2/3T 2/3(1 +
PT )1/3) under the condition of (1 + PT ) ≥ d−1/2T 1/4.

Case 2. when (1 + PT ) < d−1/2T 1/4.

In this case, we cannot guarantee that the optimal
epoch size H∗ lies in the range of [Hmin, Hmax], so we
set H† as H0,
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where the last inequality holds by exploiting the condi-
tion of (1 + PT ) ≤ d−1/2T 1/4. The result in conjunc-
tion with the upper bound of term (i) in (28) gives the

Õ(d1/2T 3/4) dynamic regret under this condition.

Finally, note that the dynamic regret of above two
cases can be rewritten in the following unified form,
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Hence, we complete the proof of Theorem 4.

C Technical Lemmas

In this section, we provide several technical lemmas
that frequently used in the proofs.

Theorem 5 (Self-Normalized Bound for Vector-Valued
Martingales [Abbasi-Yadkori et al., 2011, Theorem 1]).
Let {Ft}∞t=0 be a filtration. Let {ηt}∞t=0 be a real-valued
stochastic process such that ηt is Ft-measurable and
conditionally R-sub-Gaussian for some R > 0, namely,
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2

)
. (29)

Let {Xt}∞t=1 be an Rd-valued stochastic process such
that Xt is Ft−1-measurable. Assume that V is a d× d
positive definite matrix. For any t ≥ 0, define

V̄t = V +
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Then, for any δ > 0, with probability at least 1− δ, for
all t ≥ 0,
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Lemma 4 (Elliptical Potential Lemma). Suppose U0 =
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Proof. First, we have the following decomposition,
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Taking the determinant on both sides, we get
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which in conjunction with Lemma 5 yields
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Note that in the first inequality, we utilize the fact that
1 + x ≥ exp(x/2) holds for any x ∈ [0, 1]. By taking
advantage of the telescope structure, we have
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where the last inequality follows from the fact that
Tr(UT ) ≤ Tr(U0) + L2T = λd + L2T , and thus
det(UT ) ≤ (λ+ L2T/d)d.

Therefore, Cauchy-Schwartz inequality gives,
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Lemma 5.

det(I + vvT) = 1 + ‖v‖22. (33)

Proof. Notice that

(i) (I + vvT)v = (1 + ‖v‖22)v, therefore, v is its
eigenvector with (1 + ‖v‖22) as the eigenvalue;

(ii) (I + vvT)v⊥ = v⊥, therefore, v⊥ ⊥ v is its eigen-
vector with 1 as the eigenvalue.

Consequently, det(I + vvT) = 1 + ‖v‖22.
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