Faster Graph Embeddings via Coarsening

A. Closure of SDDM Matrices under Schur
complement
Lemma A.1. If M is an SDDM matrix and T =V \ {z}

is a subset of its columns, then S := SC(M, T)) is also an
SDDM matrix.

Proof. Recall that
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and observe that D), , = M, ,. By definition of SDDM
matrices, we need to show that S is (i) symmetric, (ii) its off-
diagonal entries are non-positive and (iii) for all ¢ € [n — 1]
we have S;; > — > ki S;;. An easy inspection shows that
S satisfies (i) and (ii). We next show that (iii) holds.

To this end, by definition of S, we have that
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As M is an SDDM matrix, the following inequality holds
for the z-th row of M
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or equivalently
M, [ > M, | < -M3,. (10)
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Plugging Eq. (10) in Eq. (9) and using the fact that
- Zj# M,;; < My, we get that
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which completes the proof of the lemma. O



