
Black-box Methods for Restoring Monotonicity

A. Missing proofs from Section 3
A.1. Single-dimensional case

Proof of Claim 1. It is easy to see that the function is mono-
tone by induction. Assuming that for any j, k ≤ i − 1,
if πj ≤ πk then Mπ

f (πj) ≤ Mπ
f (πk), we show that this

property also holds for any j, k ≤ i. Indeed, by definition
Mπ

f (πi) ≤ Hi ≤ Mπ
f (πj) for any πj ≥ πi with j < i.

Similarly, Mπ
f (πi) ≥ Li ≥ Mπ

f (πj) for any πj ≤ πi with
j < i.

To see that Mπ
f (x) ≤ maxy≤x f(y) for any x ∈ [m], notice

that if f(πi) ≥ Mπ
f (πi) this is trivially true. We thus only

need to argue that this is true when Mπ
f (πi) = Li. In this

case, there is some j < i with πj < πi, such that Li =
Mπ

f (πj). Again by induction, Mπ
f (πj) ≤ maxy≤πj

f(y)
and thus Li ≤ maxy≤πj

f(y) ≤ maxy≤πi
f(y).

Proof of Claim 2. We first argue that it suffices to show the
statement for functions f that take values in {0, 1} instead
of [0, 1].

For a function g, denote by [g > t] the indicator function
that g(x) > t. One can check that [Mπ

f > t] = Mπ
[f>t] as

the definition of Mπ
f only involves comparisons. Since the

value Mπ
f (x) =

� 1

0
[Mπ

f > t](x)dt, we get that Mπ
f (x) =� 1

0
Mπ

[f>t](x)dt.

We have Ex∼U([m])[f
�(x)] = Ex∼U([m])[Eπ[Mπ

f]] =� 1

0
Ex∼U([m])[Eπ[Mπ

[f>t](x)]]dt. Therefore if for any
boolean-valued function g : [m] → {0, 1} we show that
Ex∼U([m])[Eπ[Mπ

g (x)]] = Ex∼U([m])[g(x)] then we obtain
the required statement, as we can use g = [f > t] for any
t ∈ [0, 1].

We move on to prove the statement for functions f taking
values in {0, 1}. The description of the constructed f � be-
comes much simpler in this case. Starting from the interval
{1, ...,m} the algorithm first selects an element i uniformly
at random. If f(i) = 0, it sets f �(j) = 0 for any j ≤ i and
recursively solves the problem in the interval {i+1, ...,m}.
If f(i) = 1, it sets f �(j) = 1 for any j ≥ i and recursively
solves the problem in the interval {1, ..., i− 1}.

Let {l, ..., r} be the interval at the current iteration. Let
V (l, r) be the value of this set defined as

V (l, r) =

r�

x=l

f(x)−
r�

x=l

E[f �(x)]

where the expectation is taken over the randomness of f � on
the interval {l, ..., r}.

We will prove by induction on r − l that V (l, r) = 0. In
the case that r = l we will select the only point xl with

probability 1, so V (l, r) = f(x) − f(x) = 0. We assume
that V (l, r) = 0 for any l, r with r − l ≤ m− 1.

Let y ∼ U({l, ..., r}) be the uniformly random chosen
point from {l, ..., r}. We distinguish two cases for f(y). If
f(y) = 0 we obtain

r�

x=l

f(x)−
r�

x=l

E[f �(x)|y] =
y�

x=l

f(x)

=

r�

x=l

�{f(x)=0,f(y)=1,x≥y}

where the first equality follows, since conditional on y,
f �(x) = 0 for x ∈ {l, ..., y} and by the induction hypothe-
sis

�r
x=y+1 f(x)−

�r
x=y+1 E[f �(x)|y] = 0. Similarly, if

f(y) = 1 we obtain

r�

x=l

f(x)−
r�

x=l

E[f �(x)|y] =
r�

x=y+1

(f(x)− 1)

= −
r�

x=l

�{f(x)=1,f(y)=0,x≤y}

Overall, we have

V (l, r) =
1

r − l + 1

r�

y=l

�
r�

x=l

f(x)−
r�

x=l

E[f �(x)|y]
�

=
1

r − l + 1

r�

y=l

�
r�

x=l

�{f(x)=0,f(y)=1,x≥y}

−
r�

x=l

�{f(x)=1,f(y)=0,x≤y}

�
= 0

The intuition behind this fact is that the expected loss in-
curred by turning 1’s into 0’s is exactly balanced by the
expected gain by turning 0’s to 1’s.

Proof of Claim 3. Fix a point x ∈ [m] and a random per-
mutation π.

The oracle for Mπ
f keeps track of an interval {li, ..., ri} and

makes a query only when the next point in the permutation
lies in this interval. As the permutation is chosen uniformly
at random, the next point is chosen uniformly in {li, ..., ri}
and lies in the smaller interval { 3li+ri

4 , ..., li+3ri
4 } with

probability 1/2. Every time this happens, the algorithm
discards at least ri−li

4 of the elements. As this shrinks
the interval by a constant factor, it can happen at most
O(logm) times. By Hoeffding’s inequality, the probabil-
ity that after O(logm) +

�
O(logm · log(1/δ)) iterations

the interval size is still greater than 1 is at most δ. Since
O(logm)+

�
O(logm · log(1/δ)) = O(log(m/δ)) we get

that the number of oracle queries is at most O(log(m/δ))

Black-box Methods for Restoring Monotonicity

to evaluate A�(x) with probability 1− δ. To get the required
bound for every x ∈ [m], we set δ → δ/m and take a union
bound on the probabilities of error. This only increases the
number of oracle queries by a constant factor, so the bound
of O(log(m/δ)) is still accurate.

A.2. Extending to many dimensions (general d)

To establish the result of Theorem 1, we now extend our
construction to the more general case with d ≥ 1. We apply
our single-dimensional construction from Section 3.1 to fix
monotonicity in each direction separately starting with the
first.

We set f0 = f . For every i ∈ [d], based on the function fi−1

that is monotone in the first i− 1 coordinates we obtain a
function fi that is monotone in the first i coordinates. To do
this we apply our single dimensional construction at every
single-dimensional slice fi−1(·, x−i) of fi−1 for all choices
x−i ∈ Rd of the coordinates other than i. Importantly, we
use the same randomness at every slice, for the choices of
the points in the intervals I1, ..., Im when performing the
discretization to m = 1

ε points as well as for the chosen
permutation π over the discrete domain [m]. This allows
us to fix the monotonicity in coordinate i while preserving
monotonicity in the first i− 1 coordinates. It is easy to see
that the discretization preserves the monotonicity. We now
argue that using the same permutation for every slice also
maintains the monotonicity. The following lemma shows
that any two functions where one is smaller than the other,
preserve the same ordering after their monotonization.

Lemma 1. Let f, g : [m] → [0, 1] such that f(x) ≤ g(x),
for all x ∈ [m]. For any permutation π, it holds that
Mπ

f (x) ≤ Mπ
g (x), for all x ∈ [m].

Proof. As argued in Claim 2, it suffices to show the state-
ment for boolean valued functions f, g : [m] → {0, 1}. Let
i be the first point where Mπ

f (πi) �= Mπ
g (πi). By the defini-

tion of M, H(g)
i = H

(f)
i and L

(g)
i = L

(f)
i and thus it must

be that Mπ
f (πi) = 0 and Mπ

g (πi) = 1. By monotonicity
Mπ

f (x) = 0 for all x ≤ πi and Mπ
g (x) = 1 for all x ≥ πi.

Thus, Mπ
f (x) ≤ Mπ

g (x), for all x ∈ [m].

This allows us to obtain a chain of oracles f =
f0, f1, ..., fd = f � where fi is monotone in the first i co-
ordinates. Evaluating fi requires only O(log d

ε) queries to
oracle fi−1 and gets error at most ε/d. Thus, to evaluate
f � = fd, at most O

�
log d

ε

�d
queries to oracle f are required

for error ε.

B. Missing proofs from Section 4
Proof of Claim 4. This claim follows as with high prob-
ability, the transformation Mf1

S,T
(T) cannot distinguish

between f0
S,T and f1

S,T . To see this, let R1, ..., Rq be
the queries performed by Mf0

S,T
(T). If all of those

queries satisfy f0
S,T (Ri) = f1

S,T (Ri) then it must be that
Mf1

S,T
(T) = Mf0

S,T
(T).

Initially observe that for any R where either R �⊆ T or |R| <
4d
10 we have that f0

S,T (R) = f1
S,T (R). On the contrary, given

the set T , for any R ⊆ T such that |R| ≥ 4d
10 , the functions

f1
S,T and f0

S,T differ only when |R \ S| ≤ d/10, therefore

Pr[f0
S,T (R) �= f1

S,T (R)] = Pr
�
|R \ S| ≤ d

10

�

Since S is a random subset of T excluding each element
independently with probability 1/3, we get that the expected
value of E[|R \ S|] = |R|/3 ≥ 4d

30 . By the Hoeffding
inequality we get

Pr

�
|R \ S| ≤ E[|R \ S|]− d

30

�
≤ exp

�
− d

450

�

The claim then follows by a union bound on all q queries.

Proof of Claim 5. Let R1, ..., Rq be the queries performed
by Mf1

S,T
(S). If all of those queries satisfy f1

S,T (Ri) =

f1(Ri) then it must be that, Mf1
S,T

(S) = Mf1(S).

For any query R, in order for f1
S,T (R) �= f1(R), it must be

that R ⊆ T , |R| ≥ 4d
10 and |R \ S| > d

10 .

Given the set S, for any |R| ≥ 4d
10 and |R \ S| > d

10 , we
have Pr[R ⊆ T] = Pr[(R \ S) ⊆ T] < 2−

d
10 since given

the set S, the set T is created by including each coordinate
in [d]\S with probability 1/2. The claim then again follows
by a union bound on all q queries.

