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Abstract
Communication cost is often a bottleneck in
federated learning and other client-based dis-
tributed learning scenarios. To overcome this,
several gradient compression and model com-
pression algorithms have been proposed. In
this work, we propose an alternative approach
whereby an ensemble of pre-trained base pre-
dictors is trained via federated learning. This
method allows for training a model which may
otherwise surpass the communication bandwidth
and storage capacity of the clients to be learned
with on-device data through federated learn-
ing. Motivated by language modeling, we prove
the optimality of ensemble methods for den-
sity estimation for standard empirical risk min-
imization and agnostic risk minimization. We
provide communication-efficient ensemble algo-
rithms for federated learning, where per-round
communication cost is independent of the size
of the ensemble. Furthermore, unlike previous
work on gradient compression, our algorithm
helps reduce the cost of both server-to-client and
client-to-server communication.

1. Introduction
With the growing prevalence of mobile phones, sensors,
and other edge devices, designing communication-efficient
techniques for learning using client data is an increasingly
important area in distributed machine learning. Federated
learning is a setting where a centralized model is trained on
data that remains distributed among the clients (Konečný
et al., 2016b; McMahan et al., 2017; Mohri et al., 2019).
Since the raw local data are not sent to the central server co-
ordinating the training, federated learning does not directly
expose user data to the server and can be combined with
cryptographic techniques for additional layers of privacy.
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Federated learning has been shown to perform well on
several tasks, including next word prediction (Hard et al.,
2018; Yang et al., 2018), emoji prediction (Ramaswamy
et al., 2019), decoder models (Chen et al., 2019b), vocab-
ulary estimation (Chen et al., 2019a), low latency vehicle-
to-vehicle communication (Samarakoon et al., 2018), and
predictive models in health (Brisimi et al., 2018).

Broadly, in federated learning, at each round, the server
selects a subset of clients who receive the current model.
These clients then run a few steps of stochastic gradient
descent locally and send back the model updates to the
server. Training is repeated until convergence. Given the
distributed nature of clients, federated learning raises sev-
eral research challenges, including privacy, optimization,
systems, networking, and communication bottleneck prob-
lems. Of these, communication bottleneck has been studied
extensively in terms of compression of model updates from
client to servers (Konečný et al., 2016b;a; Suresh et al.,
2017).

This line of work requires that the model size be small
enough to fit into the client devices’ memory. This as-
sumption holds in several applications. For example, the
size of typical state-of-the-art server-side language models
is in the order of several hundreds of megabytes (Kumar
et al., 2017). Similarly, that of speech recognition models,
which admit a few million parameters, is on the order of
hundreds of megabytes (Sak et al., 2015). However, other
applications motivate the need for larger models and alter-
native solutions. Such larger models can be used, for ex-
ample, in server-side inference. They can also be further
processed either by distillation techniques (Hinton et al.,
2015), or compressed using quantization (Wu et al., 2016)
or pruning (Han et al., 2015) for on-device inference. This
prompts the following question: Can we learn very large
models in federated learning that may not fit in client de-
vices’ memory?

We present a solution to this problem by showing that large
models can be learned via federated learning using ensem-
ble methods. Ensemble methods are general techniques
in machine learning for combining several base predictors
or experts to create a single more accurate model. In the
standard supervised learning setting, they include promi-
nent techniques such as bagging, boosting, stacking, error-
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correction techniques, Bayesian averaging, or other aver-
aging schemes (Breiman, 1996; Freund et al., 1999; Smyth
& Wolpert, 1999; MacKay, 1991; Freund et al., 2004). En-
semble methods often significantly improve performance
in practice in a variety of tasks (Dietterich, 2000), includ-
ing image classification (Kumar et al., 2016) and language
models (Jozefowicz et al., 2016).

One of the main bottlenecks in federated learning is com-
munication efficiency, which is determined by the number
of parameters sent from the server to the clients and from
clients to the server at each round (Konečný et al., 2016b).
Since the current iterate of the model is sent to all partici-
pating clients during each round, directly applying known
ensemble methods to federated learning could cause a sig-
nificant or even infeasible blow-up in communication costs
due to transmitting every predictor, every round.

We propose FEDBOOST, a new communication-efficient
ensemble method that is theoretically motivated and
has significantly smaller communication overhead, com-
pared to the existing algorithms. In addition to the
communication-efficiency, ensemble methods offer several
advantages in federated learning. They include computa-
tional speedups, convergence guarantees, privacy, and the
optimality of the solution for density estimation for which
language modeling is a special case. We list several of their
other advantages in this context below:

• Pre-trained base predictors: base predictors can be
pre-trained on publicly available data, thus reducing
the need for user data in training.

• Convergence guarantee: ensemble methods often re-
quire training relatively few parameters, which typi-
cally results in far fewer rounds of optimization and
faster convergence compared to training the entire
model from scratch.

• Adaptation or drifting over time: user data may
change over time, but, in the ensemble approach, we
can keep the base predictors fixed and retrain the en-
semble weights whenever the data changes (Mohri &
Medina, 2012).

• Differential privacy (DP): federated learning can be
combined with global DP to provide an additional
layer of privacy (Kairouz et al., 2019). Training
only the ensemble weights via federated learning is
well-suited for DP since the utility-privacy trade-off
depends on the number of parameters being trained
(Bassily et al., 2014). Furthermore, this learning prob-
lem is typically a convex optimization problem for
which DP convex optimization can give better privacy
guarantees.

1.1. Related work

The problem of learning ensembles is closely related to
that of multiple source domain adaptation (MSDA), first
formalized and analyzed theoretically by Mansour, Mohri,
and Rostamizadeh (2009b;a) and Hoffman et al. (2018) and
later studied for various applications such as object recog-
nition (Hoffman et al., 2012; Gong et al., 2013a;b). Re-
cently, Zhang et al. (2015) studied a causal formulation of
this problem for a classification scenario, using the same
combination rules as in (Mansour et al., 2009b;a; Hoffman
et al., 2018).

There are several key differences between MSDA and our
approach. For MSDA, (Mansour et al., 2009b;a; Hoffman
et al., 2018) showed that the optimal combination of single
source models are not ensembles and one needs to consider
feature weighted ensembles. However, the focus of their
approach was regression and classification under covariate
shift, where the labeling function is assumed to be invariant
or approximately invariant across domains. In contrast, our
paper focuses on density estimation and we show that for
density estimation ensemble methods are optimal.

Communication-efficient algorithms for distributed opti-
mization has been the focus of several studies, both in
federated learning (Konečný et al., 2016b;a; Suresh et al.,
2017; Caldas et al., 2018) and in other distributed settings
(Stich et al., 2018; Karimireddy et al., 2019; Basu et al.,
2019). However, much of this previous work focuses on
gradient compression and thus is only applicable to client-
to-server communication, and does not apply to server-to-
client communication. Recently, Caldas et al. (2018) pro-
posed algorithms for reducing server to client communica-
tion and evaluated them empirically.

In contrast, the client-to-server communication is negligi-
ble in ensemble methods when only the mixing weights are
learned via federated learning, since that accounts for very
few parameters. The main focus of this work is addressing
the server-to-client communication bottleneck. We propose
communication-efficient methods for ensembles and pro-
vide convergence guarantees.

2. Learning scenario
In this section, we introduce the main problem of learning
federated ensembles. We first outline the general problem,
then discuss two important learning scenarios: standard
federated learning, which assumes the union of samples
from all domains is distributed uniformly, and agnostic fed-
erated learning where the test distribution is an unknown
mixture of the domains.

We begin by introducing some general notation and def-
initions used throughout this work. We denote by X the
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input space and Y the output space, with data samples
(x, y) ∈ X × Y. Consider the multi-class classification
problem where Y represents a finite set of classes, and H

a set of hypotheses where h ∈ H is a map of the form
h : X→ ∆Y, where ∆Y is the probability simplex over Y.

Denote by ` a loss function over ∆Y × Y, where the loss
for a hypothesis h ∈ H over a sample (x, y) ∈ X × Y is
given by `(h(x), y). For example, one common loss used
in statistical parameter estimation is the squared error loss,
given by Ey′∼h(x)[‖y′ − y‖]22. For a general loss `, the
expected loss of h with respect to a distribution D over
X× Y is denoted by LD(h):

LD(h) = E
(x,y)∼D

[`(h(x), y)].

Motivated by language modeling efforts in federated learn-
ing (Hard et al., 2018), a particular sub-problem of interest
is density estimation, which is a special case of classifica-
tion with X = ∅ and Y is the set of domain elements.

2.1. Losses in federated learning

Following (Mohri et al., 2019), let the clients belong to
one of p domains D1, . . .Dp. While the distributions Dk

may coincide with the clients, there is more flexibility in
considering domains representing clusters of clients, par-
ticularly when the data are partitioned over a very large
number of clients. In practice, the distributions Dk are
not accessible and instead we observe samples S1, . . . , Sp,
drawn from domains with distribution Dk where each sam-
ple Sk = ((xk,1, yk,1), . . . , (xk,mk , yk,mk) ∈ (X × Y)mk

is of size mk. Let D̂k denote the empirical distribution of
Dk. The empirical loss of an estimator h for domain k is

L
D̂k

(h) =
1

mk

∑
(x,y)∈D̂k

`(h(x), y). (1)

In standard federated learning, the central server minimizes
the loss over the uniform distribution of all samples, U =∑k
p=1

mk
m D̂k, with the assumed target distribution given by

U =
∑p
k=1

mk
m Dk. This optimization problem is defined

as

min
h∈H
LU(h), where LU(h) =

p∑
k=1

mk

m
L
D̂k

(h). (2)

In federated learning, the target distribution may be signifi-
cantly different from U and hence (Mohri et al., 2019) pro-
posed agnostic federated learning, which accounts for het-
erogeneous data distribution across clients. Let ∆p denote
the probability simplex over the p domains. For a λ ∈ ∆p,
let Dλ =

∑p
k=1 λkDk be the mixture of distributions with

unknown mixture weight λ. The learner’s goal is to deter-
mine a solution which performs well for any λ ∈ ∆p or

any convex subset Λ ⊆ ∆p. More concretely, the objective
is to find the hypothesis h ∈ H that minimizes the agnostic
loss, given by

LDΛ
(h) = max

λ∈Λ
LDλ

(h). (3)

In this paper, we present algorithms and generalization
bounds for ensemble methods for both of the above losses.

2.2. Federated ensembles

We assume that we have a collection H of q pre-trained
hypotheses H = (h1, ..., hq) (predictors or estimators de-
pending on the task). It is desirable that there exists one
good predictor for each domain k, though in principle these
predictors can be trained in any way, on user data or public
data. The goal is to learn a corresponding set of weights
α = {α1, ..., αq} to construct an ensemble

∑q
k=1 αkhk

that minimizes the standard or agnostic loss. Furthermore,
since we focus mainly on density estimation, we assume
that

∑
k αk = 1. As stated in Section 1.1, unlike MSDA,

we show that such ensembles are optimal for density esti-
mation. Thus the set of hypothesis we consider are

H =

{
q∑

k=1

αkhk : αk ≥ 0,∀k,
q∑

k=1

αk = 1

}
.

With this set of hypotheses, we minimize both the stan-
dard loss (2) and the agnostic loss (3). In the next section,
we present theoretical guarantees for this learning scenario,
and algorithms to learn federated ensembles in Section 4.

3. Optimality of ensemble methods for density
estimation

Density estimation is a fundamental learning problem with
wide applications including language modeling, where the
goal is to assign probability distribution over sentences. In
this section, we show that for a general class of divergences
called Bregman divergences, ensemble methods are opti-
mal for both standard and agnostic federated learning, for
which we then provide generalization bounds.

3.1. Definitions

Recall that density estimation is a special case of classifi-
cation where X = ∅ and Y is the set of domain elements.
An estimator h assigns probability to all elements of Y. For
notational simplicity, let hy denote the probability assigned
by h to an element y ∈ Y. For example, in language mod-
eling Y is the set of all sequences and an estimator, often a
recurrent neural network, assigns probabilities to the set of
all sequences. To measure distance between distributions,
we use the Bregman divergence, which is defined as fol-
lows.
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Definition 1 ((Bregman, 1967)). Let F : C → R be a con-
vex and differentiable function defined on a non-empty con-
vex open set C ⊆ ∆Y.1 Then, the Bregman divergence be-
tween a distribution D ∈ C and an estimator h ∈ C is
defined by

BF (D ‖ h) = F (D)− F (h)− 〈∇F (h),D− h〉,

where 〈·, ·〉 denotes the inner product in ∆Y.

Throughout this section, we choose C = ∆Y+, given by

∆Y+ = {p :
∑
y∈Y

p(y) = 1, p(y) > 0,∀y ∈ Y},

and restrict all distributions and hypotheses to be in ∆Y+.

The standard squared loss is a Bregman divergence with
function F : x 7→ ‖x‖22 defined over Rd, where d is the di-
mension. Similarly, the generalized Kullback-Leibler (KL)
divergence or unnormalized relative entropy is a Bregman
divergence defined by F : x 7→

∑d
i=1 xi log xi−xi defined

over Rd+ = {x : xi > 0,∀i ≤ d}. We note that Bregman
divergences are non-negative and in general asymmetric.

For a domain Dk and a hypothesis h, the loss is thus

LDk
(h) = BF

(
Dk ‖ h

)
.

For a mixture of domains Dλ and a hypothesis h, we define
the loss as

LDλ
(h) =

p∑
k=1

λkBF (Dk ‖ h) .

3.2. Optimality for density estimation

We first show that for any Bregman divergence, given a
sufficiently large hypothesis set H, that the minimizer of
(2) and (3) is a linear combination of the distributions Dk.
Thus, if we have access to infinitely many samples from
the true distributions Dk, then we can find the best hypoth-
esis for each distribution Dk and then use their ensemble
to obtain optimal estimators for both standard and agnostic
losses. We first show the result for the standard loss. The
result is similar to (Banerjee et al., 2005, Lemma 1); we
provide the proof in Appendix A.1 for completeness.

Lemma 1. Let the loss be a Bregman divergence BF .
Then, for any λ ∈ Λ ⊆ ∆p, if h∗ =

∑p
k=1 λkDk is in

H, then it is a minimizer of h 7→
∑p
k=1 λkBF

(
Dk ‖ h

)
. If

F is further strictly convex, then it is the unique minimizer.

Using this lemma, we show that ensembles are also optimal
for the agnostic loss. Due to space constraints, the proof if
relegated to Appendix A.2.

1Some of our results require strict convexity which we high-
light when necessary.

Lemma 2. Let the loss be a Bregman divergence BF with
F strictly convex and assume that conv({D1, ...,Dp}) ⊆
H. Observe that BF is jointly convex in both arguments.
Then, for any convex set Λ ⊆ ∆p, the solution of the opti-
mization problem minh∈H maxλ∈Λ

∑p
k=1 λkBF

(
Dk ‖ h

)
exists and is in conv({D1, ...,Dp}).

3.3. Ensemble bounds

The results just presented assume that
∑p
k=1 λkDk is in

H. In practice, however, for each k ∈ [p], we only have
access to an estimate of Dk, hk ∈ H. In this section, we
will assume that, for each k ∈ [p], hk is a reasonably good
estimate of the distribution Dk in the following sense:

∀k, ∃h ∈ H such that BF
(
Dk ‖ h

)
≤ ε, (4)

and analyze how well the ensemble output performs on the
true mixture. Let hα denote the ensemble

∑q
`=1 α`h`.

Lemma 3. Assume that (4) holds and that the Bregman
divergence is jointly convex. Then, the following inequality
holds:

min
α

p∑
k=1

λkBF
(
Dk ‖ hα

)
≤

p∑
k=1

λkBF
(
Dk ‖

p∑
`=1

λ`D`

)
+ ε.

Proof. By (4), for every distribution Dk, there exists a
h ∈ H such that BF

(
Dk ‖ h

)
≤ ε. Let hk be one such

hypothesis. Hence,

min
α

p∑
k=1

λkBF
(
Dk ‖ hα

)
≤

p∑
k=1

λkBF
(
Dk ‖

p∑
`=1

λ`h`

)
.

By (12) (Appendix A.1),

p∑
k=1

λkBF
(
Dk ‖

p∑
`=1

λ`h`

)
(5)

= BF
( p∑
k=1

λkDk ‖
p∑
`=1

λ`h`

)
+

p∑
k=1

λkF (Dk)− F
( p∑
k=1

λkDk

)
.

By the joint convexity of the Bregman divergence, the fol-
lowing holds:

BF
( p∑
k=1

λkDk ‖
p∑
`=1

λ`h`

)
≤

p∑
k=1

λkBF (Dk ‖ hk)

≤
p∑
k=1

λkε = ε.
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Next, observe that

p∑
k=1

λkF (Dk)− F
( p∑
k=1

λkDk

)
=

p∑
k=1

λkBF
(
Dk ‖

p∑
`=1

λ`D`

)
. (6)

This completes the proof.

We now show a similar result for the agnostic loss.
Our analysis makes use of the information radius R, an
information-theoretic quantity defined as follows:

R = max
λ

p∑
k=1

λkBF
(
Dk ‖

p∑
`=1

λ`D`

)
.

Theorem 1. Assume that (4) holds and that the Bregman
divergence is jointly convex in both arguments. Then, the
following inequality holds:

min
α

max
λ

p∑
k=1

λkBF
(
Dk ‖ hα

)
≤ R+ ε.

Proof. The function f : ∆p×∆q → R given by f(λ, α) =∑p
k=1 λkBF

(
Dk ‖ hα

)
is well-defined since all distribu-

tions Dk and hypotheses hk lie in ∆Y+
. Furthermore, f is

linear (and hence concave) in λ. By the standard convexity
of Bregman divergence, f is convex in α. The sets ∆p and
∆q are compact and convex by definition. Hence, by Sion’s
minimax theorem,

min
α

max
λ

p∑
k=1

λkBF
(
Dk ‖ hα

)
= max

λ
min
α

p∑
k=1

λkBF
(
Dk ‖ hα

)
.

By (4), for every distribution Dk, there exists a h ∈ H such
that BF

(
Dk ‖ h

)
≤ ε. Let hk be one such hypothesis.

Therefore,

= max
λ

min
α

p∑
k=1

λkBF
(
Dk ‖ hα

)
≤ max

λ

p∑
k=1

λkBF
(
Dk ‖

p∑
`=1

λ`h`

)
.

By (5) and (6), we can write:

≤ max
λ

p∑
k=1

λkBF
(
Dk ‖

p∑
`=1

λ`h`

)
≤ max

λ
BF
(∑

k

λkDk ‖
p∑
`=1

λ`h`

)
+ max

λ

∑
k

λkBF
(
Dk ‖

p∑
`=1

λ`D`)

= max
λ

BF
(∑

k

λkDk ‖
p∑
`=1

λ`h`

)
+R

≤ max
λ

∑
k

λkBF
(
Dk ‖ hk) +R

≤ ε+R,

where the penultimate inequality follows from the joint
convexity of the Bregman divergence.

4. Algorithms
We propose algorithms for learning ensembles in the
standard and agnostic federated learning settings which
addresses the server-to-client communication bottleneck.
Suppose we have a set of pre-trained base predictors or hy-
potheses, which we denote by H , {h1, ..., hq}. In stan-
dard ensemble methods, the full set of hypotheses would
be sent to each participating client. In practice, however,
this may be infeasible due to limitations in communica-
tion bandwidth between the server and clients, as well as
in memory and computational capacity of the clients.

To overcome this, we suggest a sampling method which
sends a fraction of the hypotheses to the clients. While this
reduces the communication complexity, it also renders the
overall gradients biased, and the precise characterization of
the ensemble convergence is not clear.

Recall that the optimization problem is over the ensemble
weights α ∈ ∆q , since the base estimators hk are fixed.
We rewrite the losses in terms of α and use the following
notation. Let Lk(α) denote the empirical loss, L

D̂k
(hα), of

the ensemble on domain k over mk samples:

Lk(α) =
1

mk

mk∑
i=1

`(hα(xk,i), yk,i) (7)

where hα denotes the ensemble weighted by mixture
weight α,

hα =

q∑
k=1

αkhk.

Let C be the maximum number of base predictors that we
can send to the client at each round, which denotes the com-
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munication efficiency. In practice we prefer C � q (par-
ticularly when q is large) and the communication cost per
round would be independent of the size of the ensemble.

4.1. Standard federated ensemble

As in Section 2.2, the objective is to learn the coefficients
α ∈ ∆q for an ensemble of the pre-trained base estimators
hk. In the new notation, this can be written as

min
α∈∆q

LU(α), where LU(α) =

p∑
k=1

mk

m
Lk(α).

For the above minimization, we introduce a variant of the
mirror descent algorithm (Nemirovski & Yudin, 1983), a
generalization of gradient descent algorithm. Since a naive
application of mirror descent would use the entire collec-
tion of hypotheses for the ensemble, we propose FED-
BOOST, a communication-efficient federated ensemble al-
gorithm, given in Figure 1.

During each round t of training, FEDBOOST samples two
subsets at the server: a subset of pre-trained hypotheses,
where each is selected with probability γk,t, denoted by
Ht, and a random subset of N clients, denoted by St. We
define the following Bernoulli indicator by

1k,t ,

{
1 if hk ∈ Ht,
0 if hk /∈ Ht.

Under this random sampling, the ensemble at time t is∑q
k=1 αk,thk1k,t. Observe that since

E

[
q∑

k=1

αk,thk1k,t

]
=

q∑
k=1

αk,thkγk,t,

this is a biased estimator of the ensemble
∑q
k=1 αkhk; we

correct this by dividing by γk,t to give the unbiased esti-
mate of the ensemble:

E

[
q∑

k=1

αk,thk1k,t
γk,t

]
=

q∑
k=1

αk,thk.

We provide and analyze two ways of selecting γk,t based
on the communication-budget C: uniform sampling and
weighted random sampling. Under uniform sampling,
γk,t = C

q . Using weighted random sampling, γk,t is pro-
portional to the relative weight of hk:

γk,t ,

{
1 if αk,tC > 1

αk,tC otherwise.
(8)

We now provide convergence guarantee for FEDBOOST.
To this end, we make the following set of assumptions.

Algorithm FEDBOOST

Initialization: pre-trained H = {h1, ..., hq}, α1 =
argminx∈∆q

F (x), γk,1 = [ 1
q , ...,

1
q ].

Parameters: rounds T ∈ Z+, step size η > 0.
For t = 1 to T :

1. Uniformly sample N clients: St

2. Obtain Ht via uniform sampling or (8).

3. For each client j:

(a) Send current ensemble model
∑
k∈Ht α̃k,thk to

client j, where α̃t =
αk,t
γk,t

if hk ∈ Ht, else 0.

(b) Obtain the gradient update ∇Lj(α̃t) and send to
server.

4. δtL =
∑
j∈St

mj
m ∇Lj(α̃t), where m =

∑
j∈St mj

5. vt+1 = [∇F ]−1(∇F (αt)−ηδtL) , αt+1 = BP(vt+1)

Output: αA = 1
T

∑T
t=1 αt

Subroutine BP (Bregman projection)

Input: x′,∆q Output: argminx∈∆q
BF (x ‖ x′)

Figure 1. Pseudocode of the FEDBOOST algorithm.

Properties 1. Assume the following properties about the
function F , the Bregman divergence BF and the loss func-
tion L:

1. F is strongly convex with parameter σ > 0.

2. α∗ , maxα∈∆q
‖α‖.

3. For any two α and α′, BF (α ‖ α′) ≤ rα.

4. The dual norm of the third derivative tensor product
is bounded:
max‖w‖2≤1 ‖∇3`(h(x), y)⊗ w ⊗ w‖∗ ≤M .

5. The norm of the gradient is bounded:
‖δ`(h(x), y)‖∗ ≤ G, ∀x, y.

6. The sampling probability γk,t is a valid non-zero
probability: 0 < γk,t ≤ 1.

With these assumptions, we show the following result. Let
αopt be the optimal solution.

Theorem 2. If Properties 1 hold and η =
√

σ
TG2rα

, then

αA, the output of FEDBOOST satisfies,

E
[
L(αA)− L(αopt)

]
≤ 2

√
G2σrα
T

+
α∗M

2T

T∑
t=1

q∑
k=1

α2
k,t

γk,t
.
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Due to space constraints, the proof is given in Appendix B.
The first O(1/

√
T ) term in the the convergence bound is

similar to that of the standard mirror descent guarantees.
The last term is introduced due to communication bottle-
neck and depends on the sampling algorithm. Observe that
if we choose, uniform sampling algorithm where γk,t = C

q
for all k, t, then the communication dependent term be-
comes,

T∑
t=1

q∑
k=1

α2
k,t

γk,t
=

T∑
t=1

q∑
k=1

qα2
k,t

C
,

and hence is similar to applying a `2 regularization. How-
ever, note that by Cauchy-Schwarz inequality,

q∑
k=1

α2
k,t

γk,t
C ≥

(
q∑

k=1

αk,t

)2

, (9)

and the lower bound is achieved if γk,t ∝ αk,t. Hence to
obtain the best communication efficiency, one needs to use
weighted random sampling. This yields,

Corollary 1. If Assumptions 1 hold, η =
√

σ
TG2rα

, and

γk,t is given by (8), then αA, the output of FEDBOOST
satisfies,

E
[
L(αA)− L(αopt)

]
≤ 2

√
G2σrα
T

+
α∗M

2C
.

In the above analysis, the model does not converge to the
true minimum due to the communication bottleneck. To
overcome this, note that we can simulate a communication
bandwidth of C · R, using a communication budget of C
by repeatedly doing R rounds with the same set of clients.
Since, the gradients w.r.t. α only depend on the output of
the predictors, it is not necessary to store all the predictors
at the client at the same time. This yields the following
corollary.

Corollary 2. If Assumptions 1 hold and γk,t is given by

(8), by then by using R =
(
α2
∗M

2T
C2G2σrα

)1/3

rounds of com-
munication with each client,

E
[
L(αA)− L(αopt)

]
≤ 3

(
α∗MG2σrα

CT

)1/3

.

The above result has several interesting properties, First,
the trade-off between convergence and communication cost
is independent of the overall ensemble size q. Second, the
convergence bound of O(1/T 1/3) instead of the standard
O(1/

√
T ) convergence bound. It is an interesting open

question to determine if the above convergence bound is
optimal.

4.2. Improved algorithms via bias correction

Noting that the above convergence guarantee decays de-
pendent on 1/C, we now show that for specific loss func-
tions such as the `22 loss, we can improve the convergence
result. It would be interesting to see if such results can be
extended to other losses.

If the function is `22 loss, then for any sample x, y observe
that

`(hα(x), y) = ‖hα(x)− y‖22 =

∥∥∥∥∥∑
k

αkhk(x)− y

∥∥∥∥∥
2

2

.

Hence,

∇α``(hα(x), y) = 2

(∑
k

αkhk(x)− y

)
· α`.

Instead if we sample hk with probability γk and use
weighted random sampling as in the previous section, then
the loss is

`(hα̃(x), y) =

∥∥∥∥∥∑
k

αk1k
γk

hk(x)− y

∥∥∥∥∥
2

2

.

Hence,

∇`(hα̃(x), y) = 2

(∑
k

1kαk
γk

hk(x)− y

)
· 1`

α`
γ`
.

In expectation,

E[∇`(hα̃(x), y)] = 2E

[(∑
k

1kαk
γk

hk(x)− y

)
· 1`

α`
γ`

]

= 2

∑
k 6=`

αkhk(x)− y

 · α` +

(
α`
γ`
h`(x)− y

)
α`

= ∇`(hα(x), y) + α2
`h`(x)

(
1

γ`
− 1

)
.

Thus, the sampled gradients are biased. To overcome this,
we propose using the following gradient estimate,

∇`(hα(x), y)− b, (10)

where b is the bias correction term given by

b` = α2
`h`(x)

(
1

γ`
− 1

)
1`
γ`
.

Hence in expectation,

E[∇α``(hα̃(x), y)− b] = ∇`(hα(x), y).

Thus the bias corrected stochastic gradient is unbiased.
This gives the following corollary.
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Corollary 3. If Properties 1 holds and the loss is `22, then
FEDBOOST with the bias corrected gradient (10) yields

E
[
L(αA)− L(αopt)

]
≤ c
√
G2σrα
T

,

for some constant c.

4.3. Agnostic federated ensembles

Algorithm AFLBOOST

Initialization: pre-trained H = {h1, ..., hq}, λ1 ∈ Λ,
and α1 = argminx∈∆q

F (x)

Parameters: rounds T ∈ Z+, step size ηλ, ηα > 0.
For t = 1 to T :

1. Uniformly sample N clients: St.

2. Obtain Ht via uniform sampling or (8).

3. For each client j:

i. Send current ensemble model
∑
k∈Ht α̃k,thk to

client j.
ii. Obtain stochastic gradients ∇αLj(α̃t, λt),
∇λLj(α̃t, λt) and send to server.

4. δα,tL =
∑
j∈St

mj
m ∇αLj(α̃t, λt),

where m =
∑
j∈St mj

5. δλ,tL =
∑
j∈St

mj
m ∇λLj(α̃t, λt)

6. vt+1 = [∇αF ]−1(∇αF (αt, λt)− ηαδα,tL),
αt+1 = BP(vt+1)

7. wt+1 = [∇λF ]−1(∇λF (αt, λt) + ηλδλ,tL),
λt+1 = BP(wt+1)

Output: αA = 1
T

∑T
t=1 αt, λ

A = 1
T

∑T
t=1 λt

Figure 2. Pseudocode of the AFLBOOST algorithm.

We now extend the above communication-efficient algo-
rithm to the agnostic loss. Recall that in the agnostic loss,
the optimization problem is over two sets of parameters:
the ensemble weights α ∈ ∆q as before, and additionally
the mixture weight λ ∈ Λ. We rewrite the agnostic feder-
ated losses w.r.t. these parameters using the new notation:

L(α, λ) =

p∑
k=1

λkLk(α) (11)

where Lk(α) denotes the empirical loss of domain k as
in (7). Thus, we study the following minimax optimization
problem over parameters α, λ:

min
α∈∆q

max
λ∈Λ

L(α, λ).

The above problem can be viewed as a two player game be-
tween the server, which tries to find the best α to minimize
the objective and the adversary, which maximize the objec-
tive using λ. The goal is to find the equilibrium of this min-
imax game, given by αopt which minimizes the loss over
the hardest mixture weight λopt ∈ Λ. Since ` is a convex
function, specifically a Bregman divergence, we can ap-
proach this problem using generic mirror descent or other
gradient-based instances of this algorithm.

We propose AFLBOOST, a communication-efficient
stochastic ensemble algorithm that minimizes the above
objective. The algorithm can be viewed as a combination of
the communication-efficient approach of FEDBOOST and
the stochastic mirror descent algorithm for agnostic loss
(Mohri et al., 2019). To prove convergence guarantees for
AFLBOOST, we need few more assumptions.

Properties 2. Assume the following properties for the
Bregman divergence defined over a function F , the loss
function L, and the sets ∆q and Λ ⊆ ∆p:

1. Let Λ ⊆ ∆p is a convex, compact set.

2. λ∗ , maxλ∈Λ ‖λ‖.

3. For all λ, λ′, BF (λ ‖ λ′) ≤ rλ.

4. Let Gα = maxλ,α ‖δαL‖∗, Gλ = maxλ,α ‖δλL‖∗.

With these assumptions, we show the following conver-
gence guarantees for AFLBOOST with weighted random
sampling. The proof is in Appendix C.

Theorem 3. Let Properties 1 and 2 hold. Let ηλ =√
σ

TG2
λrλ

and ηα =
√

σ
TG2

αrα
. Let αA be the out-

put of AFLBOOST. If γk,t is given by 8, then
E[maxλ∈Λ L(αA, λ) − minα∈∆q

maxλ∈Λ L(α, λ)] is at
most

4

√
G2
α(σrα + α∗)

T
+ 4

√
G2
λ(σrλ + λ∗)

T
+
M(λ∗ + α∗)

C
.

5. Experimental validation
We demonstrate the efficacy of FEDBOOST for density es-
timation under various communication budgets. We com-
pare three methods: no communication-efficiency (no sam-
pling): γk,t = 1 ∀k, t, uniform sampling: γ = C

q , and
weighted random sampling: γk,t ∝ αk,tC. For simplic-
ity, we assume all clients participate during each round of
federated training.

5.1. Synthetic dataset

We first create a synthetic dataset with p = 100, where
each hk is a point-mass distribution over a single element,
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Figure 3. Comparison of loss curves for the
synthetic dataset.

Figure 4. Comparison of sampling methods
as a function of C for the synthetic dataset.

Figure 5. Comparison of loss curves for the
Shakespeare federated learning dataset.

each αk is initialized to 1/p, and the true mixture weights λ
follow a power law distribution. For fairness of evaluation,
we fix the step size η to be 0.001 and number of rounds
for both sampling methods and communication constraints,
though note that this is not the ideal step size across all val-
ues of C and more optimal losses may be achieved with
more extensive hyperparameter tuning. We first evaluated
the results for a communication budget C = 32. The re-
sults are in Figure 3. As expected, the weighted sampling
method performs better compared to the uniform sampling
method and the loss for both methods decrease steadily.

We then compared the final loss for both uniform sampling
and weighted random sampling as a function of commu-
nication budget C. The results are in Figure 4. As be-
fore, weighted random sampling performs better than uni-
form sampling. Furthermore, with communication budget
of 64, the performance of both of them is the same as that
FEDBOOST without using communication efficiency (i.e.
C = q).

Additionally, we examine the effect of modulating the com-
munication budget C on the rate of convergence with a
larger synthetic dataset initialized in the same manner but
with p = 1000. These results and discussion are included
in the Appendix D due to space limitations.

5.2. Shakespeare corpus

Motivated by language modeling, we consider estimat-
ing unigram distributions for the Shakespeare TensorFlow
Federated Shakespeare dataset, which contains dialogues
in Shakespeare plays of p = 715 characters. We pre-
processed the data by removing punctuation and converting
words to lowercase. We then trained a unigram language
model for each client and tried to find the best ensemble for
the entire corpus using proposed algorithms (setting where
q = p). We set C = p/2 and use η = 0.01. The re-
sults are in Figure 5. As before weighted random sampling
performs better than uniform sampling, however somewhat
surprisingly, the weighted sampling also converges better

than the communication-inefficient version of FEDBOOST,
which uses all base predictors at each round (i.e. C = q).

6. Conclusion
We proposed to learn an ensemble of pre-trained base pre-
dictors via federated learning and showed that such an en-
semble based method is optimal for density estimation for
both standard empirical risk minimization and agnostic risk
minimization. We provided FEDBOOST and AFLBOOST,
communication-efficient and theoretically-motivated en-
semble algorithms for federated learning, where per-round
communication cost is independent of the size of the en-
semble. Finally, we empirically evaluated the proposed
methods.
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Konečný, J., McMahan, H. B., Ramage, D., and Richtárik,
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