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Abstract
Adversarial training based on the minimax for-
mulation is necessary for obtaining adversarial
robustness of trained models. However, it is con-
servative or even pessimistic so that it sometimes
hurts the natural generalization. In this paper,
we raise a fundamental question—do we have to
trade off natural generalization for adversarial ro-
bustness? We argue that adversarial training is
to employ confident adversarial data for updating
the current model. We propose a novel formula-
tion of friendly adversarial training (FAT): rather
than employing most adversarial data maximiz-
ing the loss, we search for least adversarial data
(i.e., friendly adversarial data) minimizing the
loss, among the adversarial data that are confi-
dently misclassified. Our novel formulation is
easy to implement by just stopping the most ad-
versarial data searching algorithms such as PGD
(projected gradient descent) early, which we call
early-stopped PGD. Theoretically, FAT is justi-
fied by an upper bound of the adversarial risk.
Empirically, early-stopped PGD allows us to an-
swer the earlier question negatively—adversarial
robustness can indeed be achieved without com-
promising the natural generalization.

1. Introduction
Safety-critical nature of some areas such as medicine (Buch
et al., 2018) and automatic driving (Litman, 2017), neces-
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sitates the need for deep neural networks (DNNs) to be
adversarially robust that generalize well. Recent research
focuses on improving their robustness mainly by two de-
fense approaches, i.e., certified defense and empirical de-
fense. Certified defense tries to learn provably robust DNNs
against norm-bounded (e.g., `2 and `∞) perturbations (Co-
hen et al., 2019; Wong & Kolter, 2018; Tsuzuku et al., 2018;
Lécuyer et al., 2019; Weng et al., 2018; Balunovic & Vechev,
2020; Zhang et al., 2020). Empirical defense incorporates
adversarial data into the training process (Goodfellow et al.,
2015; Madry et al., 2018; Cai et al., 2018; Zhang et al.,
2019b; Wang et al., 2019; 2020). For instance, empirical
defense has been used to train Wide ResNet (Zagoruyko
& Komodakis, 2016) with natural data and its adversarial
variants to make the trained network robust against strong
adaptive attacks (Athalye et al., 2018; Carlini & Wagner,
2017). This paper belongs to the empirical defense category.

Existing empirical defense methods formulate the adver-
sarial training as a minimax optimization problem (Sec-
tion 2.1) (Madry et al., 2018). To conduct this minimax op-
timization, projected gradient descent (PGD) is a common
method to generate the most adversarial data that maximizes
the loss, updating the current model. PGD perturbs the nat-
ural data for a fixed number of steps with small step size.
After each step of perturbation, PGD projects the adversarial
data back onto the ε-norm ball of the natural data.

However, this minimax formulation is conservative (or even
pessimistic), such that it sometimes hurts the natural gener-
alization (Tsipras et al., 2019). For example, the top panels
in Figure 1 show that at step #6 to #10 in PGD, the ad-
versarial variants of the natural data significantly cross over
the decision boundary and are located at their peer’s (natu-
ral data) area. Since adversarial training aims to fit natural
data and its adversarial variants simultaneously, such the
cross-over mixture makes adversarial training extremely dif-
ficult. Therefore, the most adversarial data generated by the
PGD-10 (i.e., step #10 in top panel of Figure 1) directly
“kill” the training, thus rendering the training unsuccessful.

Inspired by philosopher Friedrich Nietzsche’s quote “that
which does not kill us makes us stronger,” we propose
friendly adversarial training (FAT): rather than employing
the most adversarial data for updating the current model, we
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Figure 1. Green circles and yellow triangles are natural data for
binary classification. Red circles and blue triangles are adversarial
variants of green circles and yellow triangles, respectively. Black
solid line is the decision boundary representing the current clas-
sifier. Top: the adversarial data generated by PGD. Bottom: the
adversarial data generated by early-stopped PGD.

search for the friendly adversarial data minimizing the loss.
The friendly adversarial data are confidently misclassified
by the current model. We design the learning objective of
FAT and theoretically justify it by deriving an upper bound
of the adversarial risk (Section 3). Essentially, FAT updates
the current model using friendly adversarial data. FAT trains
a DNN using the wrongly-predicted adversarial data mini-
mizing the loss and the correctly-predicted adversarial data
maximizing the loss.

FAT is a reasonable strategy due to two reasons: It removes
the existing inconsistency between attack and defense, and
it adheres to the spirit of curriculum learning. First, the
ways of generating adversarial data by adversarial attackers
and adversarial defense methods are inconsistent. Adversar-
ial attacks (Szegedy et al., 2014; Carlini & Wagner, 2017;
Athalye et al., 2018) aim to find the adversarial data (not
maximizing the loss) to confidently fool the model. On the
other hand, existing adversarial defense methods generate
the most adversarial data maximizing the loss regardless of
the model’s predictions. These two should be harmonized.
Second, the curriculum learning strategy has been shown to
be effective (Bengio et al., 2009). Fitting most adversarial
data initially makes the learning extremely difficult, some-
times even killing the training. Instead, FAT learns initially
from the least adversarial data and progressively utilizes
increasingly adversarial data.

FAT is easy to implement by just early stopping most-
adversarial-data searching algorithms such as PGD, which
we call early-stopped PGD (Section 4.1). Once adversar-
ial data is misclassified by the current model, we stop the
PGD iterations early. Early-stopped PGD has the benefit of
alleviating the cross-over mixture problem. For example,
as shown in the bottom panels of Figure 1, adversarial data
generated by early-stopped PGD will not be located at their
peer areas (extensive details in Section 4.2). Thus, it will not
hurt the generalization ability much. In addition, FAT based
on early-stopped PGD progressively employs stronger and
stronger adversarial data (with more PGD steps), engender-
ing increasingly enhanced robustness of the model over the

training progression (Section 5.3). This implies that attacks
that do not kill the training indeed make the adversarial
learning stronger.

A brief overview of our contributions is as follows. We
propose a novel formulation for adversarial learning (Sec-
tion 3.1) and theoretically justify it by an upper bound of
the adversarial risk (Section 3.2). Our FAT approximately
realizes this formulation by just stopping PGD early. FAT
has the following benefits.

• Conventional adversarial training methods, e.g.,
standard adversarial training (Madry et al., 2018),
TRADES (Zhang et al., 2019b) and MART (Wang
et al., 2020), can be easily modified to become friendly
adversarial training counterparts, i.e., FAT, FAT for
TRADES, and FAT for MART (Section 5).

• Compared with conventional adversarial training, FAT
has a better standard accuracy for natural data, while
keeping a competitively robust accuracy for adversarial
data (Sections 5.1 and 6.2).

• FAT is computationally efficient because the early
stopped PGD saves a large number of backward propa-
gations for searching adversarial data (Section 5.2).

• FAT can enable larger values of the perturbation bound,
i.e., εtrain (Section 6.1), due to that FAT can alleviate
the cross-over mixture problem (Section 4.2).

With these benefits, FAT allows us to answer that adversarial
robustness can indeed be achieved without compromising
the natural generalization.

2. Standard Adversarial Training
Let (X , d∞) be the input feature space X with the infinity
distance metric dinf(x, x′) = ‖x− x′‖∞, and

Bε[x] = {x′ ∈ X | dinf(x, x′) ≤ ε} (1)

be the closed ball of radius ε > 0 centered at x in X .

2.1. Learning Objective

Given a dataset S = {(xi, yi)}ni=1, where xi ∈ X and yi ∈
Y = {0, 1, ..., C − 1}, the objective function of standard
adversarial training (Madry et al., 2018) is

min
f∈F

1

n

n∑
i=1

{
max

x̃∈Bε[xi]
`(f(x̃), yi)

}
, (2)

where x̃ is the adversarial data within the ε-ball centered
at x, f(·) : X → RC is a score function, and the loss
function ` : RC × Y → R is a composition of a base loss
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Figure 2. In adversarial training, the adversarial data is generated within the perturbation ball Bε[X] of natural data X given the current
model f . The existing adversarial training generates most adversarial data X

′′
that maximizes the inner loss regardless of their predictions.

FAT takes their predictions into account. When the model makes the wrong predictions of adversarial data, our friendly adversarial data
X ′ minimizes the inner loss by a violation of a small constant ρ.

`B : ∆C−1 × Y → R (e.g., the cross-entropy loss) and an
inverse link function `L : RC → ∆C−1 (e.g., the soft-max
activation), in which ∆C−1 is the corresponding probability
simplex—in other words, `(f(·), y) = `B(`L(f(·)), y).

For the sake of conceptual consistency, the objective func-
tion (i.e., Eq. (2)) can also be re-written as

min
f∈F

1

n

n∑
i=1

`(f(x̃i), yi), (3)

where

x̃i = arg maxx̃∈Bε[xi] `(f(x̃), yi). (4)

It implies the optimization of adversariallly robust network,
with one step maximizing loss to find adversarial data and
one step minimizing loss on the adversarial data w.r.t. the
network parameters θ.

2.2. Projected Gradient Descent (PGD)

To generate adversarial data, standard adversarial training
uses PGD to approximately solve the inner maximization of
Eq. (4) (Madry et al., 2018).

PGD formulates the problem of finding adversarial data as a
constrained optimization problem. Namely, given a starting
point x(0) ∈ X and step size α > 0, PGD works as follows:

x(t+1) = ΠB[x(0)]

(
x(t)+α sign(∇x(t)`(fθ(x

(t)), y))
)
,∀t ≥ 0

(5)

until a certain stopping criterion is satisfied. For example,
the criterion can be a fixed number of iterations K, namely
the PGD-K algorithm (Madry et al., 2018; Wang et al.,
2020). In Eq. (5), ` is the loss function in Eq. (4); x(0) refers
to natural data or natural data corrupted by a small Gaussian
or uniform random noise; y is the corresponding label for
natural data; x(t) is adversarial data at step t; and ΠBε[x0](·)
is the projection function that projects the adversarial data
back into the ε-ball centered at x(0) if necessary.

There are also other ways to generate adversarial data, e.g.,
the fast gradient signed method (Szegedy et al., 2014; Good-
fellow et al., 2015), the CW attack (Carlini & Wagner, 2017),
deformation attack (Alaifari et al., 2019; Xiao et al., 2018),
and Hamming distance method (Shamir et al., 2019).

PGD adversarial training. Besides the standard adver-
sarial training, several improvements to PGD adversarial
training have also been proposed, such as Lipschitz regular-
ization (Cisse et al., 2017; Hein & Andriushchenko, 2017;
Yan et al., 2018; Farnia et al., 2019), curriculum adversarial
training (Cai et al., 2018; Wang et al., 2019), computa-
tionally efficient adversarial learning (Shafahi et al., 2019;
Zhang et al., 2019a; Wong et al., 2020), ensemble adversar-
ial training (Tramr et al., 2018; Pang et al., 2019), and ad-
versarial training by utilizing unlabeled data (Carmon et al.,
2019; Najafi et al., 2019; Alayrac et al., 2019). In addition,
TRADES (Zhang et al., 2019b) and MART (Wang et al.,
2020) are effective adversarial training methods, which
trains on both natural data x and adversarial data x̃ (the learn-
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ing objectives are reviewed in Appendices D.1 and E.1 re-
spectively). Moreover, there are interesting analyses of PGD
adversarial training, such as showing overfitting in PGD-
adversarial training (Rice et al., 2019), disentangling robust
and non-robust features through PGD-adversarially trained
network (Ilyas et al., 2019), showing different feature repre-
sentations by robust model and non-robust model (Tsipras
et al., 2019), and providing a new explanation for the trade-
off between robustness and accuracy of PGD-adversarial
training (Raghunathan et al., 2020).

3. Friendly Adversarial Training
In this section, we develop a novel learning objective for
friendly adversarial training (FAT). Theoretically, we justify
FAT by deriving a tight upper bound of the adversarial risk.

3.1. Learning Objective

Let ρ > 0 be a margin such that our adversarial data would
be misclassified with a certain amount of confidence.

The outer minimization still follows Eq. (3). However, in-
stead of generating x̃i via inner maximization, we generate
x̃i as follows:

x̃i = arg min
x̃∈Bε[xi]

`(f(x̃), yi)

s.t. `(f(x̃), yi)−miny∈Y `(f(x̃), y) ≥ ρ.

Note that the operator arg max in Eq. (4) is replaced with
arg min here, and there is a constraint on the margin of loss
values (i.e., the misclassification confidence).

The constraint firstly ensures yi 6= arg miny∈Y `(f(x̃), y)
or x̃ is misclassified, and secondly ensures for x̃ the wrong
prediction is better than the desired prediction yi by at least
ρ in terms of the loss value. Among all such x̃ satisfying
the constraint, we select the one minimizing `(f(x̃), yi).
Namely, we minimize the adversarial loss given that some
confident adversarial data has been found. This x̃i could
be regarded as a “friend” among the adversaries, which is
termed friendly adversarial data. Figure 2 illustrates the
differences between our learning objective and the conven-
tional minimax formulation.

3.2. Upper Bound on Adversarial Risk

In this subsection, we derive a tight upper bound on the
adversarial risk, and provide our analysis for adversarial risk
minimization. Let X and Y represent random variables. We
employ the definition of the adversarial risk given by Zhang
et al. (2019b), i.e.,Rrob(f) := E(X,Y )∼D1{∃X ′ ∈ Bε[X] :
f(X ′) 6= Y }.
Theorem 1. For any classifier f , any non-negative surro-
gate loss function ` which upper bounds the 0/1 loss, and

any probability distribution D, we have

Rrob(f) ≤ E(X,Y )∼D`(f(X), Y )︸ ︷︷ ︸
For standard test accuracy

+ E(X,Y )∼D,X′∈Bε[X,ε]`
∗(f(X ′), Y )︸ ︷︷ ︸

For robust test accuracy

,

where

`∗ =

{
min `(f(X ′), Y ) + ρ, if f(X ′) 6= Y,

max `(f(X ′), Y ), if f(X ′) = Y.

Note that ρ is the small margin such that friendly adversarial
data would be misclassified with a certain amount of con-
fidence. The proof is in Appendix A.2. From Theorem 1,
our upper bound on the adversarial risk is tighter than that
of conventional adversarial training, e.g.,TRADES (Zhang
et al., 2019b), where they maximize the loss regardless of
model prediction, i.e., `∗ = max `(f(X ′), Y ). By contrast,
our bound takes the model prediction into consideration.
When the model makes correct prediction on adversarial
dataX ′ (i.e., f(X ′) = Y ), we still maximize the loss; while
the model makes wrong prediction on adversarial data X ′

(i.e., f(X ′) 6= Y ), we minimize the inner loss by violation
of a small constant ρ. To better understand the nature of
adversarial training and Theorem 1, we provide supporting
schematics in Figure 2 and Figure 8 (in Appendix A.2).

Minimizing the adversarial risk based on our upper bound
aids in fine-tuning the decision boundary using friendly
adversarial data. On one side, the wrongly-predicted adver-
sarial data have a small distance ρ (in term of the loss value)
from the decision boundary (e.g., “Step #10 panel” at the
bottom series in Figure 1) so that it will not cause the se-
vere issue of cross-over mixture but fine-tunes the decision
boundary. On the other side, correctly-predicted adversarial
data maintain the largest distance (in term of maximizing
the loss value) from their natural data so that the decision
boundary is kept far away.

4. Key Component of FAT
To search friendly adversarial data, we design an effi-
cient early-stopped PGD algorithm called PGD-K-τ (Sec-
tion 4.1), which could alleviate the cross-over mixture prob-
lem (Section 4.2) and therefore helps adversarial training.
Note that besides PGD-K-τ , there are other ways to search
for friendly adversarial data. We show one example in Ap-
pendix B.

4.1. PGD-K-τ Algorithm

In Algorithm 1, ΠB[x,ε] is the projection operator that
projects adversarial data x̃ onto the ε-norm ball centered at
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Algorithm 1 PGD-K-τ
Input: data x ∈ X , label y ∈ Y , model f , loss function
`, maximum PGD step K, step τ , perturbation bound ε,
step size α
Output: x̃
x̃← x
while K > 0 do

if arg maxi f(x̃) 6= y and τ = 0 then
break

else if arg maxi f(x̃) 6= y then
τ ← τ − 1

end if
x̃← ΠB[x,ε]

(
α sign(∇x̃`(f(x̃), y)) + x̃

)
K ← K − 1

end while

x, and arg maxi f(x̃) returns the predicted label of adver-
sarial data x̃, where f(x̃) =

(
f i(x̃)

)>
i=0,...,C−1 measures

the probabilistic predictions over C classes. Unlike the
conventional PGD-K generating adversarial data by max-
imizing the loss function ` regardless of model prediction,
our PGD-K-τ generates the adversarial data which takes
model prediction into consideration.

Algorithm 1 returns the misclassified adversarial data with
small loss values or correctly classified adversarial data
with large loss values. Step τ controls the extent of loss
minimization when misclassified adversarial data are found.
When τ is larger, the misclassified adversarial data with
slightly larger loss values are returned, and vice versa. τ×α
is an approximation to ρ in our learning objective. Note that
when τ = K, the conventional PGD-K is the special case
of our PGD-K-τ . As τ is an important hyper-parameter of
PGD-K-τ for FAT (Section 5), we discuss how to select τ
in Sections 5.1 and 5.2 in detail.

4.2. PGD-K-τ Alleviates Cross-over Mixture

In deep neural networks, the cross-over mixture problem
may not trivially appear in the original input space, but
occur in the output of the intermediate layer. Our proposed
PGD-K-τ is an effective solution to overcome this problem,
which leads to successful adversarial training.

In Figure 3, we trained an 8-layer convolutional neural net-
work (6 convolutional layers and 2 fully-connected layers,
namely, Small CNN) on images of two selected classes in
CIFAR-10. We conducted a warm-up training using nat-
ural training data, then included their adversarial variants
generated by PGD-20 (middle panel) and PGD-20-0 (right
panel), where τ = 0 means PGD iterations stop immedi-
ately once adversarial data are wrongly predicted by the
current network.

0 50
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Figure 3. Left: layer #7’s output distribution on natural data (not
mixed). Middle: layer #7’s output distribution on adversarial
data generated by PGD-20 (significantly mixed). Right: layer
#7’s output distribution on friendly adversarial data generated by
PGD-20-0 (not significantly mixed).

Figure 3 shows the output distribution of layer #7 by
principal component analysis (PCA, (Abdi & Williams,
2010)), which projects high-dimensional output into a two-
dimensional subspace. As shown in Figure 3, the output
distribution on natural data (left panel) of the intermediate
layer is clearly not mixed. By contrast, the conventional
PGD-K (middle panel) leads to severe mixing between out-
puts of adversarial data with different classes. It is more
difficult to fit these mixed adversarial data, which leads
to inaccurate classifiers. By comparing with PGD-K, our
PGD-K-τ (right panel) could greatly overcome the mix-
ture issue of adversarial data. Thus, it helps the training
algorithm to return an accurate classifier while ensuring
adversarial robustness.

To further justify the above fact, we plot output distributions
of other layers, e.g., layer #6 and layer #8. Moreover,
we train a Wide ResNet (WRN-40-4) (Zagoruyko & Ko-
modakis, 2016) on 10 classes and randomly select 3 classes
for illustrating their output distributions of its intermediate
layers. Instead of PCA, we also use a non-linear technique
for dimensionality reduction, i.e., t-distributed stochastic
neighbor embedding (t-SNE) (Maaten & Hinton, 2008) to
visualize output distributions of different classes. All these
can be found in Appendix C.

5. Realization of FAT
Based on the proposed PGD-K-τ , we have a new algo-
rithm termed FAT (Algorithm 2). FAT treats the standard
adversarial training (Madry et al., 2018) as a special case
when we set τ = K in Algorithm 1. Besides, we also de-
sign FAT for TRADES (Appendix D.1) and FAT for MART
(Appendix E.2), making two effective adversarial training
methods (TRADES (Zhang et al., 2019b) and MART (Wang
et al., 2020)) special cases when τ = K. Since the essen-
tial component of FAT is PGD-K-τ , we should discuss
the effects of step τ w.r.t. standard accuracy and adversar-
ial robustness (Section 5.1) and computational efficiency
(Section 5.2). Besides, we should discuss the relation be-
tween FAT and curriculum learning (Section 5.3), since FAT
is a progressive training strategy. It is worth noting that
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Algorithm 2 Friendly Adversarial Training (FAT)
Input: network fθ, training dataset S = {(xi, yi)}ni=1,
learning rate η, number of epochs T , batch size m, num-
ber of batches M
Output: adversarially robust network fθ
for epoch = 1, . . . , T do

for mini-batch = 1, . . . , M do
Sample a mini-batch {(xi, yi)}mi=1 from S
for i = 1, . . . , m (in parallel) do

Obtain adversarial data x̃iof xi by Algorithm 1
end for
θ ← θ − η 1

m

∑m
i−1∇θ`(fθ(x̃i), yi)

end for
end for

Sitawarin et al. (2020) independently propose adversarial
training with early stopping (ATES). Along with our FAT,
ATES corroborates the new formulation (Section 3.1) for
adversarial training.

5.1. Selection of Step τ

As shown in Section 2.2, the conventional PGD-K is a spe-
cial case, when step τ = K in PGD-K-τ . Thus, standard
adversarial training is a special case of FAT. Here, we inves-
tigate how step τ affects the performance of FAT empirically,
and summarize that larger τ may not increase adversarial
robustness but hurt the standard test accuracy. Detailed
experimental setups of Figure 4 are in Appendix F.1.

Figure 4 shows that, with the increase of τ , the standard test
accuracy for natural data decreases significantly; while the
robust test accuracy for adversarial data increases at smaller
values of τ but reaches its plateau at larger values of τ . For
example, when τ is bigger than 2, the standard test accuracy
continues to decrease with larger τ . However, the robust
test accuracy begins to maintain a plateau for both Small
CNN and ResNet-18. Such observation manifests that a
larger step τ may not be necessary for adversarial training.
Namely, it may not increase adversarial robustness but hurt
the standard accuracy. This reflects a trade-off between
the standard accuracy and adversarially robust accuracy
(Tsipras et al., 2019) and suggests that our step τ helps
manage this trade-off.

τ can be treated as a hyper-parameter. Based on the ob-
servations in Figure 4, it is enough to select τ from the set
{0, 1, 2, 3}. Note that the size of the set is also influenced
by step size α and maximum PGD step K. In Section 6.2,
we use τ to fine-tune the performance of FAT.

5.2. Smaller τ is Computationally Efficient

Adversarial training is time-consuming since it needs mul-
tiple backward propagations (BPs) to produce adversarial

0 1 2 3 4 5 6 7 8 9 10
Step τ

76
78
80
82
84
86
88
90

S
ta

n
d

ar
d

te
st

ac
cu

ra
cy

(%
)

Natural test data

Small CNN

ResNet-18

0 1 2 3 4 5 6 7 8 9 10
Step τ

46
48
50
52
54
56
58
60

R
ob

u
st

te
st

ac
cu

ra
cy

(%
) FGSM

0 1 2 3 4 5 6 7 8 9 10
Step τ

37.5
40.0
42.5
45.0
47.5
50.0
52.5
55.0
57.5

R
ob

u
st

te
st

ac
cu

ra
cy

(%
) PGD-10

0 1 2 3 4 5 6 7 8 9 10
Step τ

20

25

30

35

40

45

R
ob

u
st

te
st

ac
cu

ra
cy

(%
) PGD-20

0 1 2 3 4 5 6 7 8 9 10
Step τ

20

25

30

35

40

45

R
ob

u
st

te
st

ac
cu

ra
cy

(%
) PGD-100

0 1 2 3 4 5 6 7 8 9 10
Step τ

20

25

30

35

40

45

R
ob

u
st

te
st

ac
cu

ra
cy

(%
) C&W∞

Figure 4. We conduct our adversarial training FAT with various
values of step τ on two networks Small CNN (blue line) and
ResNet-18 (red line). We evaluate the adversarial training perfor-
mance according to networks’ standard test accuracy for natural
test data and robust test accuracy for adversarial test data generated
by FGSM, PGD-10, PGD-20, PGD-100 and C&W attack. We
report the median test accuracy and its standard deviation as the
shaded color over 5 repeated trials of adversarial training.

data. The time-consuming factor depends on the number
of BPs used for generating adversarial data (Shafahi et al.,
2019; Zhang et al., 2019a; Wong et al., 2020; B.S. & Babu,
2020).

Our FAT uses PGD-K-τ to generate adversarial data, and
PGD-K-τ is early-stopped. This implies that FAT is com-
putationally efficient, since FAT does not need to compute
maximum K BPs on each mini-batch. To illustrate this, we
count the number of BPs for generating adversarial data
during training. The training setup is the same as the one in
Section 5.1, but we only choose τ from {0, 1, 2, 3} and train
for 100 epochs with learning rate divided by 10 at epochs
60 and 90. In Figure 5, we compare the standard adver-
sarial training (Madry et al., 2018) (dashed line) with our
FAT (solid line) and adversarial training TRADES (Zhang
et al., 2019b) (dashed line) with our FAT for TRADES (solid
line, detailed in Algorithm 4 in Appendix D.2). For each
epoch, we compute average BPs over all training data for
generating the adversarial counterpart.

Figure 5 shows that conventional adversarial training uses
PGD-K which takes K BPs for generating adversarial data
in each mini-batch. By contrast, our adversarial training
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Figure 5. Training statistics on the average number of BPs needed
for generating adversarial data. Top three panels are adversarial
training FAT on three networks, Small CNN (top left), ResNet-18
(top middle) and WRN-34-10 (top right). Bottom three panels are
adversarial training FAT for TRADES on three networks, Small
CNN (bottom left), ResNet-18 (bottom middle) and WRN-34-10
(bottom right).

FAT that uses PGD-K-τ significantly reduces the number
of required BPs. In addition, with the smaller τ , FAT needs
less BPs on average for generating adversarial data. The
magnitude of τ controls the number of extra BPs, once
misclassified adversarial data is found.

Moreover, there are some interesting phenomena observed
in our FAT (or FAT for TRADES). As the training pro-
gresses, the number of BPs gradually increases. This shows
that more steps are needed by PGD to find misclassified
adversarial data. This signifies that it is increasingly dif-
ficult to find adversarial data that misclassifies the model.
Thus, DNNs become more and more adversarially robust
over training epochs. In addition, there is a slight surge in
average BPs at epochs 60 and 90, where we divided the
learning rate by 10. This means that the robustness of the
model gets substantially improved at epochs 60 and 90. It is
a common trick to decrease the learning rate over training
DNNs for good standard accuracy (He et al., 2016). Fig-
ure 5 confirms that it is similarly meaningful to decrease the
learning rate during adversarial training.

5.3. Relation to Curriculum Learning

Curriculum learning (Bengio et al., 2009) is a machine
learning strategy that gradually makes the learning task
more difficult. Curriculum learning is shown effective in
improving standard generalization and providing faster con-
vergence (Bengio et al., 2009).

In adversarial training, curriculum learning can also be used
to improve adversarial robustness. Namely, DNNs learn
from milder adversarial data first, and gradually adapt to
stronger adversarial data. There are different ways to de-

termine the hardness of adversarial data. For example, cur-
riculum adversarial training (CAT) uses the perturbation
step K of PGD as the hardness measure (Cai et al., 2018).
Dynamic adversarial training (DAT) uses their proposed
criterion, the first-order stationary condition (FOSC), as
the hardness measure (Wang et al., 2019). However, both
methods do not have a principled way to decide when the
hardness should be increased during training. To increase
the hardness at the right time, both methods need domain
knowledge to fine-tune the curriculum training sequence.
For example, CAT needs to decide when to increase step K
in PGD over training epochs; while DAT needs to decide
FOSC for generating adversarial data at different training
stages.

Our FAT can also be regarded as a type of curriculum train-
ing. As shown in Figure 5, as the training progresses, more
and more backward propagations (BPs) are needed to gen-
erate adversarial data to fool the classifier. Thus, more and
more PGD steps are needed to generate adversarial data.
Meanwhile, the network gradually and automatically learns
from stronger and stronger adversarial data (adversarial
data generated by more and more PGD steps). Differently
from CAT and DAT, FAT could automatically increase the
hardness of friendly adversarial data based on the model’s
predictions. As a result, Table 1 in Section 6.2 shows that
empirical results of FAT can outperform the best results in
CAT (Cai et al., 2018), DAT (Wang et al., 2019) and stan-
dard Madry’s adversarial training (not a curriculum learn-
ing) (Madry et al., 2018). Thus, attacks which do not kill
training indeed make adversarial learning stronger.

6. Experiments
To evaluate the efficacy of FAT, we firstly use CIFAR-
10 (Krizhevsky, 2009) and SVHN (Netzer et al., 2011)
datasets to verify that FAT can help achieve a larger perturba-
tion bound εtrain. Then, we train Wide ResNet (Zagoruyko
& Komodakis, 2016) on the CIFAR-10 dataset to achieve
state-of-the-art results.

6.1. FAT can Enable Larger Perturbation Bound εtrain

All images of CIFAR-10 and SVHN are normalized into
[0, 1]. We compare our FAT (τ = 0, 1, 3) and standard
adversarial training (Madry) on ResNet-18 with different
perturbation bounds εtrain, i.e., εtrain ∈ [0.03, 0.15] for
CIFAR-10 in Figure 6 and εtrain ∈ [0.01, 0.06] for SVHN
in Figure 7. The maximum PGD stepK = 10, step size α =
ε/10. DNNs were trained using SGD with 0.9 momentum
for 80 epochs with the initial learning rate of 0.01 divided
by 10 at epoch 60.

In addition, we have experiments of training a different
DNN, e.g., Small CNN. We also set maximum PGD step
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Figure 6. Comparisons on standard test accuracy and robust test
accuracy of the deep model (ResNet-18) trained by standard ad-
versarial training (Madry) and our friendly adversarial training
(τ = 0, 1, 3) respectively on CIFAR-10 dataset.

K = 20. Besides, we compare our FAT for TRADES
and TRADES (Zhang et al., 2019b) with different values of
εtrain. These extensive results are presented in Appendix G.

Figures 6 and 7 show the performance of FAT (τ = 0, 1, 3)
and standard adversarial training w.r.t. standard test accu-
racy and adversarially robust test accuracy of the DNNs. We
obtain standard test accuracy for natural test data and robust
test accuracy for adversarial test data. The adversarial test
data are bounded by L∞ perturbations with εtest = 8/255
for CIFAR-10 and εtest = 4/255 for SVHN, which are
generated by FGSM, PGD-20, PGD-100 and C&W∞ (L∞
version of C&W optimized by PGD-30 (Carlini & Wagner,
2017)). Moreover, we also evaluate the robust DNNs using
stronger adversarial test data generated by PGD-20 with a
larger perturbation bound εtest = 16/255 for CIFAR-10
and εtest = 8/255 for SVHN (bottom right panels in Fig-
ures 6 and 7). All PGD attacks have random start, i.e, the
uniformly random perturbation of [−εtest, εtest] added to
the natural test data before PGD perturbations. Step size α
of PGD is fixed to 2/255.

From top-left panels of Figures 6 and 7, DNNs trained by
FAT (τ = 0, 1, 3) have higher standard test accuracy com-
pared with those trained by standard adversarial training
(i.e., Madry). This gap significantly widens as perturba-
tion bound εtrain increases. Larger εtrain will allow the
generated adversarial data deviate more from natural data.
In standard adversarial training, natural generalization is
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Figure 7. Comparisons on standard test accuracy and robust test ac-
curacy of deep model (ResNet-18) trained by standard adversarial
training (Madry) and our friendly adversarial training (τ = 0, 1, 3)
respectively on SVHN dataset.

significantly hurt with larger εtrain due to the cross-over
mixture issue. In contrast, DNNs trained by FAT could have
better standard generalization, which is less affected by an
increasing perturbation bound εtrain.

In addition, with the increase of the perturbation bound
εtrain, robust test accuracy (e.g., PGD and C&W) of DNNs
trained by standard adversarial training (Madry) gets a slight
increase first but is followed by a sharp drop. For a larger
εtrain (e.g., εtrain > 0.06 in CIFAR-10 and εtrain > 0.03
in SVHN), standard adversarial training (Madry) basically
fails, and thus its robust test accuracy drops sharply. With-
out early-stopped PGD, the generated adversarial data has
a severe cross-over mixture problem, which makes the ad-
versarial learning extremely difficult and sometimes even
“kills” the learning.

However, it is still meaningful to enable a stronger defense
over a weaker attack, i.e., εtrain in adversarial training
should be larger than εtest in adversarial attack. The right
bottom panels in Figures 6 and 7 show for the stronger at-
tack (εtest = 16/255 for CIFAR-10 and εtest = 8/255 for
SVHN), it is meaningful to have larger εtrain to attain a
better robustness. Our FAT is able to achieve larger εtrain.
Figures 6 and 7 show our FAT (τ = 0, 1, 3) maintain higher
robust accuracy with larger εtrain.

Note that the performance of FAT with PGD-10-3 (τ = 3,
red lines) in Figure 6 drops with εtrain > 0.09. We believe
that FAT with larger τ could also have the issue of cross-
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Table 1. Evaluations (test accuracy) of deep models (WRN-32-10) on CIFAR-10 dataset
Defense Natural FGSM PGD-20 C&W∞ PGD-100
Madry 87.30 56.10 45.80 46.80 -
CAT 77.43 57.17 46.06 42.28 -
DAT 85.03 63.53 48.70 47.27 -

FAT (εtrain = 8/255) 89.34 ± 0.221 65.52 ± 0.355 46.13 ± 0.409 46.82 ± 0.517 45.31 ± 0.531
FAT (εtrain = 16/255) 87.00 ± 0.203 65.94 ± 0.244 49.86 ± 0.328 48.65 ± 0.176 49.56 ± 0.255

Results of Madry, CAT and DAT are reported in (Wang et al., 2019). FAT has the same evaluations.

Table 2. Evaluations (test accuracy) of deep models (WRN-34-10) on CIFAR-10 dataset
Defense Natural FGSM PGD-20 C&W∞ PGD-100

TRADES (β = 1.0) 88.64 56.38 49.14 - -
FAT for TRADES (εtrain = 8/255) 89.94 ± 0.303 61.00 ± 0.418 49.70 ± 0.653 49.35 ± 0.363 48.35 ± 0.240

TRADES (β = 6.0) 84.92 61.06 56.61 54.47 55.47
FAT for TRADES (εtrain = 8/255) 86.60 ± 0.548 61.97 ± 0.570 55.98 ± 0.209 54.29 ± 0.173 55.34 ± 0.291

FAT for TRADES (εtrain = 16/255) 84.39 ± 0.030 61.73 ± 0.131 57.12 ± 0.233 54.36 ± 0.177 56.07 ± 0.155

Results of TRADES (β = 1.0 and 6.0) are reported in (Zhang et al., 2019b). FAT for TRADES has the same evaluations.

over mixture, which is detrimental to adversarial learning.
In addition, both standard adversarial training and friendly
adversarial training do not perform well under C&W attack
with larger εtrain (e.g., εtrain > 0.075 in Figure 6), we
believe it is due to the mismatch between PGD-adversarial
training and C&W attack. We discuss the reasons in detail
in Appendix G.4.

To sum up, deep models by FAT with τ = 0 (green line)
have higher standard test accuracy, but lower robust test
accuracy. By increasing τ to 1, deep models have slightly
reduced standard test accuracy but have the increased ad-
versarial robustness. This sheds light on the importance of
τ , which handles the trade-off between robustness and stan-
dard accuracy. In order not to “kill” the training at the initial
stage, we could vary τ from a smaller value to a larger value
over training epochs. In addition, due to benefits that our
FAT could enable larger εtrain, we could also make εtrain
larger over training. Those tricks echo our paper’s philoso-
phy of “attacks which do not kill training make adversarial
training stronger”. In the next subsection, we unleash the
full power of FAT (and FAT for TRADES) and show its
superior performance over the state-of-the-art methods.

6.2. Performance Evaluations on Wide ResNet

To manifest the full power of friendly adversarial train-
ing, we adversarially train Wide ResNet (Zagoruyko & Ko-
modakis, 2016) to achieve the state-of-the-art performance
on CIFAR-10. Similar to (Wang et al., 2019; Zhang et al.,
2019b), we employ WRN-32-10 (Table 1) and WRN-34-10
(Table 2) as our deep models.

In Table 1, we compare FAT with standard adversarial train-
ing (Madry) (Madry et al., 2018), CAT (Cai et al., 2018)
and DAT (Wang et al., 2019) on WRN-32-10. Training
and evaluation details are in Appendix H.1. The perfor-
mance evaluations are done exactly as in DAT (Wang et al.,

2019). In Table 2, we compare FAT for TRADES with
TRADES (Zhang et al., 2019b) on WRN-34-10. Training
and evaluation details are in Appendix H.2. The perfor-
mance evaluations are done exactly as in TRADES (Zhang
et al., 2019b).

Moreover, Nakkiran (2019) states that robust classifica-
tion needs more complex classifiers (exponentially more
complex). We employ FAT for TRADES on even larger
WRN-58-10, the performance gets further improved over
WRN-34-10 (Appendix H.2). Moreover, we also apply the
early-stopped PGD to MART, namely, FAT for MART (in
Appendix E.2). As a result, the performance gets improved
(detailed in Appendix H.3).

Tables 1 and 2 and results in Appendix H justify the effi-
cacy of friendly adversarial training - adversarial robustness
can indeed be achieved without compromising the natural
generalization. In addition, we are even able to attain the
state-of-the-art robustness.

7. Conclusion
This paper has proposed a novel formulation for adversarial
training. Friendly adversarial training (FAT) approximately
realizes this formulation by stopping the PGD early. FAT is
computationally efficient and adheres to the spirit of curricu-
lum training. In addition, FAT helps to relieve the problem
of cross-over mixture. As a result, FAT can train deep mod-
els with larger perturbation bounds εtrain. Finally, FAT
can achieve competitive performance on the large capac-
ity networks. Further research includes (a) how to choose
optimal step τ in FAT algorithm, (b) besides PGD-K-τ ,
how to search for friendly adversarial data effectively, and
(c) theoretically studying adversarially robust generaliza-
tion (Yin et al., 2019), e.g., through the lens of Rademacher
complexity (Bartlett & Mendelson, 2002).
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