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Abstract

This work presents a new optimization algo-
rithm for empirical risk minimization. The
algorithm bridges the gap between first- and
second-order methods by computing a search
direction that uses a second-order-type update
in one subspace, coupled with a scaled steep-
est descent step in the orthogonal complement.
To this end, partial curvature information
is incorporated to help with ill-conditioning,
while simultaneously allowing the algorithm
to scale to the large problem dimensions often
encountered in machine learning applications.
Theoretical results are presented to confirm
that the algorithm converges to a stationary
point in both the strongly convex and non-
convex cases. A stochastic variant of the algo-
rithm is also presented, along with correspond-
ing theoretical guarantees. Numerical results
confirm the strengths of the new approach on
standard machine learning problems.

1 Introduction

This paper presents a novel optimization algorithm for
empirical risk minimization:

min
w∈Rd

F (w) :=
1

n

n∑
i=1

f(w;xi, yi) =
1

n

n∑
i=1

fi(w), (1.1)

where {(xi, yi)}ni=1 are training examples (observa-
tions), and fi : Rd → R is the composition of
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a prediction function (parameterized by w ∈ Rd)
and a loss function associated with the ith train-
ing observation (sample). Problems of the form
(1.1) arise in a wide variety of machine learn-
ing applications [Bishop, 2006, Chang and Lin, 2011,
Friedman et al., 2001, LeCun et al., 2015]. The main
challenge of solving these problems stems from the fact
that they are often high-dimensional and nonlinear,
and may be nonconvex.

For many machine learning applications, a common
approach is to employ first-order methods such as
the Stochastic Gradient method (SGD). SGD and
its variance-reduced, adaptive and distributed vari-
ants [Robbins and Monro, 1951, Duchi et al., 2011,
Schmidt et al., 2017, Johnson and Zhang, 2013,
Nguyen et al., 2017, Kingma and Ba, 2014,
Recht et al., 2011] are popular because they are
simple to implement and have low per-iteration cost.
However, these methods often require significant
tuning efforts to ensure practical performance, and
they struggle on ill-conditioned problems.

One avenue for mitigating the aforementioned is-
sues is the use of second-order or quasi-Newton
methods [Nocedal and Wright, 2006, Fletcher, 1987,
Dennis and Moré, 1977]. These methods, in the de-
terministic setting, are relatively insensitive to their
associated hyper-parameters and are able to alleviate
the effects of ill-conditioning. Unfortunately, a draw-
back of these methods is that they often do not scale
sufficiently well with the high dimensionality (both
n and d) typical in machine/deep learning problems.
Thus, the computational burden of using deterministic
higher-order methods is often deemed to be too high.

Recently, attention has shifted towards stochastic
second-order [Roosta-Khorasani and Mahoney, 2018,
Byrd et al., 2011, Martens, 2010, Gower et al., 2019,
Bollapragada et al., 2016] and quasi-Newton
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[Curtis, 2016, Byrd et al., 2016, Berahas et al., 2016,
Mokhtari and Ribeiro, 2015, Schraudolph et al., 2007,
Berahas and Takáč, 2020, Keskar and Berahas, 2016]
methods. These methods attempt to combine the
speed of Newton’s method and the scalability of
first-order methods by incorporating curvature
information in a judicious manner, and have proven
to work well for several machine learning tasks
[Berahas et al., 2020, Xu et al., 2020]. However, the
question of how to balance the accuracy in the gradient
and Hessian approximation is yet unresolved, and as
such these methods often perform on par with their
first-order variants.

Several other attempts have been made to balance the
first- versus second-order trade-off, in order to find
ways of incorporating partial curvature information
to help with ill-conditioning at an acceptable cost.
For example, variants of coordinate descent methods
that perform second-order-type updates restricted to a
low dimensional subspace, are prototypical methods
in this niche [Fountoulakis and Tappenden, 2018,
Richtárik and Takáč, 2014, Tappenden et al., 2016].
However, while progress has been made, the gap
between first- and second-order methods remains.

In this paper, we propose the Symmetric blOckwise
truNcated optimIzation Algorithm (SONIA). SONIA
aims to bridge the gap between first- and second-order
methods, but is different in nature to coordinate de-
scent methods because at every iteration a step in the
full dimensional space is generated. The search direc-
tion consists of two components. The first component
lies in an m-dimensional subspace (where m � d is
referred to as the ‘memory’ and is user defined), and
is generated using a second-order approach. The sec-
ond component of the update lies in the orthogonal
complement, and is an inexpensive scaled steepest de-
scent update. The combination of the two components
allows for the overall search direction to explore the
full-dimensional space at every iteration.

Contributions

• Novel Optimization Algorithm . We propose
SONIA for solving empirical risk minimization prob-
lems; the method attempts to bridge the gap be-
tween first- and second-order methods. SONIA judi-
ciously incorporates curvature information in one
subspace (dimension is determined by the user) and
takes a gradient descent step in the complement of
that subspace. As such, at every iteration, SONIA
takes a step in full dimensional space while retain-
ing a low per-iteration cost and storage, similar to
that of limited memory quasi-Newton methods.

• Theoretical Analysis. We derive convergence
guarantees for SONIA (deterministic and stochastic

regimes) for strongly convex and nonconvex opti-
mization problems. These guarantees match those
of popular quasi-Newton methods such as L-BFGS.

• Stochastic Variant . We develop and analyze a
stochastic variant of SONIA that uses stochastic
gradient and Hessian approximations in lieu of the
true gradient and Hessian, respectively.

• Competitive Numerical Results. We investi-
gate the performance of SONIA (deterministic and
stochastic) on strongly convex (logistic regression)
and nonconvex (nonlinear least squares) problems
that arise in machine learning. Our proposed meth-
ods are competitive with the algorithms of choice
in both the deterministic and stochastic settings.

Organization Related works are described in Sec-
tion 2. Section 3 presents our proposed algorithm,
SONIA, and its stochastic variant. We show the theo-
retical properties of our proposed method in Section
4. Numerical results on deterministic and stochastic
problems are reported in Section 5. Finally, in Section
6 we provide some final remarks and discuss possible
avenues for future research.

2 Related Work

The following works employ iterate updates of the form:

wk+1 = wk + αkpk, (2.1)

where pk ∈ Rd is the search direction and αk > 0 is
the step length (or learning rate).

The work in [Paternain et al., 2019] proposes a Newton-
type algorithm for nonconvex optimization. At each
iteration the construction and eigenvalue decomposition
(full dimensional) of the Hessian is required, small (in
modulus) eigenvalues are truncated, and a Newton-
like search direction is generated using the truncated
inverse Hessian instead of the true inverse Hessian. The
method works well in practice and is guaranteed to
converge to local minima, but is expensive.

Quasi-Newton methods–methods that compute
search directions using (inverse) Hessian approxi-
mations constructed using past iterate and gradient
information–represent some of the most effective
algorithms for minimizing nonlinear objective func-
tions. This class of nonlinear optimization algorithms
includes BFGS, DFP and SR1; see [Fletcher, 1987,
Nocedal and Wright, 2006, Dennis and Moré, 1977]
and the references therein.

The Symmetric Rank One (SR1) update is a spe-
cial case of a rank one quasi-Newton method
[Dennis and Moré, 1977]. It is the unique symmet-
ric rank-1 update that satisfies the secant condition
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Bk+1sk = yk, where sk = wk − wk−1 and yk =
∇F (wk)−∇F (wk−1) are the curvature pairs and the
Hessian approximation is updated at every iteration
via:

Bk+1 = Bk + (yk−Bksk)(yk−Bksk)T

sTk (yk−Bksk)
.

Hessian approximations using SR1 updates are not
guaranteed to be positive definite, and while this was
originally seen as a drawback, it is arguably viewed
as an advantage in the context of nonconvex optimiza-
tion. Limited memory variants exist where there is a
fixed memory size m, and only the last m curvature
pairs are kept and used to construct the Hessian ap-
proximation [Brust et al., 2017, Lu, 1996]. Let Sk =
[sk−m+1, . . . , sk] ∈ Rd×m and Yk = [yk−m+1, . . . , yk] ∈
Rd×m denote matrices consisting of the m most recent
curvature pairs. As studied in [Byrd et al., 1994], the
compact form of L-SR1 is as follows:

Bk = B0 + (Yk −B0Sk)M−1
k (Yk −B0Sk)T , (2.2)

where Mk = Lk + Dk + LTk − STk B0Sk and STk Yk =
Lk +Dk + Uk, Lk denotes the strictly lower triangular
part, Dk is the diagonal and Uk denotes the strictly up-
per triangular part of STk Yk, respectively, and B0 is an
initial approximation (usually set as B0 = ηI, η > 0).
A key observation is that while Bk+1 is a full dimen-
sional d×d matrix, the inverse in (2.2) is a small m×m
matrix. Recent works that employ the compact L-SR1
update include [Erway et al., 2019, Brust et al., 2017,
Berahas et al., 2019], where (2.2) defines the quadratic
model within a trust region algorithm.

Rather than maintaining a history of them most recent
curvature pairs, the work [Berahas et al., 2019] pro-
posed a sampled variant of the L-SR1 update. In that
work, at each iteration k ≥ 0,m directions {s1, . . . , sm}
are sampled around the current iterate wk and stored
as Sk = [s1, . . . , sm] ∈ Rd×m. Next, the gradient dis-
placement vectors are computed via

Yk = ∇2F (wk)Sk, (2.3)

and the matrix B0 is set to zero. In this way, previ-
ous curvature information is forgotten, and local cur-
vature information is sampled around the current it-
erate. Moreover, depending on the way the vectors
{s1, . . . , sm} are sampled, one can view (2.3) as a sketch
of the Hessian [Woodruff, 2014].

The approach proposed here combines quasi-
Newton updates for indefinite Hessians
[Erway et al., 2019] with sampled curvature pairs
[Berahas et al., 2019]. Moreover, a truncation step (as
in [Paternain et al., 2019]) allows us to avoid checking
conditions on the curvature pairs, and ensures that
the Hessian approximations constructed are positive
definite. The subspace generation is based on the

user-defined hyper-parameter m (user has full control
over the computational cost of each iteration), and an
eigenvalue decomposition step (performed in reduced
dimension and so is cheap).

3 Symmetric blOckwise truNcated
optimIzation Algorithm (SONIA)

In this section, we present our proposed algorithm. We
begin by motivating and describing the deterministic
variant of the method and then discuss its stochastic
counterpart. We end this section by discussing the per
iteration complexity of SONIA.

3.1 Deterministic SONIA

The SONIA algorithm updates iterates via (2.1). The
search direction pk consists of two components; the
first component lies in one subspace and is a second-
order based update, while the second component lies
in the orthogonal complement and is a scaled steepest
descent direction. We now describe how the subspaces
are built at each iteration as well as how to compute
the second-order component of the search direction.

The algorithm is initialized with a user defined pa-
rameter m � d (memory size). At each iteration
k ≥ 0 of SONIA, m directions {s1, . . . , sm} are ran-
domly sampled, and curvature pair matrices Sk and Yk
are constructed via (2.3). Setting B0 = 0, and substi-
tuting into (2.2) gives the compact form of the Hessian
approximation used in this work1:

Bk = Yk(Y Tk Sk)†Y Tk . (3.1)

Similar to the strategy in [Erway et al., 2019], using the
thin QR factorization of Yk = QkRk, whereQk ∈ Rd×m
has orthonormal columns and Rk ∈ Rm×m is an upper
triangular matrix, (3.1) gives

Bk = QkRk(Y Tk Sk)†RTkQ
T
k . (3.2)

Note that the matrix Bk is symmetric since, by (2.3)
(Y Tk Sk)† = (STk ∇2F (wk)Sk)† ∈ Rm×m is symmetric.
Thus, by the spectral decomposition, Rk(Y Tk Sk)†RTk =
VkΛkV

T
k , where the columns of Vk ∈ Rm×m form an

orthonormal basis (of eigenvectors), and Λk ∈ Rm×m is
a diagonal matrix containing the corresponding eigen-
values. Substituting this into (3.2) gives

Bk = QkVkΛkV
T
k Q

T
k . (3.3)

Since Qk has orthonormal columns and Vk is an or-
thogonal matrix, it is clear that

Ṽk := QkVk ∈ Rd×m (3.4)
1If ST

k Yk is full rank, then the pseudo-inverse in (3.1) is
simply the inverse.
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has orthonormal columns. Finally, the low rank decom-
position of the Hessian approximation Bk is

Bk = ṼkΛkṼ
T
k . (3.5)

The following definition is motivated by
[Paternain et al., 2019, Definition 2.1].
Definition 3.1. Let Bk, Ṽk and Λk be the matrices
in (3.5), and let 0 < ω ≤ Ω. The truncated inverse
Hessian approximation of Bk is Ak := Ṽk(|Λk|Ωω )−1Ṽ Tk ,
where (|Λk|Ωω )ii = min{max{|Λk|ii, ω},Ω}.

Definition 3.1 explains that any eigenvalue of Λk below
(resp. above) the threshold ω (resp. Ω) is truncated
and set to ω (resp. Ω). This is useful for several
reasons. For one, it ensures that the search direc-
tion consists only of directions with non-negligible
curvature. Moreover, unlike classical quasi-Newton
methods that enforce conditions on the curvature pairs
to guarantee that the (inverse) Hessian approxima-
tions are well-defined and that the updates are stable
[Nocedal and Wright, 2006], SONIA utilizes a trunca-
tion step (Definition 3.1) and as such avoids the need
for any such safe-guards. The reason for this is that
even if Y Tk Sk is rank deficient, the truncation step
ensures that Ak has full rank. This is especially impor-
tant with SR1-type methods that require matrix-vector
products in the checks [Nocedal and Wright, 2006].

Before we proceed, we make a few more observations
about our algorithmic choice of constructing the gradi-
ent differencing curvature pairs via (2.3). As mentioned
above, this ensures that the matrix Y Tk Sk is symmetric
which is a fundamental component of our approach
for three reasons. First, it ensures that the Hessian
approximations constructed are symmetric. Second,
it guarantees that the spectral decomposition exists
(see (3.3)). Third, unlike the SR1 method that uti-
lizes only the lower triangular part of the Y Tk Sk (non-
symmetric) matrix to construct Hessian approxima-
tions (see (2.2)) and discards possibly useful curvature
information, SONIA incorporates information from the
full matrix. Furthermore, one can show that construct-
ing curvature pairs in this manner guarantees that the
secant equations hold for all curvature pairs, and that
the Hessian approximations are scale invariant.

Next, we discuss the subspace decomposition. The
gradient is orthogonally decomposed as:

∇F (wk) = gk + g⊥k , (3.6)

where gk = ṼkṼ
T
k ∇F (wk)

and g⊥k = (I − ṼkṼ Tk )∇F (wk).

Clearly, gk ∈ range(ṼkṼ
T
k ) and g⊥k ∈ ker(ṼkṼ

T
k ) ≡

range(I − ṼkṼ Tk ). Vectors gk and g⊥k are orthogonal
because the subspaces range(ṼkṼ

T
k ) and range(I −

ṼkṼ
T
k ) are orthogonal complements (i.e., gTk g

⊥
k =

∇F (wk)T ṼkṼ
T
k (I − ṼkṼ Tk )∇F (wk) = 0).

The SONIA search direction is

pk :=− Ṽk(|Λk|Ωω )−1Ṽ Tk ∇F (wk)− ρk(I − ṼkṼ Tk )∇F (wk)

=− Ṽk(|Λk|Ωω )−1Ṽ Tk gk − ρkg⊥k , (3.7)

where for all k ≥ 0,

ρk ∈
[

1

Ω
, λ̂k

]
, (3.8)

and λ̂k := max
i
{[(|Λk|Ωω )−1]ii}. (3.9)

Note, 1
Ω ≤ λ̂k ≤

1
ω . The first component of the search

direction lies in the subspace range(ṼkṼ
T
k ), while the

second component lies in the orthogonal complement.
Lemma 3.2. The search direction pk in (3.7) is equiv-
alent to pk = −Ak∇F (wk), where

Ak := Ṽk(|Λk|Ωω )−1Ṽ Tk + ρk(I − ṼkṼ Tk ). (3.10)

The search direction pk in (3.7) can be interpreted
as follows. If the memory is chosen as m = 0, then
pk is simply a scaled steepest descent direction (in
this setting, ρk can be any positive number). On the
other hand, if m = d, then pk incorporates curvature
information in the full dimensional space. If 0 < m < d,
then the algorithm is a hybrid of a second-order method
in range(ṼkṼ

T
k ) and steepest descent in the orthogonal

complement null(ṼkṼ
T
k ). Thus, this algorithm bridges

the gap between first- and second-order methods.
Remark 3.3. The following remarks are made regard-
ing the search direction pk.

• The first component of the search direction vanishes
only if (i) the memory size is m = 0, or if (ii)
∇F (w) ∈ null(Ṽ Ṽ T ).

• The second component of the search direction van-
ishes only if (i) the memory size is m = d, or if (ii)
range(Ṽ Ṽ T ) ≡ Rd.

The SONIA algorithm is presented in Algorithm 1. We
should note, that the SONIA algorithm does not require
the construction of the Hessian matrix or of the Hessian
approximation matrix. Rather, SONIA is a matrix-
free algorithm that utilizes Hessian-vector (or matrix)
products to construct the curvature pairs and compute
the search direction.

3.2 Stochastic SONIA

The SONIA algorithm presented in Section 3.1, requires
a gradient evaluation and a Hessian-matrix product
(to construct Yk) at every iteration. For many ma-
chine learning applications, these computations can be
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Algorithm 1 SONIA
Input: w0 (initial iterate), m (memory), 0 < ω ≤ Ω
(truncation parameters).
1: for k = 0, 1, 2, ... do
2: Compute gradient ∇F (wk)
3: Construct random Sk ∈ Rd×m and set Yk via (2.3)
4: Compute QR factorization of Yk(= QkRk)
5: Compute spectral decomposition of

Rk(Y T
k Sk)†RT

k (= VkΛkV
T
k )

6: Construct Ṽk(= QkVk) via (3.4)
7: Truncate eigenvalues of Λk to form |Λk|Ωω
8: Set ρk via (3.8)-(3.9)
9: Decompose gradient ∇F (wk)(= gk + g⊥k ) via (3.6)
10: Compute search direction pk via (3.7)
11: Select steplength αk > 0, and set wk+1 = wk +αkpk
12: end for

prohibitively expensive. To overcome these difficulties,
we present a stochastic variant of the SONIA algorithm
that employs a mini-batch approach.

Stochastic SONIA chooses a set Ik ⊂ [n], and the new
iterate is computed as follows:

wk+1 = wk − αkAk∇FIk(wk),

where ∇FIk(wk) = 1
|Ik|
∑
i∈Ik∇Fi(wk) (3.11)

and Ak is the stochastic inverse truncated Hessian
approximation. Stochastic SONIA uses stochastic
Hessian-matrix products to construct Yk, i.e., Yk =
∇2FJk

(wk)Sk, where Jk ⊂ [n]. It is important to note
that for the theory (Section 4) the sample sets Ik and
Jk need to be chosen independently.

3.3 Complexity of SONIA

The per iteration complexity of SONIA consists of: (1)
a Hessian-matrix product (O(mnd)); (2) a QR factor-
ization of an d × m matrix (O(dm2)); (3) a pseudo-
inverse of an m×m matrix (O(m3)); and, (4) a spec-
tral decomposition of an m×m matrix (O(m3)). The
computational cost and storage requirement for the
SONIA algorithm are presented in Table 12, where
we compare the cost and storage to popular limited-
memory quasi-Newton methods and the NCN method
[Paternain et al., 2019]. Note that the SONIA algo-
rithm was developed for the regime where m � d, n.
As is clear from Table 1, SONIA has similar cost and
storage to LBFGS and LSR1, and is significantly more
efficient, in both regards, to the NCN method. We
should note that the computational cost and storage
requirements for stochastic SONIA are O(d).

2The computations reported in Table 1 are on top of
the function/gradient evaluations that are common to all
methods. We highlight that the reported costs are in big O
notation and in the regime m� d, n; in our experiments,
we used the precise costs per iteration of each method in
order to present meaningful results; see Section 5.

Table 1: Summary of Computational Cost and Storage (per
iteration) for m� n, d.

method computational cost storage

NCN
[Paternain et al., 2019] O(nd2 + d3) O(d2)

LBFGS
[Liu and Nocedal, 1989] O(nd) O(d)

LSR1
[Lu, 1996] O(nd) O(d)

SONIA
[this paper] O(nd) O(d)

4 Theoretical Analysis

In this section, we present theoretical results for SONIA
(deterministic and stochastic settings) for both strongly
convex and nonconvex objective functions. Before we
present the main theorems, we state two preliminary
Lemmas that are used throughout this section. Proofs
can be found in Appendix A.

Assumption 4.1. The function F is twice continu-
ously differentiable.

Lemma 4.2. The matrix Ak in (3.10) is positive def-
inite for all k ≥ 0.

Lemma 4.3. If Assumption 4.1 holds, there exist con-
stants 0 < µ1 ≤ µ2 such that the inverse truncated
Hessian approximations {Ak} generated by Algorithm
1 satisfy, µ1I � Ak � µ2I, for all k ≥ 0.

4.1 Deterministic Setting

Strongly Convex Functions The following as-
sumption is standard for strongly convex functions.

Assumption 4.4. There exist positive constants 0 <
µ ≤ L such that µI � ∇2F (w) � LI, for all w ∈ Rd.

Theorem 4.5. Suppose that Assumptions 4.1 and 4.4
hold, and let F ? = F (w?), where w? is the minimizer
of F . Let {wk} be the iterates generated by Algorithm 1,
where 0 < αk = α ≤ µ1

µ2
2L

, and w0 is the starting point.
Then, for all k ≥ 0,

F (wk)− F ? ≤ (1− αµµ1)k[F (w0)− F ?].

Theorem 4.5 shows that SONIA converges at a linear rate
to the optimal solution of (1.1). The step length range
prescribed by SONIA depends on µ1 and µ2, as does the
rate. This is typical for limited memory quasi-Newton
methods [Liu and Nocedal, 1989, Berahas et al., 2019].
In the worst-case, the matrix Ak can make the limit
in Theorem 4.5 significantly worse than that of the
first-order variant if the update has been unfortunate
and generates ill-conditioned matrices. However, this
is rarely observed in practice.



SONIA: A Symmetric Blockwise Truncated Optimization Algorithm

Nonconvex Functions The following assumptions
are needed for the nonconvex case.

Assumption 4.6. The function F is bounded below
by a scalar F̂ .

Assumption 4.7. The gradients of F are L-Lipschitz
continuous for all w ∈ Rd.
Theorem 4.8. Suppose that Assumptions 4.1, 4.6 and
4.7 hold. Let {wk} be the iterates generated by Algo-
rithm 1, where 0 < αk = α ≤ µ1

µ2
2L

, and w0 is the
starting point. Then, for any T > 1,

1
T

∑T−1
k=0 ‖∇F (wk)‖2 ≤ 2[F (w0)−F̂ ]

αµ1T

T→∞−−−−→ 0.

Theorem 4.8 bounds the average norm squared of the
gradient and shows that the iterates spend increasingly
more time in regions where the objective function has
small gradient. By this result one can show that in the
limit the iterates converge to a stationary point of F .

4.2 Stochastic Setting

Here, we present theoretical convergence results for the
stochastic variant of SONIA. Note that, in this section
EIk [·] denotes the conditional expectation given wk,
whereas E[·] denotes the total expectation over the full
history. We make the following standard assumptions.

Assumption 4.9. There exist a constant γ such that
EI [‖∇FI(w)−∇F (w)‖2] ≤ γ2.

Assumption 4.10. ∇FI(w) is an unbiased estimator
of the gradient, i.e., EI [∇FI(w)] = ∇F (w), where the
samples I are drawn independently.

Strongly Convex Functions

Theorem 4.11. Suppose that Assumptions 4.1, 4.4,
4.9 and 4.10 hold, and let F ? = F (w?), where w? is
the minimizer of F . Let {wk} be the iterates generated
by Algorithm 1, where 0 < αk = α ≤ µ1

µ2
2L

, and w0 is
the starting point. Then, for all k ≥ 0,

E[F (wk)− F ?]

≤ (1− αµ1µ)k(F (w0)− F ? − αµ2
2γ

2L
2µ1µ

) +
αµ2

2γ
2L

2µ1µ
.

The bound in Theorem 4.11 has two components: (1)
a term decaying linearly to zero; and, (2) a term iden-
tifying the neighborhood of convergence. Notice that a
larger step length yields a more favorable constant in
the linearly decaying term, at the cost of an increase
in the size of the neighborhood of convergence. As
in the deterministic case, the step length range and
rate of SONIA depends on µ1 and µ2. Thus, this result
is weaker than that of its first-order variant if the up-
date has been unfortunate and generates ill-conditioned
matrices. Again, this is seldom observed in practice.

One can establish convergence of stochastic SONIA
to the optimal solution w? by employing a se-
quence of step lengths that converge to zero
[Robbins and Monro, 1951], but at the slower, sub-
linear rate. Another way to achieve exact convergence
is to employ variance reduced gradient approximations
[Johnson and Zhang, 2013, Schmidt et al., 2017], and
achieve linear convergence, at the cost of computing
the full gradient every so often, or increased storage.

Non-convex Functions

Theorem 4.12. Suppose that Assumptions 4.1, 4.6,
4.7, 4.9 and 4.10 hold. Let {wk} be the iterates gener-
ated by Algorithm 1, where 0 < αk = α ≤ µ1

µ2
2L

, and w0

is the starting point. Then, for all k ≥ 0,

E[ 1
T

∑T−1
k=0 ‖∇F (wk)‖2] ≤ 2[F (w0)−F̂ ]

αµ1T
+

αµ2
2γ

2L
µ1

T→∞−−−−→ αµ2
2γ

2L
µ1

.

Theorem 4.12 bounds the average norm squared of the
gradient of F , in expectation. The result states that,
in expectation, the iterates spend increasingly more
time in regions where the objective function has small
gradient. The difference with the deterministic setting
is that one cannot show convergence to a stationary
point; this is due to the variance in the gradient approx-
imation employed. One can establish such convergence
under appropriately diminishing step length schedules.

5 Numerical Experiments

In this section, we present numerical experiments3 on
two standard machine learning problems, and com-
pare the empirical performance of SONIA with that of
state-of-the-art first- and second-order methods4, in
both the stochastic and deterministic settings. We
considered four different classes of problems: (1) de-
terministic and stochastic logistic regression (stronlgy
convex); and, (2) deterministic and stochastic nonlinear
least squares (nonconvex), and report results on two
standard machine learning datasets5. (For brevity we
report only a subset of the results here and defer the
rest to Appendix D.) We compared the performance of
SONIA to algorithms with computational cost and stor-
age requirements linear in both n and d. As such, we
did not compare against NCN [Paternain et al., 2019]
and full-memory quasi-Newton methods. Our metric
of comparison was the number of effective passes (or
epochs), which we calculated as the number of function,

3All codes to reproduce numerical results are available
at https://github.com/OptMLGroup/SONIA

4See Appendix C.1 for algorithm details.
5a1a and gistte. Available at: https://www.csie.ntu.

edu.tw/~cjlin/libsvmtools/datasets/.

https://github.com/OptMLGroup/SONIA
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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(a) Comparison of optimality gap (F (w)−F?) and Test Accuracy
for different algorithms on Logistic Regression Problems.

(b) Comparison of objective function (F (w)) and Test Accuracy
for different algorithms on Non-Linear Least Squares Problems.

Figure 1: Deterministic Problems. Datasets: a1a, and gistte.

gradient and Hessian-vector (or matrix) evaluations; see
Appendix B for details. We tuned the hyper-parameters
of each method individually for every instance; see Ap-
pendix C.3 for a complete description of the tuning
efforts. Where applicable, the regularization parameter
was chosen from the set λ ∈ {10−3, 10−4, 10−5, 10−6}.
The memory size was set to m = min{d, 64}, and the
truncation parameters were set to ω = 10−5, Ω = 108

and ρk = λ̂k := maxi{[(|Λk|Ωω)−1]ii}; we found that
these choices gave the best performance. We also per-
formed sensitivity analysis for SONIA; see Appendices
D.1.1 and D.1.2.

5.1 Deterministic Setting

In the deterministic setting, we compared the
performance of SONIA to that of Gradient De-
scent (GD), L-BFGS [Liu and Nocedal, 1989], L-SR1
[Lu, 1996], NEST+ [Nesterov, 2004] and Newton-CG
[Nocedal and Wright, 2006]. We implemented the
algorithms with adaptive procedures for selecting
the step length (e.g., Armijo backtracking) and/or
computing the step (e.g., trust-region subroutine)
[Nocedal and Wright, 2006]. (Newton-CG was imple-
mented with a line search for strongly convex problems
and with a trust region for nonconvex problems.)

Deterministic Logistic Regression We consid-
ered `2 regularized logistic regression problems, F (w) =
1
n

∑n
i=1 log(1 + e−yix

T
i w) + λ

2 ‖w‖
2. Figure 1a shows the

performance of the methods in terms of optimality gap

(F (w)− F ?6) and testing accuracy versus number of
effective passes. As is clear, the performance of SONIA
is on par or better than that of the other methods.
Similar behavior was observed on other datasets; see
Appendix D.1.

Deterministic Non-Linear Least Squares We
considered non-linear least squares problems, F (w) =
1
n

∑n
i=1(yi − 1

1+e−xT
i

w
)2, described in [Xu et al., 2020].

Figure 1b shows the performance of the methods in
terms of objective function and testing accuracy versus
number of effective passes. As is clear, the performance
of SONIA is always better than the other methods in
the initial stages of training, and the final objective
and testing accuracy is comparable to the best method
for each problem. We should note that in Figure 1b
we report results for a single starting point (as is done
in [Xu et al., 2020]); the performance of SONIA was
robust for all starting points.

5.2 Stochastic Setting

In the stochastic setting, we compared the performance
of SONIA to that of SGD [Bottou et al., 2018], SARAH
[Nguyen et al., 2017] and SQN [Byrd et al., 2016]. We
implemented the algorithms with fixed steplength rules,
and tuned this parameter as well as the batch size for
every problem; see Section C.3 for more details.

6To find w? we ran the ASUESA algorithm
[Ma et al., 2017]; see Section C.1.
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(a) Comparison of optimality gap (F (w)−F?) and Test Accuracy
for different algorithms on Logistic Regression Problems.

(b) Comparison of objective function (F (w)) and Test Accuracy
for different algorithms on Non-Linear Least Squares Problems.

Figure 2: Stochastic Problems. Datasets: a1a and gistte.

(a) Comparison of L-SR1, SONIA (with sampling) and SONIA (with
history) on Logistic Regression Problems. (λ = 10−5, 10−6)

(b) Comparison of L-SR1, SONIA (with sampling) and SONIA (with
history) on Non-Linear Least Squares Problems.

Figure 3: Comparison of SONIA variants. Datasets: a1a and gistte.

Stochastic Logistic Regression Figure 2a shows
the performance of the stochastic methods on logis-
tic regression problems. We show results for every
method in the small batch regime (16) and in the large
batch regime (256). As is clear, the stochastic variant
of SONIA is competitive with the other methods. We
should also mention that as predicted by the theory, us-
ing a larger batch size (lower variance in the stochastic
gradient approximation) allows for SONIA to conver-
gence to a smaller neighborhood around the optimal
solution. For more results see Section D.3.

Stochastic Non-Linear Least Squares Figure 2b
shows the performance of the stochastic methods on
(nonconvex) nonlinear least squares problems. As is
clear, the stochastic variant of SONIA outperforms the
other methods for all problems reported. Within a very
small number of epochs, SONIA is able to achieve high
testing accuracy. We attribute the success of SONIA in
the stochastic nonconvex regime to the fact that useful
curvature information is incorporated in the search
direction. For more results see Section D.4.
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(a) Comparison of objective function and Test Accuracy for dif-
ferent algorithms on Deterministic Logistic Regression (first col-
umn) and Non-Linear Least Squares (second column) Problems.

(b) Comparison of objective function and Test Accuracy for dif-
ferent algorithms on Stochastic Logistic Regression (first column)
and Non-Linear Least Squares (second column) Problems.

Figure 4: Comparison with respect to wall-clock time time. Dataset: gistte.

5.3 Sampling versus History

A fair question to ask is whether the good empirical per-
formance of SONIA is due to sampling curvature pairs at
every iteration. In Figure 3 we compare L-SR1, SONIA
with sampling at every iteration to construct curvature
pairs, and SONIA with limited-memory history. As is
clear, SONIA with sampling appears to outperform the
other variants suggesting that there is value to sam-
pling and using new local information in the Hessian
approximations even though the per iteration cost (in
terms of effective passes) of SONIA with sampling is
higher than both L-SR1 and SONIA with history.

5.4 Wall-clock Time Comparison

Finally, we investigated the performance of SONIA in
terms of wall-clock time. To this end, Figure 4 shows
the performance of the methods on the gisette dataset
for all aforementioned problem classes. As is clear,
despite the increased per iteration cost of SONIA, the
method is competitive on these machine learning tasks.
Similar performance is observed for other datasets; see
Appendix D.5.

6 Final Remarks and Future Works

This paper describes a deterministic and stochastic
variant of a novel optimization method, SONIA, for

empirical risk minimization. The method attempts to
bridge the gap between first- and second-order methods
by computing a search direction that uses a second-
order-type update in one subspace, coupled with a
scaled steepest descent step in the orthogonal com-
plement. Numerical results show that the method is
efficient in both the deterministic and stochastic set-
tings, and theoretical guarantees confirm that SONIA
converges to a stationary point for both strongly convex
and nonconvex functions.

Future research directions include: (1) developing adap-
tive memory variants of SONIA, (2) exploring stochastic
SONIA variants that use an adaptive number of samples
for gradient/Hessian approximations (leveraging
ideas from [Byrd et al., 2012, Mokhtari et al., 2016,
Jahani et al., 2020, Friedlander and Schmidt, 2012,
Bollapragada et al., 2018]), or that employ variance
reduced gradients, and (3) a thorough numerical
investigation for deep learning problems to test the
limits of the methods.
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