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Abstract
Sum-product networks are expressive efficient probabilistic graphical models that allow for tractable
marginal inference. Many tasks however require the computation of maximum-a-posteriori config-
urations, an NP-hard problem for such models. To date there have been very few proposals for com-
puting maximum-a-posteriori configurations in sum-product networks. This is in sharp difference
with other probabilistic frameworks such as Bayesian networks and random Markov fields, where
the problem is also NP-hard. In this work we propose two approaches to reformulate maximum-
a-posteriori inference as other combinatorial optimization problems with widely available solvers.
The first approach casts the problem as a similar inference problem in Bayesian networks, over-
coming some limitations of previous similar translations. In addition to making available the toolset
of maximum-a-posteriori inference on Bayesian networks to sum-product networks, our reformu-
lation also provides further insight into the connections of these two classes of models. The second
approach casts the problem as a mixed-integer linear program, for which there exists very efficient
solvers. This allows such inferences to be enriched with integer-linear constraints, increasing the
expressivity of the models. We compare our reformulation approaches in a large collection of prob-
lems, and against state-of-the-art approaches. The results show that reformulation approaches are
competitive.

Keywords: Tractable Probabilistic Models; Sum-Product Networks; Probabilistic Circuits; Maximum-
a-Posteriori Inference; Mixed-Integer Linear Programming; Bayesian Networks.

1. Introduction

Sum-Product Networks (SPNs) are praised for their ability to capture complex probabilistic knowl-
edge while enabling tractable computation of marginal probabilities (Poon and Domingos, 2011;
Gens and Domingos, 2013). Among other benefits, the ability to efficiently deliver marginal infer-
ences allows for principled handling of missing data, and more accurate parameter and structure
learning (Peharz et al., 2016).

Many problems are best approached by finding a configuration of a subset of variables which
maximizes its conditional probability given some evidence. Examples include image segmentation,
missing data imputation and fault diagnosis, to name a few. This type of computation, known
as Maximum-A-Posteriori (MAP) inference, is NP-hard in SPNs (Peharz et al., 2016), even to
approximate (Conaty et al., 2017). It remains hard even for selective networks, if some variables
are marginalized.
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Despite its practical relevance, very few algorithms have been formulated for the task. Poon
and Domingos (2011)’s MaxProduct algorithm finds an approximate solution in linear time in the
size of the network. The algorithm is best described as replacing sums by maximizations during
the network evaluation, and is equivalent to maximizing also over latent variables in Bayesian net-
works. Conaty et al. (2017) developed a quadratic runtime method, called ArgMaxProduct, that
improves over MaxProduct by considering multiple greedy solutions while traversing the network.
Mei et al. (2018) developed heuristic search approaches including beam-search, for approximate
and fast inference, and branch-and-bound search for exact inference. These methods allow the user
to set a compromise between accuracy and time complexity. Nevertheless, MaxProduct remains the
method of choice of practitioners; this is so even considering that the method has no guarantees,
and is empirically and theoretically outperformed by other simple methods (Conaty et al., 2017).

In this work, we develop two reformulation approaches for MAP inference in Sum-Product
Networks. The first approach translates an SPN into a a distribution-equivalent Bayesian Network.
The translation differs from previous approaches (Zhao et al., 2015; Peharz et al., 2016; dos Santos
et al., 2017) in that it generates small in-degree nodes and dispenses with the need of special data
structures for compactly representing probability tables. This allows solving MAP in the translated
BNs by any marginal MAP algorithm available (e.g., Liu and Ihler (2011); Marinescu et al. (2018);
Mauá and de Campos (2012)), and in particular by message-passing algorithms (Liu and Ihler,
2013). Moreover, as the translation preserves the SPN structure, it allows for cross-fertilization of
algorithmic ideas between the two formalisms. The second approach combines ideas from Zhao
et al. (2015) and de Campos and Ji (2008) to translate an SPN directly into a mixed-integer linear
program (MILP). This is performed by extracting for each variable the conditional distribution in-
duced by the SPN, compactly represented as an Algebraic Decision Diagram (ADD). Similar ADDs
are obtained to represent the distributions associated to sum nodes in the network. By performing
a symbolic variable elimination with those ADDs, we obtain a MILP that can be solved by any
off-the-shelf solver. In addition to benefiting from the high-performance commercial solvers avail-
able, the translation increases the expressivity of the inference with integer-linear constraints. For
example, one can impose that no more that a certain number of variables can agree on their values
with minimal effort. A side contribution of this work is the release of a benchmark of challenging
MAP inference problems for SPNs.

2. Background

We start by reviewing some definitions about SPNs and Bayesian networks, and fixing notation.

An SPN is a weighted rooted graph S where each inner node is either a sum node ( + ) or a
product node (× ), and each leaf node ( ◦ ) is associated with a univariate distribution (Gens and
Domingos, 2013). In this work, we consider only SPNs with finite-valued random variables. In
this case, we can assume, without loss of generality, that all univariate distributions are indicator
functions IX=x, that return 1 at X = x and 0 at X 6= x.

If i is a node in S, we write Si to denote the SPN rooted at i. The arcs i → j from a sum
node i to a child j are associated with a weight ωij ≥ 0. The remaining arcs have weight 1. The
scope of an SPN rooted at i is the set of random variables X = {X1, . . . , Xn} over which the
distributions/indicators at the leaves are defined. We associate every node i of the graph with an
index set σ(i) such that Xσ(i) is the scope of Sσ(i) (if needed we assume an arbitrary ordering over
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Figure 1: Left: A Sum-Product Network. Top right: The evaluation of the SPN at A = 1, B = 0.
Bottom right: the computation of the marginal P (A = 1) = S(1, ?).

the variables, and interpret Xσ(i) as a random vector). The graph in the left side of Figure 1 is an
example of an SPN with scope X = {A,B}. Unit weights are omitted in the figure.

An SPN defines a computation graph such that each inner node i computes the function Si(x) =
©i→jωijSj(x), where x is a an assignment to the scope of i and© is either

∑
or

∏
according to

the type of the respective node ( + or × , resp.). Note that for convenience, we write x to denote the
projection xσ(j) of assignment x onto the scope of Sj , even if σj ⊂ σi. The value of a leaf node is
the value returned by the associated indicator function. For example, the values of each node of the
SPN in Figure 1(left) for the assignment A = 1 and B = 0 are shown in the graph on the top right.
As shown, the network computes S(1, 0) = 0.4 at its root node. Let XE = e be an assignment to a
subset of the scope of SPN S, and define xe to be the configuration of the variables X in the scope
such that xi = ? for any i not in E, where ? is a special symbol, and xi assigns the same value
as e for i in E. We define the value S(xe) as the computation obtained by setting any leaf node i
whose scope is not in E to one (while the remaining nodes are computed as before). For example,
the bottom-right graph in Figure 1 shows the computation of S(1, ?). When it is clear from context,
we write S(e) to denote S(xe).

We impose the following constraints on an SPN S. Completeness (a.k.a. smoothness): For any
child j of a sum node i, we have that σ(i) = σ(j). Decomposability: For any children j and k
of a product node, we have that σ(j) ∩ σ(k) = ∅. Normality: For any sum node i, the weights
ωij add to 1. Those assumptions ensure that the SPN represents a joint probability distribution
P (X = x) = S(x), and that any marginal P (XE = e) =

∑
x∼e S(x) is computed efficiently as

S(e). The bottom-right graph of Figure 1 shows the computation of P (A = 1) as S(1, ?). The
MAP inference problem is to compute maxxQ P (XQ = xQ, XE = e) = maxxQ S(xQ, e) for a
given subset of the variables XQ ⊆ X \XE . Note that we allow for marginalized variables.

A Bayesian Network is a tuple (X,G,P ) where X is a set of random variables, G is a directed
acyclic graph whose nodes form an index set for the variables in X and P is a joint probability
distribution that factorizes with respect to G, that is, P (X = x) =

∏n
i=1 P (Xi = xi|Xπ(i) =

xπ(i)), where π(i) denotes the set of parent nodes of node i in G and P (Xi = xi|Xπ(i) = xπ(i)) =
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Figure 2: Bayesian network equivalent of the highlighted sub-network in Figure 1.

P (Xi = xi) if i has no parents. A Bayesian network over categorical variables with few parents can
thus be compactly represented by its conditional probability tables (CPTs) P (Xi|Xπ(i)). Drawing
inferences with a given Bayesian network is usually demanding. For instance, computing marginal
inferences is #P-hard, and MAP inference is NPPP-hard (Park and Darwiche, 2004).

3. Sum-Product Network to Bayesian Network

We now describe our first reformulation approach, which obtains a Bayesian network whose distri-
bution, after marginalizing latent variables, equals the distribution induced by the SPN. In a nutshell
the transformation consists in reverting the direction of the arcs in the SPN, and reading the resulting
computation graph as a Bayesian network over binary variables. The sum and product functions are
simulated using special encodings of the corresponding CPTs.

To start with an example, consider the SPN rooted at the sum node 5 in Figure 1. That is, the
SPN consists of a sum node linked to two indicator nodes on variable A by weights 0.6 and 0.4.
Build a Bayesian network with the structure and parameters inside the box in Figure 2. Note that all
variables are binary. Provided that P (A = a) > 0, we have that

P (Y5 = 1|a) =
∑
y8,y9

P (Y5 = 1|y8, y9)P (Y8 = y8|A = a)P (Y9 = y9|A = a)

= (0.6 + 0.4)P (Y8 = 1|a)P (Y9 = 1|a)+

0.6P (Y8 = 1|a)P (Y9 = 0|a) + 0.4P (Y8 = 0|a)P (Y9 = 1|a)

= 0.6IA=0(a) + 0.4IA=1(a) = S5(a) .

Now consider the SPN rooted at the product node 2 in Figure 1 and build the Bayesian network
in Figure 2. One can verify that P (Y2 = 1|A = a,B = b) = P (Y5 = 1|a)P (Y7 = 1|b) = S2(a, b).
Hence, the Bayesian network computes the same distribution as the SPN through the marginal of
Y2 = 1 for any specification of P (A) > 0 and P (B) > 0. In particular, if we assign uniform
marginals P (A) = P (B) = 1/2 to the root variables of the Bayesian network, then it follows that
maxa,b S2(a, b) = maxa,b P (Y2 = 1|A = a,B = b) ∝ maxa,b P (Y2 = 1, A = a,B = b).

The general algorithm is a straightforward generalization of these ideas. Take an SPN S where
each inner node has exactly two children. This can always be enforced by efficiently modifying the
structure. First create root nodes X1, . . . , Xn, one for each variable in the scope of S, and assign
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them uniform distributions P (Xi = xi) ∝ 1. Then, for each node i in S, create a binary node Yi in
the Bayesian network with parents Yl and Yr, where l and r denote the children of i in the SPN. If i is
a sum node with weights ωl and ωr, specify P (Yi = 1|Yl = 0, Yr = 0) = 0, P (Yi = 1|Yl = 1, Yr =
0) = ωl, P (Yi = 1|Yl = 0, Yr = 1) and P (Yi = 1|Yl = 1, Yr = 1) = 1. If i is a product node, then
specify P (Yi = 1|Yl = a, Yr = b) = 1 if a = b = 1 and P (Yi = 1|Yl = a, Yr = b) = 0 otherwise.
Last, if i is an indicator at value xj of variable Xj then specify P (Yi = 1|Xj) = Ixj (Xj). We have:

Theorem 1 Let P be the probability distribution induced by the Bayesian network obtained by the
above transformation given an SPN S rooted at node 0. For any evidence XE = e on the scope of
S, it follows that k · P (Y0 = 1|Xe = e) = S(e), where k is the product of the cardinalities of the
variables not in E. Moreover, we can compute P (Y0 = 1|Xe = e) in linear time in the size of S
(i.e., in the number of nodes and arcs).

Proof We show that P (Y0 = 1|e) = P (Xe = e) by induction in the size/depth of the Bayesian
network. The base case is immediate as P (Y0 = 1|x) = IX=x(x) by construction. Suppose that the
root of S is a sum node. Call by Y1 and Y2 the parents of Y0 in the corresponding Bayesian network.
Note that Y1 and Y2 are d-separated by X = x (hence conditionally independent), and that Y0 and
X are d-separated by Y1, Y2. Thus

P (Y0 = 1|e) =
∑
x∼e

∑
y1,y2

P (Y0 = 1|Y1 = y1, Y2 = y2)P (Y1 = y1|x)P (Y2 = y2|x)P (x|e)

= P (x ∼ e)
∑
x∼e

(ω01P (Y1 = 1|x) + ω02P (Y2 = 1|x)) = P (x ∼ e)S(e) ,

where P (x ∼ e) is the reciprocal of the product of the cardinalities of the variables not in E, and in
the last equality we used the inductive hypothesis on the Bayesian networks rooted at Y1, Y2. If in-
stead 0 is a product node then P (Y0 = 1|e) =

∑
x∼e

∑
y1,y2

P (Y0 = 1|y1, y2)P (y1, y2|x)P (x) =
P (x ∼ e)S(e). To compute P (Y0 = 1|e) in linear time, iteratively compute P (Yi = 1|e) using a
topological ordering, effectively simulating the computations performed by S.

A corollary of the previous result is that MAP inference in the SPN S reduces to MAP inference
in the corresponding Bayesian network by

max
xQ

S(xQ, e) ∝ max
xQ

P (Y0 = 1|xQ, e) ∝ max
xQ

P (Y0 = 1, xQ, e) ,

where P is the probability distribution induced by the Bayesian network whose single leaf is Y0.

4. Sum-Product Network to Mixed-Integer Linear Program

We now present a technique to build a MILP program that solves MAP inference in a given SPN.
Zhao et al. (2015) showed how SPNs can be translated into two-layer bipartite Bayesian net-

works, where the root nodes are latent variables representing the sum nodes in the SPN, and the
leaves are manifest variables representing the variables in the scope of the SPN. To avoid an expo-
nential blow up in space, the CPTs in the Bayesian network need to be represented as Algebraic
Decision Diagrams (Bahar et al., 1997), which allow for context-specific independences to be ex-
ploited. Roughly speaking, an Algebraic Decision Diagram (ADD) is a canonical directed acyclic
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Figure 3: Parametrized Algebraic Decision Diagrams extracted by restricting the SPN in Figure 1
to A, B and Y1, Y5, respectively.

graph representation of real-valued functions of binary variables. The inner nodes of the diagram
represent variables, the outgoing edges represent assignments of values, and the leaves store the im-
age of the function. Notably, ADDs (as well as the generalization we use) allow for multiplication
of functions and marginalization in polynomial time in the size of the input diagrams. The rightmost
graph in Figure 3 is an ADD representation of the function f(y5) = 0.4(1− y5) + 0.6y5.

de Campos and Ji (2008) showed how to reformulate sequential decision making problems
(which can be reduced to/from MAP inference (Mauá, 2016)) as MILP problems using a symbolic
variable elimination procedure. We combine ideas from both works to show how MAP inference
in SPNs can be reformulated as MILP problems. We formalize the symbolic variable elimination
procedure using Parametrized Algebraic Decision Diagrams (PADD) (Delgado et al., 2011); these
models extend Algebraic Decision Diagrams to allow for multilinear expression at the leaves. Fig-
ure 3 shows examples of PADDs.

Our proposed translation works as follows. Take an SPN S where each sum node has two
children. Associate with every sum node i a (fresh) binary random variable Yi (note the difference:
here only sum nodes have associated latent variables). Interpret Yi = 0 (resp., Yi = 1) as selecting
the left (resp., right) child of node i. Let Y denote the set of all such variables. As in the work
of Zhao et al. (2015), construct an ADD for each Yi in Y that represents the function f(yi) =
(1−yi)ωl+yiωr, where ωl and ωr are the weights of the outgoing edges of i in S. For each variable
Xi in the scope of S, obtain a PADD as follows (this differs from Zhao et al. (2015)’s construction).
First, construct the restriction S|Xi

of S to Xi by removing any node whose scope does not contain
Xi. Then replace sum nodes with the corresponding variables Yi. Finally, replace each indicator
leaf node Ixi(Xi) with the (linear) expression xi. The result is a PADD over the variables Y whose
leafs are linear functions of optimization variables xi. Figure 3 shows the PADDs extracted by
restricting the SPN in Figure 1 to variables A and B, and to variables Y1 and Y5 representing sum
nodes 1 and 5, respectively. The dashed edges denote assignments of value 0, and the solid edges
denote assignments of value 1. For convenience, we use a (resp., b) as the variable for the indicator
A = 1 (resp., B = 1), and 1− a (resp., 1− b) for the indictor A = 0 (resp., B = 0).

The domain graph of a collection of functions (or their representations as ADDs) is the graph
whose nodes are the variables in the domain and two variables are connected iff they co-occur in
some function. A path decomposition of an undirected graph G = (V,E) is a collection of node
subsets Z1, . . . , Zm (called clusters or paths) such that the endpoints of any edge in E co-occur in
some Zi, and for any Zi, Zj , Zk, Zi∩Zk ⊆ Zj (the running intersection property). While obtaining
a path-decomposition of small size (given by the size of the largest Zi) is NP-hard, there are efficient
heuristics (Bodlaender et al., 1995; Catell et al., 1996).
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Y0Y1Y5Y6 Y0Y1Y6 Y0Y1 Y0Y7Y8 Y0Y7 Y7 µ6
µ1 µ2 µ3 µ4 µ5

Figure 4: Path decomposition for the variable elimination procedure described in the text.

The MILP is generated by processing the generated PADDs using a variable elimination proce-
dure that operates according to a path decomposition of the domain graph of the PADDs. The use of
a path decomposition ensures that at most one PADD obtained by restricting a variable Xi is com-
bined at each step, which ensures that the generated constraints can be cast into mixed integer-linear
form. To this end, associate to each cluster of the path decomposition a collection of PADDs whose
scope is contained in that cluster (with at most one PADD generated by a restriction of a variableXi

per cluster). Assume that clusters are numbered from left to right in the path decomposition. Let Φi

denote the collection of PADDs associated with cluster i, and Zi ⊆ Y denote the variables in that
cluster. We obtain a new PADD µi by multiplying all PADDs in Φi and marginalizing the variables
Zi+1 \ Zi:

µi(Zi ∩ Zi+1) =
∑

Zi\Zi+1

∏
φ∈Φi

φ . (1)

Create a new PADD µ̃i by replacing every leaf of µi by a new fresh variable uk. Insert µ̃i in the
collection Φi+1 and repeat the operation. When the rightmost cluster m is reached, generate a
PADD µm by eliminating all variables Zm. The MILP is obtained as the constraints

µ̃i(y) = µi(y) for each leaf y in µi , i = 1, . . . ,m, (2)

where µ̃i(y) (resp., µi(y)) is the expression at leaf y. Recall that a leaf in an PADD corresponds
to the set of configurations of its scope which map to the same value. In particular the PADD µm
contains a single node (as all variables have been marginalized) with an expression that is used as
the objective of the program.

A concrete example helps in understanding the procedure. Consider the path decomposition in
Figure 4, where cliques are numbered from left to right. The algorithm first computes the PADD µ1

below by combining the PADDs in the the first clique and eliminating Y5, for example:

µ1(Y0, Y1, Y6) =

Y0

Y1

Y6

0.6− 0.2a 1− a a

=
∑
Y5


Y0

Y1

Y5 Y6

1− a a

×
Y5

0.6 0.4

 .

A new PADD µ̃1(Y0, Y1, Y6) is then produced by duplicating the structure of µ1(Y0, Y1, Y6) and
associating fresh variables to the leaves:

µ2(Y0, Y1) =

Y0

Y1

u1 0.1u2 + 0.9u3

=
∑
Y6


Y0

Y1

Y6

u1 u2 u3

×
Y6

0.1 0.9

 .

The process continues until the PADD µ6 is produced at the rightmost clique:

µ6() = 0.3u11 + 0.7u12 =
∑
Y7

 Y7

u11 u12

×
Y7

0.3 0.7


7
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By equating the leaves of µi and µ̃i, we obtain the corresponding bilinear program:

Maximize 0.3u11 + 0.7u12 , subject to

u1 = 0.6− 0.2a , u2 = 1− a , u3 = a ,

u4 = u1 , u5 = 0.1u2 + 0.9u3 , u6 = u4 ,

u7 = 0.625u4 + 0.375u5 , u8 = u6 − bu6 , u9 = bu6 ,

u10 = 0.8u7 − 0.6bu7 , u11 = 0.2u8 + 0.8u10 , u12 = 0.2u9 + 0.8u10 ,

a, b ∈ {0, 1} , u1, . . . , u12 ∈ [0, 1] .

The above program is not yet a MILP program because of the products of binary-valued variables
and linear variables such as in the equality u8 = bu6. The fact that non-linear terms involve a binary
variable and a linear variable is not coincidental. Recall that products appear due to the multiplica-
tion/combination of PADDs when computing µi. And because the variable elimination procedure
uses a path decomposition to eliminate variables, at most one such message is multiplied when
combining PADDs. Also, we can always create a path decomposition that allows us to associate
at most one PADD containing a binary variable per clique. Hence we are sure to only generate at
most bilinear constraints where products contain one binary variable and one linear variable. These
bilinear products can be converted into a set of linear constraints by the well-known McCormick
relaxation.1 We therefore have the following result.

Theorem 2 The MILP program is equivalent to the MAP inference problem in the SPN: The op-
timum object value equals the MAP inference value, and the configuration of the integer variables
encode the configuration of a MAP configuration.

Proof Zhao et al. (2015) showed that the SPN is distribution-equivalent to a Bayesian network with
root nodes Yi and leaves Xi, whose CPTs are specified by the ADDs as we obtain, except that the
linear expressions at the leaves are represented as nodes in the ADD (so that it is also a function of
Xi). Thus, the symbolic variable elimination performed with the ADDs simulates the computations
of variable elimination with that Bayesian network.

5. Experiments

We performed experiments with SPNs learned from a selected collection of datasets.2 All variables
in these datasets are discrete or have been discretized. We learn (tree-shaped) SPNs with our own
implementation of the LearnSPN algorithm (Gens and Domingos, 2013), selecting hyperparameters
by grid search. We then modified the networks so that each node has at most two parents. Table 1
contains the characteristics of the datasets and the SPNs we use, sorted by the number of indicators
(which are related to the size of the space of configuration).

For each SPN/dataset we generate MAP inference tasks as follows. First we randomly partition
the variables into equally sized sets of optimized, marginalized and fixed (the partition is con-
stant for each SPN). Then we select values for the fixed/evidence variables using the test set such

1. E.g., the bilinear term b ·u6 can be encoded by u′ ≤ b, u′ ≤ u6, u6 − 1+ b ≤ u′, where u′ is a fresh linear variable.
2. The networks and datasets are available at https://gitlab.com/pgm-usp/learned-spns.git
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SPN Var. Nodes + × ◦ Local Search ArgMaxProduct Belief Propagation MaxSearch

Nltcs 16 3939 2315 1592 32 1.86±1.79 2.35±1.56 2.35±1.56 2.35±1.56
Mushrooms 112 8489 4587 3678 224 1.06±0.17 1.44±0.30 1.25±0.33 1.44±0.29
Molecular 58 10207 7515 2462 230 1.02±0.05 3.01±2.88 2.59±3.01 1.00±0.00
DNA 180 33465 17953 15152 360 1.00±0.01 1510.9±1247.7 1055.1±1218.3 313.2±363.9
US Census 68 162118 140722 20752 644 1.07±0.18 1.81±0.63 1.72±0.63 1.81±0.63
NIPS 500 13563 6876 5687 1000 1.06±0.01 27325.3±33348.6 20981.6±26383.0 1.00±0.00
Optdigits 65 23008 20739 1171 1098 6.44±20.76 80.19±210.30 75.39±188.97 1.02±0.13

Table 1: Relative performance of different methods compared to MaxProduct (see text).

that MaxProduct is suboptimal. This procedure generated from 10 to 30 interesting instances per
SPN/dataset (the maximum of 30 instances was imposed for computational convenience). We ver-
ify sub-optimality by obtaining a higher value solution with ArgMaxProduct. Thus, our results here
approximate a worst-case performance for MaxProduct rather than expected performance. They
also slightly favor MaxProduct (as we might discard instances where ArgMaxProduct does not find
an improving solution and some other competing method does.)

We compare the reformulation approaches against MaxProduct (MP) (Poon and Domingos,
2011), MaxProduct followed by a one-neighborhood local search in the space of configurations
(LS), ArgMaxProduct followed by local search (AMP) (Conaty et al., 2017), and MaxSearch (MS)
(Mei et al., 2018).3 We initialize MS with the solution found my MP, and use the forward checking
heuristic. With the exception of MS, which performs branch-and-bound search, all other methods
are approximate and run reasonably fast. We limit the runtime of MS to 1 hour.

Regarding the Bayesian Network reformulation, we tested with three different approximate
MAP solvers: the Weighted Mini-Bucket elimination algorithm (WMB) (Liu and Ihler, 2011) im-
plemented in the Merlin library, the Anytime Best-First AND/OR Search (Marinescu et al., 2018)
and the Hybrid-Product Belief Propagation (HBP) (Liu and Ihler, 2013). WMB produces approx-
imate solutions whose accuracy depends on the given i-bound, which limits the sizes of the tables
generated and the number of iterations of message-passing. With small i-bounds (< 10) WMB
did not produce competitive solutions (generally worse than LS), and with larger i-bounds it did
not finish within 1 hour. AND/OR search also could not finish within the time limit for almost all
networks. This can be explained by it using a constrained elimination order, which is prohibitively
costly for the high-treewidth Bayesian networks we generate. HBP performs message passing over
the SPN structure, and therefore takes linear time in the size of the network. We use the unweighted
version of the algorithm, and perform two different initialization strategies: the standard uniform
initialization, and biasing the messages (of the root nodes) according to the configuration of Max-
Product. The latter strategy often produce higher quality solutions. As with the other methods, we
perform a local search from the found solution. We observed that in some instances while the result
of HBP with uniform initialization did not improve over the informed initialization, the subsequent
local search obtained higher values. As HBP is cheap, we run both variants for 10 iterations and
consider the best solution (over all iterations and initialization strategies) for each instance. We
also experimented with random initializations, but did not observe any improvements over the other
strategies. We left for the future the possibility of using the convexified form of HBP to producing
upper bounds (that could be used by e.g. MaxSearch).

3. Our implementations are available at https://gitlab.com/pgm-usp/pyspn.
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Ground Truth

Local Search
RMSE=0.2884

ArgMaxProduct
RMSE=0.2884

Belief Propagation
RMSE=0.2958

MaxSearch
RMSE=0.3174

Figure 5: Examples of MAP inference for the Optdigits dataset (see text).

For the MILP reformulation, we obtain a path decomposition by eliminating variables accord-
ing to the min-degree heuristic. Future work should evaluate different heuristics for obtaining path
decompositions. We use Gurobi to optimize the corresponding MILP program. We multiply the
objective function and the constraints by some large constant (e.g., 106), to improve numerical sta-
bility. For the two smaller networks (Nltcs and Mushrooms), the translation to a MILP program was
very fast, and the optimization finished finished within a couple of minutes with the (guaranteed)
optimal solution. The translation was also very fast for the Molecular network, but Gurobi failed
at finding an optimal solution due to numerical issues. The MAP values for that network ranged
from 10−23 to 10−14, below the minimum tolerance value allowed by Gurobi (10−6) for verifying
constraint feasibility and integrality. For the larger networks, the translation took more than 1 hour,
at which point it was interrupted.

The results for the different approaches appear in Table 1. We omit the results of MILP, as
they are uninformative (either optimal or timed-out). The numbers show the mean and standard
deviation of the ratio between the value of a given solution and the value of the corresponding
solution obtained by MP. As previously observed (Conaty et al., 2017), AMP obtains excellent
performance in terms of accuracy. It found the best solution in all tasks, which were optimal for
the smallest networks Nltcs and Mushrooms. Note that as the size of the MAP problem increases,
the gains over MP become very pronounced, reaching 2 orders of magnitude in Optdigits, 3 orders
of magnitude for DNA and 4 orders of magnitude for NIPS. At the same time, the performance of
MaxSearch degrades quickly. For the largest networks (NIPS and Optdigits), it was outperformed
by local search (given the same initial solution). For DNA, it obtained on average solutions of
much lower value than HBP and AMP. HBP is very competitive, also finding solutions which are
often orders of magnitude better than MP and LS, while still displaying linear time complexity. We
observed that HBP occasionally finds better solutions than AMP. Thus, when time complexity is not
crucial, running both approaches can improve over the performance of either.

To observe the effect of improved MAP values in an end task, we analyze the solutions of
the different algorithms for the Optdigits dataset. This dataset contains 8x8 digitalized images of
handwritten digits, where each variable represents the intensity of a pixel (in a 0 to 16 scale). We
build MAP problems by predicting the top part of each image while fixing the configuration for some
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middle part and marginalizing the remaining. Some selected predictions are shown in Figure 5. Red
pixels are solutions to the MAP inference, gray pixels are evidence, missing fragments represent
marginalized variables. While the predictions look very similar, they differ in important aspects. For
example, MaxProduct and MS were not able to predict the “hole” in digits nine. They also did not
preduct a hole in digit eight, that while missing from the ground truth image is to be expected. We
also used the ground truth to compute the Relative Mean Square Error (RMSE) for each algorithm.
In sum, higher MAP values reflected in smaller errors, although the discrepancy in errors is not as
large as the discrepancy in MAP values (but note that the images contain a lot of white pixels).

6. Conclusions

Sum-Product Networks (SPNs) are often justified for their ability to deliver complex probabilistic
queries in polynomial time. However, several successful examples of applications of SPNs require
solving a (marginal) maximum-a-posteriori inference (MAP), that is, maximizing over part of the
variables given the values of some others. This is the case for example, when performing data
imputation with SPNs, completing images, building multidimensional classifiers, and so on. Solving
such a task is however NP-hard.

In this work we showed how to cast MAP in SPNs as equivalent problems in two other for-
malisms. Our first contribution was to develop a new translation of SPNs into Bayesian networks;
unlike previous translations (Zhao et al., 2015; Peharz et al., 2016; dos Santos et al., 2017), the new
translation does not require special data structures. This allows us to leverage the large availabil-
ity of (marginal) MAP algorithms for Bayesian networks. It also brings further insights into how
to adapt the extensive work on message-passing and variational inference to SPNs. We hope this
connection foster new research in that direction. Our second contribution was a reformulation of
the MAP problem as a mixed-integer linear program. This opens up the vast work on mathematical
programming, as well as access to the very efficient (commercial) solvers available.

Experiments with a varied collection of learned SPNs showed that the Bayesian Network refor-
mulation approach offers a competitive alternative to current algorithms, extending the toolset of
MAP for SPNs.
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