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Abstract

Diffeomorphic and deforming autoencoders have been recently explored in the field of med-
ical imaging for appearance and shape disentanglement. Both models are based on the
deformable template paradigm, however they show different weaknesses for the represen-
tation of medical images. Diffeomorphic autoencoders only consider spatial deformations,
whereas deforming autoencoders also regard changes in the appearance, however no uni-
form template is generated for the whole training dataset, and the appearance is modeled
depending on a very few parameters. In this work, we propose a method that represents
images based on a global template, where next to the spatial displacement, the appear-
ance is modeled as the pixel-wise intensity difference to the unified template. To however
ensure that the generated appearance offsets adhere to the template shape, a guided fil-
ter smoothing of the appearance map is integrated into an end-to-end training process.
This regularization significantly improves the disentanglement of shape and appearance
and thus enables multi-modal image modeling. Furthermore, the generated templates are
crisper and the registration accuracy improves. Our experiments also show applications of
the proposed approach in the field of automatic population analysis.
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1. Introduction

The disentanglement of shape and appearance is a prominent computer vision task (Yang
et al., 2020; Lorenz et al., 2019; Ding et al., 2020) and it becomes more and more relevant
for the medical image analysis (Liu et al., 2020; Wilms et al., 2017). In the medical field,
multiple devices, imaging techniques or parameters are often applied for the imaging of the
same anatomical structures. Since the appearance of such acquisitions strongly varies, it
is important to distinguish between changes in the anatomical shapes and changes in the
intensity profile. Statistical shape and appearance models enable separate representations
of the shape and appearance, e.g. (Wilms et al., 2017), however they typically require
preprocessing to extract corresponding point clouds for shape information. Deep learning
approaches like (Liu et al., 2020; Uzunova et al., 2020) partly establish a shape and appear-
ance disentanglement by proposing topology-constrained appearance domain translation
using conditional generative adversarial networks. However, those methods are not able
to extract the shape by themselves, and thus the simple topology constraints like rough
labels or image edges do not guarantee an accurate disentanglement. Another possibility is
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a disentanglement directly in the latent space as in (Ding et al., 2020), however, shape and
appearance are not explicitly modeled.

Another type of methods assume that images can be represented as deformed versions
of a given template. For example, diffeomorphic autoencoders (Bône et al., 2019) model
images as spatial displacement offsets to a dynamically generated template, however do not
consider any occurring appearance changes. A similar approach from (Shu et al., 2018)
generates an appearance template and a displacement field for each given image. Yet, a
major drawback of this method is the lack of a global template for the given dataset, which
interferes with the reliability of the disentanglement.

In this work, we propose to model both the shape and appearance of medical images as
spatial and intensity offsets to a global template in an autoencoder network. This enables the
group-wise registration of images with different intensity characteristics, e.g. multi-modal
images. A related approach was developed in parallel by (Bône et al., 2020) in the context
of image metamorphoses (Trouvé and Younes, 2005) and intended for the registration of
images with pathologies. We further propose an appearance regularization by integrating
guided filtering (He et al., 2013) in the network to ensure that the appearance offsets are
guided by the structures of the template. Our experiments show that the guided filtering
leads to an improved disentanglement of shape and appearance, generates sharper and more
precise templates and improves registration accuracy. Furthermore, group-wise registration
of images from scanners with different intensity characteristics and even multi-modal images
without using dedicated metrics like mutual information is possible. We also show, that our
approach enables automatic population analysis of intensity characteristics even for small
brain structures.

2. Methods

The deforming autoencoder presented by (Shu et al., 2018) interprets an image X as a
composition of two parts: a deformation-free appearance template T and a deformation
field ϕ, such that X ≈ T ◦ ϕ, with ◦ denoting the warping function (Figure 1). The
appearance and deformation field are generated by an autoencoder architecture with two
separate decoders. The two parts of the composite latent vector Z = [ZT , Zϕ] generated by
the encoder is fed into the appearance and deformation decoders respectively. The objective

Figure 1: Diffeomorphic (Bône et al., 2019), deformable (Shu et al., 2018) and proposed
autoencoder with guided filtering (GF) layer. Training objectives below: input
X, template T , displacement field ϕ, appearance offset map ∆A.
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of the training enforces the warped template to be as similar to the input image as possible.
Although shown to succeed for natural images, this approach has several disadvantages:
The deformation-free appearance image is generated for each image separately, meaning
that no reliable mapping to the same image space is possible. Moreover, as the authors
indicate, in order to achieve a reliable disentanglement, the dimension of ZT needs to be
considerably small and therefore must be carefully adjusted (Siebert and Heinrich, 2020).

The problem of generating a global template for each input image is tackled in (Bône
et al., 2019). The authors of this work use an autoencoder to extract a deformation field ϕ
from an input image X such that X ≈ T ◦ ϕ, where T is a global parameterized template
that is generated by joint optimization during the back-propagation process (Figure 1). A
main drawback of this approach is, that yet only spatial deformations of the inputs are
considered, and intensity deviations from the template are not modeled.

Motivated by the above issues, we propose a method that considers both shape and
appearance, but uses a single global template. Furthermore, a guided filter regularization
for the appearances ensures a more robust disentanglement of shape and appearance.

2.1. Joint Appearance and Shape Autoencoder

For the proposed approach, each image Xi is represented as Xi ≈ (T + ∆Ai) ◦ ϕi, where
∆Ai and ϕi are image-specific and T is global (Figure 1 and appendix). Here, ϕi is a
displacement field, that maps the template to the image space and ∆Ai approximates the
pixel-wise intensity difference (T −Xi ◦ ϕ−1

i ). We also refer to ∆Ai as “appearance map”.
Similarly to (Shu et al., 2018) the encoder generates a composite latent representation

Z = [ZT , Zϕ] and two decoders each generate an appearance map and a shape displacement.
The appearance map is added to the dynamically generated template and then warped with
the displacement field originating from the displacement decoder. Like in (Bône et al., 2019),
a global template is implicitly learned during the back-propagation process. However, the
straight-forward generation of the appearance map does not guarantee its adherence to the
template structures. Thus new structures can be generated or changed in a manner that
imitates spatial deformations. Hence, the appearance map may also modify the shape of
structures, i.e. the disentanglement of shape and appearance is not guaranteed. To cope
with this problem, we propose a guided filter regularization approach for the appearance
map in order to ensure its guidance by the template.

2.2. Guided Filter for Appearance Regularization

Guided filter (GF) (He et al., 2013) is an edge preserving image smoothing approach that
considers a given guidance image I for the smoothing of the input image p. The output qi
at each pixel i is assumed to be a linear transformation of I in a window ωk with radius r:

qi = akIi + bk, i ∈ ωk. (1)

ak and bk are window-specific linear coefficients that can be calculated in closed form from
mean and variance of the guidance image I in the window ωk by minimizing E(ak, bk) =∑

i∈ωk

(
(akIi + bk − pi)2 + εa2

k

)
with regularization parameter ε. The linear model in Eq.(1)

ensures a guidance on I since q has an edge only if I has an edge, i.e. ∇qi = ak∇Ii.
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As proposed in (Wu et al., 2018), GF can be implemented in a fully differentiable manner
by calculating the mean and standard deviation values by using a box filter with radius r and
applying a linear model yielding q. Using this approach here, GF is implemented as the last
layer of the appearance decoder in order to smooth the appearance map ∆A guided by the
generated template T . This ensures that the appearance map does not change the shape of
the template, yielding better disentanglement. And, since the template is optimized during
back-propagation, the GF also leads to a sharper and more representative template.

2.3. Implementation Details

The proposed architecture contains one linear and three convolutional layers in each encoder
and decoder. In our experience, a comparably large ZT of size 64 delivered best results,
whereas the size of Zϕ is 512. Also, a Kullback-Leibler loss restricts the latent space to
a normal distribution as typical for variational autoencoders (Kingma and Welling, 2014).
An SSIM loss is used to ensure good image reconstructions (Zhou Wang et al., 2004).

In order to generate plausible deformation fields, multiple constraints are applied. First,
diffeomorphism is enforced using a method based on static velocity fields (Arsigny et al.,
2006). Thus, the displacement decoder generates a velocity field v and the displacement
field is calculated as ϕ = exp (v), where exp(·) can be approximated with the scaling-
squaring algorithm and integrated into an end-to-end training process. Furthermore, the
tissue deformations are enforced to be smooth and of small magnitude in order to learn
average template shapes. Overall, the following objective can be formulated as follows:

L = LKL(N (0, 1),N (µz, σz)) + LSSIM (X, (T + ∆A) ◦ ϕ) + α
d∑
j

||∇v(j)||22︸ ︷︷ ︸
diffusion reg.

+β||v||1︸ ︷︷ ︸
l1 reg.

. (2)

Here, LKL denotes the Kullback-Leibler loss between the expected N (0, 1) and the real
latent distributionN (µz, σz) with µz and σz being the learned mean and standard deviation,
respectively. LSSIM is the SSIM loss between the input and its reconstruction and the last
two terms serve the regularization of the velocity field weighted by α and β.

3. Experiments and Results

3.1. Data

Brain MRIs: For our experiments 577 MR brain images of normal adult healthy subjects
from the IXI dataset1 are used. For each MRI T1 and T2 sequences are considered. The
images are acquired in three different hospitals and thus vary in appearance. Furthermore,
there is demographic information available for each patient, including their age.
Labeled brain MRIs: For evaluation purposes, we use 30 subjects’ T1 MRIs with ten
selected labeled anatomical regions (Hammers et al., 2003)1.
SRI 24 Atlas: For some of the experiments, an already existing atlas of the healthy adult
brain from (Rohlfing et al., 2009) is used. All data is pre-processed using affine registration
and all experiments are performed on extracted axial 2D slices of size 173× 211.

1. www.brain-development.org
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original reconstr. reconstr. reconstr.app. map reconstr.app. map
diffeomorphic deformable ours no GF ours with GF

Figure 2: Reconstruction ability of all models and appearance maps when applicable. First
row: T1 training only; second row: mixed modality training set.

3.2. Image Reconstruction Quality

To evaluate the images generated by the proposed model, the accuracy of reconstructed test
images (generalization ability), and the specificity of randomly sampled images are mea-
sured using SSIM, MSE and MAE (see Table 3 in appendix B). The deformable autoencoder
(Shu et al., 2018) and the diffeomorphic autoencoder (Bône et al., 2019) serve as baselines.
Two training scenarios are examined: (1) training on T1 image sequences (single modality
training), and (2) training on T1 and T2 sequences simultaneously (mixed modality train-
ing) in order to assess the shape and appearance disentanglement. Overall, all models yield
comparable results (for additional results, see appendix). This is however expected, since
the same objective is optimized and displacement and appearance can mutually compensate
each other. Visually (Figure 2), the images reconstructed by the regularized model appear
to be of a slightly improved quality.

Further, the generated templates of all models and training scenarios are qualitatively
evaluated (Figure 3). Generally, the image-specific templates of the deformable autoencoder
are blurry and inaccurate. In contrast, the diffeomorphic autoencoder generates a global
template that is of good quality when trained on T1 images only, but is highly implausible
for training with mixed modalities due to the lack of appearance variation modeling.

The proposed joint autoencoders generate templates of high quality where mixed datasets
lead to templates representing a combination of T1 and T2 appearances. Still, for the mixed
training set the non-regularized method yields less accurate results and artifacts can be ob-
served in the ventricle regions. The proposed GF approach delivers sharp results with no
visible artifacts regardless the training setup. Because the GF regularization impairs the
generation of structures not available in the template, the network learns to represent rele-
vant structures in the training set by edges in the template image. So, structures available
only in a subset of images are still generated in the template and their presence is controlled
by the additional map (Figure 4). The size of the latent space, the capacity of the decoder,
and the contribution to the overall loss determine which structures are represented.
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Figure 3: Template examples. Trained on T1 only (top) and mixed (bottom). Shown are:
image-specific templates from (Shu et al., 2018); global templates and zoomed in
areas from (Bône et al., 2019) and our method without and with GF.

template real rec. app. map real rec. app. map

Figure 4: Structures not available in all images are present in the generated template and
can be “turned on” or “turned off” by the appearance map.

3.3. Registration Accuracy

To evaluate the achieved registration accuracy of all models, three experiments are designed:
First, the models are trained on the single and mixed modality datasets and tested on the
30 T1 images with available label maps. Thanks to the diffeomorphic formulation of the
transformations, mean Dice values for the label maps Yi and Yj◦ϕj◦ϕ−1

i can be computed in
a pairwise manner, thus a total of 870 pairs is evaluated (30× 29). In a second experiment,
the registration cycle consistency is assessed. The idea behind this experiment is that given
an input image X aligned to the templates A and B using ϕX→A and ϕX→B, respectively,
while ϕA→B maps A to B, then ϕX→A ◦ ϕA→B ≈ ϕX→B. For this experiment, the models
are trained on the mixed dataset with two fixed templates (SRI atlas and an image from the
dataset), i.e. no update of the template is performed during backpropagation. The cycle
consistency is measured as the mean displacement error. Similarly, the last experiment
assumes that when (rigidly aligned) T1 and T2 sequences of the same subject are registered
to A, then ϕXT1→A ≈ ϕXT2→A.

In all experiments, our approach with GF outperforms all other models. The registra-
tion accuracy of the proposed method is significantly improved (Table 1). Also, the cycle
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Table 1: Registration results: Mean Dice for the pair-wise registration of 30 images. (∗) in-
dicates statistical significance compared to ours with GF in a two-tailed t-test.

trained on diffeomorphic deformable ours ours
no GF with GF

T1 0.76±0.08 0.69±0.11∗ 0.74±0.10∗ 0.76±0.10
mixed 0.64±0.11∗ 0.63±0.11∗ 0.67±0.09∗ 0.69±0.09

consistency error with GF regularization drops to 5.5 pixels vs. 6.6 when no GF is ap-
plied. This tendency is followed up in the displacement consistency errors of T1 and T2
sequences: a mean displacement error of 7.4 is achieved with GF and 9.8 without using GF
(see appendix).

3.4. Shape and Appearance Disentanglement

The previous experiments showed that the reconstruction ability of all models is comparable,
however the registration accuracy of the GF approach is superior, leading to the conclusion
that the proposed method enables improved shape and appearance disentanglement.

To further investigate this assertion, the latent vectors Zϕ and ZT can be separately
varied and decoded into the image space. In Figure 5, the results of the linear interpolation
between the latent vectors of two images are shown. Please note, that when the appearance
vector is varied, the shape vector stays fixed and vice versa. The results clearly show that
the lack of GF regularization causes shape variations of the brain ventricles to be also
captured by the appearance vector rather than the shape vector alone. When applying the
proposed GF smoothing, the shape and appearance appear distinctly decoupled.

from

appearance interpolation without GF

to

appearance interpolation with GF

from

shape interpolation without GF

to

shape interpolation with GF

Figure 5: Visualization of the decoded images from interpolated latent vectors.
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atlas chosen structures white and gray matter
w. labels no GF w. GF no GF w. GF

Figure 6: Age-related statistics. Plotted mean intensities of the two structures and white
and gray matter w/o. and w. GF. The lines correspond to quadratic regression.

3.5. Example Application: Age-related Statistics

Several population-based studies involve the investigation of disease- or age-related effects
on MR signal intensities for brain structures, e.g. the age-related decrease of MRI intensity
of the gray and white matter (Ge et al., 2002; Lemâıtre et al., 2005; Tullo et al., 2019). This
experiment demonstrates the applicability of our method for such studies even for small
brain structures. Since we do not have access to quantitative MR sequences (Ge et al.,
2002), 319 subjects acquired with the same MR scanner are selected to minimize device-
dependent effects. The SRI24 atlas is used as a fixed template allowing for the usage of the
given annotations of the gray and white tissue and anatomical structures. Two relatively
small and closely located white and gray matter structures are chosen for close examination:
left and right globus pallidus (cyan) and left and right putamens (magenta in Figure 3.5).
By performing an atlas-based segmentation of the reconstructed test images and calculating
the mean intensities over structures, age-dependent distributions are achieved. Since the
GF approach improves registration, the discriminability of the two structures is enhanced
(Figure 3.5). Regression analysis also reveals that the expected quadratic behavior of the
age-intensity distribution is more prominent in the GF-based approach. Although different
MR sequences are used, the regression curves are comparable to the results in (Ge et al.,
2002) when the images are scaled to similar intensities (see appendix).

4. Conclusion and Discussion

In this work, we introduce a joint diffeomorphic autoencoder, where both spatial displace-
ment and appearance offsets to a dynamically generated template are modeled simultane-
ously. To, however, enforce the appearance maps to conform to the template, we integrate
a guided filter regularization into an end-to-end training. In our experiments, guided fil-
tering improves the disentanglement of shape and appearance and the quality of the gener-
ated templates substantially. Moreover, the guided filter enhances mono- and multi-modal
group-wise registration significantly, underlining the improved disentanglement. Also, the
regularization method delivers a successful proof-of-concept in a scenario for the automatic
population analysis of intensity characteristics even for small structures. Although our ap-
proach shows clear advantages in mono- and multi-modal settings, the guided filtering can
suppresses the reconstruction of pathological structures, limiting its applicability in such
scenarios. This will be a future research direction.
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Appendix A. Detailed Network Architecture

All used models share similar architectures with encoders containing each three convolu-
tional layers with stride two and a two fully connected layer for the mapping to the mean
and standard deviation vectors respectively. The decoders contain a fully-connected layer
mapping the latent vector to the feature space and three convolutional layers combined with
a bilinear upsampling layer that doubles the image size before each convolution. We use
tangens hyperbolicus activation functions between all layers. For the deformable approach
the size of the shape latent vector Zϕ is set to 10 and the size of the appearance latent
vector ZT to 512. For the diffeomorphic autoencoder, the size of the latent vector is 512,
and for the proposed approach the size of Zϕ is 64 and the size of ZT is 512. Those values
were determined empirically, however note that the proposed method allows for a larger
shape latent space. A schematic visualization of the proposed GF architecture is shown
in Fig. 7. In all experiments, the networks are trained for 1000 epochs, however an early
stopping strategy is used if the loss does not improve over ten epochs. Further, the batch
size is set to 50 and an Adam optimizer with a learning rate of 1e−4 is used. The param-
eters α and β for the loss function in Eq. 2 are both set to 10. All models are trained in
a 4-fold-cross-validation manner and the measurements are averaged over all images and
folds. The training code containing all preferred settings and used images is available at
www.github.com/hristina-uzunova/GF_DAE.

Figure 7: Overview of the proposed method. An input image is encoded into a joint latent
space. One part of the latent vector is inputted into a displacement decoder, that
outputs an image specific displacement ϕ to the global template T . The other
part of the latent vector is the input of an appearance decoder that generates a
pixel-wise appearance offset map ∆A, such that X ≈ (T +∆A)◦ϕ. The last layer
of the appearance decoder is a guided filter layer that smooths the appearance
offset following the guidance of the template. The dashed yellow borders indicate
that the images are learned during backpropagation.
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Appendix B. Additional Experimental Results

Here, we show some additional experimental results for the experiments from Sec. 3.
The registration cycle consistency (Tab. 2) between two atlases is assessed as the mean

displacement error ||ϕX→A ◦ϕA→B−ϕX→B||, where X is an image aligned to the templates
A and B using ϕX→A and ϕX→B, respectively, while ϕA→B maps A to B. The cycle
consistency for T1 and T2 sequences is based on the similar assumption that when (rigidly
aligned) T1 and T2 sequences of the same subject are registered to A, then ϕXT1→A ≈
ϕXT2→A. Thus the mean distances ||ϕXT1→A − ϕXT2→A|| are presented in Tab. 2.

method no GF w. GF

two atlases 6.39±0.61 5.46 ±0.51∗

t1→t2 9.78 ± 1.03 7.36 ±0.60∗

Table 2: Results of the cycle consistency and modality consistency experiment. The mean
displacement errors for the registration to two different atlases and registration
of T1 and T2 sequences to the same atlas as explained in Sec. 3. Without using
guided filter (GF), significantly larger errors are achieved. Superscript ∗ denotes
statistical significance compared to no GF in a two tailed t-test.

In order to asses the quality of generative models, the commonly considered metrics
specificity and generalization are also utilized here (Tab. 3). Specificity is the ability of a
generative model to generate new realistic samples that are similar to the training data.
Thus specificity is measured by generating the set of synthetic images S (here |S| = 100)
and calculating 1

NS

∑NS
j minri∈R{dist(ri, sj |ri ∈ R, si ∈ S} where R is a set of real images

and dist(·, ·) a suitable distance metric. Generalization ability is the ability of the model to
reconstruct unseen samples. Thus generalization can be calculated as 1

NR

∑NR
i dist(ri, r̃i),

with r̃i being the reconstruction of the real image ri ∈ R.

training data method specificity generalization
SSIM MSE MAE SSIM MSE MAE

T1
deformable 0.62 0.011 0.066 0.85 0.003 0.036
diffeomorphic 0.67 0.012 0.066 0.86 0.008 0.056
ours no GF 0.69 0.011 0.065 0.88 0.003 0.029
ours w. GF 0.68 0.013 0.068 0.87 0.003 0.032

T1&T2
deformable 0.61 0.015 0.082 0.81 0.005 0.041
diffeomorphic 0.61 0.017 0.084 0.85 0.007 0.051
ours no GF 0.64 0.015 0.082 0.81 0.005 0.038
ours w. GF 0.65 0.017 0.84 0.80 0.005 0.040

Table 3: Specificity and generalization abilityfor all training scenarios. Measured are struc-
tural similarity index (SSIM ↑) , mean squared error (MSE ↓) and mean absolute
error (MAE ↓). Our method with and without guided filter (GF) is compared to
the two baseline methods: diffeomorphic and deformable autoencoders.

785



Guided Filter Regularization for Diffeomorphic Autoencoders

tissue with guided filter–quadratic R2 linear R2

gray matter 29− 0.008 ∗ age− 0.0005 ∗ age2 37% 30− 0.054 ∗ age 35%
white matter 34− 0.002 ∗ age− 0.0004 ∗ age2 31% 35− 0.05 ∗ age 30%
putamen 35 + 0.0007 ∗ age− 0.0006 ∗ age2 29% 37− 0.06 ∗ age 28%
pallidus 39 + 0.0007 ∗ age− 0.0006 ∗ age2 30% 41− 0.006 ∗ age 29%

without guided filter–quadratic R2 linear R2

gray matter 28− 0.025 ∗ age− 0.0001 ∗ age2 29% 29− 0.039 ∗ age 29%
white matter 33− 0.033 ∗ age− 0.00004 ∗ age2 17% 33− 0.038 ∗ age 17%
putamen 35− 0.027 ∗ age− 0.0001 ∗ age2 23% 35− 0.039 ∗ age 23%
pallidus 38− 0.037 ∗ age− 0.00005 ∗ age2 18% 38− 0.043 ∗ age 19%

Table 4: Quadratic and linear regression results over the means of the considered tissue
types for the experiment of age related statistics in Sec. 3. The regression results
and R2 values with guided filter are more similar to the results of previous stud-
ies (Ge et al., 2002), since a quadratic approximation delivers higher R2 values.
Without guided filter a more linear nature of the results can be observed since the
second order coefficients are considerably lower and the R2 values stay the same
when a linear regression is performed.

The regression analysis of the curves presented in Fig. 3.5 delivers the equations shown
in Tab. 4. For comparison, next to quadratic regression, we establish a linear regression to
find the equations that fit the best. The fitting quality is described by the given R2 value.
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