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Abstract

Montanari and Richard (2015) asked whether a natural semidefinite programming (SDP) relaxation
can effectively optimize = " Wz over ||z|| = 1 with z; > 0 for all coordinates i, where W € R™*"
is drawn from the Gaussian orthogonal ensemble (GOE) or a spiked matrix model. In small numer-
ical experiments, this SDP appears to be tight for the GOE, producing a rank-one optimal matrix
solution aligned with the optimal vector . We prove, however, that as n — oo the SDP is not tight,
and certifies an upper bound asymptotically no better than the simple spectral bound Ay,ax (W) on
this objective function. We also provide evidence, using tools from recent literature on hypothesis
testing with low-degree polynomials, that no subexponential-time certification algorithm can im-
prove on this behavior. Finally, we present further numerical experiments estimating how large n
would need to be before this limiting behavior becomes evident, providing a cautionary example
against extrapolating asymptotics of SDPs in high dimension from their efficacy in small “laptop
scale” computations.

Keywords: semidefinite programming, principal component analysis, certification algorithms,
average-case computational complexity

1. Introduction

Recovering the most significant directions or principal components of a matrix from noisy ob-
servations is a fundamental problem in both mathematical statistics and applications (Rao, 1964;
Johnstone, 2001; Ringnér, 2008; Abdi and Williams, 2010). The asymptotics of this task have been
studied at length by analyzing idealized spiked matrix models. These models present simplified
settings where algorithms for extracting principal components having various structures may be
theoretically evaluated. One important algorithmic strategy that has been evaluated in this way is
convex relaxation of an objective function associated to extracting principal components, in partic-
ular using semidefinite programs (SDPs).

The theory of convex relaxations for such problems presents two diverging phenomena: on the
one hand, for some large random problems, SDPs or other relaxations are tight, recovering exact
solutions. This behavior has supported their application to problems such as compressed sensing
(Candes and Tao, 2005), matrix completion (Candes and Tao, 2010), community detection (Abbe
etal., 2015; Hajek et al., 2016), geometric processing of point clouds (Bandeira et al., 2014b; Ozye-
sil, 2014; Chaudhury et al., 2015), multireference alignment (Bandeira et al., 2014a; Bendory et al.,
2017), and quadratic assignment (Ferreira et al., 2018). On the other hand, for other large random
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problems, a recent line of work suggests that SDPs are far from tight, and do not even achieve an
objective value closely approximating that of the problem they were designed to estimate. More-
over, these results suggest that any algorithm following the relaxation strategy of producing a bound
on these optimization problems (perhaps as a first step towards estimating the solution by rounding
the relaxation) will fail unless they have access to massive computational resources of size nearly-
exponential in the problem dimension. These problems include finding large cuts, multisections,
and colorings in random graphs (Bandeira et al., 2020a) and numerous random constrained princi-
pal component analysis (PCA) problems (Bandeira et al., 2020b).

Given this stark contrast between the power of convex relaxation in some settings and its se-
vere limitations in other settings, it is of both practical and theoretical interest to understand what
problems fall into which category. The purpose of this paper is to analyze a model of non-negative
PCA, where we search for principal components with non-negative entries, from this perspective.
Non-negative PCA has found applications, for example, in genomics and cell biology (Lazzeroni
and Owen, 2002; Dordek et al., 2016), and is a mathematically-elegant instance of constrained PCA.
This particular variant of PCA is especially interesting in the context of the performance of convex
relaxations because the previous work of Montanari and Richard (2015) described numerical results
concerning the performance of a natural SDP. We will show that, surprisingly, for sufficiently large
problems, the natural conjecture from those numerics—that the SDP is typically successful—is in-
correct, and on the contrary both the SDP and any algorithm following a similar relaxation strategy
must suffer from the same limitations as the latter class of problems mentioned above.

We first review spiked matrix models and the associated “ordinary” PCA problems without extra
constraints. While the first such models, proposed by Johnstone (2001), concerned Gaussian ob-
servations from a covariance matrix deformed by adding a rank-one “spike,” the following simpler
Wigner spiked matrix model captures much of the same phenomenology. We consider the following
two probability distributions IP and Q over n X n symmetric matrices.

* Under Q = Qy,, observe W € R{ (" drawn from the Gaussian orthogonal ensemble (GOE),

meaning Wy; ~ N(0, 2) and Wy; = Wj; ~ N(0, 2) fori < j with all ”(nTH) of these entries
distributed independently. We also write Q = GOE(n) for this distribution.

» Under P = P, first draw u ~ Unif(S*~1) for S®~! C R™ the sphere of unit radius, and
then observe W = W + Buu' for W ~ GOE(n) and some fixed 3 > 0, held constant as
n — 00.

Two natural statistical questions arise: (1) detection or testing, where we observe W drawn
from P or (Q and must decide which distribution W was drawn from, and (2) recovery or estimation,
where we observe W ~ P and seek to produce a good estimate of w. In either case, the associated
optimization problem of computing the largest eigenvalue is natural to consider:

Amax (W) := max z Wa. (1)

l[2ll2=1

For recovery, computing the maximizer x* (the top eigenvector of W) performs maximum likeli-
hood estimation of w. For detection, computing and thresholding Ap,.x (W) itself is a natural and
often effective strategy. The optimal value and optimizer of Ay.x(W') can be approximated (to
arbitrary accuracy) in time poly(n), so these correspond to efficient algorithms for recovery and
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detection, respectively. Moreover, these algorithms are essentially optimal: almost whenever' it
is possible to distinguish P from Q with high probability,? thresholding A\pax (W) achieves this;
whenever it is possible to estimate w non-trivially then the optimizer * achieves this.

Proposition 1 Let W ~ P with parameter 3 > 0 (note that taking 3 = 0 gives P = Q), and let u
be the spike vector. Let x*(W') be the optimizer of Amax(W), the top eigenvector of W scaled to
have unit norm. Then, we have almost surely

A, dmax(W) = { ;+6—1 >2 ?}%ifg " @)
: N 0 f0<p<1,
nll_)fglo|<w (W)7u>|:{ m>0 Zﬁ>€ (3)

Moreover, if 0 < B < 1 then there is no function of W that with high probability selects correctly
whether W is drawn from P or Q, and if 0 < B < 1 then there there is no unit vector-valued
function of W' that has inner product with x asymptotically bounded away from zero with high
probability when W ~ P,

More specifically, the behavior of A\pax (W) is established by Féral and Péché (2007), while the
behavior of |(x*(W), u)| is determined by Capitaine et al. (2009) (both building on the seminal
results of Baik et al. (2005)). The impossibility of “detection” or of selecting whether W is drawn
from IP or Q with high probability is shown by Montanari et al. (2015) by establishing contiguity of
these two sequences of probability measures. Finally, Banks et al. (2018) show that this contiguity
implies the impossibility of estimating w with positive correlation.

More refined models follow from choosing more structured distributions of w. This corresponds
to extracting principal components under some prior knowledge of their structure. One natural
example was studied by Montanari and Richard (2015), where u is chosen uniformly from the
positive orthant of S”! instead of the entire sphere, which yields the aforementioned problem of
non-negative PCA. Here, the null model Q remains as above, while P is replaced with P™ defined
as follows:

e Under P, first draw v ~ Unif(S"71), let u have entries u; = |v;|, and then observe W =
Wy + puun’ for Wy ~ GOE(n) and some fixed 3 > 0.

Following the case of classical PCA, we might hope to attack detection and recovery by solving the
optimization problem

AMH(W) := max =’ W, )

l[2]|l2=1
x>0

where « > 0 means x; > 0 for each i € [n]. Here, however, a crucial difference between classical
PCA and non-negative PCA arises: unlike Ap,ax(W') and the associated optimizer, it is NP-hard to
compute AT (W) for general W (De Klerk and Pasechnik, 2002). Therefore, non-negative PCA
poses a more substantial algorithmic challenge.

1. With the exception of the critical case 8 = 1, where thresholding Amax (W) does not distinguish P from Q, but it is
possible to do so by considering more sophisticated statistics (Johnstone and Onatski, 2020).

2. We say that a sequence of events A,, occurs with high probability under a sequence of probability measures P,, if
limp o0 Pn[4n] = 1.
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Nonetheless, using an approximate message-passing (AMP) algorithm Montanari and Richard
(2015) showed that it is possible to solve this problem essentially to optimality for random inputs
from Q or P*. We focus now just on the “null” case W ~ Q = GOE(n).

Proposition 2 (Montanari and Richard (2015)) Almost surely for W ~ GOE(n),

lim AH(W) = V2. (5)
n—oo
Moreover, for any € > 0, there exists an algorithm that runs in time poly(n) (with runtime also
depending on €) and computes € S with € > 0 that has *' Wa > /2 — ¢ with high
probability.

This same algorithm is also effective for detection between Q and P+ and recovery under P*.

Remark 3 One may check that various simpler algorithms do not produce a solution of the same
quality. For example, if v is the top eigenvector of W, then one simple algorithm is to take v™
having entries v = max(0,v;) and return x = v* /||v*|. However, computing heuristically, we

i
have

1\2
xTszv-2<v,v+>2%2-2-<2> =1, 6)

whereby this choice of x is inferior to that produced by AMP.

In this paper, we study an alternative to AMP, also suggested in Montanari and Richard (2015),
where we substitute for the intractable optimization problem A (W) the following tractable convex
relaxation, a natural semidefinite program (SDP):

SDP(W) := max (X, W) > \T(W). @)
X>0
Tr(X)=1

The inequality above follows since ' Wx = (W, xza "), and xx ' is feasible for the SDP when-
ever x is feasible for AT (W). Moreover, it is reasonable to hope that this relaxation procedure is
“not too lax,” and that the optimizer X * has rank close to one, with its dominating eigenvector or
top eigenspace close to the optimal * of AT (W). Thus SDP(W) gives an algorithmic strategy for
approximating At (W).

In Montanari and Richard (2015), numerical experiments are presented that suggest that this
SDP is effective in recovering « under P™, the restriction of the top eigenvector of the optimizer
X™ to only positive entries indeed giving a comparable estimate of u to the AMP algorithm (see
their Section 5.3). In Section 4, we present analogous experiments for W ~ GOE(n), and note that
in this case the SDP is often fight, the optimizer X* being rank one within numerical tolerances.
While the SDP is much slower than AMP, its apparent efficacy is nevertheless tantalizing, suggesting
that the algorithmic tractability of non-negative PCA might be unified with other situations where
SDP relaxations of maximum likelihood estimation are tight (Bandeira et al., 2014b). Furthermore,
the SDP offers some advantages over AMP: it algorithmically proves (or certifies) an upper bound
on the value of AT (W), and it may also exhibit robustness properties that SDPs have been shown
to enjoy in other settings (Feige and Kilian, 2001; Moitra et al., 2016; Ricci-Tersenghi et al., 2016).
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The problem of determining the asymptotic behavior of the SDP as n — oo under W ~ GOE(n)
was also posed explicitly as Open Problem 9.5 in the lecture notes of Bandeira (2015).

We therefore take up the following two questions concerning this SDP and related algorithmic
approaches when W ~ GOE(n). The first concerns this specific semidefinite program:

1. When W ~ GOE(n), does SDP(W') — /2 in probability as n — c0?

As we will see, the answer in the limit n — o0, in surprising contrast to the experiments of Mon-
tanari and Richard (2015) for small n, is no. In fact, we instead have SDP(W) — Apax (W) = 2
as n — oco. We then ask whether any remotely efficient algorithm that certifies upper bounds on
A1 (W) can improve upon this.

2. Does there exist an algorithm that runs in time exp(O(n!'~")) for some fixed n > 0 and

computes ¢ : RG1" — R with the following two properties?

e Forall W € RZ" we have ¢(W) > AT (W).

sym >
* When W ~ GOE(n), we have ¢(W') < 2 — ¢ with high probability for some fixed
e>0.

We provide rigorous evidence, based on the low-degree polynomial method, that even the answer to
this much broader question again is no.

1.1. Organization

The remainder of the paper is organized as follows. In Section 2, we state and prove a lower bound
on SDP(W') when W ~ GOE(n). In Section 3, we state and prove a reduction from a certain
hypothesis testing problem to the problem of certifying bounds on A™ (W), and review evidence
from prior work that this hypothesis testing problem is computationally hard. Finally, in Section 4,
we present the results of larger numerical experiments that capture the departure from the “tight
regime” where the optimizer of SDP has rank one, a striking example of the difference between
theoretical asymptotics and computations tractable at “laptop scale” for semidefinite programming.

2. Lower Bound on Semidefinite Programming

In this section we will prove the following result, which gives the asymptotic value of SDP(W).
Theorem 4 Forany e > 0, lim,,_,oo P[2 — ¢ < SDP(W) < 2+ ¢] = 1 where W ~ GOE(n).

The main technical tool required will be the following concentration inequality for the entries
of a random projection matrix.

Proposition 5 Let § € (0,1). Let P € R™ ™ be the orthogonal projection matrix to a Haar-
distributed subspace of R™ having dimension v := én. Then, for any K > 0, there exist constants
Cs.i0,C5 j¢ > 0 such

‘Pii—d, if i:j} logn C:SK
P T e < C >1 - —=. 8
LTG%{ | Pij] if i#j [~ N T T nk ®)
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See, e.g., Kunisky and Bandeira (2020) for a careful proof.
Proof (of Theorem 4) For the upper bound, note that (X, W) < Apax(W) for any X feasible for
the SDP. The bound then follows from standard bounds on the spectrum of W (Anderson et al.,
2010).

For the lower bound, fix «, § € (0,1). Let r = dn, assuming for the sake of simplicity that this
is an integer. Let P be the orthogonal projector to the span of the r eigenvectors of W having the
largest eigenvalues. Then, define

1 1
X = X(‘)‘?(S) = (1 — Oé)*P + Oéfln]-'r—zra (9)
r n

where 1,, € R" is the vector with all entries equal to 1. Denote by F' the event that X is feasible
for the SDP, i.e., the event that Tr(X) =1, X > 0,and X > 0.

We first show that, for any fixed o, § € (0,1), P[F] — 1. Since Tr(P) = r we have Tr(X) = 1,
and X > 0 since X is a convex combination of two positive semidefinite matrices. In particular,
Xi; > 0forall i € [n]. For the off-diagonal entries, we observe that the range of P is a Haar-
distributed r-dimensional subspace of R™. Thus by Proposition 5, with high probability, for all
i,7 € [n] with @ # 7,

a 1—« logn
Xij > — il > —06(1—0‘)”

(10)
n
for some constant Cs > 0 depending only on §. In particular, for «, § fixed as n — oo, this is non-
negative for all sufficiently large n, thus X;; > 0 for all 4, j € [n] with high probability. Combining
these observations, we find that F' occurs with high probability.

On the event F', we have

SDP(W) > (W, X) = (1 — «) ZA ) +a 1TW1 (11

The second term is distributed as NV'(0,2a?/n), and the first term is with high probability bounded
below by (1 — «)(2 — f(d)) for some f(d) with lims_,o f(6) = 0, by the convergence of the law
of the empirical spectrum of W to the semicircle distribution (Anderson et al., 2010). In particular,
for any ¢ > 0, we may choose o,d € (0, 1) sufficiently small that the above argument shows
SDP(W') > 2 — ¢ with high probability. [ |

We remark that from (10) and a suitable generalization of Proposition 5 we may also extract the
following more quantitative claim: even for & depending upon n, for any given § = d(n) > 19870

the minimum o = «(n) such that X (:9) js feasible for the SDP with high probability scales
as « = O((6n)~/?) (neglecting logarithmic factors). By integrating the edge of the semicircle
distribution we also have f(6) ~ 6~ [  \/4— t2dt ~ §/2 for small 6. For a given scaling of
§(n) we then expect to have SDP(W) > (1 — O((dn)~1/2))(2 — §'/2), which converges fastest to
2 when § ~ n~1/2. Thus we expect a rate of convergence of SDP(W) > 2 — O(n~1/4).

It is tempting to try to more directly address our numerical experiments and those of Montanari
and Richard (2015) by establishing rigorously the dependence of the probability of tightness (i.e.,
of the optimizer X ™* having rank one) on n, but this seems to be a challenging question. Indeed,
previous work on random semidefinite programs has only established tightness when it occurs with
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high probability, and then by explicitly constructing dual certificates. Investigating such construc-
tions for small n without relying on asymptotic effects would be informative, but likely far beyond
the scope of our techniques.

We also note that the general proof technique of “nudging” an initial construction that is not
feasible for a convex program towards a deterministic feasible point has been used before for relax-
ations of the cut polytope where the latter point is the identity matrix (Avis and Umemoto, 2003;
Kunisky and Bandeira, 2020; Mohanty et al., 2020). Our proof adapts this to our different SDP
constraints by using the all-ones matrix for this purpose instead.

It would be interesting to extend this result to lower bounds on higher-degree sum-of-squares
relaxations of AT (W); based on our results in Section 3, it is natural to conjecture that no relaxation
of constant degree certifies a bound strictly smaller than 2 on A* (W) as n — oo (since this would
refute Conjecture 7). We remark that, in working with inequality constraints, there are a number of
reasonable ways to formulate a sum-of-squares relaxation of given degree; see, e.g., Laurent (2009);
O’Donnell and Zhou (2013) for some discussion of these details. To the best of our knowledge,
lower bounds for sum-of-squares relaxations with inequality constraints have not been studied for
high-dimensional random problems, so this problem would be a convenient testing ground to see
whether these nuances play an important technical role.

3. Evidence for General Hardness of Certification

We first formalize the notion of a certification algorithm.

Definition 6 (Certification algorithm) Suppose an algorithm takes as input W € RZX"™ and out-

sym

puts a number c(W) € R such that ¢(W) > X*(W) for all W € R\, If when W ~ GOE(n)

then ¢(W') < K with high probability as n — oo, then we say that this algorithm certifies the
bound \t (W) < K.

The key property of a certification algorithm is that it must give a valid upper bound on A* (W) no
matter what input matrix W is supplied; in particular, it must even do so for W that are atypical
under the distribution GOE(n). However, this upper bound only needs to be a “good” bound for
typical W ~ GOE(n).

Note that Ayax (W) certifies the bound AT (W) < 2 + o(1). Generally speaking, one notable
class of certification algorithms are convex relaxations, including the SDP given in (7). We have
established above that this SDP does not improve upon the bound achieved by the simple “spectral
certificate” Apax(W). It is then natural to ask: is the issue merely that the SDP is not a sufficiently
sophisticated algorithm to certify strong bounds, and better convex relaxations will improve on its
performance, or is there a fundamental barrier to certifying bounds on AT (W)? The goal of this
section is to provide formal evidence for the following conjecture, which states that the simple
spectral certificate cannot be improved except by a fully exponential-time brute force search.

Conjecture 7 For any fixed ¢ > 0 and ) > 0, there is no algorithm of runtime exp(O(n'~")) that
certifies the bound \™ (W) < 2 — ¢ (in the sense of Definition 6).

We note that, while we work under the simple average-case model W ~ GOE(n) as precise results

are known in this setting for the true value of A (W), this conjecture casts doubt on the efficacy of
convex relaxations for certifying bounds on A (W) for more general W. Specifically, our proof
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techniques will suggest that a similar “spectral barrier” to certifying strong bounds likely holds
so long as the top eigenspaces of W are in sufficiently “general position.” Establishing that this
is actually the case without the technical conveniences of working under Gaussian models is an
intriguing open problem for future research.

We will argue that the certification problem is hard by reduction from a particular hypothesis
testing problem, which we define next.

Definition 8 (Centered Bernoulli distribution) For a constant p € (0, 1), let X, be the distribu-
tion over R" where u ~ X, is drawn by drawing each coordinate w; independently as

o with probability p, 12
U; =
(1_pp)n with probability 1 — p.

This is scaled so that E[u;] = 0 and ||u|| — 1 in probability.

Definition 9 Given constants v > 0 and [ > —1, the spiked Wishart model with spike prior X,
consists of the following pair of probability distributions. Let N = N(n) € N such that n/N —
asmn — oQ.

* Under Q, draw y1,...,yn ~ N (0, I,,) independently.

* Under P, first draw u ~ X, If Bllul]? < —1, draw y; = --- = yy = 0. Otherwise, draw
Y1, yn ~N(0, I, —l—ﬁuuT) independently (noting that the covariance matrix is positive
definite).

If B < 0, we call such a model a negatively-spiked Wishart model.

We will consider the strong detection problem where the goal is to give a test f : R™*N — {p, g}
that takes input y = (yi, ..., yn) and distinguishes between [P and Q with error probability o(1),
i.e.,

lim P[f(y) = p] = lim Q[f(y) =] = L. (13)

n—oo n—oo

When 32 > v (the “BBP transition”), it is well-known that strong detection is possible in polyno-
mial time via the maximum (if S > 0) or minimum (if # < 0) eigenvalue of the sample covariance
matrix (Baik et al., 2005; Baik and Silverstein, 2006). While strong detection is sometimes (de-
pending on p) possible when 32 < ~y via brute force search, this is conjectured to be impossible in
subexponential time.

Conjecture 10 (Conjecture 3.1 and Corollary 3.3 of Bandeira et al. (2020b)) For any constants
v >0,8>—1,p¢€(0,1),n > 0suchthat 3? < v, there is no algorithm of runtime exp(O(n'~"))
that achieves strong detection in the spiked Wishart model with parameters vy, 3 and spike prior X,.

This conjecture is justified in Bandeira et al. (2020b) by formal evidence based on the low-degree
polynomial method, a framework based on Barak et al. (2019); Hopkins and Steurer (2017); Hopkins
et al. (2017); Hopkins (2018) that has been successful in predicting and explaining computational
hardness in a wide variety of tasks in high-dimensional statistics; see Kunisky et al. (2019) for a
survey. More precisely, it is shown (Theorem 3.2 of Bandeira et al. (2020b)) that when B2 < 7, NO
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multivariate polynomial f : R"*¥ — R of degree D = o(n/logn) can distinguish P and Q in the
sense of Ep[f(y)] — oo while Eg[f(y)?] = 1. (This is true not only for the centered Bernoulli
prior but more generally for any spike prior where the w; are distributed i.i.d. as %W for a fixed
distribution 7 on R that is subgaussian with E[zx] = 0 and E[r?] = 1.) Degree-D polynomial
tests of the above form are believed to be as powerful as any exp(€(D))-time algorithm (where Q
hides factors of log n) for a broad class of high-dimensional testing problems; see Hopkins (2018);
Kunisky et al. (2019); Ding et al. (2019).

We are now prepared to state the main result of this section, which shows that if it is possible
to certify a bound on AT (W) below 2, then it is possible to produce a test between P and Q in a
particular negatively-spiked Wishart model whose parameters lie in the “hard” regime 32 < ~. An

immediate consequence is that Conjecture 10 implies Conjecture 7.

Theorem 11 (Reduction from detection to certification) Suppose there exists a constant € > 0
and a t(n)-time certification algorithm c : ngﬁ" — R for \T such that, with high probability as
n — 0o, ¢(W) < 2 —¢e when W ~ GOE(n). Then there exist constants v > 1, f € (—1,0),
and p € (0,1) (depending on c) such that there is a (t(n) + poly(n))-time algorithm computing
[ RN s Lo g} that achieves strong detection (in the sense of (13)) in the negatively-spiked
Wishart model with parameters -y, 3 and spike prior X,,.

The proof is similar to that of Theorem 3.8 in the prior work Bandeira et al. (2020b) (which gives
the analogous result when the constraint set is {£1/1/n}" instead of the positive orthant) with one
key difference. As in Bandeira et al. (2020b), the idea of the reduction is to create a GOE matrix
whose top eigenspace has been “rotated” to align with the orthogonal complement of the span of
the given Wishart samples. If the samples come from P (with 3 slightly greater than —1 and ~
slightly greater than 1) then the Wishart samples are nearly orthogonal to the planted vector u, so
this has the effect of planting u in the top eigenspace of the matrix. We would like to plant a non-
negative vector in the top eigenspace so that any certifier is forced to output a bound larger than
2 — . However, we cannot take u to be non-negative because it is important for Wishart hardness
(Conjecture 10) that uw have mean zero. The key idea is to instead choose uw to be a mean-zero
random vector that is highly correlated with a certain non-negative vector z; this is the purpose of
introducing the centered Bernoulli prior &,.
Proof (of Theorem 11) Suppose a certification algorithm as stated exists. We will use this to design
a test f achieving strong detection in the negatively-spiked Wishart model.

Call yy,...,yn the samples from the Wishart model. Draw W ~ GOE(n) and let \; <
-+ < A\, beits eigenvalues. Let vy, ..., vyx be a uniformly random orthonormal basis for V' :=
span({y1,...,yn}) andletvy,1, ..., v, be a uniformly random orthonormal basis for the orthog-
onal complement V. Let W := oy /\iviviT .

Then, using the certification algorithm computing ¢(W) as a subroutine, we compute the test f
as
g if¢(W)<2—¢,
p otherwise.

row) = {

When (y1,...,yn) ~ Q, then W has the law GOE(n), so ¢(W') < 2 — ¢ with high probability,
and thus f(W') = g with high probability. Thus to complete the proof it suffices to show that, when
(y1,...,yn) ~ P, then ¢(W) > 2 — ¢ with high probability, whereby we will have f(W) = p
with high probability.

(14)
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To this end, suppose (y1, ..., yn) ~ P with u the spike vector. Let z > 0 be the vector

Zi:{ 1//pn ifu; >0 (15)

0 otherwise,
and note that ||z|| — 1 and (z,u) — /1 — p in probability. Let 2 := z/||z||. We then have
(W) = \H(W)

>z'Wz
n
= Ni(Z,v;)?
i=1
and partitioning the spectrum at Ay 41,
N n
> M) (Zv) A Y (Zv)’
i=1 i=N+1
N N
> M) (2,007 + A <1 -> (z 'Ui>2)
i=1 i=1
and, since {vy, ..., vy} is an orthonormal basis and || Z]| = 1,
N
= An+1 — (Ang1 — A1) Z(E, v;)?. (16)
i=1
Recalling that {v;}Y, is an orthonormal basis for span({y1, ..., yn}), we have Zf\il vv, = %Y

where Y = % Zf\i 1 yiyzT and p is the smallest nonzero eigenvalue of Y.

N T

Z(E, v;)? < LN - EXTHE

i=1 =1

We note that, viewing Y as a sample covariance matrix under a spiked matrix model, we have
= (/7 — 1)2 > 0 in probability by Theorem 1.2 of Baik and Silverstein (2006). To control the
second factor above, let g1, ...,gn ~ N(0, I,) independently of all other random variables in the
proof. Then, we may view y; = (I,, + Suu')'/2g,. Thus,

N
1. 1 ~
= ;zT(In —I—BuuT)l/2 <N g 9i9:> (In +5’UJUT)1/2Z
i=1

Let v be the largest eigenvalue of % Zf\; 1 gigl-T , noting that, by the same result cited above, v —
(y/7 + 1)? in probability. We then have

R

< (Lo + Buu )22 ?
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Finally, since ||z|| — 1 and (z,u)? — 1 — p in probability, substituting in limiting values for all
convergent quantities, we have that, in probability,

VIHLY? _
%<ﬁ_1> (1+ 801 - p)). (a7

By the convergence of {);} to the semicircle law on [—2, 2] (Anderson et al., 2010), we have
AN+1 — A1 < 5 with high probability. Also, by choosing v > 1 sufficiently close to 1, we can
ensure Ay > 2 — £/2 with high probability and /7 4+ 1 < 3.

Putting it all together, the value of ¢(W') under (y1, . .., yn) ~ P with high probability satisfies

45

W(l‘i‘ﬁ(l —P))a

N
C(W)Z)\N—H )‘N+1 Z z, UZ 22—6/2—
=1

which exceeds 2 — ¢ provided we choose 5 > —1 close enough to —1 and p > 0 small enough. W

4. Deceptive Finite-Size Effects

Experiments for small n computing SDP (W) suggest, contrary to our results, that SDP(W) is in
fact very effective in bounding A™ (W) for W ~ GOE(n). Not only do we observe for small n the
value SDP(W) ~ /2, but we also find that SDP(W) appears to be tight, the primal optimizer X *
often having rank one to numerical tolerances. This is analogous to the efficacy of SDP(W) for
recovering the spike for W under the spiked non-negative PCA model discussed in Montanari and
Richard (2015). We describe these results here, as well as further experiments suggesting what size
of n is required for these finite size effects to give way to the correct asymptotics.

The first experiment we consider solves SDP(W') for many random choices of W, obtains
the optimizer X*, and considers the numerical rank of X*. We plot the results of 50 trials of
this experiment with n = 150 in Figure 1, and observe that most trials have the second-largest
eigenvalue of X* of order at most 104 compared to the trace of 1, whereby X * is nearly rank-one
and the SDP is nearly tight.

The next experiment solves the following different SDP, which is dual to SDP(W), and which
by a standard strong duality argument has the same value as SDP(W):

SDP*(W) := min Amax(W +Y) = SDP(W). (18)

Having SDP(W') < 2 — ¢ therefore has the elegant interpretation of it being possible to “compress”
the spectrum of W ~ GOE(n) below 2 by only increasing each entry. We plot the results of 50 trials
of this experiment with n = 150 in Figure 2. (These semidefinite programs are solved using version
9.2 of the Mosek solver on a laptop computer with 32GB RAM and an Intel 17-1065G7 processor;
the average time to solve an instance is 18.1 minutes.) From these results, this compression indeed
appears possible; moreover, the compressed spectrum appears to have an interesting “wall shape”
not unlike that of the GOE conditioned on its largest eigenvalue being small; see, e.g., Figure 4 of
Majumdar and Schehr (2014).
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The final experiment seeks to identify how large we would need to make n in order to observe
that the above are all illusory finite-size effects. To do this, we consider our primal witness from the

proof of Theorem 4,

xta _1-0p oy T (19)

on n

for P the projection matrix to the top dn eigenvectors of W ~ GOE(n) and « large enough
that X (*9) > 0 entrywise. In Figure 3, we fix 6 = 1/25 = 0.04, and plot both the smallest
o making X (9 feasible for the SDP and the corresponding lower bound (X (*%) W) on the
SDP. We see that the smallest o only decays to zero very slowly, as 5(71_1/ 2) per our argument.
Accordingly, (X (.0 W) also only very slowly approaches its limiting value. Moreover, even to
have (X (@.d) W) > /2 requires n ~ 10%, suggesting that this is roughly the size of n required to
observe that SDP(W) in fact is not typically tight (in stark contrast to n ~ 10 that is tractable to
solve on commodity hardware).

Taken together, these experiments present a striking caution against extrapolating asymptotic
behavior for an SDP from experimental results tractably computable in reasonable time in practice.
In our case, the correct asymptotic behavior “kicks in”” only for problems two orders of magnitude
larger than the largest tractable with off-the-shelf software on a personal computer.

5. Conclusion

We have shown that the natural semidefinite program (SDP) for solving a principal component
analysis (PCA) problem constrained to entrywise non-negative vectors fails to reach a tight ob-
jective value for an input matrix drawn from the Gaussian orthogonal ensemble. Moreover, any
algorithm that always produces a valid upper bound on the value of this optimization problem (in-
cluding this SDP and more sophisticated convex relaxations) must implicitly solve a hypothesis
testing problem in the Wishart spiked matrix model with a negative spike. We have produced evi-
dence that this testing problem is hard by appealing to prior work analyzing low-degree polynomial
algorithms; more precisely, our evidence suggests that an algorithm solving such a problem requires
nearly-exponential time in the input dimension. These results complement the numerical study of
Montanari and Richard (2015), which suggested that the natural SDP was effective in small prob-
lems. To reconcile this difference, we have conducted further experiments, concluding that problem
sizes intractable on commodity hardware are needed to observe the correct asymptotics.

These results extend those of Bandeira et al. (2020b,a) which showed hardness for other con-
strained PCA problems. The broader picture emerging from this line of work suggests that, in fact,
such problems are quite generically resilient to convex relaxation approaches, or more generally to
algorithms that certify bounds on the objective value of all feasible points rather than merely search-
ing for good feasible points. While SDPs often appear effective in practice for such problems, this
may only be thanks to the kind of finite-size effect that we investigate here.

Our work suggests several questions for future investigation. First, it would be of great practical
interest to attempt to understand the range of problem sizes for which the finite-size effects causing
strong performance persist for SDPs on non-negative PCA and related problems. Indeed, if for
some application the problem sizes that arise in practice fall within this range, then it is perfectly
sensible to use SDPs; our results and methods here, with their heavy dependence on asymptotics
in high-dimensional probability, do not give strong guidance of this kind. Second, our strategy for
proving that SDPs and certification algorithms more generally do not succeed is quite specific to
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Figure 1: SDP primal spectrum for small n. We plot a histogram of the second-largest eigenvalue
of X* the optimizer of SDP(W), over 50 trials with n = 150.

quadratic problems that encode some form of “searching in the spectrum” of an input matrix for
certain structured directions or subspaces. Can similar strategies apply to problems such as tensor-
valued PCA, which involve higher-degree polynomial optimization and thus do not have a natural
spectral interpretation? Finally, Montanari and Richard (2015) showed that approximate message-
passing succeeds in solving non-negative PCA problems of this kind. That is, searching for a single
good solution to such problems is easy, while certifying bounds on the quality of all solutions is
hard. An important question towards a unified picture of the performance guarantees of different
types of algorithms is to characterize the problems where such a gap appears.
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Figure 2: SDP dual spectrum for small n. We plot the means of histograms, with error bars of
one standard deviation per bin, for the spectra of W and W + Y * for Y* the optimizer
of SDP* (W), over 50 trials with n = 150.
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Figure 3: SDP lower bound convergence. We fix § = 1/25 = 0.04, and given W compute the
smallest o for such that X (®9), as defined in (19), is feasible for SDP(W). In the upper
graph, for a range of values of n, we plot the mean and an error interval of one standard
deviation of 10 values of (X (9 W), a lower bound on SDP(W). We note that this
clearly exceeds lim,, oo EAT(W) ~ /2 once n > 10%; however, it only very slowly
approaches its expected limiting value. In the bottom graph, we likewise plot the mean
and standard deviation of the minimum valid value of «, again observing that it only very
slowly approaches its limiting value of zero (which may be verified to match the rate our
theoretical calculation predicts of a = O(n_l/ 2) up to logarithmic factors).
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