
Proceedings of Machine Learning Research vol 145:291–313, 2021 2nd Annual Conference on Mathematical and Scientific Machine Learning

Reconstruction of Pairwise Interactions using Energy-Based Models

Christoph Feinauer CHRISTOPH.FEINAUER@UNIBOCCONI.IT

Carlo Lucibello CARLO.LUCIBELLO@UNIBOCCONI.IT

Department of Decision Sciences,
Bocconi Institute for Data Science and Analytics (BIDSA)
Bocconi University, Milan, Italy

Editors: Joan Bruna, Jan S Hesthaven, Lenka Zdeborova

Abstract
Pairwise models like the Ising model or the generalized Potts model have found many successful
applications in fields like physics, biology, and economics. Closely connected is the problem of
inverse statistical mechanics, where the goal is to infer the parameters of such models given observed
data. An open problem in this field is the question of how to train these models in the case where the
data contain additional higher-order interactions that are not present in the pairwise model. In this
work, we propose an approach based on Energy-Based Models and pseudolikelihood maximization
to address these complications: we show that hybrid models, which combine a pairwise model and a
neural network, can lead to significant improvements in the reconstruction of pairwise interactions.
We show these improvements to hold consistently when compared to a standard approach using
only the pairwise model and to an approach using only a neural network. This is in line with the
general idea that simple interpretable models and complex black-box models are not necessarily a
dichotomy: interpolating these two classes of models can allow to keep some advantages of both.
Keywords: Pairwise Models, Neural Networks, Inverse Ising, Energy Based Models

1. Introduction
An important class of distributions used in the modeling of natural systems is the exponential family
of pairwise models. Commonly investigated in the statistical physics community, pairwise models
are a popular method for the analysis of categorical sequence data. Examples of data on which they
have been successfully applied include protein sequence data (Morcos et al., 2011; Marks et al.,
2012; Cocco et al., 2018), neuronal recordings (Roudi et al., 2009; Tkačik et al., 2014), magnetic
spins (Fisher and Huse, 1986), economics and social networks (Stauffer, 2008; Sornette, 2014; Hall
and Bialek, 2019).

One main advantage of these models is their relative simplicity: The probability assigned to a
sequence s of binary or categorical variables is of the form p(s) ∝ exp(−E(s)), where the energyE
is a simple function of s, meaning that it consists of terms that depend on only one or two variables.
The parameters quantifying the pairwise interactions are typically called couplings.

Given this simple form, the parameters can often be given a direct interpretation in terms of
the underlying system. Especially the couplings have been shown to contain highly non-trivial
information in many cases: The couplings in the so-called Potts Models for protein sequence data
can be seen as a measure for the strength of co-evolutionary pressure between parts of the sequence
and can be used for the prediction of structural features (Morcos et al., 2011); the couplings in
models for neuronal recordings can be seen as the functional couplings between neurons (Roudi
et al., 2009); the couplings in magnetic systems of interacting spins can be seen as describing their
physical interaction strength.
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While pairwise models have been surprisingly successful in many fields, they have clear limi-
tations: If the data generating process contains important interactions that cannot be described as
pairwise interactions, the models might fail to capture important variability. Even worse, if such inter-
actions are strong enough, the pairwise models might even stop to describe the pairwise interactions
properly since they might contain effective pairwise interactions that try to include the variability of
the higher-order interactions. In fact, it is known in literature that for example some variability in
protein sequences is due to higher-order epistasis, including more than 2 residues (Waechter et al.,
2012). Several methods have been proposed to address such problems, for example the ‘manual’
addition of higher-order interaction terms based on a close look at the data (Feinauer et al., 2014), or
the addition of complete sets of higher-order interactions, for example all terms involving triplets of
variables (Schmidt and Hamacher, 2018).

Another option is to abandon simple pairwise models and adopt more complicated, but also
more expressive methods, for example neural networks. These models can in principle capture
interactions of all orders and can be trained for a specific task, for example the extraction of structural
information (Peng and Xu, 2011), the generation of new samples (Riesselman et al., 2019) or the
creation of generic embeddings (Rives et al., 2019). While this strategy has lead to unprecedented
successes in many fields, it also comes at the cost of a higher computational demand and the loss of
the interpretability of the single parameters defining the distribution. Moreover, failing to encode the
prior knowledge on the data generative process, these black-box methods are far away from being
optimal in terms of sample efficiency. Moreover, while numerous knowledge integration approaches
have been proposed in the past (Von Rueden et al., 2019), literature is scarce when it comes to
generative modelling and density estimation.

Energy-Based Models (EBM) are a class of machine learning methods which specify the
unnormalized negative log-probability of the distribution to be trained on the data (Song and
Kingma, 2021; LeCun et al., 2006). This unnormalized negative log-probability is equivalent to an
energy, but can take on more complex forms than in a pairwise model. The absence of an explicit
normalization allows one to use any nonlinear regression function for specifying the energy. Models
based on neural networks, for example, have recently been applied with success in the field of
image generation (Du and Mordatch, 2019b). Apart from the appealing similarity to models used in
statistical mechanics since more than a hundred years, they present some advantages in comparison
to other model classes like Generative Adversarial Networks (Goodfellow et al., 2014) or Variational
Autoencoders (Kingma and Welling, 2013). The most important ones related to the present work
are their relative uniformity and simplicity and their composionality (both also mentioned in (Du
and Mordatch, 2019b)). By uniformity and simplicity we refer to the fact that due to the generic
formulation using a single energy function, tasks like training, sampling and analysis can often be
formulated generically, independent of the exact parametrization of the energy. By composionality,
we refer to the idea that EBMs can be combined easily by summing their respective energies,
leading to a so called product of experts model (Hinton, 2002). While the lack of normalization
grants a large degree of freedom when specifying the model, training and sampling become harder.
However, many training methods like contrastive divergence (Carreira-Perpinan and Hinton, 2005)
or pseudolikelihoods (see SM Section A) can be adapted for EBMs, and sampling can be done using
standard MCMC algorithms like Metropolis-Hastings (Metropolis et al., 1953).

In this paper, we leverage the compositionality of EBMs in a physics-inspired machine learning
approach where we combine the advantages of a simple model with a black-box neural network
model to help with the more complex patterns in the data. This approach seems sensible in cases
where we suspect or know that a simple model is able to capture most of the variability in the data,
but that it might fail to capture some additional aspects or even gets confused by them.

We implement this idea defining a new energy function

E(s) = Epw(s) + Enn(s), (1)
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where Epw is a pairwise model and Enn is a neural network that maps a configuration s to
a real number. We then look at cases where the data generating process contains a simple part,
corresponding to another pairwise model, and a more complicated part, corresponding to higher-
order interactions. The expectation is that the neural network picks up these higher-order interactions
and thus helps the pairwise model in matching the pairwise interactions of the generative process.

We will focus on the so-called inverse problem of statistical mechanics, that is reconstructing
the pairwise couplings of a generative model containing also some unknown higher-order interaction
terms.

2. Methods

2.1. Pairwise Models and Energy-Based Models
We consider a probability distribution p(s) over all possible configurations of N binary variables,
{−1,+1}N . Any such distribution with support over the whole space can be written in the form

p(s) = exp(−E(s))/Z, (2)

where E : s → R is the so called energy function and Z is a normalization constant called
the partition function. Denoting, with I the power set of {1, . . . , N}, the energy can be uniquely
expressed by the expansion

E(s) = −
∑
I∈I

ξI
∏
i∈I

si, (3)

where ξI ∈ R is the interaction coefficient for the term containing the variables specified by
I . Such expansions are known in theoretical computer science and Boolean algebra as Fourier
expansions, and the corresponding parameters ξI are called Fourier coefficients (O’Donnell, 2014).
Determining specific coefficients from a black-box function E can be done efficiently through
sampling techniques (see Section 2.2) and coefficients larger than a given threshold can be determined
using the Goldreich-Levin algorithm (O’Donnell, 2014). This is useful in our setting, since these
techniques also apply when the energy E is parametrized using an arbitrary neural network.

The class of models where ξI = 0 if |I| > 2 are called pairwise models, defined by the energy

Epw(s) = −
∑
i

hisi −
∑
i<j

Jijsisj . (4)

The coefficients hi are called external fields and the coefficients Jij are called couplings. Such
models have a long history in statistical physics and have been exported to various fields. In a typical
application, the model is fitted to a dataset D = {sm}Mm=1 consisting of M configurations sampled
from the system under study, and can be afterwards either used as a generative model or insights
about the system can be gained from examining the fitted parameters J and h.

2.2. Hybrid Models and Extraction of Coefficients
If we assume the existence of a generating distribution pG(s) that includes important interactions
involving more than two variables, the pairwise distribution might fail to describe the variability in
the dataset (see Section 4) and the inferred couplings and fields might not correspond to the ones in
the generating distribution. If such a case is suspected, one is tempted to use a more complicated
function to describe the energyE. Given the flexibility of neural networks in approximating arbitrary
input-output dependencies, a promising choice could be a multi-layer perceptron with L layers,
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Figure 1: Representation of the basic idea of this work: Given a generative distribution that contains
a strong pairwise part but also higher-order interactions, we fit an energy-based model
including a pairwise part and a neural network. The expectation is that the neural network
captures the higher-order interactions, while the pairwise parts match up after training.

where the operations in each layer are a matrix multiplication followed by the addition of a bias and
the application of a possibly non-linear activation function (Goodfellow et al., 2016).

In this work, we propose a combination of the two types of models which we call hybrid models.
They are of the form

E(s) = Epw(s) + Enn(s) = −
∑
i<j

Jijsisj + Enn(s). (5)

For simplicity and since we want to focus on the more complex problem of reconstructing the
couplings, we do not explicitly consider external fields hi in this work, although they could be easily
accounted for. Enn(s) is a multi-layer perceptron network with one layer of hidden neurons with
tanh activations. While we could also test networks with more than one layer, there is evidence that
in similar settings the most important characteristic is still the size of the first hidden layer, while
the depth is of minor importance (Morningstar and Melko, 2017). Since adding depth would also
add the problem of finding the optimal architecture, we restrict ourselves to a single layer in this
work, and also leave the exploration of other methods like self-attention (Vaswani et al., 2017) or
autoregressive architectures (Wu et al., 2019) for further research.

One interpretation of these models is that we model the pairwise terms in the Fourier expansion
Eq. (3) explicitly, while we use a neural network for describing all other interactions (see Fig. 1).
When implementing these models, both parts are kept explicitly and trained together. The objective
function used (see below) is agnostic of the details of the energy function, and gradients for the
parameters of both parts can be obtained by simple back propagation.

For the neural network part Enn, the general Fourier expansion in Eq. (3) can contain in
principle interactions of all orders. We can formally invert the Fourier expansion in Eq. (3) to get a
mapping from the energy E to the Fourier coefficients ξI for all interactions I:

ξI = −Es

[
E(s)

∏
i∈I

si

]
, (6)
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where the expectation is according to the uniform distribution over all possible 2N configurations.
If N is sufficiently small, this expectation can be calculated exactly. For larger N , it can be
approximated by using samples drawn from a uniform distribution. Such an estimator for the
interaction coefficients is unbiased and its approximation error scales as the inverse of the square
root of the number of samples used. Since we do not limit the capacity of the neural network, Enn(s)
can also contain significant pairwise interactions. Therefore, we may have Es[E(s)sisj ] 6≈ −Jij .
We show below that this can be indeed observed in specific situations and approach the problem
as follows: we reconstruct the couplings from E = Epw + Enn using Eq. (6). We refer to these
effective couplings as reconstructed couplings

Ĵij = −Es [E(s) sisj ] , (7)

as opposed to the explicit couplings J in the trained model (5). The reconstruction is performed only
at the end of the training, and approximated for large systems with 106 Monte Carlo samples in our
experiments. For the system sizes considered in this work, the time spent in the reconstruction step
is negligible in comparison to the training. As an alternative, in SM Section B, we show that it can
be also done during training, which effectively limits the pairwise interactions in the hybrid model
to the pairwise part.

We use the same reconstruction method for extracting coefficients in models consisting only
of the neural network, without the explicit pairwise part, to understand whether using an explicit
pairwise term in model (5) brings any advantage. While we do this here only for comparison and
use only simple multi-layer perceptrons (MLP), we note that it would be an interesting avenue of
research to use more advanced neural network models and see if the extracted couplings can be used
in applications where pairwise models are typically used.

2.3. Training Procedure
The difficulties in evaluating the normalization constant in energy-based models make density
evaluation intractable, and efficient sampling becomes problematic as well. Many techniques have
been proposed for the challenging task of training EBMs, the most commonly used ones being
contrastive divergence with Langevin dynamics (Hinton, 2002; Du and Mordatch, 2019a), noise-
contrastive estimation (Gutmann and Hyvärinen, 2010), and score matching (Hyvärinen, 2005).
In this work, we use pseudolikelihood maximization to train the parameters of the model given
the data (Besag, 1977). This method is very popular for the training of pairwise models (Aurell
and Ekeberg, 2012; Ekeberg et al., 2013; Decelle and Ricci-Tersenghi, 2014) and is furthermore
very similar to the method of training for state-of-the-art neural network models summarily called
self-supervised learning, which transforms the task of unsupervised learning of unlabeled data into
a supervised learning task by training the model to predict an artificially masked part of the data
from the unmasked part. This technique is for example used when training the self-attention based
Bert models (Devlin et al., 2018). We also note that the use of a related estimator called interaction
screening has been proposed by (Jayakumar et al., 2020) in a similar context with neural networks.

Given a single mini-batch {sb}Bb=1 with B training configurations, we use the negative pseudo-
likelihood loss function

L = − 1

B

B∑
b=1

N∑
i=1

log p(sbi |sb/i), (8)

where the quantity p(sbi |sb/i) corresponds to the probability of observing sbi given the other
variables in sb, excluding sbi . This loss function can be calculated for a generic energy model over
configurations using 2N forward passes. For a pairwise model instead, we can use more efficient
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calculation schemes. For implementation details see Appendix A. It is worth mentioning that the
interaction screening approach of Ref. (Vuffray et al., 2020) provides an alternative with well
understood sample complexity guarantees to the pseudolikelihood framework used here.

We train the models by standard stochastic gradient descent with batch size B = 1024 and a
learning rate of 0.02. We did not find consistent improvements for the hybrid models when applying
an L2 regularization and do not apply it in this work. We did find, however, a slight improvement
for models containing only the pairwise energy Epw, as explained in detail below. We trained all
models for 250 epochs. The models were implemented using PyTorch (Paszke et al., 2019). The
loss function depends only on energy differences (see Appendix A). After having implemented
the energies of the pairwise and the neural network part, the automatic differentiation function of
PyTorch can be used to calculate the gradients.

3. Experimental Setting: Generating Distributions
In this work, the experimental setting is given by a data generating distribution pG(s) ∝ exp(−EG(s))
over the configurations {−1,+1}N , where EG(s) contains a pairwise part and an additional number
of higher-order interactions:

EG(s) = EG
pw(s) + EG

ho(s) = −
∑
i<j

JG
ij sisj −

√
γ
∑
I∈IG

ξGI
∏
i∈I

si. (9)

IG is a set of sets of indices determining the higher-order interactions of the generator. Since
we are interested in the effect of additional higher-order interactions, we restrict ourselves to cases
where |I| ≥ 3. In order to model the situation where a pairwise distribution is probably a good
approximation, we will keep these higher-order interactions sparse and choose only a small subset
of the 2N possible interactions, mostly only N . The factor γ, which we call higher-order strength,
is used to weight the two terms against each other (see below). The specific interacting sets I ∈ IG
are independently and randomly chosen either as only triplets or as interactions of order 3 to 10,
according to the different settings we present in the following sections.

The interaction parameters ξGI and the couplings JG
ij are independently sampled from Gaussian

distributions. In order to ensure that none of the two parts of the generator completely dominates the
distribution, we fine tune their relative strength for each sample as follows. For a system size of N ,
we generate Gaussian i.i.d couplings for the pairwise part of the generator, JG

ij ∼ N (0, 1/N). We
call σ2

G,pw the variance of the induced pairwise energy across uniformly distributed configurations,
σ2
G,pw = Var[EG

pw] =
∑

i<j(J
G
ij )2. Next, we generate i.i.d. parameters ξ̂GI ∼ N (0, 1), compute the

induced higher-order energy variance across uniformly sampled configurations, σ2
G,ho =

∑
I(ξ̂GI )2,

and finally set ξGI = (σG,pw/σG,ho) ξ̂GI . We can then use γ to set the ratio between the two
variances: Var[EG

ho] /Var[EG
pw] = γ. We note that this procedure is not meant to balance the two

terms perfectly for γ = 1, but rather to give a well-defined starting point for the exploration of
different values of γ. The idea of this work is to explore situations in which a pairwise model
describes the variability in the generator well, but not perfectly. We therefore evaluate different
values of γ in terms of how it affects the training of a purely pairwise model on data from the
generator and use this metric to decide which values of γ are interesting.

We generate configurations independently sampled from the generator as follows. For N < 20,
it is feasible to calculate the probabilities involved exactly. We therefore calculate the energies for all
possible sequences, exponentiate and normalize them, and then sample sequences using a standard
numeric library (Harris et al., 2020). For larger N , we resort to the standard Metroplis-Hastings
algorithm, which we parallelized on the GPU by running the energy evaluations on all sequences as
one batch. We used N · 104 MC update steps for sampling.
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4. Results

4.1. Reconstructing Pairwise Interactions with Neural Networks
We analyse the effect that additional higher-order interactions in the generating process might
have on the reconstruction of the pairwise couplings by training the same models on data from
generators with different higher-order strength γ. We call the criterion that we adopt to measure the
reconstruction performance the reconstruction error ε. It is a relative measure of the deviation of the
inferred couplings Ĵij from the true ones JG

ij :

ε =

√√√√√√√
∑
i<j

(
JG
ij − Ĵij

)2

∑
i<j

(
JG
ij

)2 . (10)

We expect that the additional interactions will have little to no effect for small values of γ in the
generative model (9). In this case, we can expect that training a purely pairwise model will lead to
satisfactory results. When increasing γ, however, the generating distribution deviates significantly
from a pairwise model, and an increase in the reconstruction error can be expected using a purely
pairwise model.

For the experiments in this section, the generators contained N uniformly sampled triplet
interactions (|I| = 3 ∀I ∈ IG). Other details of the data generation process are given in Sec. 3,
while the training procedure is the one outlined in Sec. 2.3. We generated M = 5 · 104 training
configurations for system size N = 64, and M = 104 for N = 16. The neural network part of
the hybrid model, Enn, was an MLP with one hidden layer of 128 units and tanh activations. For
the hybrid model, we evaluated both the explicit couplings in Epw and the reconstructed couplings
obtained at the end of the training from Eq. (7).

We compare the reconstruction based on the hybrid model against two other methods: The first
is the commonly used regularized pseudolikelihood inference, which amounts to training only the
pairwise part Epw of the hybrid model. In this setting, the possibilities of model mismatch and
overfitting are often addressed by adding an L2 regularization, which we therefore also add in our
experiments for this model type. We found that a relatively low regularization strength λ = 0.01
lead indeed to a slight improvement for a large range of γ and used this value for all our experiments.

The second model we compare against is the energy-based model containing only the neural
network part Enn.

In Fig. 2 we show the error in the inferred couplings with respect to the couplings in the
generator. While for all models the reconstruction degrades as γ grows, the hybrid approach
performs substantially better than models containing only the pairwise part Epw or only the neural
network part Enn. The explicit and the reconstructed couplings for the hybrid model yield similar
result, meaning that the learned Enn(s) function is approximately orthogonal to the pairwise family
in this experiment. It is interesting to note that the neural network with 128 hidden neurons is
insufficient to reconstruct the couplings. This confirms the idea that the explicit pairwise model is
useful in training. However, we will later show that using networks with much larger capacity, the
MLP only model can approach the hybrid model performance in some of the settings explored.

4.2. Specificity of the Inferred Interactions
Using the same experimental setting as in the previous section, we investigate in detail how closely
the trained hybrid model matches the generator.

In Fig. 3 (left) we compare the reconstructed interaction parameters from the hybrid model
through Eqs. (6) and (7) to the corresponding ones in the generator. The interaction parameters that
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Figure 2: Reconstruction error for different system sizes N and different models as a function
of higher-order strength γ in the data generator. The data is generated by a pairwise
model with N additional interactions involving only 3 variables (see Eq. (9)). For every
combination of γ and N we sampled 5 generators and used them to create training sets.
Shown are means and standard deviations over these training sets. The reconstructed
couplings for the Hybrid and the MLP only model are calculated using Eq. (7). Both the
hybrid and the MLP only model had a single layer of 128 hidden neurons.
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Figure 3: Inferred versus true interactions for system size N = 64. The generator includes N triplet
interactions and γ is set to 1.0. (Left) Blue points refer to pairwise interactions, orange
points to all 64 triplet interactions present in the generator and green to 64 random triplet
interactions not present in the generator. (Center and Right) Relation of the energies
between the submodels of the generator (pairwise and higher-order) and the trained model
(pairwise and neural network). The color intensity is proportional to the density of points.
The hybrid model contained a single hidden layer with 128 hidden neurons. All interactions
were estimated using Eq. (6) using 106 samples.
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Figure 4: Reconstruction error of couplings in presence of N triplet interactions in the generator, for
varying number of hidden neurons in the trained model and different values of γ. We used
M = 104 training samples for N = 16 and M = 5 ·104 training samples for N = 64. For
every combination of γ and N we sampled 5 independent generators. Shown are means
and standard deviation over training sets created from these 5 generators.

we estimate are all pairwise interactions, the N triplet interactions that are present in the generator
and N random triplet interactions not present in the generator. Pairwise interactions are well fitted,
as well as the strongest triplet interactions in the generator. Some weaker triplet interactions in the
generator are underestimated instead. The triplet interactions not contained in the generator are
close to 0 in the hybrid model. These results indicate that the hybrid model does not only learn an
effective model of the generator, but extracts the true interactions in the underlying system.

In Fig. 3 (center and right) we show that the energies calculated from the pairwise part in the
generator are strongly correlated with the energies from the pairwise part in the trained model and
the energies calculated from the trained neural network are strongly correlated with the energies
coming from the higher-order interactions in the generator.

See also supplementary Fig. 11 for the same experiment on a smaller system.

4.3. Varying Network and Sample Sizes
In order to evaluate the impact of the neural architecture used in the hybrid model (5), we repeat
the experiments with different sizes for the hidden layer of the MLP. As in the previous section, we
keep the higher-order interactions in the generator restricted to N triplets, where N is the system
size. We vary the number of hidden neurons between 2 and 16384 in powers of 2. The results in
Fig. 4 indicate that size of the neural network has only a small effect on the error above a certain
threshold (around 128 in this specific case). While using a pure pairwise model for training leads

300



RECONSTRUCTION OF PAIRWISE INTERACTIONS USING ENERGY-BASED MODELS

103 104 105

0.2

0.4

0.6

0.8

1.0
Re

co
ns

tru
ct

io
n 

Er
ro

r
64 Hidden Units

103 104 105

256 Hidden Units

103 104 105

1024 Hidden Units

103 104 105

4096 Hidden Units

Number of Samples

Hybrid (Explicit) MLP Only Pairwise Only Hybrid (Reconstructed)

Figure 5: Reconstruction error of couplings in presence of 64 triplet interactions in the generator
as a function of the sample size and for γ = 1.5. The system size is N = 64. For every
sample size 5 independent generators were sampled and used to create training set of the
corresponding size. The sample sizes used were powers of two from 210 to 217.

to a quickly increasing reconstruction error (as already visible in Fig. 2), the addition of a single
layer neural network with even a small number of hidden neurons (on the order of the system size
N ) leads to a significantly better reconstruction of the pairwise couplings in the generator.

Varying the number of hidden neurons allows us also to test the hypothesis that a sufficiently
large neural network on its own is enough for inferring the pairwise couplings. In this setting, the
models containing only an MLP approach the performance of the hybrid model only for N = 16
and for very wide networks, while a large gap remains at N = 64. We note that where models based
only on a neural network perform well in terms of the reconstruction error, the hybrid model obtains
comparable results with two orders of magnitude less parameters. It is also to be said, however, that
this comparison is not completely fair since the hybrid model contains an inductive prior by design,
which the pure neural network model lacks. Still, we take this observation as evidence that adding a
pairwise part in the trained model is sensible if the generating distribution is expected to contain a
significant pairwise part.

In Fig. 5 instead, we fix the network size and evaluate the reconstruction error for increasing
sample size. In the small sample size regime, the reconstruction is similarly bad for both the pairwise-
only and the hybrid model. Increasing the sample size, the reconstruction error improves but quickly
hits a plateau for the pairwise models, while the hybrid models keeps improving. The models based
on an MLP only have considerably worse performance across the whole range explored.

4.4. Varying the Interaction Orders in the Generator
In the preceding sections we restricted ourselves to triplet interactions in the generator. In order
to probe the limits of our approach, we repeat the experiments with generators that contain N
higher-order interactions up to order 10, leaving all other characteristics like training set size and
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Figure 6: Reconstruction error of couplings in presence of higher-order (3 to 10) interactions in
the generator as a function of the training epoch. The higher-order interaction strength
γ was set to 1.5, the system size is N = 64, and we used M = 5 · 104 training samples.
(Left) Reconstruction error for 20 independent generators using only a pairwise model
for training. Training sets corresponding to the colored lines are also used in the 3
right panels. (Right 3 panels) Reconstruction error given by pairwise only models (solid
lines), and by hybrid models using either explicit or reconstructed couplings. The hybrid
models contained a single hidden layer with 256 hidden units. Lines with the same colors
correspond to the same generator and training set.

training approach the same. The order of each interaction is chosen from a uniform distribution
between 3 and 10, and the variables involved in each interaction are a random subset of all variables.

We note that this is a very ambitious test: the idea is that the neural network picks up the
higher-order interactions in the generator, which are of the type ξ

∏I
i=1 si, where I is the interaction

order and ξ the corresponding parameter. This means that we try to fit a combination of overlapping
sparse parity problems of up to 10 inputs. While constructing a solution to a single instance of
such a problem is easy using a single hidden layer with continuous weights (see e.g. (Franco and
Cannas, 2001)), parity functions are generally considered among the hardest functions to learn from
data (Tesauro and Janssens, 1988). While we might be able to alleviate this problem by adding more
layers to the neural network, we consider this to be out of scope for the current work and note that
in a realistic application the size of the underlying interactions is often not known. Even in this
hard case, however, one could expect that the neural network gives a contribution to the quality of
training by fitting at least some of the variability due to the higher-order interactions.

While also in this setting we report generally better performance of the hybrid approach over
the pairwise only and neural network only approaches, the gain is not as large as in the case of
triplet interactions of the last sections (see supplementary Fig. 10). Moreover, in this setting the
explicit couplings of the hybrid model significantly deviate from the couplings reconstructed using
Eq. 7 at the end of training, as can be seen in Fig. 6. While the additional reconstruction step
is computationally cheap, these observations suggest that additional constraints for keeping the
pairwise interactions in the neural network small might lead to further improvements. In Appendix
B we present a rough way of doing this and speculate about more sophisticated approaches.
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5. Discussion
In this work we have shown that adding neural networks to pairwise models can improve the quality
of reconstruction of pairwise interactions if the distribution underlying the data generating process
contains additional higher-order interactions, as it typically occurs in natural data. While both
the explicitly pairwise part and the neural network part of the hybrid model may contribute to the
reconstructed couplings in general, we showed that in certain settings the neural network and the
pairwise model specialize in fitting the separate parts of the generating model.

There are many directions for future investigations. Systematic exploration of the neural
architecture employed, which we did not pursue at great length in this work, could yield significant
improvements. Different training methods for energy based models could be applied, possibly
speeding up simulations or giving more robust predictions. We also did not check the quality of
the trained models when used as generative distributions, which might be an important factor when
applying similar methods for example to protein design. In addition, constraining the neural network
to account only for higher-order interactions in a more sophisticated way might lead to further
improvements.

To the best of our knowledge, this work is the first one that solves the inverse problem by using
the couplings reconstructed from a neural network. This leads to another line of possible research,
were the training of possibly very large and complex generative models without explicit pairwise
couplings is followed by a reconstruction step. In principle, common architectures like GANs or
autoregressive networks could be adapted at little additional computational cost.

The next immediate step, however, would be to screen the current application domains of
pairwise models and translate the improvements observed in the well-controlled settings in this
work to real-world data. While we show some preliminary results on homologous protein data
in Appendix D, we note that many of these fields present idiosyncrasies, for example in the data
characteristics, the expected topology of the underlying interactions or the additional tricks in
training or preprocessing that are important for achieving good results when using purely pairwise
models. We therefore expect that some additional adaptions to our method are necessary in these
cases. Given, however, that in most or all applications pairwise models are used as effective models
and one would expect higher-order interactions to play a role in almost all complicated real-world
scenarios, we believe that our work presents a very promising perspective. More in general, we
consider energy-based models a promising tool for knowledge integration in machine learning.
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Supplemental Material

Appendix A. Using Pseudolikelihoods for training EBMs
Pseudolikelihoods are often used as an alternative to an intractable or at least computationally
expensive likelihood (Besag, 1977). It has been applied successfully to pairwise models (Hyvärinen,
2006; Aurell and Ekeberg, 2012; Ekeberg et al., 2013; Decelle and Ricci-Tersenghi, 2014). We show
here how it can be applied to a generic Energy-Based Model, and add some considerations specific
to pairwise models. We note that while maximum pseudolikelihood is a widely applied method for
training simple Energy-Based Models, to the best of our knowledge this is the first time it has been
used for training deep feed-forward neural networks.

We assume the data that we want to model to consist of configurations (s1, . . . , sN ) of cate-
gorical variables of length N and we will use q to denote the number of categories. A common
method for fitting a probability distribution pΘ(s) with parameters Θ to a training set of sequences
{sm}Mm=1 is to find the Θ∗ for which

Θ∗ = argmax
Θ

M∑
m=1

log pΘ(sm), (11)

which corresponds to a maximum-likelihood solution. For an Energy-Based Model (EBM)
pΘ(s) = e−EΘ(s)

ZΘ
, where EΘ(s) is the energy function, this would correspond to solving

Θ∗ = argmax
Θ

1

M

M∑
m=1

[−EΘ(sm)− logZΘ] , (12)

for example by gradient descent methods. The general problem in this approach is that the
normalization constant ZΘ =

∑
s
e−EΘ(s), where we sum over all possible configurations s, contains

qN terms. This is intractable even for modest N and in the case of binary variables, where q = 2.
The idea of pseudolikelihoods is to replace the likelihood objective by

Θ∗ = argmax
Θ

1

M

N∑
i=1

M∑
m=1

log pΘ

(
smi |sm/i

)
, (13)

where pΘ

(
smi |sm/i

)
is the probability of symbol smi in sequencem, given the other symbols. We

therefore train the distribution by using it for predicting a missing symbol from the other symbols.
Other variations are possible, for example to discard the sum over i and find a maximum set

of Θ∗i for every i independently. We found the approach with the sum to be conceptually easier
and in the applications known to us, the performance seems to be the same (Ekeberg et al., 2013).
While it can be shown that this new objective has the same maximum as the original likelihood
under certain conditions (Mozeika et al., 2014), this is for example not generally true if the training
samples come from a different model class than pΘ, which is true in our case. In this work, we are
interested in whether we can make training using this objective work in practice and refrain from
further theoretical analysis.We note that we have not restricted the form of EΘ. In the models we
analyse in this work, the energy is calculated by a sum of the energy of a pairwise model and a
neural network.

Neglecting the sum over i and m for the time being, we can write the quantity log pΘ(si|s/i)
for an EBM as
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log pΘ(si|s/i) = log
pΘ(s)

pΘ(s/i)
= log

pΘ(s)∑q
ŝi=1 pΘ(ŝi, s/i)

, (14)

where we used the notation (ŝi, s/i) for the configuration s after si has been replaced with ŝi.
Since the normalization constant ZΘ appears in the both the numerator and denominator, it cancels
and we are left with

log pΘ(si|s/i) = log
e−EΘ(s)∑q

ŝi=1 e
−EΘ(ŝi,s/i)

= − log

1 +
∑
ŝi 6=si

eEΘ(s)−EΘ(ŝi,s/i)

 (15)

The sum in this expression can be computed efficiently, using q evaluations of E. This means
that including the sum over i and replacing the sum over m with a sum over a mini-batch of B in a
stochastic gradient descent (SGD) setting, we need q ·N ·B evaluations of E for a single gradient
step, corresponding to q ·N forward passes.

In the case of binary strings with si ∈ {±1} and a pairwise model EΘ(s) = −
∑

i<j Jijsksj
with parameters Θ ≡ J , we can simplify further by noticing that

E(s)− E(ŝi, s/i) = (ŝi − si)
∑
j 6=i

Jijsj , (16)

where we identified Jij = Jji for convenience. Since in Eq. (15) we sum only over ŝi 6= si and in
this case ŝi − si = −2si, this leads to

log pΘ(si|s/i) = − log
(

1 + e−2siFi(J,s/i)
)
, (17)

where Fi(J, s/i) =
∑
j 6=i

Jijsj . This means that in this model class, we do not need to evaluate

the full energy, which contains Θ(N2) terms, but only the part of the energy involving the variable
si, which contains only Θ(N) terms. The quantities Fi

(
J, s/i

)
can be obtained for a whole batch

of sequences using matrix multiplication, which is very efficient on modern GPUs.

Appendix B. Absorbing Pairwise Interactions from the Neural Network
During training, we did not enforce a division of labour between the two parts of the hybrid
models, which means that the neural network is not discouraged in any way from fitting also
pairwise interactions. While extracting the pairwise coefficients from the entire hybrid model
and constructing an effective pairwise model is a way of solving this after training, it would be
more satisfactory to include this also in the training procedure. The cleanest way of ensuring only
higher-order interactions in the neural network would be to constrain the optimization of the neural
network to the part of parameters space where it does not contain pairwise interactions. In practice,
Eq. (6) could be used to create a regularization term penalizing all pairwise interactions:

1

N2

∑
ij

(Es sisj Enn(s))
2

= Es,s′ Enn(s)Enn(s′) q2(s, s′), (18)

where the expectation is over uniformly sampled Ising configurations and q(s, s′) = 1
N

∑
i sis

′
i is

the overlap between two configurations. This expression can be approximately evaluated by Monte
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Figure 7: Reconstruction error with 64 higher-order (3 to 10) in generator for γ = 1.5 and trained
with M = 5 · 104 samples. The training samples in this figure are the same as in Fig. 6.
Left panel: Reconstruction error for 20 independent generators using only a pairwise
model for training. The training sets corresponding to the colored lines were further used
as a training set for the hybrid and absorber models shown in the 3 right panels. Right
3 panels: Reconstruction error for trained models containing only pairwise terms (solid
lines), reconstruction error for hybrid models (dashed lines) and reconstruction error for
hybrid models with absorber terms (dotted lines). Lines with the same colors correspond
to the same generator and training set.

Carlo sampling. While this approach seems promising, we did not pursue it in this exploratory
analysis.

A different approach instead is to counter the pairwise interactions in the neural network by
using an additional pairwise model. To this end, we define a new energy

E(s) = Epw(s) + Enn(s)− Êpw(s). (19)

Here, Epw and Enn are the same as in the hybrid models of the preceding sections. The new
term Êpw is another pairwise model, but it is excluded from the gradient descent step and we set
its couplings explicitly every k epochs. The values of these couplings are the pairwise interactions
extracted from Enn using Eq (6). The idea is to estimate the pairwise terms in the expansion of the
neural network energy Enn and absorb these interactions in the additional Êpw, which we therefore
call an absorber model. After setting the couplings of this absorber, the last two terms on the right
hand side of Eq. (19) should contain approximately no pairwise interactions, i.e.

∑
s

sisj

(
Enn(s)− Êpw(s)

)
≈ 0 (20)

for all i, j. This leaves the term Epw as the only one with significant pairwise interactions.
While we could do this in principle after every epoch or even after every gradient step, this would
make the computations unfeasibly slow since at every step we estimate the pairwise interactions in
Enn using 106 samples. We therefore restrict ourselves to doing the estimate less frequently, every
k = 5 epochs in our experiments.
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In Fig. 7 it can be seen that using these additional absorbers improves the training of the
couplings significantly. We used the same training samples as for Fig 6 and also left the other
training characteristics the same. The results are very similar to what would have been obtained by
reconstructing the couplings at every step (compare also Fig. 6). While this also means that there
was no strong improvement over approach of reconstructing the couplings after the training has
ended, we think it still noteworthy that enforcing that the pairwise model Epw should be the one
solely responsible for fitting pairwise interactions is possible during training.

Appendix C. Relation between an MLP-based energy model and RBMs
In our hybrid energy model, combining a physics-inspired energy term and a black-box one, we
decided to model the latter through a multi-layer perceptron with two fully connected layers of
learnable weights. Within our framework, several alternatives choices can be made, among which the
use of a restricted Boltzmann machine (RBM). RBMs have been used for a long time as generative
models, although they have been generally replaced by more modern techniques: they are able to
capture arbitrary-order interactions among the features and their bipartite structure makes them easy
to train using efficient Monte Carlo sampling in contrastive divergence (Hinton, 2002). Learning
by contrastive divergence becomes more demanding when inter-visible connections are present,
therefore one of the main advantages of RBM over alternative energy models is lost in our hybrid
framework. Nonetheless, training is still possible using the pseudo-likelihhod objective we propose,
which is agnostic to the specifics of the energy modelling.

We remark that the energy function of an RBM defined on the visible variables s once the
hidden ones are traced out is equivalent to that given by an MLP with two layers, where the top one
has weights all equal to one. In fact, calling W the visible-to-hidden couplings and b the fields on
the hidden neurons, and assuming hidden neurons that take 0/1 as values, we can trace them out and
obtain

E(s) =
∑
k

softplus

(∑
i

Wkisi + bk

)
, (21)

where softplus(x) = log(1 + ex).

Appendix D. Residue-residue contact prediction
In order to assess the applicability of the method to real-world data, we ran a number of preliminary
experiments using a hybrid model on homologous protein sequences. In this case, the pairwise
model is a 21-state Potts model and the inputs are protein sequences of length N , where at any
position one of q = 21 different amino acids can occur. The mathematical form of the pairwise
energy for a sequence a = (a1, . . . , aN ) is

EPotts(a) = −
N∑
i=1

N∑
j=i+1

Jij(ai, aj)−
N∑
i=1

hi(ai), (22)

where the couplings Jij(a, b) describe the contribution to the energy when finding amino acid
a at position i and b at position j, while the fields hi(a) describe the contribution to the energy of
finding amino acid a at position i. We refer to the review (Cocco et al., 2018) for further details.
The couplings of the trained Potts model are interpreted as the strength of co-evolution between the
positions in the protein. Since nearby residues in a protein tend to co-evolve, large couplings can
be seen as evidence for protein contacts (Morcos et al., 2011). The training set is given by a set of
M evolutionary related sequences {am}Mm=1, which have already been preprocessed to have the
same length N . Protein structures from the Protein Data Bank (Berman et al., 2007) can be used for
benchmarking. For the definition of protein contacts, we refer to (Morcos et al., 2011).
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In order to build a hybrid model, we add to EPotts(a) an energy EMLP (a) based on a multi-
layer perceptron. The neural network takes a one-hot encoded version of an amino acid sequence as
an input and returns a single number, interpreted as the energy. We compare the hybrid model, the
pairwise Potts model and the model using only the neural network. The inference method follows
the same line as described Section A of this Appendix, using pseudolikelihoods as the objective
function. We used a L2 regularization of 0.01 for EPotts and none for EMLP . The learning rate
was set to 0.01. Since it is not standard to use small batch sizes when training a Potts model, we
used full-batch gradient descent and ran the experiments for 1000 epochs.

In this preliminary application, to be followed by a more extensive investigation, we did not
optimize the training for this specific use case or run extensive hyper-parameter searches.

We use the same sequence reweighting technique, score calculation and average-product correc-
tions as described in (Ekeberg et al., 2013).
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Figure 8: Positive Predictive Values with respect to contact prediction in the WW Domain. The PPV
value (ordinate) at a number N of predictions (abscissa) is the fraction of true positives
within the top scoring N predictions. The blue line corresponds to predictions derived
from a model featuring only a pairwise term, the orange line to a hybrid model (a pairwise
term with an MLP with 32 hidden units) and the green line to predictions when using only
the MLP term.

We ran the experiments on the WW domain dataset from Pfam 33.1 (Mistry et al., 2021) with
ID PF00397, and PDB structure 1PIN (Ranganathan et al., 1997) for assessment. The WW domain
is a well-studied domain that is relatively small (N = 31) while having ≈ 11000 unique samples, of
which we used 90% for training and 10% as a test set for evaluating the objective function. In Fig. 8
we show the positive predictive value (PPV) for contact prediction using different models, for the
first 2N predictions. We used 32 hidden units for the hybrid and MLP-only models in these plots,
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Figure 9: Negative Pseudo-Log Likelihood on the test set during training for three different models:
A Potts model (orange), a hybrid model with 32 hidden units (blue) and a hybrid model
with 64 hidden units and a weight dropout with probability parameter p = 0.5 (green).

which is very similar to the sequence length. As can be seen in the figure, the hybrid model produces
the first false positive several positions later than the Potts model (position 22 versus 16). Both
models arrive at the same PPV at 2N predictions. The model using only the neural network misses
the first prediction and has a significantly lower PPV than the other two models for all number of
predictions.

Monitoring the objective function on the test set, we saw only a very small improvement for the
hybrid model. We therefore ran an experiment with 64 hidden units and added weight-dropout on
both layers with probability parameter p = 0.5. For this setting, we observed an improvement in the
objective function. Since the negative pseudo-log likelihood is related to the probability for observing
an amino acid at some position given the other amino acids in the sequences, it is directly related to
the task of reconstructing a missing amino acid. An improvement in this metric can therefore be seen
as an improvement in the generative properties of the model. Surprisingly, this improvement was not
accompanied by an improvement in contact prediction (data not shown). We speculate that it might
promising to explore use of different architectures, regularization, and alternative objective functions
for this specific application. We noticed a tendency to overfit the dataset for larger networks. We
stress that these experiments cannot be seen as more than a preliminary demonstration of feasibility.
A structured exploration of hyper-parameter values and neural architectures is necessary to fully
understand the potential of hybrid models when applied to homologous protein sequences.
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Appendix E. Additional Figures
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Figure 10: Pairwise reconstruction errors with higher-order (size 3 to 10) interactions in generator
for varying number of hidden neurons in the trained model and 3 different values of
γ. The number of these interactions is equal to N . Training was done with M = 104

samples for N = 16 and M = 5 · 104 samples for N = 64. Shown are means and
standard deviation over 5 runs. The reconstruction error is defined in Eq. (10). The blue
line corresponds to reconstruction error calculated using the couplings of the pairwise
part of the hybrid model, the red line to the pairwise interactions reconstructed from the
complete hybrid model using Eq. (7)

.
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Figure 11: Inferred versus true interactions for system size N = 16. The generator included N
triplet interactions and γ was set to 1.0 and the hybrid model had a single hidden layer
with 128 hidden units. The left panel shows all interactions color coded by their order:
blue points refer to pairwise interactions, orange points to triplet interactions and green to
all other orders. The middle and right panel show the relation of the energies between the
submodels of the generator (pairwise and higher-order) and the trained model (pairwise
and neural network). The color is proportional to pairs of energy values that fall in
the corresponding quadrant. All interactions were recovered using Eq. (6) using all
possible sequences and should be exact. The energies in the middle and right panel also
correspond to all possible sequences.

314


	Introduction
	Methods
	Pairwise Models and Energy-Based Models
	Hybrid Models and Extraction of Coefficients
	Training Procedure

	Experimental Setting: Generating Distributions
	Results
	Reconstructing Pairwise Interactions with Neural Networks
	Specificity of the Inferred Interactions
	Varying Network and Sample Sizes
	Varying the Interaction Orders in the Generator

	Discussion
	Using Pseudolikelihoods for training EBMs
	Absorbing Pairwise Interactions from the Neural Network
	Relation between an MLP-based energy model and RBMs
	Residue-residue contact prediction
	Additional Figures

