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Abstract
Understanding the impact of data structure on the computational tractability of learning is a key
challenge for the theory of neural networks. Many theoretical works do not explicitly model training
data, or assume that inputs are drawn component-wise independently from some simple probability
distribution. Here, we go beyond this simple paradigm by studying the performance of neural
networks trained on data drawn from pre-trained generative models. This is possible due to a
Gaussian equivalence stating that the key metrics of interest, such as the training and test errors, can
be fully captured by an appropriately chosen Gaussian model. We provide three strands of rigorous,
analytical and numerical evidence corroborating this equivalence. First, we establish rigorous
conditions for the Gaussian equivalence to hold in the case of single-layer generative models, as
well as deterministic rates for convergence in distribution. Second, we leverage this equivalence to
derive a closed set of equations describing the generalisation performance of two widely studied
machine learning problems: two-layer neural networks trained using one-pass stochastic gradient
descent, and full-batch pre-learned features or kernel methods. Finally, we perform experiments
demonstrating how our theory applies to deep, pre-trained generative models. These results open a
viable path to the theoretical study of machine learning models with realistic data.
Keywords: Neural networks, Generative models, Stochastic Gradient Descent, Random Features.

1. Introduction

Consider a supervised learning task where we are given a stream of samples drawn i.i.d. from
an unknown distribution q(x, y). Each sample consists of an input vector x = (xi) ∈ RN and a
response or label y ∈ R. Our goal is to learn a function φθ : RN → R with parameters θ that
provides an estimate of y given x. The performance of such a model φθ at this task is assessed in
terms of its prediction or test error pe(θ) = E ` [y, φθ(x)], where the expectation is over the data
distribution q(x, y) for a fixed set of parameters θ and some loss function `. A lot of attention has
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Figure 1: The deep hidden manifold: going beyond the i.i.d. paradigm for generating data in
the teacher-student setup. We analyse a setup where samples (x, y) are generated by
first drawing a latent vector c ∼ N (0, ID). The input x is obtained by propagating the
latent vector through a (possibly deep) generative network, x = G(c). The label y is given
by the response of a two-layer teacher network to the latent vector. We then analyse in a
closed form learning via a two-layer neural network, or with a single layer neural network
after a projection trough a fixed, but not necessarily random, feature map. The sketch of
the generator is taken from Radford et al. (2016), whose deep convolutional GAN is one
of the generators we use in our experiments in Sec. 4.

recently focused on the importance of training to find models φθ with low test error, and specifically
on the role of stochastic gradient descent and various regularisations. Analysing the impact of the
data distribution q(x, y) on learning is equally important, yet it is not well understood.

In fact, theoretical works on learning in statistics or theoretical computer science traditionally
try to make only minimal assumptions on the class of distributions q(x, y) Mohri et al. (2012);
Vapnik (2013) or consider the case where data are chosen in an adversarial (worst-case) manner. In a
complementary line of work that emanated originally from statistical physics Gardner and Derrida
(1989); Seung et al. (1992); Watkin et al. (1993); Engel and Van den Broeck (2001); Zdeborová and
Krzakala (2016), inputs are modelled as high-dimensional vectors whose elements are drawn i.i.d.
from some probability distribution. Their labels are either assumed to be random, or given by some
random, but fixed function of the inputs, see Fig. 1 (a). This approach, known as the teacher-student
setup, has recently experienced a surge of activity in the machine learning community Zhong et al.
(2017); Tian (2017); Du et al. (2018); Soltanolkotabi et al. (2018); Aubin et al. (2018); Saxe et al.
(2018); Baity-Jesi et al. (2018); Goldt et al. (2019); Ghorbani et al. (2019); Yoshida and Okada
(2019); Gabrié (2020); Bahri et al. (2020); Zdeborová (2020); Advani et al. (2020)

The deep hidden manifold In this manuscript we go beyond the i.i.d. paradigm of the teacher-
student setup by extending the hidden manifold model analysed in Goldt et al. (2020); Gerace et al.
(2020). Fig. 1 gives a visual overview of the components of the model. We draw the inputs x
from a generative model G : RD → RN of depth L. These models transform random uncorrelated
latent variables c = (cr) ∈ RD into correlated, high-dimensional inputs which follow a given target
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distribution via
x = G(c) = GL · · · G3 ◦ G2 ◦ G1(c), c ∼ N (0, ID), (1)

where ◦ denotes the chaining of layers G`, which could be fully-connected, convolutional Fukushima
and Miyake (1982); LeCun et al. (1990), applying batch norm Ioffe and Szegedy (2015) or an invert-
ible mapping G` : RD → RD as they are used normalising flows. We thus replace i.i.d. Gaussian
inputs with realistic images such as the one shown in Fig. 1. While Goldt et al. (2020); Gerace et al.
(2020) only studied generative models with a single layer of weights, we allow the generator to be of
arbitrary depth L, thus including important models such as variational auto-encoders Kingma and
Welling (2014), generative adversarial networks (GAN) Goodfellow et al. (2014), or normalising
flows Tabak et al. (2010); Tabak and Turner (2013); Rezende and Mohamed (2015).

The label for each input is obtained from a two-layer teacher network with M hidden neurons
and parameters θ̃ = (ṽ ∈ RM , W̃ ∈ RM×D) acting on the latent representation c of the input,

y =

M∑
m=1

ṽm g̃ (νm) , νm ≡ 1√
D

D∑
r=1

w̃mr cr. (2)

The intuition here comes from image classification, where the label of an image does not depend
on every pixel x, but the higher-level features of the image, which should be better captured by its
lower-dimensional latent representation, like in conditional generative models Mirza and Osindero
(2014); Brock et al. (2019). We call this the deep hidden manifold model.

The two models of learning that we analyse The advantage of the vanilla teacher-student
setup is that it lends itself well to analytical studies, at the detriment of having unrealistic inputs. The
deep hidden manifold allows us to study realistic inputs, but can we still analyse it? We provide two
distinct positive answers to this question for two common parametric models ŷ = φθ(x) trained on a
dataset with i.i.d. samples DT = {(xµ, yµ)}Tµ=1 generated by the deep hidden manifold q. First, we
provide a sharp asymptotic analysis of full-batch learning with pre-learned features Rahimi and
Recht (2008):

φθ(x) = g (λ) , λ =
1√
Ñ
ŵ>σ (Fx) , (3)

where F ∈ RÑ×N defines the feature map ΦF = σ(F · )/
√
N : RN → RÑ , which is not necessarily

random. We obtain the weights ŵ ∈ RÑ by minimising the empirical risk in feature space:

ŵT = argmin
w∈RÑ

 T∑
µ=1

`
(
yµ, w>ΦF (xµ)

)
+
λ

2
||w||22

 (4)

with a convex loss function ` and a ridge penalty term λ > 0. In this model, the asymptotic limits is
defined by taking T,N, Ñ →∞ with fixed ratios Ñ/N, T/Ñ ∼ O(1).

Second, we provide an asymptotic analysis of one-pass stochastic gradient descent in a
two-layer neural network with K ∼ O(1) hidden units:

φθ(x) =

K∑
k=1

vk g
(
λk
)
, λk ≡ 1√

N

N∑
i=1

wki xi, (5)
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where we take N → ∞. In this case, the network is trained end-to-end with stochastic gradient
descent on the quadratic loss using a previously unseem sample at each step µ of training:

dwki ≡
(
wki

)
µ+1
−
(
wki

)
µ

= − η√
N
vk∆g′(λk)xi, dvk = − η

N
g(λk)∆. (6)

where ∆ =
∑K

j=1 v
jg(λj) −

∑M
m=1 ṽ

mg̃(νm). Note the different scaling of the learning rate η,
which guarantees the existence of a well-defined limit of the SGD dynamics as N →∞.

Test error and Gaussian equivalence property In both cases, the learner is thus given a dataset
DT = {(xµ, yµ)}Tµ=1 consisting of T i.i.d. samples from q(x, y). The classifier φθ with parameters

θ = (W, v) either acts directly on the inputs x or on a feature map Φ: RN → RÑ . The learning
algorithm produces θT based on the training data. The model φ is evaluated using the prediction
MSE, which for each θ is

pmse(q, θ) ≡ 1

2

∫
RN×R

(φθ(Φ(x))− y)2 dq(x, y) (7)

The key observation in our analysis is that for both models (3) and (5) and the teacher (2), the
respective inputs only enter via the “pre-activations” λ = (λk) and ν = (νm). We can therefore
replace the high-dimensional average over q(x, y) by a low-dimensional average over the joint
distribution Pθ(λ, ν) of (λ, ν), which is a function of θ = (W, v):

pmse(q, θ) ≡ 1

2

∫
RK×RM

(
K∑
k=1

vk g(λk)−
M∑
m

ṽmg̃(νm)

)2

dPθ(λ, ν) (8)

The complexity of the high-dimensional distribution q is thus encapsulated by the low-dimensional
distribution Pθ(λ, ν). If the student weights W are drawn element-wise i.i.d. from some distribution
irrespective of the training data and the (transformed) inputs of the student x̃ are weakly correlated
on average, then (λ, ν) are jointly Gaussian with high probability over W if. Equivalently, we can
require some spectral condition on the covariance matrix of x̃.

To be precise, consider a sequence of models and parameters (q, θ), where we let the dimension
the latent space D, the dimension of the data N , and the dimension of the features Ñ scale to infinity
at the same rate, while keeping the dimensions of (λ, ν) fixed. The Gaussian equivalence property
(GEP) is said to hold if Pθ(λ, ν) is asymptotically Gaussian, i.e., d(Pθ, P

∗
θ ) = oN (1) where P ∗θ is

the Gaussian probability distribution with the same first and second moments and d(·, ·) is a metric
that metrizes convergence in distribution and in second moments.

The Gaussian Equivalence property simplifies the analysis significantly, since it allows for the
pmse to be evaluated asymptotically in terms of the finite dimensional Gaussian integral

pmse (q, θ)→ 1

2

∫
RK×RM

(
K∑
k=1

vk g(λk)−
M∑
m

ṽmg̃(νm)

)2

dP ∗θ (λ, ν). (9)

The pmse is thus a function of only the second moments of (λ, ν):

Qk` ≡ Eλkλ`, Rkm ≡ Eλkνm, Tmn ≡ E νmνn, (10)
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and of the second-layer weights vk and ṽm in the case of two-layer neural networks. This reduction of
the high-dimensional average (7) to an expression in terms of an O(1) number of “order parameters”
is central to the vast literature analysing the vanilla teacher-student setup Gardner and Derrida (1989);
Seung et al. (1992); Watkin et al. (1993); Biehl and Schwarze (1995); Saad and Solla (1995a); Engel
and Van den Broeck (2001).

Surprisingly, here we find that this reduction also holds if the weights of the student are obtained
from the training data using the algorithms (6) and (4). Hence, despite the correlations of the weights
to the correlated inputs, a characterisation of the pmse for models like Eq. (3) and (5) in terms of
scalar order parameters remain true for many generative data models, including common trained deep
generative networks, during learning. This observation can be formalised in the following conjecture,
which is the central claim of our paper:

Conjecture 1 (Deep Gaussian Equivalence Conjecture) Suppose that 1) the teacher weights W̃
are generated i.i.d. and 2) Cov(Φ(x)) satisfies some weak correlation property. Let θ̂T be obtained
from either online SGD (6) or empirical risk minimisation (4). Then, the GEP holds in the sense that
for some probability distance d(·, ·), we have

d
(
PθT , P

∗
θT

)
→ 0 in probability (11)

as N,D, T →∞ with N,T = Θ(D) and M,K = O(1). Here, the probability is taken with respect
to the randomness q (i.e, the teacher weights and any other random components in the generator),
the feature map Φ, which may or may not be random, and the training data DT .

We believe it is an exciting research direction to establish the limits of Conjecture 1. In this
manuscript we give the first steps in this direction by presenting three strands of rigorous (Sec. 2),
analytical (Sec. 3) and numerical (Sec. 4) evidence that the conjectured “deep GEC” holds true for
different tasks on shallow networks and for a wide range of deep, pre-trained generative models. In
particular, we provide:

(i) A rigorous proof of Conjecture 1 for a single-layer generator of the form G(c) = σ(Ac) where
A is a matrix with pre-trained weights, and σ is a point-wise non-linearity. Our Gaussian
equivalence theorem (GET, Thm. 2) gives sufficient conditions on the weights A under which
a given low-dimensional projection of the input x, such as λ, ν, is approximately Gaussian.
We thus put the Gaussian equivalence property used in Goldt et al. (2020); Gerace et al. (2020)
on a rigorous basis.

(ii) An exact analytical description of the evolution of the test error of a two-layer neural network
trained using one-pass (or online) SGD (Sec. 3.1), whose predictions exactly match simulations
with convolutional GANs and normalising flows pre-trained on CIFAR10 (Sec. 4).

(iii) A set of scalar self-consistent equations describing the test error for full-batch learning of
T i.i.d. samples using regression with Ñ features in the regime where N, Ñ,D, T → ∞
with T/Ñ,N/Ñ = O(1) (Sec. 3.2). As before, we confirm the accuracy of this theoretical
prediction with experiments of convolutional GANs pre-trained on CIFAR100 (Sec. 4).

Further related work Several works have recognised the importance of data structure in machine
learning, and in particular the need to go beyond the simple component-wise i.i.d. modelling for
neural networks Bruna and Mallat (2013); Patel et al. (2016); Mossel (2016); Gabrié et al. (2018),
recurrent neural networks Mézard (2017) and inference problems such as matrix factorisation Hand
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et al. (2018); Aubin et al. (2019). Ansuini et al. (2019) demonstrated that a network’s ability to
transform data into low-dimensional manifolds was predictive of its classification accuracy.

While we will focus on the prediction error, a few recent papers studied a network’s ability to
store inputs with lower-dimensional structure and random labels: Chung et al. (2018b) studied the
linear separability of general, finite-dimensional manifolds and their interesting consequences for the
training of deep neural networks Chung et al. (2018a); Cohen et al. (2020), while Cover’s classic
argument Cover (1965) to count the number of learnable dichotomies was recently extended to cover
the case where inputs are grouped in tuples of k inputs with the same label Rotondo et al. (2020);
Borra et al. (2019). Koehler and Risteski (2019) studied the expressive power of ReLU networks
compared to polynomial kernels under a data model where the teacher is a linear function of c, and
the inputs are a noisy linear projection of the latent variables. Recently Yoshida and Okada (2019)
analysed the dynamics of online learning for data having an arbitrary covariance matrix, finding an
infinite hierarchy of ODEs (cf. Sec. 3.1).

Gaussian equivalent models are currently attracting a lot of interest. During the revision of this
work, we became aware of a recent alternative proof of the GET by Hu and Lu (2020) for a slightly
different setup. A parallel line research analysed random features regression using random matrix
theory (RMT) Louart et al. (2018); Fan and Montanari (2019). The equivalent mapping to a Gaussian
model with appropriately chosen covariance was explicitly stated and used in Mei and Montanari
(2019); Montanari et al. (2019) and extended to a broader setting encompassing data coming from a
GAN in Seddik et al. (2019, 2020). We will discuss these works in relation to our results in Sec. 2.2.

Reproducibility We provide code to solve the equations of Sec. 3 and the experiments of Sec. 4
online at https://github.com/sgoldt/gaussian-equiv-2layer.

2. The Gaussian Equivalence Theorem

We start with the study of a simple generator where inputs are generated according to

xn = Gn(c) = σ(a>n c) = σ

(
D∑
r=1

arncr

)
(12)

where N → ∞, D → ∞ at fixed δ = D/N , and σ : R → R is a non-linear function and
A = [a1, . . . , an]> is the weight matrix of the generator. This is precisely the setting of the hidden
manifold model of Goldt et al. (2020); Gerace et al. (2020), and generators of the form (12) cover a
number of important cases beyond the hidden manifold model: (i) random feature models Rahimi and
Recht (2008, 2009), which regard the latent variable c as the true underlying data and x as features
constructed from c that are used as inputs for the prediction algorithm (cf. Sec. 3.2); (ii) Gaussian
feature models, where the inputs x are jointly Gaussian with the latent variables c; and (iii) the classic
teacher-student setup Gardner and Derrida (1989); Seung et al. (1992); Engel and Van den Broeck
(2001), where the features x are equal to the latent variables c.

The inputs generated by such a generator are not Gaussian. However, our first main result, the
Gaussian Equivalence Theorem, guarantees that the local fields (λ, ν) are still jointly Gaussian,
and hence a description in terms of order parameters like Eq. (9) possible, even if inputs are drawn
from this generator. More precisely, the theorem gives verifiable conditions on σ and the weight
matrices of the student, teacher and generator networks, under which a low-dimensional projection
of the inputs, such as λ and ν, is approximately Gaussian.
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2.1. Statement of the theorem

Given probability measures P and Q on R, define

d(P,Q) ≡ sup
f∈F
|EP [f ]− EQ[f ]| , (13)

where F = {f : ‖f ′′‖∞, ‖f ′′′‖∞ ≤ 1} is the set of thrice-differentiable functions with bounded
second and third derivative and ‖f‖∞ is the uniform norm of f . Given probability measures P and
Q on Rd the maximum-sliced (MS) distance is defined by

dMS(P,Q) ≡ sup
α : ‖α‖≤1

d(α>P, α>Q) (14)

where α>P denotes the one-dimensional distribution corresponding to the projection of P into the
direction of α. It can be verified that the MS distance is a metric Kolouri et al. (2019) and that
convergence with respect to dMS implies convergence in distribution as well as convergence of
second moments. Our result requires the following regularity assumptions:
A1) Row normalisation ‖an‖ = 1;

A2) Smoothness: the non-linearity σ is thrice differential with E
[
|σ(u)|4

]
, E
[
|σ′(u)|2

]
, and

E
[
|σ′′(u)|2

]
all O(1) for u ∼ N (0, 1);

A3) Bounded student weights: wkn = O(1).
Note that the smoothness assumption on the non-linearity σ can be relaxed to the assumption that σ
is Lipschitz continuous, with the only consequence being a loss in the rate of convergence. The basic
idea is that any Lipschitz function can be approximated by a function that satisfies the smoothness
assumptions, see e.g. (O’Donnell, 2014, Proposition 11.58). The dependence on σ is quantified in
terms the first, second, and third Hermite coefficients, which are defined by

σ̂(1) ≡ E [σ(u)u] , σ̂(2) ≡ 1√
2
E
[
σ(u)(u2 − 1)

]
, σ̂(3) ≡ 1√

6
E
[
σ(u)(u3 − 3u)

]
, (15)

where the expectation is taken with respect to a standard Gaussian random variable u. Furthermore,
let ρ = AA> and ρ̃ = ρ− IN and define the N ×N matrices:

M1 =
1√
N

(
σ̂2(1)ρ̃2 + σ̂2(2)ρ̃2 ◦ ρ

)
, M2 = σ̂2(2) (ρ̃ ◦ ρ̃)2 + σ̂2(3) (ρ̃ ◦ ρ̃)2 ◦ ρ, (16)

where ◦ denotes the Hadamard entrywise product. Each of these matrices is positive semi-definite,
by the Schur product theorem (Horn and Johnson, 2012, Sec. 7.5), and thus has a unique positive
semi-definite square root. We then have:

Theorem 2 (Gaussian Equivalence Theorem) Let P be the distribution of the pair (λ, ν) and let
P̂ be the Gaussian distribution with the same first and second moments. Under Assumptions A1-A3,

dMS(P, P̂ ) = O

(∥∥∥ 1√
N
WM

1/2
1

∥∥∥2
+
∥∥∥ 1√

N
WM

1/2
2

∥∥∥+ 1√
N

∥∥∥ 1√
D
W̃A>

∥∥∥2
+

1 +
∑

i 6=j(a
>
i aj)

4

√
N

)
.

(17)

We provide the proof of Theorem 2 in Sec. A.
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2.2. Discussion

Theorem 2 can be viewed as a multivariate central limit theorem (CLT) for weakly dependent random
variables. The terms involving the matrices M1 and M2 quantify the impact of the dependencies
in x. Note for example that if the columns of A are uncorrelated, then both of these terms are
zero and Theorem 2 recovers a variation of the classical Berry–Esseen Theorem (O’Donnell, 2014,
Chapter 11.5). The significance of Theorem 2 is that it provides a simple and verifiable sufficient
condition for the joint Gaussianity of (λ, ν) for pre-trained, and hence correlated generator weights.
The basic idea is that in order for Gaussianity to hold, the weight matrices should avoid any directions
in the matrices M1 and M2 associated with eigenvalues that are not converging to zero.

To appreciate how the spectral properties of M1 and M2 depend on A and σ, it is useful to
consider some examples. We give two quick examples below; we discuss these examples in detail in
Sec. B, where we analyse how the leading eigenvalues and eigenvectors of M1 and M2 depend on A
using analytical and numerical arguments.

Example 1 (IID A) If the entries of A are i.i.d. sub-Gaussian, then ‖M1‖ = O(1/
√
N) with

high probability. If σ̂2(2) is nonzero, then M2 has one eigenvalue that is O(1) associated with
the all-ones vector and the rest are O(1/N). If σ̂2(2) = 0, which occurs whenever σ is an odd
function, then ‖M2‖ = O(1/N). Thus, if σ̂(2) = 0 or ‖ 1√

N
W1‖ = O(1/N) it follows that

dMS(P, P̂ ) = O(1/
√
N) with high-probability over A.

Example 2 (Deterministic A) Next consider the case (D ≥ N) where

AA> = IN +
c√
N

(1N − IN )

for some fixed constant c. Suppose that σ(k), k = 1, 2, 3 are nonzero. Direct calculation reveals that
M1 has one eigenvalue O(

√
N) with the rest O(1/

√
N) and M2 has one eigenvalue O(1) with the

rest O(1/N). In both cases, the leading eigenvector is proportional to the all ones vector. Thus if
‖ 1√

N
W1‖ = O(1/N) then dMS(P, P̂ ) = O(1/

√
N).

The idea that most low-dimensional projections of a high-dimensional distribution are approxim-
ately random has a rich history Sudakov (1978); Diaconis and Freedman (1984); Hall and Li (1993);
Bobkov (2003); Meckes (2010); Reeves (2017). In this line of work, “most” is quantified in terms
of high-probability guarantees with respect to a random weight matrix W that is independent of
x. For example, if the entries of W are i.i.d. standard Gaussian, then the necessary and sufficient
conditions for convergence to a Gaussian are that 1) 1/n‖x‖2 concentrates about is mean 2) and
1/n‖Cov(x)‖2F → 0 (assuming zero mean). In the setting of this paper, it can be verified that these
properties are implied by assumptions A1 and A2. The added benefit of Theorem 2 is that “most” is
now quantified deterministically in terms of the number of the eigenvalues of M1 and M2.

The last term in (17) imposes a constraint on the average pairwise correlation between the
columns of A. Specifically, this term converges to zero provide that

∑
i 6=j(a

>
i aj)

4 = o(
√
N).

Importantly, this constraint still allows for allows for the possibility that a subset of the entries of A
have correlation of order one. By contrast, previous work in this setting requires either randomly
generated features or a much stronger incoherence constraint on the maximum correlation between
any two entries. The generality provided by A1 is crucial to our target applications since it allows for
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“sufficiently small” subsets to have arbitrary dependence structure. This is also a key difference to the
proof of a similar result by Hu and Lu (2020) that appeared during the revision of this manuscript.

Our analysis also highlights the dependence of the first few terms in the Hermite expansion of σ.
While Hu and Lu (2020) assume that σ is odd, which leads to σ̂(2) = 0, our analysis highlights the
crucial role of σ̂(2): if it is non-zero, as is the case for ReLU, then correlation in λ is described not
by the linear dependence with ν, but by a quadratic dependence, leading to more stringent conditions
for the validity of the CLT.

In a different direction, Gaussian behaviour associated with random choices of the parameter
A have also been studied in the context of infinitely wide networks Neal (1995); Lee et al. (2018);
de G. Matthews et al. (2018). Specifically, if the entries of A are i.i.d. Gaussian random variables it
follows that λ | ν can be viewed as Gaussian processes indexed by ν. Combined with the Gaussianity
of ν, this establishes the GET under general conditions on the generator. However, this analysis relies
crucially on the assumption that A is generated independently of everything else. This assumption
precludes the application to pre-trained generators.

A recent line research has derived Gaussian equivalence theorems for generators with random
weights using random matrix theory (RMT) Hachem et al. (2007); Cheng and Singer (2013);
Pennington and Worah (2017); Louart et al. (2018); Fan and Montanari (2019). The equivalent
mapping to a Gaussian model with appropriately chosen covariance was explicitly stated and used
in Mei and Montanari (2019); Montanari et al. (2019) and extended to a broader setting encompassing
data coming from a GAN in Seddik et al. (2019, 2020). Similar to the analysis in this paper, the
high-level idea is that certain integrals with respect to the data distribution q(x, y) can be replaced
by integrals over an appropriately defined Gaussian approximation. The main difference is the
class of functions considered. Specifically, Theorem 2 provides guarantees for any sufficiently
smooth function applied to a given low-dimensional projections of the features (x, c). This form of
approximation is needed to justify the integro-differential equations derived in Sec. 3.1. By contrast,
the RMT approach provides guarantees for a restricted set of functions applied to high-dimensional
matrices derived from samples of (x, c). For example, these results provide equivalence of the
empirical spectral measures of these random matrices as well as the test error associated with specific
learning algorithms. The results in this paper thus neither imply previous work, nor are they, to the
best of our knowledge, implied by it.

3. Analysis of neural networks learning on data from deep generators

We now turn to two applications of the deep GEC that allow us to analyse learning in paradigmatic
model systems in detail, and at the same time help us gather experimental evidence for the deep
GEC. We will first derive a set of equations that describe the evolution of the test error of a two-layer
neural network trained using one-pass (or online) SGD on the deep hidden manifold model (Sec. 3.1).
We also use the deep GEC to analyse full-batch learning with pre-learned features in Sec. 3.2. Our
experiments in Sec. 4 will show perfect agreement between the theory derived using the deep GEC
and simulations with deep, pre-trained generators, giving further credibility to our conjecture.

3.1. Generalisation dynamics of two-layer networks using online SGD

We first study a two-layer neural network (5) trained end-to-end using online stochastic gradient
descent (6). Since the deep GEC guarantees that the local fields (λ, ν) are jointly Gaussian, permitting
to express the pmse of a given student and teacher in terms of only the “order parameters” Q,R, T, v

434



THE GAUSSIAN EQUIVALENCE OF GENERATIVE MODELS FOR SHALLOW NETWORKS

and ṽ (10). In order to compute the pmse at all times during training, it is thus sufficient to track the
evolution of the order parameters during training, which is the goal of this section.

We will make the crucial assumption that at each step of the algorithm, we use a previously
unseen sample (x, y) to compute the updates in Eq. (6). This limit of infinite training data is variously
known as online learning or one-shot/single-pass SGD. Using this assumption, the dynamics of
two-layer networks in the classic teacher-student setup with i.i.d. Gaussian inputs have been analysed
in seminal works by Biehl and Schwarze (1995) and Saad and Solla (1995a); see also Saad and Solla
(1995b); Saad (2009) for further results and Goldt et al. (2019) for a recent proof of these equations.
Here, we generalise this type of analysis to two-layer networks trained on inputs coming from the
deep hidden manifold model. Note that this online-learning framework has also been used by a
number of recent works studying the dynamics of networks with finite N and large hidden layer
K →∞Mei et al. (2018); Rotskoff and Vanden-Eijnden (2018); Chizat and Bach (2018); Sirignano
and Spiliopoulos (2019).

We derived a closed set of integro-differential equations that describe the evolution of all order
parameters using Conjecture 1. We provide a self-contained discussion of these equations here, and
relegate the detailed derivation to Sec. C. Remarkably, the generator G(c) only enters the equations
via the input-input and the input-latent covariance,

Ωij = Exixj , Φir = Exicr. (18)

The order parameter Q (10) can be written as Qk` ≡ Eλkλ` ∼
∑
wki Ωijw

`
j . A key step in the

analysis is to diagonalise this sum by projecting the student weights into the eigenspace of Ω
(cf. Sec. C). We can then consider the integral representation

Qk` =

∫
dµΩ(ρ) ρ qk`(ρ). (19)

where µΩ(ρ) is the spectral density of Ω (which is known and fixed at all times since it is a property
of the generator G), and qkl(ρ) is a density whose time evolution can be characterised in the
thermodynamic limit. In the canonical teacher-student model with i.i.d. inputs x, introducing such
a density is not necessary since the input-input covariance is trivial, Ωij = δij . As we go to the
thermodynamic limit N →∞, we can identify a continuous time-like parameter t ≡ µ/N and find
that the density qk`(ρ) evolves according to

∂qk`(ρ)

∂t
= −η

ρ K∑
j 6=k

[
vkvjqk`(ρ)hkj(1)(Q) + vkvjqj`(ρ)hkj(2)(Q)

]
+ ρvkvkqk`(ρ)hk(3)(Q)

− vk
M∑
n

[
ρṽnqk`(ρ)hkn(4)(Q,R, T ) +

1√
δ
ṽnr`n(ρ)hkn(5)(Q,R, T )

]

+ all of the above with `→ k, k → `

)
+ η2γvkv`hk`(6)(Q,R, T, v, ṽ).

(20)

where γ ≡
∑

τ ρτ/N and δ ≡ D/N . The functions hkj(1) etc. are scalar, non-linear functions that

only involve averages over the pre-activations λ and ν such as E g(νm)g′(λk)λj , see Eq. (C.13).
After invoking the deep GEC, these averages can be expressed in terms of the order parameters (10),
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and hence the equation closes. Likewise, we also consider the projection of ωmi ≡
∑

r Φirw̃
m
r into

the eigenspace of Ω and consider the integral representation

Rkm =
1√
δ

∫
dµΩ(ρ) rkm(ρ). (21)

We find that rkm(ρ) evolves as

∂rkm(ρ)

∂t
= −ηvk

ρ K∑
j 6=k

[
vjrkm(ρ)hkj(1)(Q) + vjρrjm(ρ)hkj(2)(Q)

]
+ vkρrkm(ρ)hk(3)(Q)

−
M∑
n

[
ρṽnrkm(ρ)hkn(4)(Q,R, T ) +

1√
δ
ṽnhkn(5)(Q,R, T )

])
. (22)

Finally, the equation for v can be obtained directly from the SGD update (6) and reads

dvk

dt
= η

 M∑
n

ṽnh
kn
(7)(Q,R)−

K∑
j

vjhkj(7)(Q)

 . (23)

Discussion The importance of the spectral properties of the data was recognised for learning in
linear neural networks Baldi and Hornik (1989); Le Cun et al. (1991); Krogh and Hertz (1992);
Saxe et al. (2014). Yoshida and Okada (2019) extended the ODE analysis for non-linear networks to
inputs with a covariance matrix having O(1) non-degenerate eigenvalues, while implicitly assuming
that inputs have a Gaussian distribution. Goldt et al. (2020) analysed online learning in the hidden
manifold for a single-layer generator of the form x = σ(Ac); their result also involved more order
parameters than our analysis. Our approach handles a more general data structure, in the sense
that inputs can have arbitrary covariance matrices Ω and Φ. More importantly, the GET (Thm. 2)
rigorously guarantees that we can analyse the SGD dynamics even for inputs that are drawn from
pre-trained generative models such as Eq. (12) and hence do not follow a Gaussian distribution. Our
experiments in the next section show how this analysis also holds for deep, pre-trained generative
models such as normalising flows (see Sec. 4 for the discussion and Fig. 4 for an example of the
images generated by these models).

Solving the equations of motion The equations of motion (19-23) are valid for any choice of
generator network and for any teacher and student activation functions g(x) and g̃(x) as long as the
deep GEC holds. To solve the equations for a particular setup, one needs to estimate the covariance
matrices Ω and Φ, and to evaluate the functions hkj(1) etc. that are given in the appendix. By choosing

g(x) = g̃(x) = erf(x/
√

2), all these functions have exact analytical expressions Saad and Solla
(1995a). We provide robust Monte Carlo estimators of the covariance matrices of any generative
network in pyTorch Paszke et al. (2019) and a numerical implementation of the equations of motion
at https://github.com/sgoldt/gaussian-equiv-2layer.

3.2. Full-batch analysis of learning a generalised linear model with pre-learned features

We now discuss a second task in which the deep GEC 1 can be used to give a sharp analysis
of the asymptotic performance: full-batch learning with pre-learned or random features. In this
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task, a batch of T i.i.d. samples DT = {(xµ, yµ)}Tµ=1 from q are projected using a feature map

x̃ = Ñ−1/2σ(Fx) ∈ RÑ . The restrictions that we place on the projection matrix F are exactly the
same that we put on the weights of the one-layer generator A in our proof of the GET, see Sec. 2.

The features x̃ are is then fitted with the generalised linear model ŷ = φθ(x) = g
(∑Ñ

n=1wnx̃n

)
,

where we can take g(x) = sign(x) for a classification problem or g(x) = x for regression for
example. The weights ŵ ∈ RÑ are learned by minimising the empirical risk (4). Note that a for a
convex loss function `, the regularised risk is strongly convex and admits one and only one solution.
One interesting special case of this model are random features, since for random F, in the limit
Ñ →∞, the expected scalar product in feature space converges to a kernel Rahimi and Recht (2008):

1

Ñ
EF

[
σ (Fx1)> σ (Fx2)

]
→

Ñ→∞
K(x1, x2). (24)

It is out of the scope of this work to describe this construction in full generality, and we refer the
curious reader to Rahimi and Recht (2008, 2009) for details on how the kernel depends on the choice
of ΦF. The important point here is that studying kernel regression is equivalent to studying linear
regression on feature space at Ñ →∞. There has been a surge of interest in kernel methods recently,
as it was shown that deep neural networks are equivalent to random features in the so-called lazy
regime Jacot et al. (2018); Chizat et al. (2019).

Since the feature map ΦF = Ñ−1/2σ (F · ) is pre-learned, for the purpose of the theoretical
analysis it can be incorporated as an additional layer to the generative model for data: x̃ = ΦF(x) =
(ΦF ◦ G) (c), where G can be any of the generative models discussed previously. With this observation
in mind, without loss of generality we can restrict our attention to the study of generalised linear
models with data coming from a deep generative model (which includes the feature map). Up to
a rescaling, the generalised linear model is equivalent to K = 1 in model (5), and in this section
we also restrict the analysis to M = 1 in eq. (2). Therefore, the target outputs are simply generated
from the latent vector c ∼ N (0, ID) as in Eq. (2), which are then fitted by the network φθ(x̃) by
minimising the regularised empirical risk (4).

Let DS = {(x, y)Tµ=1} be a data set with T i.i.d. samples from q. Define the sample complexity
α = T/Ñ and the latent-to-input aspect ratio δ = D/Ñ . As in the online analysis in Section 3.1, the
deep GEC 1 can be used to write an asymptotic formula for the performance of the estimator φθ(x̃)
in the limit where D,T, Ñ →∞ and the ratios α, δ = O(1):

εg = E(x,y)∼q pmse(y, ŷ(x)) →
N→∞

1

2
E(ν,λ)∼N (0,Σ)(g̃(ν)− g(λ))2 (25)

where (ν, λ) ∼ N (0,Σ) are jointly Gaussian variables with covariance Σ =

(
ρ m?

m? q?

)
, and

ρ =
1

D
||w̃||22, m? =

1√
ND

ŵ>Φw̃, q? =
1

N
ŵ>Ωŵ. (26)

The covariances Φ,Ω are the moments of the equivalent Gaussian distribution, and were defined
explicitly in eq. (18). In principle, (m?, q?) should be computed from the estimator ŵ ∈ RÑ .
Surprisingly, we can also use the deep GEC to derive a set of self-consistent equations with solution
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giving directly (m?, q?):


V̂ = αEξ∼N (0,1)

[∫
R dy Z̃y

(
1−∂ωη
V

)]
q̂ = αEξ∼N (0,1)

[∫
R dy Z̃y

(η−ω
V

)2]
m̂ = α√

δ
Eξ∼N (0,1)

[∫
R dy ∂ωZ̃y

(η−ω
V

)]

V = 1

Ñ
tr
(
λIN + V̂ Ω

)−1
Ω

q = 1
Ñ

tr

[(
q̂Ω + m̂2ΦΦ>

)
Ω
(
λIN + V̂ Ω

)−2
]

m = m̂
Ñ
√
δ

tr ΦΦ>
(
λIN + V̂ Ω

)−1

(27)

with:

Z̃y(y, ω̃, Ṽ ) =

∫
R

dx√
2πṼ

e−
(x−w̃)2

2Ṽ δ (y − g̃(x)) , η(y, ω, V ) = argmin
x∈R

[
(x− ω)2

2V
+ `(y, x)

]

and ω =
√
qξ, V = ρ−q, w̃ = m/

√
qξ, Ṽ = ρ−m2/q. Although this formula appears cumbersome,

it only depends on scalar parameters and on the spectral distribution of ΦΦ> and Ω. It therefore
reduces the high-dimensional computation of εg to solving a low-dimensional system of equation
which for a given generator G, loss function ` and non-linearities (g, g̃) can be easily done by iteration.
For random generators, the spectral distributions of ΦΦ> and Ω can be computed analytically. But
this formula also holds for the case of real, trained deep generative models, in which case the
spectrum of ΦΦ> and Ω are computed numerically via robust Monte-Carlo simulations exactly as in
Section 3.1. Note that this result generalises the formula from Gerace et al. (2020) for a single-layer
generator which was rigorously proved recently by Dhifallah and Lu (2020). Although it is an open
problem to prove it rigorously in the current setting, we verified that it perfectly matches simulations
for different loss functions and for all generative architectures discussed here. See Fig. 3 in Section 4
for one example. This provides another strong evidence for conjecture 1 - as it shows that a formula
only depending on second order statistics is able to completely capture the asymptotic performance
of random features trained on data from a trained generative model.

4. Experiments

The derivations of both the dynamical equations (19-23) for online SGD and the iterative equa-
tions (27) for full-batch learning with features rely on the deep GEC. While Theorem 2 gives
verifiable conditions under which the conjecture is true for one-layer generators, it remains an open
problem to establish the deep GEC rigorously. We thus conducted a set of experiments to compare
the predictions for the pmse made by the theoretical results of Secs 3.1 and 3.2 to the test error
measured in simulations. For the dynamical equations, this means comparing the evolution of the
pmse and the order parameters obtained by (i) integrating Eqns. (19-23) and (ii) by evaluating
Eq. (10) explicitly during a single run of SGD for a two-layer student with K = 2 hidden units. For
the full-batch analysis, we compare the pmse obtained from iterating Eq. (27) with the result obtained
by numerically minimising the empirical risk in Eq.(4) with gradient descent for a given sample
complexity α = T/Ñ . For the dynamical equations, the teacher is taken to be a two-layer network
with M = 2 hidden units, and for the full-batch learning it is taken to be a M = 1 generalised linear
model. In both cases, the teacher weights are drawn i.i.d. from the standard normal distribution.
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Figure 2: Dynamics of two-layer networks: Theory vs experiments for random generators. We
compare the evolution of the pmse and the order parameters obtained from integration
of Eqns. (19-23, solid lines) and a single run of SGD (crosses). (a) Inputs are generated
by a single-layer generator (12) with i.i.d. weight matrix A and sign activation function
(D = 800, N = 8000). (b) Inputs were generated by the five-layer DCGAN of Radford
et al. (2016) with random weights (D = 100, N = 3072). In both plots: M = K =
2, ṽm = 1, η = 0.2, g(x) = g̃(x) = erf(x/

√
2), integration time step dt = 0.01.

4.1. Fully-connected and convolutional generators with random weights

As a first test, we verified that the equations correctly predict the dynamics of online SGD in a setting
where Theorem 2 applies: a one-layer generator G(c) (12) with i.i.d. weight matrix A and sign
activation function. In a second set of experiments, we drew the inputs from the deep convolutional
GAN (dcGAN) of Radford et al. (2016) with random i.i.d. weights. The dcGAN consists of five
convolutional layers, each followed by a Batch Normalisation layer and a ReLU activation function.
The final activation function is tanh(x) (see Sec. E for a detailed description). We show an example
of the comparison for both generators in Fig. 2, with more runs in Sec. E. The agreement between
equations and simulations in both experiments is very good.

4.2. Pre-trained deep convolutional GAN

We also used an instance of a dcGAN that was pre-trained on CIFAR100 dataset Krizhevsky et al.
(2009) in grayscale, with weights provided by Singh. On the left of Fig. 3, we show 32 samples of
the original dataset (top four rows) and 32 images generated by this network (bottom four rows). On
the level of the replica analysis (27), the change of generator weights is reflected in the change of the
covariance matrices Ωij and Φir (18), which need to be estimated precisely. In Fig. 3 we compare
the pmse at different sample complexities predicted by eq. (25) for logistic regression with Gaussian
features F of different sizes with the result obtained by running gradient descent on the empirical
risk. Although we didn’t include the plots for conciseness, we observe the same good agreement for
other tasks and for all the generative models discussed in this section.
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Figure 3: Theory vs experiment for random-features logistic regression: (Left) Images drawn
from the CIFAR100 dataset in grayscale (top four rows) and drawn from the deep convolu-
tional GAN trained on CIFAR100 (bottom four rows). (Right) Generalisation performance
of Random Features logistic regression. The random features matrix F ∈ RÑ×N was
taken to be Gaussian and the non-linearity σ = sign. The input data was generated from a
dcGAN pre-trained on CIFAR100 grayscale data set Krizhevsky et al. (2009) as a function
of the sample complexity α = P/Ñ and fixed weight decay λ = 10−2. Different curves
correspond to different projection aspect ratios Ñ/N .

4.3. Normalising flows: the real NVP

We finally tested the validity of the deep GEC with a generative model from the class of normalising
flows Tabak et al. (2010); Tabak and Turner (2013); Rezende and Mohamed (2015); Kobyzev
et al. (2020); Papamakarios et al. (2019). These models obtain a given target distribution from a
series of bijective transformations of a much simpler distribution, say the multidimensional normal
distribution. Constructing a probability density in this way has the advantage that the model’s output
distribution can be written down exactly, making it possible to minimise the exact log-likelihood.
This should be contrasted with variational auto-encoders Kingma and Welling (2014), where a bound
on the log-likelihood is optimised, or GANs, where the unsupervised problem of density estimation
is transformed into a supervised learning problem Goodfellow et al. (2014). For the purpose of
verifying the GET via the validity of the dynamical equations, normalising flows have the desirable
property that their latent dimension D is equal to the dimension of the output, i.e. for CIFAR10
images, D = N = 3072, which is close to the regime D,N → ∞ of our analysis. We trained
an instance of the real NVP model of Dinh et al. (2017) using the pyTorch port of the original
TensorFlow implementation provided by Mu. Using the original hyper-parameters Dinh et al. (2017),
we reached an average value of ≈ 3.5 bits/dim on the validation set, which agrees with the value of
3.49 bits / dim reported there. Images generated by the trained model are shown in the bottom four
rows of the grid at the bottom of Fig. 4. The comparison between ODEs and simulation (bottom right
of Fig. 4) shows very good agreement between the simulation and the prediction from the ODEs,
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Figure 4: Theory vs experiments for online SGD with deep, pre-trained realNVP model of Dinh
et al. (2017). (Left) The top four rows show images drawn randomly from the CIFAR10
data set, the bottom four rows show images drawn randomly from the realNVP model
trained on CIFAR10. (Right) Same plot as Fig. 2 when inputs are drawn from the pre-
trained realNVP. D = N = 3072. In all experiments: M = K = 2, ṽm = 1, η =
0.2, g(x) = g̃(x) = erf(x/

√
2), integration time step dt = 0.01.

demonstrating the validity of the Gaussian Equivalence Property for this instance of a pre-trained
generative model with ∼ 6.3 · 106 trained parameters.

Acknowledgements

We thank A. Maillard and F. Gerace for valuable discussions. We acknowledge funding from
the ERC under the European Union’s Horizon 2020 Research and Innovation Programme Grant
Agreement 714608-SMiLe, from “Chaire de recherche sur les modèles et sciences des données”,
Fondation CFM pour la Recherche-ENS, and from the French National Research Agency grants
ANR-17-CE23-0023-01 PAIL and ANR-19-P3IA-0001 PRAIRIE.

References

M.S. Advani, A.M. Saxe, and H. Sompolinsky. High-dimensional dynamics of generalization error
in neural networks. Neural Networks, 132:428 – 446, 2020.

A. Ansuini, A. Laio, J.H. Macke, and D. Zoccolan. Intrinsic dimension of data representations in
deep neural networks. In Advances in Neural Information Processing Systems, pages 6109–6119,
2019.

B. Aubin, A. Maillard, J. Barbier, F. Krzakala, N. Macris, and L. Zdeborová. The committee machine:
Computational to statistical gaps in learning a two-layers neural network. In Advances in Neural
Information Processing Systems 31, pages 3227–3238, 2018.

441



GOLDT LOUREIRO REEVES KRZAKALA MÉZARD ZDEBOROVÁ

B. Aubin, B. Loureiro, A. Maillard, F. Krzakala, and L. Zdeborová. The spiked matrix model with
generative priors. In Advances in Neural Information Processing Systems 32, pages 8366–8377.
2019.

Y. Bahri, J. Kadmon, J. Pennington, S.S. Schoenholz, J. Sohl-Dickstein, and S. Ganguli. Statistical
Mechanics of Deep Learning. Annual Review of Condensed Matter Physics, 11(1):501–528, 2020.

M. Baity-Jesi, L. Sagun, M. Geiger, S. Spigler, G.B. Arous, C. Cammarota, Y. LeCun, M. Wyart, and
G. Biroli. Comparing Dynamics: Deep Neural Networks versus Glassy Systems. In Proceedings
of the 35th International Conference on Machine Learning, 2018.

P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from examples
without local minima. Neural networks, 2(1):53–58, 1989.

F. Benaych-Georges and R.R. Nadakuditi. The singular values and vectors of low rank perturbations
of large rectangular random matrices. Journal of Multivariate Analysis, 111:120–135, 2012.

M. Biehl and H. Schwarze. Learning by on-line gradient descent. J. Phys. A. Math. Gen., 28(3):
643–656, 1995.

S. G. Bobkov. On concentration of distributions of random weighted sums. The Annals of Probability,
31(1):195–215, 2003.

F. Borra, M.C. Lagomarsino, P. Rotondo, and M. Gherardi. Generalization from correlated sets of
patterns in the perceptron. Journal of Physics A: Mathematical and Theoretical, 52(38):384004,
2019.

A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image
synthesis. In International Conference on Learning Representations, 2019.

J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE transactions on pattern
analysis and machine intelligence, 35(8):1872–1886, 2013.

X. Cheng and A. Singer. The spectrum of random inner-product kernel matrices. Random Matrices:
Theory and Applications, 2(04):1350010, 2013.

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Advances in Neural Information Processing Systems 31, pages
3040–3050, 2018.

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances in
Neural Information Processing Systems, pages 2937–2947, 2019.

SY Chung, U. Cohen, H. Sompolinsky, and D.D. Lee. Learning data manifolds with a cutting plane
method. Neural computation, 30(10):2593–2615, 2018a.

SY Chung, Daniel D. Lee, and H. Sompolinsky. Classification and Geometry of General Perceptual
Manifolds. Physical Review X, 8(3):31003, 2018b.

U. Cohen, SY Chung, D.D. Lee, and H. Sompolinsky. Separability and geometry of object manifolds
in deep neural networks. Nature communications, 11(1):1–13, 2020.

442



THE GAUSSIAN EQUIVALENCE OF GENERATIVE MODELS FOR SHALLOW NETWORKS

T.M. Cover. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applica-
tions in Pattern Recognition. IEEE Transactions on Electronic Computers, EC-14(3):326–334,
1965.

A. G. de G. Matthews, J. Hron, M. Rowland, R.E. Turner, and Z. Ghahramani. Gaussian process
behaviour in wide deep neural networks. In International Conference on Learning Representations,
2018.

O. Dhifallah and Y. M. Lu. A precise performance analysis of learning with random features.
arXiv:2008.11904, 2020.

P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. The Annals of Statistics,
12(3):793–815, 1984.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. 2017.

S. Du, J. Lee, Y. Tian, A. Singh, and B. Poczos. Gradient descent learns one-hidden-layer CNN:
Don’t be afraid of spurious local minima. In Proceedings of the 35th International Conference on
Machine Learning, volume 80, pages 1339–1348, 2018.

A. Engel and C. Van den Broeck. Statistical Mechanics of Learning. Cambridge University Press,
2001.

Z. Fan and A. Montanari. The spectral norm of random inner-product kernel matrices. Probability
Theory and Related Fields, 173(1-2):27–85, 2019.

K. Fukushima and S. Miyake. Neocognitron: A new algorithm for pattern recognition tolerant of
deformations and shifts in position. Pattern recognition, 15(6):455–469, 1982.

M. Gabrié. Mean-field inference methods for neural networks. Journal of Physics A: Mathematical
and Theoretical, 53(22):223002, 2020.

M. Gabrié, A. Manoel, C. Luneau, J. Barbier, N. Macris, F. Krzakala, and L. Zdeborová. Entropy
and mutual information in models of deep neural networks. In Advances in Neural Information
Processing Systems 31, pages 1826–1836, 2018.

E. Gardner and B. Derrida. Three unfinished works on the optimal storage capacity of networks.
Journal of Physics A: Mathematical and General, 22(12):1983–1994, 1989.

F. Gerace, B. Loureiro, F. Krzakala, M. Mézard, and L. Zdeborová. Generalisation error in learning
with random features and the hidden manifold model. In 37th International Conference on
Machine Learning (ICML), 2020.

B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. Limitations of lazy training of two-layers
neural network. In Advances in Neural Information Processing Systems 32, pages 9111–9121.
2019.

S. Goldt, M.S. Advani, A.M. Saxe, F. Krzakala, and L. Zdeborová. Dynamics of stochastic gradient
descent for two-layer neural networks in the teacher-student setup. In Advances in Neural
Information Processing Systems 32, 2019.

443



GOLDT LOUREIRO REEVES KRZAKALA MÉZARD ZDEBOROVÁ

S. Goldt, M. Mézard, F. Krzakala, and L. Zdeborová. Modeling the influence of data structure on
learning in neural networks: The hidden manifold model. Phys. Rev. X, 10(4):041044, 2020.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,
pages 2672–2680, 2014.

W. Hachem, P. Loubaton, and J. Najim. Deterministic equivalents for certain functionals of large
random matrices. Ann. Appl. Probab., 17(3):875–930, 2007.

P. Hall and K.-C. Li. On almost linearity of low dimensional projections from high dimensional data.
The Annals of Statistics, 21(2):867–889, 1993.

P. Hand, O. Leong, and V. Voroninski. Phase retrieval under a generative prior. In Advances in
Neural Information Processing Systems, pages 9136–9146, 2018.

R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge university press, 2012.

H. Hu and Y.M. Lu. Universality laws for high-dimensional learning with random features.
arXiv:2009.07669, 2020.

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37, pages 448–456, 2015.

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In Advances in Neural Information Processing Systems 31, pages 8571–8580,
2018.

D.P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

I. Kobyzev, S. Prince, and M. Brubaker. Normalizing flows: An introduction and review of current
methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1, 2020. doi:
10.1109/TPAMI.2020.2992934.

F. Koehler and A. Risteski. The comparative power of reLU networks and polynomial kernels in
the presence of sparse latent structure. In International Conference on Learning Representations
(ICLR), 2019.

S. Kolouri, K. Nadjahi, U. Simsekli, R. Badeau, and G. Rohde. Generalized sliced wasserstein
distances. In Advances in Neural Information Processing Systems 32, pages 261–272. 2019.

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009. URL
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

A. Krogh and J.A. Hertz. Generalization in a linear perceptron in the presence of noise. Journal of
Physics A: Mathematical and General, 25(5):1135, 1992.

Y. Le Cun, I. Kanter, and S.A. Solla. Eigenvalues of covariance matrices: Application to neural-
network learning. Physical Review Letters, 66(18):2396, 1991.

444

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf


THE GAUSSIAN EQUIVALENCE OF GENERATIVE MODELS FOR SHALLOW NETWORKS

Y. LeCun, B.E. Boser, J.S. Denker, D. Henderson, R.E. Howard, W.E. Hubbard, and L.D. Jackel.
Handwritten digit recognition with a back-propagation network. In Advances in neural information
processing systems, pages 396–404, 1990.

J. Lee, J. Sohl-Dickstein, J. Pennington, R. Novak, S. Schoenholz, and Y. Bahri. Deep neural
networks as gaussian processes. In International Conference on Learning Representations, 2018.

C. Louart, Z. Liao, and Romain Couillet. A random matrix approach to neural networks. The Annals
of Applied Probability, 28(2):1190–1248, 2018.

E. Meckes. Approximation of projections of random vectors. Journal of Theoretical Probability, 25
(2):333–352, 2010.

S. Mei and A. Montanari. The generalization error of random features regression: Precise asymptotics
and double descent curve. arXiv:1908.05355, 2019.

S. Mei, A. Montanari, and P. Nguyen. A mean field view of the landscape of two-layer neural
networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

M. Mézard. Mean-field message-passing equations in the hopfield model and its generalizations.
Physical Review E, 95(2):022117, 2017.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv:1411.1784, 2014.

M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press, 2012.

A. Montanari, F. Ruan, Y. Sohn, and J. Yan. The generalization error of max-margin linear classifiers:
High-dimensional asymptotics in the overparametrized regime. arXiv:1911.01544, 2019.

E. Mossel. Deep learning and hierarchical generative models. arXiv:1612.09057, 2016.

Fangzhou Mu. Port of the original TensorFlow implementation of realNVP to pyTorch. https:
//github.com/fmu2/realNVP.

R.M. Neal. Bayesian Learning for Neural Networks. PhD thesis, University of Toronto, 1995.

R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

G. Papamakarios, E. Nalisnick, D.J. Rezende, S. Mohamed, and B. Lakshminarayanan. Normalizing
Flows for Probabilistic Modeling and Inference. 2019.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035.
2019.

A.B. Patel, M.T. Nguyen, and R. Baraniuk. A probabilistic framework for deep learning. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 2558–2566. Curran Associates, Inc., 2016.

445

https://github.com/fmu2/realNVP
https://github.com/fmu2/realNVP


GOLDT LOUREIRO REEVES KRZAKALA MÉZARD ZDEBOROVÁ

J. Pennington and P. Worah. Nonlinear random matrix theory for deep learning. In Advances in
Neural Information Processing Systems, pages 2637–2646, 2017.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. In ICLR, 2016.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in neural
information processing systems, pages 1177–1184, 2008.

A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with
randomization in learning. In Advances in neural information processing systems, pages 1313–
1320, 2009.

G. Reeves. Conditional central limit theorems for Gaussian projections. In IEEE International
Symposium on Information Theory, pages 3055–3059, June 2017.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In Francis Bach and
David Blei, editors, Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 1530–1538, Lille, France, 2015.

P. Rotondo, M. C. Lagomarsino, and M. Gherardi. Counting the learnable functions of geometrically
structured data. Phys. Rev. Research, 2:023169, 2020.

G.M. Rotskoff and E. Vanden-Eijnden. Parameters as interacting particles: long time convergence
and asymptotic error scaling of neural networks. In Advances in Neural Information Processing
Systems 31, pages 7146–7155, 2018.

D. Saad. On-line learning in neural networks, volume 17. Cambridge University Press, 2009.

D. Saad and S.A. Solla. Exact Solution for On-Line Learning in Multilayer Neural Networks. Phys.
Rev. Lett., 74(21):4337–4340, 1995a.

D. Saad and S.A. Solla. On-line learning in soft committee machines. Phys. Rev. E, 52(4):4225–4243,
1995b.

A.M. Saxe, J.L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. In ICLR, 2014.

A.M. Saxe, Y. Bansal, J. Dapello, M.S. Advani, A. Kolchinsky, B.D. Tracey, and D.D. Cox. On the
information bottleneck theory of deep learning. In ICLR, 2018.

M.E.A. Seddik, M. Tamaazousti, and R. Couillet. Kernel random matrices of large concentrated data:
the example of gan-generated images. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7480–7484. IEEE, 2019.

M.E.A. Seddik, C. Louart, M. Tamaazousti, and R. Couillet. Random matrix theory proves that
deep learning representations of gan-data behave as gaussian mixtures. In 37th International
Conference on Machine Learning (ICML), 2020.

H. S. Seung, H. Sompolinsky, and N. Tishby. Statistical mechanics of learning from examples.
Physical Review A, 45(8):6056–6091, 1992.

446



THE GAUSSIAN EQUIVALENCE OF GENERATIVE MODELS FOR SHALLOW NETWORKS

C. Singh. Pre-trained dcGAN model. https://github.com/csinva/
gan-vae-pretrained-pytorch.

J. Sirignano and K. Spiliopoulos. Mean field analysis of neural networks: A central limit theorem.
Stochastic Processes and their Applications, 2019.

M. Soltanolkotabi, A. Javanmard, and J.D. Lee. Theoretical insights into the optimization landscape
of over-parameterized shallow neural networks. IEEE Transactions on Information Theory, 65(2):
742–769, 2018.

V. N. Sudakov. Typical distributions of linear functionals in finite-dimensional spaces of high
dimension. Soviet Math. Doklady, 16(6):1578–1582, 1978.

E. G Tabak and C.V. Turner. A family of nonparametric density estimation algorithms. Communica-
tions on Pure and Applied Mathematics, 66(2):145–164, 2013.

E. G Tabak, E. Vanden-Eijnden, et al. Density estimation by dual ascent of the log-likelihood.
Communications in Mathematical Sciences, 8(1):217–233, 2010.

Y. Tian. An analytical formula of population gradient for two-layered relu network and its applications
in convergence and critical point analysis. In Proceedings of the 34th International Conference on
Machine Learning (ICML), page 3404–3413, 2017.

V. Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

T.L.H. Watkin, A. Rau, and M. Biehl. The statistical mechanics of learning a rule. Reviews of
Modern Physics, 65(2):499–556, 1993.

Y. Yoshida and M. Okada. Data-dependence of plateau phenomenon in learning with neural network
— statistical mechanical analysis. In Advances in Neural Information Processing Systems 32, pages
1720–1728, 2019.

L. Zdeborová. Understanding deep learning is also a job for physicists. Nature Physics, 2020.

L. Zdeborová and F. Krzakala. Statistical physics of inference: thresholds and algorithms. Adv. Phys.,
65(5):453–552, 2016.

K. Zhong, Z. Song, P. Jain, P.L. Bartlett, and I.S. Dhillon. Recovery guarantees for one-hidden-layer
neural networks. In Proceedings of the 34th International Conference on Machine Learning
(ICML), pages 4140–4149. JMLR. org, 2017.

447

https://github.com/csinva/gan-vae-pretrained-pytorch
https://github.com/csinva/gan-vae-pretrained-pytorch


GOLDT LOUREIRO REEVES KRZAKALA MÉZARD ZDEBOROVÁ

Appendix A. Proof of the Gaussian Equivalence Theorem

There are two main steps to the proof. First we provide a one-dimensional GET (Theorem 3), which
is stated under a more general setting and then we show how Theorem 2 of the main text follows as a
special case.

A.1. One-dimensional GET

Let Z = (Z1, . . . , Zd) be a vector of standard Gaussian variables and let X = (X1, . . . , Xn) be
generated according to Xi = σi(a

>
i Z), i = 1, . . . , n, where each σi : R→ R and each ai is a unit

vector in Rd. Let ρ be the n× n positive semi-definite matrix ρij = a>i aj and let ρ̃ = ρ− In be the
matrix obtained by setting the diagonal entries to zero.

The main result of this section provides a Gaussian approximation for a one-dimensional projec-
tion of X . We define I to be the subset of [n] = {1, . . . , n} such that σi is not affine. Notice that the
variables indexed by the complement of the set, namely {Xi, i ∈ [n]\I}, are jointly Gaussian by
construction.

Assumption 1 (Weak Correlation) There exists a constant Cρ such that∑
i,j∈I

ρ̃4
ij ≤ C4

ρ . (A.1)

Assumption 2 (Smoothness) Each σi is twice differentiable. Furthermore, there exists a constant
Cσ such that for all i ∈ I ,

max
{
E[(σi(u))4]1/4,

(
E
[
(σ′i(u))2

])1/2
,E
[
(σ′′i (u))2

]1/2} ≤ Cσ, (A.2)

where u ∼ N (0, 1).

Each σi can be expressed via its Hermite expansion

σi(u) =
∞∑
k=0

σ̂i(k)hk(u), (A.3)

where σ̂i(k) is the kth Hermite coefficient of σi and hk is the kth (normalised) probabilist’s Hermite
polynomial. Note that if σi is affine then σ̂i(k) = 0 for k ≥ 2.

Theorem 3 Let P be the distribution of 1√
n

∑n
i=1Xi and let P̂ be the Gaussian distribution with

the same mean and variance. Under Assumptions 1 and 2,

d(P, P̂ ) ≤ CCσ√
n

(
δ1 +

√
n δ2 + Cσ(C2

ρ + C3
ρ) + C2

σ(1 + C4
ρ)
)
, (A.4)

where C is a universal constant,

δ1 =
1

n

∑
i,j,`∈I

ρ̃ij ρ̃i` (σ̂j(1)σ̂`(1) + 2ρj`σ̂j(2)σ̂`(2)) +
1

n

∑
i∈I

 ∑
j∈[n]\I

ρ̃ij σ̂j(1)

2

(A.5a)

δ2 =
1

n

∑
i,j,`∈I

ρ̃2
ij ρ̃

2
i` (2σ̂j(2)σ̂`(2) + 6ρj`σ̂j(3)σ̂`(3)) (A.5b)

and I is the subset of {1, . . . , n} such that σi is not affine.
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A.2. Proof of Theorem 2

Having established the one-dimensional GET, we are now in a position to prove Theorem 2 of the
main text. Let P be the distribution on RK+M defined by the variables

λk =
1√
N

N∑
i=1

wki xi, k = 1, . . . ,K, νm =
1√
D

D∑
r=1

w̃mr cr, m = 1, . . . ,M

where W = (wki ) ∈ RK×N and W̃ = (w̃mr ) ∈ RM×D are weight matrices and c ∼ N (0, ID) is
a vector of latent Gaussian variables. Recall that x ∈ RN is generated according to xi = σ(a>i c)
where σ : R→ R is a non-linearity and each ai is a unit vector in RD.

To bound the maximum-sliced distance between P and a Gaussian approximation it is sufficient
to bound the difference with respect to every one-dimensional projection. Given any unit vector
α ∈ RK+M the variable S ∼ α>P is given by

S =
1√
N

N∑
i=1

K∑
k=1

αkwki xi +
1√
D

D∑
r=1

M∑
m=1

αK+mw̃mr cr. (A.6)

We will now express this variable using the notation in Section A.1 with problem dimensions given
by d = D and n = N +D. Define w = (wi) ∈ RN and w̃ = (w̃r) ∈ RD according to

wi =

K∑
k=1

αkwki , w̃r =

M∑
m=1

αK+mw̃mi−N . (A.7)

Letting Z = (Z1, . . . , Zd) be a vector of i.i.d. standard Gaussian variables, the distribution of S is
equal to the distribution 1√

n

∑n
i=1Xi where

Xi =


√
n

N
wiσ(a>i Z), 1 ≤ i ≤ N√

n

D
w̃re

>
i−NZ, N < i ≤ N +D

(A.8)

and er denotes the rth standard basis vector in Rd. Furthermore, the assumptions of Theorem 3
are satisfied where I = {1, . . . , N} is the set of indices for which Xi is a non-affine function of
Z, the constant Cσ is bounded uniformly by the assumptions on σ and the students weights, and
Cρ = (

∑
i 6=j(a

>
i aj)

4)1/4. Applying Theorem 3 and retaining the dominant terms with respect to Cρ,
one finds that the distance between the projection of P and the projection of the Gaussian distribution
P̂ with matched first and second moments satisfies

d(α>P, α>P̂ ) ≤ C̃

(
δ1√
N

+
√
δ2 +

∑
i 6=j(a

>
i aj)

4

√
N

+
1√
N

)
, (A.9)
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where C̃ is a constant that depends on the regularity assumption of σ and the maximum magnitude
of the students weights and

δ1 =
1

N

N∑
i,j,`=1

wjw`ρ̃ij ρ̃i`
(
σ̂2(1) + 2ρj`σ̂

2(2)
)

+
1

D

N∑
i=1

D∑
r,r′=1

airair′w̃rw̃r′ (A.10)

δ2 =
1

N

N∑
i,j,`=1

wjw`ρ̃
2
ij ρ̃

2
i`

(
2σ̂2(2) + 6ρj`σ̂

2(3)
)
. (A.11)

Recalling the definitions of the matrices M1 and M2, it follows that

δ1√
N

= O

(∥∥∥∥ 1√
N
w>M

1/2
1

∥∥∥∥2

+
1√
N

∥∥∥∥ 1√
D
w̃>A>

∥∥∥∥2
)

(A.12)

√
δ2 = O

(∥∥∥∥ 1√
N
w>M

1/2
2

∥∥∥∥) . (A.13)

Finally, recalling the definition of (w, w̃) we see that the following bounds holds uniformly with
respect to α:

δ1√
N

= O

(∥∥∥∥ 1√
N
WM

1/2
1

∥∥∥∥2

+
σ̂(1)2

√
N

∥∥∥∥ 1√
N
WA

∥∥∥∥2

+
1√
N

∥∥∥∥ 1√
D
W̃>A>

∥∥∥∥2
)

(A.14)

√
δ2 = O

(∥∥∥∥ 1√
N
WM

1/2
2

∥∥∥∥) . (A.15)

This completes the proof of Theorem 2.

A.3. Proof of Theorem 3

A.3.1. GAUSSIAN COMPARISON

The following results show that it is sufficient to bound the distance between P and a Gaussian
distribution that has the same mean but possibly different variance.

Lemma 4 For any µ ∈ R and v1, v2 ≥ 0,

d(N (µ, v1),N (µ, v2)) =
1

2
|v1 − v2| (A.16)

Proof Without loss of generality assume v1 ≤ v2. Letting U1, U2 be independent standard Gaussian
variables we have X1 = µ +

√
v1U1 ∼ N (µ, v1) and X2 = X1 +

√
v2 − v1U2 ∼ N (µ, v2). For

each f ∈ F , a second order Taylor series expansion gives

f(X2)− f(X1) ≤
√
v2 − v1U2f

′(X1) +
1

2
(v2 − v1)U2

2 ‖f ′′‖∞. (A.17)

The first term has zero mean, because U2 is independent of X1. By assumption ‖f ′′‖∞ ≤ 1 and thus
|E [f(X2)]− E [f(X1)]| ≤ 1

2 |v2 − v1| for all f ∈ F . To see that this upper bound is tight, note that
the inequality is attained for the choice f(x) = 1

2(x− µ)2.
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Lemma 5 Let P be a distribution on R with mean µ and variance v. For all ṽ ≥ 0,

d(P,N (µ, v)) ≤ 2d(P,N (µ, ṽ)). (A.18)

Proof By the triangle inequality,

d(P,N (µ, v)) ≤ d(P,N (µ, ṽ)) + d(N (µ, v),N (µ, ṽ)). (A.19)

Noting that the function f(x) = 1
2(x − µ)2 belongs to F the first term satisfies d(P,N (µ, ṽ)) ≥

1
2 |v− ṽ|. By Lemma 4, the second term satisfies d(N (µ, v),N (µ, ṽ)) = 1

2 |v− ṽ|. Combining these
inequalities gives the stated result.

A.3.2. REPLACEMENT METHOD

We assume with without loss of generality that each Xi has zero mean and thus σ̂i(0) = 0. For the
purposes of comparison, we define the Gaussian variables

Ui = a>i Z, X̂i = σ̂i(1)Ui + ξi, (A.20)

where ξ1, . . . , ξn are independent Gaussian variables with mean zero and variance Var(ξi) =
Var(Xi) − σ̂2

i (1) chosen such that Xi and X̂i have the same second moment. Notice that each
Ui has mean zero, unit variance, and Cov(Ui, Uj) = ρij . Moreover, since 1√

n

∑n
i=1 X̂i is a Gaussian

variable with the same mean as 1√
n

∑n
i=1Xi it follows from Lemma 5 that d(P, P̂ ) ≤ 2 supf∈F ∆(f)

where

∆(f) = E

[
f

(
1√
n

n∑
i=1

Xi

)
− f

(
1√
n

n∑
i=1

X̂i

)]
. (A.21)

We use the replacement method to bound the term ∆(f). For i = 1, . . . , n define the hybrid
random variable

Si =
1√
n

i−1∑
j=1

Xj +
1√
n

n∑
j=i+1

X̂j , (A.22)

which excludes the contribution of the ith term. Then, we obtain the telescoping sum:

∆(f) =

n∑
i=1

∆i(f), where ∆i(f) = E
[
f
(
Si + 1√

n
Xi

)
− f

(
Si + 1√

n
X̂i

)]
. (A.23)

The next result provides a useful bound on ∆i(f) in terms of auxiliary random variables.

Lemma 6 Let (Ai, Bi) be a pair of random variables that is independent of (Ui, ξi). Then,

∆i(f) ≤ CKi√
n

(
E
[
B2
i

]
+ E

[
(Si −Ai)2

]
+
√
E [(Si −Ai −BiUi)2] +

K2
i

n

)
(A.24)

where C is a universal constant and Ki = (E
[
X4
i

]
)1/4.
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Proof
For any real numbers s, x, y, a third order Taylor series expansion of f about s yields∣∣f(s+ x)− f(s+ y)− (x− y)f ′(s)− (x2 − y2)f ′′(s)

∣∣ ≤ 1

6
(|x|3 + |y|3)‖f ′′′‖∞. (A.25)

Furthermore, for any real numbers a, b, u, we can write∣∣f ′(s)− f ′(a+ bu)
∣∣ ≤ |s− a− bu|‖f ′′‖∞ (A.26)∣∣f ′(s)− f ′(a)− buf ′′(a)
∣∣ ≤ |s− a− bu|‖f ′′‖∞ +

1

2
(bu)2‖f ′′′‖∞ (A.27)∣∣f ′′(s)− f ′′(a)

∣∣ ≤ |s− a|‖f ′′′‖∞. (A.28)

Combining the above displays with the assumption ‖f ′′‖∞, ‖f ′′′‖∞ ≤ 1 yields

f(s+ x)− f(s+ y) ≤ (x− y)
[
f ′(a) + buf ′′(a)

]
+ (x2 − y2)f ′′(a) + |x− y| |s− a− bu|

+
1

2
|x− y| (bu)2 + |x2 − y2| |s− a|+ 1

6

(
|x|3 + |y)|3

)
. (A.29)

Evaluating this inequality with (a, b, s, u, x, y) replaced by (Ai, Bi, Si, Ui,
1√
n
Xi,

1√
n
X̂i) and then

taking the expectation of both sides leads to

∆i(f) ≤ 1√
n
E
[
Xi − X̂i

]
E
[
f ′(Ai)

]
+

1√
n
E
[
(Xi − X̂i)Ui

]
E
[
Bif

′′(Ai)
]

+
1

n
E
[
(X2

i − X̂2
i )
]
E
[
f ′′(Ai)

]
+

1√
n
E
[
|Xi − X̂i| |SiAi −BiUi|

]
+

1

2
√
n
E
[
|Xi − X̂i|U2

i

]
E
[
B2
i

]
+

1

n
E
[
|X2

i − X̂2
i | |Si −Ai|

]
+

1

6n3/2

(
E
[
|Xi|3

]
+ E

[
|X̂i|3

])
. (A.30)

Here, we have used the independence between (Ai, Bi) and (Ui, ξi) to factorise the expectations. By
the construction of X̂i the first three terms on the right-hand side are zero. Using the Cauchy-Schwarz
inequality and the Jensen’s inequality, the upper bound can be simplified as follows:

∆i(f) ≤ 1√
n

√
E
[
(Xi − X̂i)2

]
E [(SiAi −BiUi)2] +

1

2
√
n

√
E
[
(Xi − X̂i)2

]
E
[
U4
i

]
E
[
B2
i

]
+

1

n

√
E
[
(X2

i − X̂2
i )2
]
E [(Si −Ai)2] +

1

6n3/2

(
E
[
|Xi|3

]
+ E

[
|X̂i|3

])
. (A.31)

From the construction of X̂i it is straightforward to verify that

E
[
(Xi − X̂i)

2
]
≤ C1K

2
i , E

[
(X2

i − X̂2
i )2
]
≤ C2K

4
i ,

(
E
[
|Xi|3

]
+ E

[
|X̂i|3

])
≤ C3K

3
i

for universal constants C1, C2, C3, and thus

∆i(f) ≤ CKi√
n

(
E
[
B2
i

]
+
Ki√
n

√
E [(Si −Ai)2] +

√
E [(Si −Ai −BiUi)2] +

K2
i

n

)
. (A.32)
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Finally, by the basic inequality xy ≤ 1
2(x2 + y2) we have

Ki√
n

√
E [(Si −Ai)2] ≤ K2

i

2n
+

1

2
E
[
(Si −Ai)2

]
, (A.33)

and combining the last two displays gives the stated bound.

A.3.3. DECOMPOSITION ARGUMENT

In view of Lemma 6, the next question is how to specify the variables (Ai, Bi). We use a decom-
position argument that leverages the Gaussianity of U . Let i be fixed and for each j 6= i define the
Gaussian variables Ũj = Uj − ρijUi. Note that Ui and Ũj are uncorrelated and thus independent.
Further define Vi = (Ũ1, . . . , Ũi−1, Ũi+1, . . . , Ũn, ξ1, . . . , ξi−1, ξi+1, . . . , ξn). Then, we can write
Si = gi(Ui, Vi) where

gi(Ui, Vi) =
1√
n

i−1∑
j=1

σj(ρijUi + Ũj) +
1√
n

n∑
j=i+1

(
σ̂j(1)(ρijUi + Ũj) + ξj

)
. (A.34)

Since Vi is independent of (Ui, ξi) we can define (Ai, Bi) as a function of Vi. Specially, we define
the variables to be the first and second Hermite coefficients of the mapping u 7→ gi(u, Vi):

Ai = E [Si | Vi] = ĝi(0;Vi), Bi = E [UiSi | Vi] = ĝi(1;Vi). (A.35)

By Gaussian integration by parts, we can also write Bi = E [g′i(Ui, Vi) | Vi] where g′i(u, v) denotes
the partial derivative with respect to the first argument. In conjunction with Jensen’s inequality, we
obtain the following upper bound:

E
[
B2
i

]
= E

[
E
[
g′i(Ui, Vi) | Vi

]2] ≤ E
[
(g′i(Ui, Vi))

2
]
. (A.36)

Lemma 7 Let U ∼ N (0, 1) and let g : R → R be a twice differentiable with E
[
g2(U)

]
< ∞.

Then,

E
[
(g(U)− ĝ(0))2

]
≤ E

[
(g′(U))2

]
(A.37)

E
[
(g(U)− ĝ(0)− ĝ(1)U)2

]
≤ E

[
(g′′(U))2

]
. (A.38)

Proof The first inequality is the Gaussian Poincaré inequality. For the second inequality we use the
Plancherel formula (O’Donnell, 2014, Proposition 11.36) to write

E
[
(g(U)− ĝ(0)− ĝ(1)U)2

]
=
∞∑
k=2

ĝ(k)2 ≤ 1√
2

∞∑
k=0

ĝ′′(k)2 =
1√
2
E
[
(g′′(Z))2

]
(A.39)

where the third step follows from the relation ĝ′′(k) =
√
k + 1

√
k + 2ĝ(k + 2) for non-negative

inters k.

Using Lemma 7, we obtain

E
[
(Si −Ai)2

]
≤ E

[
(g′(Ui, Vi))

2
]
, E

[
(Si −Ai −BiUi)2

]
≤ E

[
(g′′(Ui, Vi))

2
]
. (A.40)

Combining Lemma 6 with and (A.36) and (A.40) yields

∆i(f) ≤ CKi√
n

(
E
[
(g′i(Ui, Vi))

2
]

+
√
E [(g′′i (Ui, Vi))2] +

K2
i

n

)
. (A.41)
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Lemma 8 Under Assumptions 1 and 2,

E
[
(g′i(Ui, Vi))

2
]
≤

 1√
n

∑
j∈[n]

ρ̃ij σ̂j(1)

2

+
2

n

∑
j1,j2∈[i]

ρ̃ij1 ρ̃ij2 ρ̃j1j2 σ̂j1(2)σ̂j2(2)

+
C2
σ(1 + C2

ρ)

n

∑
j∈I

ρ̃2
ij (A.42)

E
[
(g′′(Ui, Vi))

2
]
≤

√2√
n

∑
j∈[i]

ρ̃2
ij σ̂j(2)

2

+
6

n

∑
j1,j2∈[i]

ρ̃2
ij1 ρ̃

2
ij2 ρ̃j1j2 σ̂j1(3)σ̂j2(3)

+
C2
σ(1 + C2

ρ)

n

∑
j∈I

ρ̃4
ij (A.43)

Proof Recalling that ρ̃ij = ρij1i 6=j and using the relation σ̂j(1) = E
[
σ′j(Uj)

]
leads to

g′i(Ui, Vi) =
1√
n

∑
j∈[i]

ρ̃ij(σ
′
j(Uj)− E

[
σ′j(Uj)

]
) +

1√
n

∑
j∈[n]

ρ̃ij σ̂j(1). (A.44)

Because the first term has zero mean and the second term is non-random, it follows that

Var(g′i(Ui, Vi)) =
1

n

∑
j1,j2∈[i] : j1 6=j2

ρ̃ij1 ρ̃ij2 Cov(σ′j1(Uj), σ
′
j2(Uj)) +

1

n

∑
j∈[i]

ρ̃2
ijVar(σ

′
j(Uj)).

Expanding the covariance in terms of the Hermite coefficients yields

Cov(σ′j1(Uj1), σ′j2(Uj2)) =

∞∑
k=1

ρj1j2 σ̂
′
j1(k)σ̂′j2(k) (A.45)

≤ ρj1j2 σ̂′j1(k)σ̂′j2(k) + ρ2
j1j2

∞∑
k=1

|σ̂′j1(k)σ̂′j2(k)| (A.46)

≤ 2ρj1j2 σ̂
′
j1(k)σ̂′j2(k) + ρ2

j1j2

√
Var(σ′j1(Uj1)Var(σ′j1(Uj2) (A.47)

where the last line follows from σ̂′j(1) =
√

2σ̂j(2) and the Cauchy-Schwarz inequality. Since
Var(σ′j(Uj) is equal to zero if σj is affine and bounded by C2

σ otherwise, we can write

Var(g′i(Ui, Vi)) ≤
2

n

∑
j1,j2∈[i]

ρ̃ij1 ρ̃ij2 ρ̃j1j2 σ̂j1(2)σ̂j2(2) +
C2
σ

n

∑
j1,j2∈I

|ρ̃ij1 ρ̃ij2 |ρ̃2
j1j2 +

C2
σ

n

∑
j∈I

ρ̃2
ij .

Finally, by the Cauchy-Schwarz inequality, the second term can be simplified as follows:∑
j1,j2∈I

ρ̃ij1 ρ̃ij2 ρ̃
2
j1j2 ≤

√ ∑
j1,j2∈I

ρ̃2
ij1
ρ̃2
ij2

√ ∑
j1,j2∈I

ρ̃4
j1j2
≤ C2

ρ

∑
j∈I

ρ̃2
ij (A.48)
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Using a similar approach for g′′i (Ui, Vi) and noting that σ̂′′j(0) =
√

2σ̂j(2) and σ̂′′j(1) =√
6σ̂j(3) leads to

E
[
g′′i (Ui, Vi)

]
=

√
2√
n

∑
j∈[i]

ρ̃2
ij σ̂j(2)

Var(g′′i (Ui, Vi)) =
1

n

∑
j1,j2∈[i] : j1 6=j2

ρ̃2
ij1 ρ̃

2
ij2 Cov(σ′′j1(Uj), σ

′′
j2(Uj)) +

1

n

∑
j∈[i]

ρ̃4
ijVar(σ

′′
j (Uj))

≤ 1

n

∑
j1,j2∈[i]

ρ̃2
ij1 ρ̃

2
ij2 ρ̃j1j2 σ̂

′′
j1(1)σ̂′′j2(1) +

C2
σ

n

∑
j1,j2∈I

ρ̃2
ij1 ρ̃

2
ij2 ρ̃

2
j1j2 +

C2
σ

n

∑
j∈I

ρ̃4
ij

≤ 6

n

∑
j1,j2∈[i]

ρ̃2
ij1 ρ̃

2
ij2 ρ̃j1j2 σ̂j1(3)σ̂j2(3) +

C2
σ(1 + C2

ρ)

n

∑
j∈I

ρ̃4
ij

A.3.4. FINAL STEPS IN PROOF

In view of (A.23), (A.41), and Lemma 8, we have all the ingredients needed to bound ∆(f). To
simplify the analysis, observe that the replacement method can be applied with respect to any
permutation π of the problem indices [n]. Averaging over all possible permutations of π of [n] we
can write

∆(f) =
1

n!

∑
π

n∑
i=1

∆i,π(f) (A.49)

where ∆i,π(f) is defined with respect to the permuted variables (Xπ(1), . . . , Xπ(n)). Swapping
expectation over π and the summation over i, and combining with (A.41) and Lemma 8 we obtain an
bound that holds uniformly for all i:

1

n!

∑
π

∆i,π(f) ≤ 1

n

CCσ√
n

δ1 + C2
σ(1 + C2

ρ)
1

n

∑
i,j∈I

ρ̃2
ij +

√
nδ2 + C2

σ(1 + C2
ρ)C4

ρ + C2
σ

 .

(A.50)

Noting that
∑

i,j∈I ρ̃
2
ij ≤ nC2

ρ and simplifying the dependence on the constants Cσ, Cρ gives the
stated result. This concludes thee proof of Theorem 3

Appendix B. Conditions for the GET

In this appendix we explore the conditions for the Gaussian equivalence theorem in more detail. For
an N ×D matrix A, we define the symmetric N ×N matrices ρ ≡ AA> and ρ̃ ≡ AA>− IN . Then,
the matrices M1 and M2 appearing in Theorem 2 can be expressed as

M1 = σ̂2(1)K11 + σ̂2(2)K21 (B.1)

M2 = σ̂2(2)K21 + σ̂2(3)K22, (B.2)

455



GOLDT LOUREIRO REEVES KRZAKALA MÉZARD ZDEBOROVÁ

where

K11 =
1√
N
ρ̃2 (B.3)

K12 =
1√
N
ρ̃2 ◦ ρ (B.4)

K21 = (ρ̃ ◦ ρ̃)2 (B.5)

K22 = (ρ̃ ◦ ρ̃)2 ◦ ρ (B.6)

These matrices are positive definite by the Schur product theorem (Horn and Johnson, 2012, Sec.
7.5), and thus have positive real eigenvalues. We are interested in how the leading eigenvalues and
eigenvectors depend on A.

To gain insight into the scaling behaviour of the matrices, we consider a setting where the entries
of A are i.i.d. according to

Aij =
1√
D

(
µ+

√
1− µ2 Zij

)
where µ ∈ [0, 1] is a deterministic parameter and {Zij} are i.i.d. standard Gaussian variables. The
normalisation by 1/

√
D ensures that the column norms of A converges to one almost surely as

D →∞.

B.1. Deterministic setting

In the limit where N is fixed and D →∞, it follows from the law of large numbers that ρ = AA>

converges almost surely to the deterministic N ×N matrix given by

ρ = µ21N×N + (1− µ2)IN . (B.7)

Notice that this is the same matrix given Example 2 with µ2 = c/
√
N . The matrices Kij can be

computed exactly as

K11 =
µ4

√
N

((N − 2)1N×N + IN ) (B.8a)

K12 =
µ4

√
N

(
(N − 2)µ21N×N + [(N − 2)(1− µ2) + 1]IN

)
(B.8b)

K21 = µ4N1/2K11 (B.8c)

K22 = µ4N1/2K12. (B.8d)

Since each of these matrices can be expressed as a weighted sum of the all ones matrix and the identity
matrix, their eigenvalue decompositions can be described using using the following elementary result.

Lemma 9 If K = α1N×N + βIN for real numbers α, β with α ≥ 0, then the leading eigenvector
of K is proportional to the all ones vector and the ordered real eigenvalues λ1(K) ≥ λ2(K) ≥
· · · ≥ λN (K) are given by

λi(K) =

{
αN + β, i = 1

β, i ≥ 2
(B.9)
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Table 1: Leading order terms for the eigenvalues of the matrices in (B.8).
K11 K12 K21 K22

maximum eigenvalue µ4N3/2 µ6N3/2 + µ4N1/2 µ8N2 µ10N2 + µ8N

2nd largest eigenvalue µ4N−1/2 µ4N1/2 µ8 µ8N

By Lemma 9, each of the Kij matrices has a leading eigenvector that is proportional to the all
ones vector. Furthermore, the leading order terms in the eigenvalues are summarised in the Table 1
as a function of N and µ. Here, we see that if the mean parameter satisfies µ = O(N−β) for a fixed
constant β > 1/8 then all of the eigenvalues except for the maximum converge to zero as N →∞.
In other words, the GET holds provided that the weights are orthogonal to the all ones vector.

Evaluating with µ2 = c/
√
N for fixed constant c (or equivalently β = 1/4) recovers the scalings

given in Example 2.

B.2. Fixed aspect ratio

Next we consider the setting where D/N → δ ∈ (0,∞). Note that A can be expressed as a rank-one
perturbation of an N ×D matrix with i.i.d. entries. In the high dimensional setting N → ∞, the
asymptotic distribution of the singular values and singular vectors are given by Benaych-Georges
and Nadakuditi (2012). In particular, the maximum eigenvalue satisfies

λ1(AA>)→


(1− µ2 + µ2N)((1− µ2)/δ + µ2N)

µ2N
,

µ2N

1− µ2
≥ δ−1/2

(1− µ2)
(

1 +
√

1/δ
)2
, otherwise

, (B.10)

and the asymptotic empirical distribution of the remaining eigenvalues converges almost surely to
the Marchenko-Pastur distribution. Based on these results, the leading order terms in the first and
second eigenvalues of K11 satisfy the following bounds almost surely:

λ1(K11) = O
(

[δ−1 + δ−2]N−1/2 + µ4N3/2
)

(B.11)

λ2(K11) = O
(

[δ−2 + δ−1 + µ4]N−1/2
)
. (B.12)

Notice that the δ →∞ limit of these conditions recovers the scaling given in Table 1.
The scaling behaviour of the matrices K12,K21, and K22 is more difficult to characterise

theoretically because these matrices involve the Hadamard product of random matrices. In the
following section we explore their behaviour numerically. For fixed δ and µ = O(N−β) we make
the following observations:

• Fig. 5 shows the empirical scaling of the eigenvalues for the case µ = 0 (which corresponds
to Example 1) and µ = O(1/

√
n). In both cases, we see that all of the eigenvalues converge

to zero expect for the maximum eigenvalue of K21 which is order one. Moreover, the rate of
convergence appears to be the same for these two cases.

• Fig. 6 shows the empirical scaling of the eigenvalues for β ∈ {1/5, 1/6, 1/7, 1/8}. For
β ≥ 1/6 the second largest eigenvalues of all matrices appear to be decreasing with N .
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Figure 5: Scaling of eigenvalues in the K matrices. The black line is maximum eigenvalue λ1. Blue
lines are λi for i ∈ {2, 6}. The red line is the correlation with the all ones matrix; when
this value is close to the maximum eigenvalue it means the leading eigenvector is close
to the all ones vectors. The left panel is the case µ = 0 and the right panel is the case
µ = O(N−1/2).

However, for β = 1/7 the eigenvalues in K12 do not appear to be decreasing (at least for the
scale of N shown) and this suggests that the conditions on µ needed to ensure convergence are
more stringent then in the deterministic setting (δ →∞) for which the condition β > 1/8 is
sufficient.

Appendix C. Derivation of the equations of motion of Sec. 3.1

Here we give a detailed derivation of the equations of motion that describe the dynamics of the
two-layer neural net studied in Sec. 3.1. We refer to this section for a detailed description of the
setup. The GEP allows us to express the prediction mean-squared error pmse as a function of the
second-layer weights v and ṽ as well as the second moments of (λ, ν), which we can write in terms
of the covariance matrices Ωij = Exixj and Φir = Exicr as

Qk` ≡ Eλkλ` =
1

N

N∑
i,j

wki Ωijw
k
j , Rkm ≡ Eλkνm =

1√
δ

1

N

∑
i,r

wki Φirw̃
m
r

Tmn ≡ E νmνn =
1

D

D∑
r,s

w̃mr w̃
n
r .

(C.1)

We will adopt the notational convention for tensors such as Qk` that extensive indices (taking values
up toD, N ) are below the line, while we’ll use upper indices when they take a finite number of values
up to M or K. The challenge of controlling the learning in the thermodynamic limit will be to write
closed equations using matrices with only “upper” indices left. Finally, we will adopt the convention
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Figure 6: Same as in Figure 5 but with ν = O(N−β) for β ∈ {1/5, 1/6, 1/7, 1/8}.

that the indices j, k, `, ι = 1, . . . ,K always denote student nodes, while n,m = 1, . . . ,M are
reserved for teacher hidden nodes.

Rotating the dynamics The first step in the derivation is to rotate the order parameters into the
basis given by the eigen-decomposition of the covariance matrix with eigenvalues ρτ and eigenvectors
ψτ that are normalised as

∑
τ ψτiψτj = Nδij and

∑
i ψτiψτ ′i = Nδττ ′ . We can then re-write the

“teacher-student overlap” R (C.1) as

Rkm =
1√
δN

∑
τ

Γkτ Γ̃mτ (C.2)

where we have introduced the student and teacher projections

Γkτ ≡
1√
N

∑
i

ψτiw
k
i , Γ̃mτ ≡

1√
N

∑
i

ψτiω̃
m
i , ω̃mi ≡

∑
r

Φirw̃
m
r . (C.3)
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Note the normalisation (or lack thereof); this is due the fact that Φir = Exicr ∼ O(1/
√
N). The

student-student overlap becomes likewise

Qkl =
1

N

∑
τ

ρτΓkτΓ`τ , (C.4)

and we also introduce a new teacher-teacher overlap, which is given by

T̃nm =
1

N

∑
τ

Γ̃nτ Γ̃mτ =
1

N

∑
i

∑
r,s

w̃nrΦirΦisw̃
m
s (C.5)

This order parameter can be interpreted as a teacher-teacher overlap with the teacher weights “rotated”
by
[
Φ>Φ

]
rs

. This is a key observation: having the teacher act on the latent variables means that
instead of having the actual teacher-teacher overlap, the student also sees a rotated version, rendering
perfect learning impossible.

Teacher-student overlap To analyse quantities that are linear in the weights, such as the teacher-
student overlap Rkm, we have to analyse the SGD update

dΓkτ = − η√
N
vk

 K∑
j 6=k

vjAjkτ + vkBkτ −
M∑
n

ṽnCnkτ

 . (C.6)

We will use dto denote the change in time-dependent quantities during one step of SGD. We have
defined the following averages

Ajkτ = E g(λj)g′(λk)βτ , Bkτ = E g(λk)g′(λk)βτ , Cnkτ = E g̃(νn)g′(λk)βτ . (C.7)

where we have introduced the projected input

βτ ≡
1√
N

∑
i

ψτixi. (C.8)

As we discussed in the main text, there are now two crucial facts that make computing these averages
possible. The online assumption asserts that at each step µ of SGD, the input xµ used to evaluate the
gradient is generated from a previously unused latent vector cµ, which is uncorrelated to the students
weights at that time. We also assume that theK+M variables {λk, νm} are jointly Gaussian, making
it possible to express the averages over {λk, νm} in terms of only their covariances, and hence later
to close the equations. For the special-case of a single-layer generative network, Theorem 2 gives
us verifiable conditions on the weights of the generator under which this holds. Using a simple
Lemma 10 to evaluate the averages (C.7) yields

Ajkτ =
1

QkkQjj − (Qkj)2

(
QjjE

[
g′(λk)λkg(λj)

]
E
[
λkβτ

]
−QkjE

[
g′(λk)λjg(λj)

]
E
[
λkβτ

]
−QkjE

[
g′(λk)λkg(λj)

]
E
[
λjβτ

]
+QkkE

[
g′(λk)λjg(λj)

]
E
[
λjβτ

])
,

(C.9)

and similarly for Bkτ and Cnkτ . At this point, it is convenient to introduce a short-hand notation for the
three-dimensional Gaussian averages

I3(k, j, n) ≡ E
[
g′(λk)λj g̃(νn)

]
, (C.10)

460



THE GAUSSIAN EQUIVALENCE OF GENERATIVE MODELS FOR SHALLOW NETWORKS

which was introduced by Saad and Solla (1995a). Arguments passed to I3 should be translated into
local fields on the right-hand side by using the convention where the indices j, k, `, ι always refer
to student local fields λj , etc., while the indices n,m always refer to teacher local fields νn, νm.
Similarly, I3(k, j, j) ≡ E

[
g′(λk)λjg(λj)

]
, where having the index j as the third argument means

that the third factor is g(λj), rather than g̃(νm) in Eq. (C.10). The average in Eq. (C.10) is taken
over a three-dimensional normal distribution with mean zero and covariance matrix

Φ(3)(k, j, n) =

Qkk Qkj Rkn

Qkj Qjj Rjn

Rkn Rjn Tnn

 . (C.11)

There are now two types of averages remaining. We first have Eλkβτ = 1/
√
NρτΓkτ , and, likewise,

E νnβτ = 1/
√
δN Γ̃nτ . Putting everything together, we can write down the evolution of Γkτ and identify

the equations hkj(1) etc. We have

dΓkτ = − η

N
vk

ρτ∑
j 6=k

[
Γkτv

jhkj(1)(Q) + vjΓjτh
kj
(2)(Q)

]
+ ρτv

kΓkτh
k
(3)(Q)

−
∑
n

[
ρτ ṽ

nΓkτh
kn
(4)(Q,R, T ) +

1√
δ
ṽnΓ̃nτh

kn
(5)(Q,R, T )

]) (C.12)

where we have introduced the auxiliary functions hk(3) = I3(k, k, k)/Qkk and

hkj(1) =
QjjI3(k, k, j)−QkjI3(k, j, j)

QkkQjj − (Qkj)2
hkj(2) =

QkkI3(k, j, j)−QkjI3(k, k, j)

QkkQjj − (Qkj)2
(C.13a)

hkn(4) =
TnnI3(k, k, n)−RknI3(k, n, n)

QkkTnn − (Rkn)2
hkn(5) =

QkkI3(k, n, n)−RknI3(k, k, n)

QkkTnn − (Rkn)2
(C.13b)

Introducing order parameter densities We are now in a position to write down the equation
for Rkm Performing the sum over τ in Eq. (C.12), two types of terms remain. For the first four
terms, we are left with the sum

∑
τ ρτΓkτ Γ̃mτ . This term cannot be reduced to an order parameter in a

straightforward way. Instead, we can make progress by introducing the continuous function:

rkm(ρ) ≡ 1

ερ

1

N

∑
τ

Γkτ Γ̃mτ 1 (ρτ ∈ [ρ, ρ+ ερ[) , (C.14)

where 1(·) is the indicator function which evaluates to 1 if the condition given to it as an argument is
true, and which otherwise evaluates to 0. We take the limit ερ → 0 after the thermodynamic limit.
Then we can rewrite the order parameter Rkm as an integral over the density rkm, weighted by the
spectral density of the covariance Ωij :

Rkm =
1√
δ

∫
dµΩ(ρ) rkm(ρ). (C.15)

For the final term in eq. (C.12), we introduce the density

t̃nm(ρ) ≡ 1

ερ

1

N

∑
τ

Γ̃nτ Γ̃mτ 1 (ρτ ∈ [ρ, ρ+ ερ[) , (C.16)

which allows us to write the first equation of motion, which we state in full in eq. (22).
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Student-student overlap It is also convenient to re-write the student-student overlap as an integral

Qk` =

∫
dµΩ(ρ) ρ qk`(ρ). (C.17)

over a density qkl(ρ) that is defined analogously to rkm(ρ),

qk`(ρ) ≡ 1

ερ

1

N

∑
τ

ΓkτΓ`τ 1 (ρτ ∈ [ρ, ρ+ ερ[) , (C.18)

The part of the time-derivative of qkl(ρ) that is linear in Γτ can be obtained directly from eq. (C.12)
as for Rkm. For the quadratic part, we have to leading order in N

η2

N

∑
τ

vkv`E∆2g′(λk)g′(λ`)β2
τ = η2γvkvjE∆2g′(λk)g′(λ`) (C.19)

where we used that Eβ2
τ = ρτ and we have defined γ ≡

∑
τ ρτ/N , which is a constant of the motion.

The remaining averages of the type E∆2g′(λk)g′(λ`) can again be expressed succinctly using the
shorthands Saad and Solla (1995a)

I4(k, `, j, n) ≡ E
[
g′(λk)g′(λ`)g(λj)g(νn)

]
. (C.20)

that use the same notational conventions as for I3. Putting it all together, we obtain the equation of
motion (20) where we have introduced a final auxiliary function,

hk`(6)(Q,R, T, v, ṽ) =
K∑
j,ι

vjvιI4(k, `, j, ι)

− 2
K∑
j

M∑
m

vj ṽmI4(k, `, j,m) +
M∑
n,m

ṽnṽmI4(k, `, n,m). (C.21)

Second-layer weights Finally, we treat each of the second-layer weights of the student v as an
order parameter in its own right. Their equations of motion (23) are readily found from from their
SGD update (6)and require only the auxiliary funciton hkn(7)(Q,R) ≡ E

[
g(λk)g(νn)

]
using the

same convention for the subscript of hkn(7) that we used for the integrals I3 and I4.

A simple lemma The derivation of the dynamical equations uses a simple Lemma that we recently
used to analyse single-layer generators Goldt et al. (2020). To be as self-contained as possible, we
repeat the Lemma here, and refer the interested reader to their paper for the proof.

Lemma 10 Suppose you have T random variables x1, . . . , xT with jointly Gaussian distribution
p(x1, . . . , xT ). We assume that the distribution has zero first moments that the second moments
matrix qtt

′
is positive definite. Suppose that an extra random variable y is jointly distributed with the

x1, . . . , xT and has mean zero, a finite variance 〈y2〉, and correlations 〈xty〉 which are O(1/
√
N).

Then for any two functions φ(x1, . . . , xT ) and ψ(y) that are odd in each of their arguments, we have,
to leading order when N →∞:

〈φ(x1, . . . , xT )ψ(y)〉 =
∑
t,s

(q−1)ts
〈xsy〉
〈y2〉

〈xtφ(x1, . . . , xT )〉 〈yψ(y)〉 (C.22)
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Figure 7: Theory vs experiments for online SGD with increasingly large students. We trained
students with K hidden neurons on teachers with M = K neurons with inputs coming
from a single-layer generator (12) with random weights. D = 500, N = 1000, ṽm =
1, η = 0.05, g(x) = g̃(x) = erf(x/

√
2), integration time step dt = 0.01.

C.1. Increasing the number of neurons

The dynamical equations we derived in this section are valid for any finiteM,K after lettingN →∞.
For the simulations, it is thus natural to ask up to which number of neurons the equations accurately
predict the dynamics for fixed N . We tested the accuracy of the equations by focusing on the
single-layer generator (12) with D = 500, N = 1000. In this case, the Gaussian Equivalence
holds rigorously thanks to Theorem 2, so as we increase M,K, we can expect deviations between
theoretical predictions from the dynamical equations and simulations to arise only due to problems
with the equations, rather than problems with Conjecture 1. We show the results of such an experiment
in Fig. 7.

Appendix D. Replica analysis

In this Appendix we give the main steps in the replica derivation of the result in Section 3.2 for the
full-batch learning. Our analysis, however, is restricted to the K = M = 1 case.

Setting: Consider the supervised learning problem introduced in Section 1 with K = M = 1. In
this case, the model y = φθ(x) is simply a generalised linear model with parameter w ∈ RN :

ŷ = φθ(x) = g

(
1√
N
x ·w

)
(D.1)

Similarly, we assume data in independently sampled (x, y) ∼ q from the generative model introduced
in eq. (2) with M = 1, which is equivalent to:

y = φθ̃(c) = g̃

(
1√
D
c · w̃

)
, x = G(c), c ∼ N (0, ID) (D.2)
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where G : RD → RN is a deep generative network as introduced in eq. (1), c is the latent variable
and w̃ ∼ Pw̃ are a fixed set of weights. Different from the online analysis, here we are interested in
characterising the generalisation performance of this model when trained on a batch of T independent
samples from q. Let DT = {xµ, yµ}Tµ=1 denote this training set. Training will consist on finding the
set of weights ŵ ∈ RN that minimise the following empirical risk:

ŵ = argmin
w∈RN

 T∑
µ=1

` (yµ,xµ ·w) +
λ

2
||w||22

 , (D.3)

where ` is a generic loss function and we have added an `2 penalty with strength λ > 0. Our aim is
to characterise the prediction error on a fresh set of samples x, y ∼ q,

εg = E(x,y)∼q pmse(y, ŷ(x)), (D.4)

in the high-dimensional limit where N,P,D → ∞ while the ratios α = T/N (the sample com-
plexity) and γ = D/N (the compression rate) remain fixed. The key observation in our analysis
is that precisely in this limit the asymptotic generalisation error can be fully characterised by only
three scalar parameters (ρ,m?, q?). Indeed, the Gaussian Equivalence Property (GEP) introduced in
Section A allow us to write

lim
N→∞

εg = Eν,λ (g̃(ν)− g(λ))2 (D.5)

where (ν, λ) ∼ N (0,Σ) are jointly Gaussian random variables with covariance Σ =

(
ρ m?

m? q?

)
given by:

ρ =
1

D
||w̃||22, m? =

1√
ND

ŵ>Φw̃, q? =
1

N
ŵ>Ωŵ (D.6)

with Φ = Ecxc> ∈ RN×D and Ω = Ecxx> ∈ RN×N being the exact covariances of the data. Note
that ρ is completely fixed by Pw̃. The replica analysis will give us (m?, q?).

D.1. Replica analysis

The first step in the replica analysis is to define the following Gibbs measure over RN :

µβ(w) =
1

Zβ
e
−β
[
T∑
µ=1

`(yµ,xµ·w)+λ
2

N∑
i=1

w2
i

]
=

1

Zβ

T∏
µ=1

e
−β

T∑
µ=1

`(yµ,xµ·w)

︸ ︷︷ ︸
Py

N∏
i=1

e−
βλ
2
w2
i

︸ ︷︷ ︸
Pw

(D.7)

where the normalisation Zβ is known as the partition function, and is a function of the training
data D. The factorised densities Py and Pw can be interpreted as a (unormalised) likelihood and
prior distribution respectively. Note that if we knew how to sample from µβ , we would be able to
solve eq. (D.3), since in the limit β → ∞, the measure µβ concentrates around solutions of this
minimisation problem. The replica analysis consists in computing the averaged free energy density

βfβ = lim
N→∞

1

N
ED logZβ (D.8)
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with the replica trick:

logZβ = lim
r→0+

1

r
∂rZrβ. (D.9)

Linearising the logarithm allow us to average Zrβ over the dataset explicitly. As we will see, once
this average is taken, Zrβ which is a priori a high-dimensional object (defined in terms of integrals in
RN ) factorise into a simple scalar quantities that will give us access to (m?, q?).

Averaging over the data set: The average over the replicated partition function is explicitly given
by:

EDZrβ =
T∏
µ=1

∫
dyµ

∫
RD

dw̃ Pw̃(w̃)

∫
RN×r

(
r∏

a=1

dwa Pw(wa)

)
×

× Ecµ
[
P̃y

(
yµ
∣∣∣cµ · w̃√

D

) r∏
a=1

Py

(
yµ
∣∣∣xµ ·wa

√
N

)]
︸ ︷︷ ︸

(?)

Note that since xµ = G(cµ) the average in (?) defines the joint probability between the random
variables νµ = cµ·w̃√

D
and λaµ = xµ·wa√

N
. The Gaussian Equivalence Principle states that for certain

architectures G, the random variables (νµ, λ
a
µ) are asymptotically jointly Gaussian, with zero mean

and covariance matrix given by:

Σab =

(
ρ ma

ma Qab

)
. (D.10)

where the so-called overlap parameters (ρ,ma, Qab) are related to the weights w̃,w:

ρ ≡ E
[
ν2
µ

]
=

1

D
||w̃||22, ma ≡ E

[
λaµνµ

]
=

1√
ND

wa>Φw̃, Qab ≡ E
[
λaµλ

b
µ

]
=

1

N
wa>Ωwb

where all the information about the architecture of the generative network x = G(c) is contained
in the covariance matrices Ω = Ec

[
xx>

]
RN×N and Φ = Ec

[
xc>

]
∈ RN×D. We can therefore

write the averaged replicated partition function as:

EDZrβ =
T∏
µ=1

∫
dyµ

∫
RD

dw̃ Pw̃(w̃)

∫
RN×r

(
r∏

a=1

dwa Pw(wa)

)
N (νµ, λ

a
µ;0,Σab) (D.11)

Rewriting as a saddle-point problem: The next step is to free the overlap parameters by intro-
ducing delta functions δ

(
Dρ− ||w̃||22

)
, δ
(√

NDma −waΦw̃
)

, δ
(
NQab −wa>Ωwb

)
. Inserting

in eq. (D.11), swapping the integrals and going to Fourier space allow us to rewrite:

EDZrβ =

∫
R

dρ dρ̂

2π

∫
Rr

r∏
a=1

dma dm̂a

2π

∫
Rr×r

∏
1≤a≤b≤r

dQab dQ̂ab

2π
eDΦ(r)

(D.12)
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where we have absorbed a −i factor in the integrals1 and defined the potential:

Φ(r) = −γρρ̂−√γ
r∑

a=1

mam̂a −
∑

1≤a≤b≤r
QabQ̂ab + αΨ(r)

y (ρ,ma, Qab) + Ψ(r)
w (ρ̂, m̂a, Q̂ab)

with α = T/N , γ = D/N and:

Ψ(r)
w =

1

N
log

∫
RD

dw̃Pw? (w̃)

∫
RN×r

r∏
a=1

dwaPw (wa) e
ρ̂||w̃||22+

r∑
a=1

m̂awa>Φw̃+
∑

1≤a≤b≤r
Q̂abwa>Ωwb

Ψ(r)
y = log

∫
R

dy

∫
R

dν P̃y(y|ν)

∫ r∏
a=1

dλaPy(y|λa) N (ν, λa;0,Σab) (D.13)

In the high-dimensional limit where N →∞ while α = T/N and γ = D/N stay finite, the integral
in eq. (D.12) concentrate around the values of the overlaps that extremise Φ(r), and therefore we can
write:

βfβ = − lim
r→0+

1

r
extr Φ(r)

(
ρ̂, m̂a, Q̂ab; ρ,ma, Qab

)
(D.14)

Replica symmetric ansatz: Finding the overlap configuration that minimise Φ(r) is itself an
intractable problem. In order to make progress, we restrict the extremisation above to the following
replica symmetric ansatz:

ma = m, m̂a = m̂, for a = 1, . . . , r

qaa = r, q̂aa = −1

2
r̂, for a = 1, . . . , r

Qab = q, Q̂ab = q̂, for 1 ≤ a < b ≤ r (D.15)

Inserting this ansatz in eq. (D.13) allow us to explicitly take the r → 0+ limit for each term. The first
three terms are trivial. The limit of Ψ

(r)
y is cumbersome, but it common to many replica computations

for the generalised linear likelihood Py. We refer the curious reader to Gerace et al. (2020) for more
details, and write the end result here:

Ψy ≡ lim
r→0+

1

r
Ψ(r)
w = Eξ

[∫
R

dy Z̃y
(
y,
m
√
q
ξ, ρ− m2

q

)
logZy(y,

√
qξ, V )

]
(D.16)

where ξ ∼ N (0, 1), V = r − q and:

Zy(y, ω, V ) =

∫
R

dx√
2πV

e−
(x−ω)2

2V Py(y|x), Z̃y(y, ω, V ) =

∫
R

dx√
2πV

e−
(x−ω)2

2V P̃y(y|x) (D.17)

Note that as in Gerace et al. (2020), the consistency condition of the zeroth order term in the free
energy fix the parameters ρ = EPw̃w̃ and ρ̂ = 0. The limit of Ψ

(r)
w is slightly more involved. First,

inserting the replica symmetric ansatz allow us to write:

Ψ(r)
w =

1

N
log

∫
RD

dw̃Pw? (w̃)

∫
RN×r

r∏
a=1

dwaPw (wa) e
− V̂

2

r∑
a=1

wa>Ωwa+m̂
r∑
a=1

wa>Φw̃+q̂
r∑

a,b=1
wa>Ωwb

(D.18)

1. This won’t matter since we will be only interested in the saddle-point of the integrals.
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where we have defined V̂ = r̂ + q̂. Now using that:

e
q̂

r∑
a,b=1

wa>Ωwb

= Eξ

[
e

√
q̂ξ>Ω1/2

r∑
a=1

wa
]

(D.19)

for ξ ∼ N (0, IN ), we can write:

Ψ(r)
w =

1

N
log

∫
RD

dw̃Pw? (w̃)
r∏

a=1

∫
RN

dwaPw (wa)Eξ
[
e−

V̂
2
wa>Ωwa+wa>(m̂Φw̃+q̂Ω1/2ξ)

]
=

1

N
logEξ

∫
RD

dw̃Pw? (w̃)

[∫
RN

dw Pw (w) e−
V̂
2
w>Ωw+w>(m̂Φw̃+q̂Ω1/2ξ)

]r
(D.20)

and therefore:

Ψw ≡ lim
r→0+

1

r
Ψ(r)
w =

1

N
Eξ,w̃ log

∫
RN

dw Pw (w) e−
V̂
2
w>Ωw+w>(m̂Φw̃+q̂Ω1/2ξ) (D.21)

Summary: The replica symmetric free energy density is simply given by:

βfβ = extr
q,m,q̂,m̂

{
−1

2
rr̂ − 1

2
qq̂ +mm̂− αΨy(r,m, q)−Ψw(r̂, m̂, q̂)

}
(D.22)

where

Ψw = lim
N→∞

1

N
Eξ,w̃ log

∫
RN

dw Pw (w) e−
V̂
2
w>Ωw+w>(m̂Φw̃+q̂Ω1/2ξ)

Ψy = Eξ
[∫

R
dy Z̃y

(
y,
m
√
q
ξ, ρ− m2

q

)
logZy(y,

√
qξ, V )

]
(D.23)

and

Zy(y, ω, V ) =

∫
R

dx√
2πV

e−
(x−ω)2

2V Py(y|x), Z̃y(y, ω, V ) =

∫
R

dx√
2πV

e−
(x−ω)2

2V P̃y(y|x) (D.24)

Simplifying Ψw: The result summarised above holds for any Pw and Pw̃, but can be considerably
simplified in our case of interest eq. (D.7) where these densities are Gaussian. Indeed, we can
integrate w explicitly in Ψw to get:∫
RN

dw Pw(w)e−
V̂
2
w>Ωw+w>(m̂Φw̃+

√
q̂Ω1/2ξ) =

∫
RN

dw

(2π)p/2
e−

1
2
w>(βλIN+V̂ Ω)w+w>(m̂Φw̃+

√
q̂Ω1/2ξ)

=

exp

(
1
2

(
m̂Φw̃ +

√
q̂Ω1/2ξ

)> (
βλIN + V̂ Ω

)−1 (
m̂Φw̃ +

√
q̂Ω1/2ξ

)>)
√

det
(
βλIN + V̂ Ω

)
(D.25)

where we have included a convenient rescaling of Pw. We can now take the log and average the
resulting expression explicitly with respect to Pw̃ = N (0, IN ) and ξ ∼ N (0, IN ). After some linear
algebra manipulation, we can write the result (up to the limit) as:

Ψw = − 1

2N
tr log

(
βλIN + V̂ Ω

)
+

1

2N
tr

[(
m̂2ΦΦ> + q̂Ω

)(
βλIN + V̂ Ω

)−1
]

(D.26)
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D.2. Saddle-point equations

In order to find the set of overlaps (r?, r̂?, q?, q̂?,m?, m̂?) that solve the extremisation problem
in eq. (D.22), we look at the gradient of the replica symmetric potential. This give us a set of
self-consistent equations known as saddle-point equations.

First, taking the gradient of Ψy with respect to (r, q,m) and recalling that V = r − q:

∂rΨy = −Eξ

[∫
R

dy Z̃y
∂ωZ2

y

Zy

]
, ∂qΨy = Eξ

[∫
R

dy Z̃yf2
y

]
, ∂mΨy = Eξ

[∫
R

dy ∂ωZ̃yfy
]

where fy ≡ logZy. Now looking at the gradient of Ψw with respect to (r̂, q̂, m̂) and recalling that
V̂ = r̂ + q̂:

∂r̂Ψw = − 1

2N
tr
(
βλIN + V̂ Ω

)−1
Ω− m̂2

2N
tr
(
βλIN + V̂ Ω

)−2
ΩΦΦ> − q̂

2N
tr
(
βλIN + V̂ Ω

)−2
Ω2

∂q̂Ψw = − m̂
2

2N
tr
(
βλIN + V̂ Ω

)−2
ΩΦΦ> − q̂

2N
tr
(
βλIN + V̂ Ω

)−2
Ω2

∂m̂Ψw =
m̂

d
tr Φ>Φ

(
βλIN + V̂ Ω

)−1
(D.27)

Putting together give the following set of self-consistent saddle-point equations:
V̂ = αEξ

[∫
R dy Z̃y∂ωfy

]
q̂ = αEξ

[∫
R dy Z̃yf2

y

]
m̂ = α√

γEξ
[∫

R dy ∂ωZ̃yfy
]


V = 1

N tr
(
βλIN + V̂ Ω

)−1
Ω

q = 1
N tr

[(
q̂Ω + m̂2ΦΦ>

)
Ω
(
βλIN + V̂ Ω

)−2
]

m = m̂
N
√
γ tr ΦΦ>

(
βλIN + V̂ Ω

)−1

(D.28)

where we used ∂ωfy = Z−1
y ∂2

ωZ − f2
y . To take the β →∞ limit explicitly, we look at the following

ansatz for the scaling of the order parameters:

V∞ = βV q∞ = q m∞ = m

V̂∞ =
1

β
V̂ q̂∞ =

1

β2
q̂ m̂∞ =

1

β
m̂. (D.29)

With this scaling, we can easily get rid of the β dependency in the equations for (V, q,m). For the
(V̂ , q̂, m̂) equations, we note that:

Zy(y,
√
qξ, V ) =

∫
dx√
2πV

e−
(x−√qξ)2

2V e−β`(y,x) =

∫
dx√
2πV

e
−β
[
(x−
√
q∞ξ)2

2V∞ +`(y,x)

]
(D.30)

and therefore when β → ∞, Zy is dominated by the exponential of the values that minimise the
argument in the exponent, which is the proximal operator associated to the loss `:

η(y, ω, V ) = argmin
x∈R

[
(x− ω)2

2V
+ ` (y, x)

]
(D.31)
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Figure 8: Theory vs experiments for online SGD with deep, pre-trained dcGAN of Radford
et al. (2016). (Left) The top four rows show images drawn randomly from the CIFAR10
data set, the bottom four rows show images drawn randomly from the pre-trained dcGAN.
(Right) Same plot as Fig. 2 when inputs are drawn from the pre-trained realNVP. D =
N = 3072,M = K = 2, ṽm = 1, η = 0.2, g(x) = g̃(x) = erf(x/

√
2), integration time

step dt = 0.01.

Finally, in the β →∞ limit the saddle-point equations can be written as:


V̂ = αEξ

[∫
R dy Z̃y

(
1−∂ωη
V

)]
q̂ = αEξ

[∫
R dy Z̃y

(η−ω
V

)2]
m̂ = α√

γEξ
[∫

R dy ∂ωZ̃y
(η−ω

V

)]

V = 1

N tr
(
λIN + V̂ Ω

)−1
Ω

q = 1
N tr

[(
q̂Ω + m̂2ΦΦ>

)
Ω
(
λIN + V̂ Ω

)−2
]

m = m̂
N
√
γ tr ΦΦ>

(
λIN + V̂ Ω

)−1

(D.32)

where we have dropped the ·∞ superscript to lighten the notation. This is the expression quoted
on the main text. Note that for convex loss functions, the problem in eq. (D.3) is strongly convex,
and therefore admit one and only one solution ŵ. This implies that the solution for the overlaps
(m?, q?) found by iterating the saddle-point equations above necessarily coincides with the overlaps
appearing in the expression for the generalisation error given by eq. (D.5). This means that the
replica symmetric fully characterises the generalisation performance in the convex case.

Appendix E. Further experimental results

Results for online SGD with the pre-trained dcGAN We also compared the dynamical equations
to simulations in the case of the dcGAN pre-trained on CIFAR10 images, see Fig 8. We see that in
this case, the equations capture the evolution of the pmse well and exactly predict the evolution of
the second-layer weights v. This is a crucial result, since we obtain these predictions from analytical
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Figure 9: The impact of the spectral density of the input-input covariance on learning. (Left):
Spectral density of the average covariance matrix of inputs drawn from four generative
models: (a) Random fully-connected network of Fig. 2, (b) fully connected generator with
inverse weights (see Sec. E), (c) dcGAN with random weights, and (d) dcGAN trained
on CIFAR10. (Right): We compare theory vs simulation for the training of two-layer
neural network on inputs x drawn from a two-layer, fully connected generative network
where the weights of the second layer are the matrix inverse of the first layer, Eq. (E.1).
D = 5000, N = 5000,M = K = 2, ṽm = 1, η = 0.2, g(x) = g̃(x) = erf(x/

√
2),

integration time step dt = 0.01.

expressions for the functions hkn(7) and hkj(8) that are only valid if the GEP holds. One can therefore
interpret the correct predictions for v based on the GEP as experimental evidence that the GEP
holds for this pre-trained convolutional generators. The results for the order parameters Q and R
reveal larger fluctuations after about 100N ∼ 105 SGD steps, for example for Q11 (blue line in top
right plot). One source of error here is numerical and due to the small size of the teacher network
(D = 100) to which we are comparing a theory that holds asymptotically, i.e. when N,D → ∞.
Such a small teacher would lead to deviations from the ODEs due to finite-size effects even for i.i.d.
Gaussian inputs. To confirm that these deviations are finite-size effects, we also verified our theory
for a different class of generative model, the aforementioned normalising flows, who have a larger
latent dimension D. As we see in Sec. 4.3, the ODEs perfectly agree with simulations for this model
with larger input dimension.

Generative model with strongly correlated weights Finally, we also constructed a generative
model with strongly correlated weights where there exists a dominant direction in the eigenspace
of the input-input covariance matrix Ωij = Exixj . We took a fully connected generative network
G : RN → RN , with two layers of weights A1 ∈ RN×N and A2 ∈ RN×N . We drew the elements
of A1 element-wise i.i.d. from the standard normal distribution, whereas the second-layer weights
A2 = inv(A1). After each layer, we used the sign activation function, so the generator’s output
function can be written as

x = G(c) = sign
(
inv(A1)sign

(
A1c

))
(E.1)
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On the left of Fig. 9, we show the spectra of the covariance matrices of various generators. The
leading eigenvalues are smallest for generators with random weights, such as the fully-connected
single-layer network (12) (a) and the dcGAN with random weights (c) that we used in Fig. 2. The
pre-trained dcGAN has a leading eigenvalue that is about an order of magnitude larger (d). The
generator with inverse weights (E.1) has an eigenvalue that is yet another order of magnitude larger.

The particular weight structure of the “inverse” generator also has a strong impact on the dynamics
of a two-layer network trained on its data, as we show on the right of Fig. 9. Notably, the length of
the weight vectors grows exponentially for a large portion of training time, while the second-layer
weights go to zero. We observed this behaviour consistently over several runs of this setup with
different weights for the teacher, generator and different initial weights for the student in each case.
Characterising the impact of a dominant direction in the data on the dynamics of two-layer neural
networks is an intriguing challenge that we leave for future work.
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