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Abstract
We consider a multi-agent reinforcement learning problem where each agent seeks to maximize a
shared reward while interacting with other agents, and they may or may not be able to communicate.
Typically the agents do not have access to other agent policies and thus each agent is situated in a
non-stationary and partially-observable environment. In order to obtain multi-agents that act in a
decentralized manner, we introduce a novel algorithm under the popular framework of centralized
training, but decentralized execution. This training framework first obtains solutions to a multi-
agent problem with a single centralized joint-space learner, which is then used to guide imitation
learning for independent decentralized multi-agents. This framework has the flexibility to use any
reinforcement learning algorithm to obtain the expert as well as any imitation learning algorithm to
obtain the decentralized agents. This is in contrast to other multi-agent learning algorithms that, for
example, can require more specific structures. We present some theoretical bounds for our method,
and we show that one can obtain decentralized solutions to a multi-agent problem through imitation
learning.
Keywords: Multi-agent Control, Imitation Learning, Optimal Control, Reinforcement Learning

1. Introduction

Reinforcement Learning (RL) is the problem of finding an action policy that maximizes reward
for an agent embedded in an environment (Sutton and Barto, 2018). It has recently has seen an
explosion in popularity due to its many achievements in various fields such as robotics (Levine
et al., 2016), industrial applications (Evans and Gao, 2017), game-playing (Mnih et al., 2015; Silver
et al., 2017, 2016), and the list continues. However, most of these achievements have taken place in
the single-agent realm, where one does not have to consider the dynamic environment provided by
interacting agents that learn and affect one another.

This is the problem of Multi-agent Reinforcement Learning (MARL) where we seek to find the
best action policy for each agent in order to maximize their reward. The settings may be cooperative,
and thus they might have a shared reward, or the setting may be competitive, where one agent’s gain
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is another’s loss. Some examples of a multi-agent reinforcement learning problem are: decentralized
coordination of vehicles to their respective destinations while avoiding collision, or the game of
pursuit and evasion where the pursuer seeks to minimize the distance between itself and the evader
while the evader seeks the opposite. Other examples of multi-agent tasks can be found in (Panait
and Luke, 2005a) and (Lowe et al., 2017).

The key difference between MARL and single-agent RL (SARL) is that of interacting agents,
which is why the achievements of SARL cannot be absentmindedly transferred to find success
in MARL. Specifically, the state transition probabilities in a MARL setting are inherently non-
stationary from the perspective of any individual agent. This is due to the fact that the other agents
in the environment are also updating their policies, and so the Markov assumptions typically needed
for SARL convergence are violated. This aspect of MARL gives rise to instability during training,
where each agent is essentially trying to learn a moving target.

In this work, we present a novel method for MARL in the cooperative setting (with shared
reward). Following the popular framwork of centralized training/learning but decentralized exe-
cution, our method first trains a centralized expert with full observability, and then uses this ex-
pert as a supervisor for independently learning agents. There are a myriad of imitation/supervised
learning algorithms, and in this work we focus on adapting DAgger (Dataset Aggregation) (Ross
et al., 2010) to the multi-agent setting. After the imitation learning stage, the agents are able to
successfully act in a decentralized manner. We call this algorithm Centralized Expert Supervises
Multi-Agents (CESMA). CESMA adopts the framework of centralized training, but decentralized
execution (Kraemer and Banerjee, 2016), the end goal of which is to obtain multi-agents that can
act in a decentralized manner.

2. Related works

The most straight-forward way of adapting single-agent RL algorithms to the multi-agent setting is
by having agents be independent learners. This was applied in (Tan, 1998), but this training method
gives instability issues, as the environment is non-stationary from the perspective of each agent
(Matignon et al., 2012; Busoniu et al., 2010; Claus and Boutilier, 1998). This non-stationarity was
examined in (Omidshafiei et al., 2017), and stabilizing experience replay was studied in (Foerster
et al., 2017a).

Another common approach to stabilizing the environment is to allow the multi-agents to com-
municate. In (Sukhbaatar et al., 2016b), they examine this using continuous communications so one
may backpropagate to learn to communicate. And in (Foerster et al., 2016a), they give an in-depth
study of communicating multi-agents, and also provide training methods for discrete communica-
tion. In (Paulos et al., 2018), they decentralize a policy by examining what to communicate and by
utilizing supervised learning, although they mathematically solve for a centralized policy and their
assumptions require homogeneous communicating agents.

Others approach the non-stationarity issue by having the agents take turns updating their weights
while freezing others for a time, although non-stationarity is still present (Egorov, 2016). Other at-
tempts adapt Q-learning to the multi-agent setting: Distributed Q-Learning (Lauer and Riedmiller,
2000) updates Q-values only when they increase, and updates the policy only for actions that are
not greedy with respect to the Q-values, and Hysteretic Q-Learning (Matignon et al., 2007) pro-
vides a modification. Other approaches examine the use of parameter sharing (Gupta et al., 2017)
between agents, but this requires a degree of homogeneity of the agents. And in (Tesauro, 2004),
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their approach to non-stationarity was to input other agents’ parameters into the Q function. Other
approaches to stabilize the training of multi-agents are in (Sukhbaatar et al., 2016a), where the
agents share information before selecting their actions. There is also recently CoDAIL (Liu et al.,
2020), where they use reasonable assumptions on the the correlation between policies, and in (Qu
et al., 2019) they examine multi-agents that are of nodes of a network and where each agent can
only communicate with its neighbor. A population-based training regime based on game-theoretic
ideas called Policy-Spaced Response Oracles (PSRO) (Lanctot et al., 2017) is given in (Muller et al.,
2020).

From a more centralized view point, (Oliehoek et al., 2008; Rashid et al., 2018; Sunehag et al.,
2017) derived a centralized Q-value function for MARL, and in (Usunier et al., 2016), they train a
centralized controller and then sequentially select actions for each agent. The issue of an exploding
action space was examined in (Tavakoli et al., 2018).

A few works that follow the framework of centralized training, but decentralized execution
are: RLar (Reinforcement Learning as Rehearsal) (Kraemer and Banerjee, 2016), COMA (Coun-
terfactual Multi-Agent), and also (Silva et al., 2018; Foerster et al., 2018) – where the idea of
knowledge-reuse is examined. In (Dobbe et al., 2017), they examine decentralization of policies
from an information-theoretic perspective. There is also MADDPG (Lowe et al., 2017), where they
train in a centralized-critics decentralized-actors framework; after training completes, the agents are
separated from the critics and can execute in a fully distributed manner.

In the flavor of inverse reinforcement learning and imitation learning, there is (Le et al., 2017),
where they incorporate structure learning with conventional imitation learning. And in MA-AIRL
(Yu et al., 2019), where they apply ideas from inverse reinforcement learning in order to discover
the reward policies for multi-agents, and similarly there is MA-GAIL (Song et al., 2018), where
they use a generative and adversarial framework in order to discover the proper reward functions.

For surveys of MARL, see articles in (Bu et al., 2008; Panait and Luke, 2005b). For a survey of
imitation learning, the interested reader can see (Osa et al., 2018).

3. Background

In this section we briefly review the requisite material needed to define MARL problems. Addition-
ally we summarize some of the standard approaches in general reinforcement learning and discuss
their use in MARL.

Dec-POMDP: A formal framework for multi-agent systems is called a decentralized partially-
observable Markov decision process (Dec-POMDP) (Bernstein et al., 2005). A Dec-POMDP is a
tuple (I,S, {Ai}, {Oi}, P,R) where I is the finite set of agents indexed 1 to M , S is the set of
states, Ai is the set of actions for agent i, and thus

∏M
i=1Ai is the joint action space, Oi is the

observation space of agent i, and thus
∏M
i=1Oi is the joint observation space, P = P (s′, o|s, a)

(where o = (o1, . . . , oM ) and similarly for the others) is the state-transition probability for the
whole system, and R : S ×

∏M
i=1Ai → R is the reward.

In the case when the joint observation o equals the world state of the system, then we call the
system a decentralized Markov decision process (Dec-MDP).

DAgger: The Dataset Aggregation (DAgger) algorithm (Ross et al., 2010) is an iterative im-
itation learning algorithm that seeks to learn a policy from expert demonstration. The main idea
is to allow the learning policy to navigate its way through the environment, and have it query the
expert on states that it sees. It does this by starting with a policy π̂2 which learns from the dataset of
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expert trajectories D1 through supervised learning. Using π̂2, a new dataset is generated by rolling
out the policy and having the expert provide supervision on the decisions that the policy made. This
new dataset is aggregated with the existing set into D2 ⊃ D1. This process is iterated, i.e. a new
π̂3 is trained, another new dataset is obtained and aggregated into D3 ⊃ D2 and so on. Learning
in this way has been shown to be more stable and have nicer convergence properties as learning
utilizes trajectories seen from the learner’s state distribution, as opposed to only the expert’s state
distribution.

Policy Gradients (PG): One approach to RL problems are policy gradient methods (Sutton
et al., 2000): instead of directly learning state-action values, the parameters θ of the policy πθ are
adjusted to maximize the objective,

J(θ) = Es∼pπ ,a∼πθ [Q
π(s, a)] ,

where pπ is the state distribution from following policy π. The gradient of the above expression can
be written as (Sutton et al., 2000; Sutton and Barto, 2018):

∇θJ(θ) = Es∼pπ ,a∼πθ [(∇θ log πθ(s|a))Q
π(s, a)].

Many policy gradient methods seek to reduce the variance of the above gradient estimate, and thus
study how one estimatesQπ(s, a) above (Schulman et al., 2015). For example, if we letQπ(s, a) be
the sample return Rt =

∑T
i=t γ

i−tri, then we get the REINFORCE algorithm (J. Williams, 1998).
Or one can choose to learn Qπ(s, a) using temporal-difference learning (Sutton, 1988; Sutton and
Barto, 2018), and would obtain the Actor-Critic algorithms (Sutton and Barto, 2018). Other policy
gradients algorithms are: DPG (Silver et al., 2014), DDPG (Lillicrap et al., 2015), A2C and A3C
(Mnih et al., 2016), to name a few.

Policy Gradients have been applied to multi-agent problems; in particular the Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) (Lowe et al., 2017) uses an actor-critic approach to
MARL, and this is the main baseline we test our method against. Another policy gradient method is
by (Foerster et al., 2017b) called Counterfactual Multi-Agent (COMA), who also uses an actor-critic
approach.

4. Methods

In this section, we explain the motivation and method of our approach: Centralized Expert Super-
vises Multi-Agents (CESMA), which falls under the popular framework of centralized training but
decentralized execution.

4.1. Treating a multi-agent problem as a single-agent problem

Intuitively, an optimal strategy of a multi-agent problem could be found by a centralized expert with
full observability. This is because the centralized controller has the most information available about
the environment, and therefore would not pay a high of cost of partial-observability that independent
learners might.

To find this centralized expert, we treat a multi-agent problem as a single agent problem in the
joint observation and action space of all agents. This is done by concatenating the observations of
all agents into one observation vector for the centralized expert, and the expert learns outputs that
represent the joint actions of the agents.
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Our framework does not impose any other particular constraints on the expert. Any expert
architecture that outputs an action that represents the joint-actions of all of the agents may be used.
Due to that, we are free to use any standard RL algorithm for the expert such as DDPG, DQN, or
potentially even analytically derived experts.

In the case of collaborative multi-agent reinforcement learning, the multi-agents have a shared
reward so that there is global objective function that must be maximized based on the collaborative
efforts of the agents:

max
(π1,...,πM )

V(π1,...,πM )(s0) = E

[
T−1∑
t=0

γtR(at, st) | s0, (π1 . . . , πM )

]

where γ is a discount factor (moreso needed in the case that T = ∞), st represents a global state
vector, and at = (a1, . . . , aM ) = (π1(o1), . . . , πM (oM )), where there is an observation function
f(st) = (o1, . . . , oM ) which outputs the observations of the individual agents.

We re-emphasize that the goal of Multi-Agent Reinforcement Learning is to obtain agents that
only take in as input their local observations during the execution phase.

4.2. Curse of dimensionality and some reliefs

When training a centralized expert, both the observation space and action space can grow exponen-
tially. For example, if we use a DQN for our centralized expert then the number of output nodes
will typically grow exponentially with respect to the number of agents. This is due to each output
needing to correspond to an element in the joint action space

∏M
i=1Ai.

One way to deal with the exponential growth in the joint action space is, rather than requiring
the centralized expert to move all agents simultaneously, we can restrict it to moving only one agent
at a time, while the others default to a “do nothing” action (assuming one is available). Effectively
this mean the growth in the action space is now linear with respect to the number of agents. We
provide an experiment where we were able to decentralize such an expert in Section 6.5.

This problem has also been studied by QMIX (Rashid et al., 2018) and VDNs (Value Decompo-
sition Networks) (Sunehag et al., 2017), where exponential scaling of the output space is solved by
having separate Q values for each agent and then using the sum as a system Q. Due to the nature of
the reduction technique, these approaches require their own theorems of convergence. Other tech-
niques such as action branching (Tavakoli et al., 2018) have been considered. An experiment where
we decentralize QMIX/VDN-like centralized expert models (which grow linearly in the number of
output nodes) can be found in Section Section 6.5.

In our experiments, we use DDPG (with Gumbel-Softmax action selection if the environment is
discrete, as MADDPG does also) to avoid the exploding number of input nodes of the observation
space, as well as exploding number of output nodes of the action space. Under this paradigm, the
input and output nodes only grow linearly with the number of agents, as the output nodes of a neural
network in DDPG is the chosen joint action, as opposed to a DQN, where the output nodes must
enumerate all possible joint actions.

4.3. CESMA for multi-agents without communication

To perform imitation learning to decentralize the expert policy, we adapt DAgger to the multi-agent
setting. But we note that the proposed framework could handle a myriad of imitation learning
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Figure 1: The centralized expert labels guide supervised learning for the multi-agents. The multi-
agents make up the disconnected components of a single-agent learner.

algorithms, such as Forward Training (Ross and Bagnell, 2010), SMILe (Ross and Bagnell, 2010),
SEARN (Daumé et al., 2009), and more.

There are many ways DAgger can be applied to multi-agents, but we implement a method that
best allows the theoretical analysis from (Ross et al., 2010) to apply: Namely after training the
expert, we do supervised learning on a single neural network with disconnected components, each
corresponding to one of the agents.

In more detail, after training a centralized expert π∗, we initialize theM agents π1, . . . , πM , and
initialize the dataset of observation-label pairs D. The agents then step through the environment,
storing each observation o = (o1, . . . , oM ) (where oi is agent i’s observation) the multi-agents en-
counter, along with the expert action label a∗ = π∗(o) (where a∗ = (a∗1, . . . , a

∗
M ) and a∗i is agent

i’s expert label action); so we store the pair (o, a∗) in D at each timestep. After D has reached a
sufficient size, at every kth time step (chosen by the practitioner; we used k = 1 in our experi-
ments), we sample a batch from this dataset {(o(β), a∗,(β))}Bβ=1, and then distribute the data batch

{(o(β)i , a
∗,(β)
i )}Bβ=1 to agent i, for supervised learning; we note the training can be done sequentially

or parallel. Having a shared dataset of trajectories in this way allows us to view (π1, . . . , πM ) as a
single neural-network with disconnected components, and thus the error bounds from (Ross et al.,
2010) directly apply, as discussed in Section 5. See Figure 1 for a diagram. Pseudo-code for our
method is contained in Appendix B. (In Appendix A.1 we test whether giving each agent its own
dataset would make a difference, and it did not seem so).

The aforementioned procedure is sufficient when the agents do not need to communicate, but
when communication is involved we have to modify the above method.

4.4. CESMA for multi-agents with communication

The main insight for training an agent’s communication action is that we can view a broadcasting
agent and the receiving agent as one neural network connected via the communication nodes; then
in this way we can backpropagate the action loss of the receiving agent through to the broadcasting
agent’s weights.
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Figure 2: Decentralizing multi-agents that communicate. The top diagram shows how we update
agent i’s communication action by backpropagating the supervised loss of other agents.
The red portions highlight the trail of backpropagation. The bottom diagram shows how
we update the action of agent i.

In more detail, due to communication, the multi-agents now have two types of observations and
actions. Thus, we denote the physical actions (i.e. non-communication actions) as a = (a1, . . . , aM )
and the communication actions/broadcasts as b = (b1, . . . , bM ). For notational simplicity, let us
assume that all agents can communicate with each other and each agent broadcasts the same thing
to all other agents. So we denote ci = (b1, . . . , bi−1, bi+1, . . . , bM ) as agent i’s observation of the
broadcast by other agents, and where bj is agent j’s broadcast to all other agents. So for each agent
i, we have πi(oi, ci) = (ai, bi). And we also denote πi(oi, ci)action = ai, and πi(oi, ci)comm = bi.

For training, as before we have a shared dataset of observations D. But as the agents step
through the environment, at each timestep we now store ((o, c), ô, â∗), where (o, c) is the joint
physical and communication observation of the previous timestep, ô is the physical observation
at the current timestep, and â∗ = π∗(ô) = (â∗1, . . . , â

∗
M ) is the expert action label; these are the

necessary ingredients for training.

Then to train, we first obtain a sample from D (practically we perform batched training, but
for simplicity we consider one sample), say ((o, c), ô, â∗), and then we take the policies at the
most-recent update πcurrent

1 , . . . , πcurrent
M and form their broadcasts b′k = πcurrent

k (ok, ck)comm for k =
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1, . . . ,M . Then in principle, we want to minimize the loss function,

min
(π1,...,πM )

M∑
j=1

`(â∗j , πj(ôj , ĉj)action),

where
ĉj = (b′1, . . . , b

′
j−1, b

′
j+1, . . . , b

′
M ), j = 1, . . . ,M.

In practice, we train each agent i separately by minimizing their communication loss and action loss
which we describe below.

In order to train agent i’s communication action, we make the insight that we can backpropagate
the supervised learning loss of other agents through the communication nodes to agent i’s parame-
ters, precisely because the communication output of agent i becomes an observational input for the
other agents. Then to train the communication action of agent i, we sample ((o, c), ô, â∗) from D,
and seek to minimize the communication loss function,

min
πi

∑
j 6=i

`(â∗j , πj(ôj , ĉ
′
j)action), (comm. loss for agent i)

where
ĉ′j = (b′1, . . . , πi(oi, ci)comm, . . . , b

′
j−1, b

′
j+1, . . . , b

′
M ),

where we assumed without loss of generality that i < j. And so because ĉ′j depends on πi, then we
can backpropagate agent j’s supervised loss to agent i’s parameters. To train the physical action of
agent i, we sample ((o, c), ô, â∗) from D and want to minimize

min
πi

`(â∗i , πi(ôi, ĉ
′
i)action), (action loss for agent i)

where ĉ′i = (b′1, . . . , b
′
i−1, b

′
i+1, . . . , b

′
M ).

For a graphic overview, we give a diagram in Figure 2 for the backpropagation of the commu-
nication loss and the action loss, and provide pseudocode in Algorithm 2 in Appendix B. In some
sense, our method can be viewed as a hybrid of experience replay and supervised learning.

In this way, we have alleviated a bit the issue of sparse rewards for communication (Foerster
et al., 2016b, Section 4). Indeed, communication actions suffer from sparse rewards as a reward is
only bestowed on the broadcasting agent when all the following align: it sends the right message,
the receiving agent understands the message, and then acts accordingly. In our method with an
expert supervisor, the correct action by the acting agent is clear.

5. Theoretical analysis: No-regret analysis and guarantees

In our approach we are adapting (Ross et al., 2010) to the multi-agent setting, and thus we present
a direct rephrasing of (Ross et al., 2010, Theorem 3.2). This is possible because we can view the
multi-agents as a single-agent learner with disconnected components (as described in Section 4.3).
This analysis takes the form of a no-regret analysis, and so provides theoretical guarantees on the
reward obtainable by the agents (which may not be the same as the expert). Notationally,

• we let ` be a surrogate loss of matching the expert policy π∗ (e.g. the expected 0-1 loss at
each state) and denote r = r(s, a) the instantaneous reward which we assume to be bounded
in [0, 1],
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• (π
(N)
1 , . . . , π

(N)
M ) are the multi-agents after N updates of the policy using any supervised

learning algorithm, and where each update is done after a T -step trajectory with T the task
horizon,

• d
(π

(N)
1 ,...,π

(N)
M )

is the average distribution of observations that come from following the multi-

agent policy (π
(N)
1 , . . . , π

(N)
M ) from a given initial distribution,

• R(π(N)
1 , . . . , π

(N)
M ) is the cumulative reward after an episode of the task,

• and Uπ
′

t (s, π) is the reward after t steps of executing π in only initial state s, and then follow-
ing policy π′ thereafter.

Then viewing the multi-agent policy as a joint single-agent policy we obtain the following guarantee
on the reward based on how well the multi-agents match the expert:

Theorem 1 If the number of policy updates N is O(T logk(T )) for sufficiently large k ≥ 0, then
there exists a joint multi-agent policy (π̂1, . . . , π̂M ) ∈ {(π(i)1 , . . . , π

(i)
M )}Ni=1 such that

R(π̂1, . . . , π̂M ) ≥ R(π∗)− uTµN −O(1),

where u ≥ 0 is such that Uπ
∗

T−t+1(s, π
∗)− Uπ∗T−t+1(s, a) ≤ u for all actions a and t ∈ {1, . . . , T},

and

µN = min
(π1,...,πM )

1

N

N∑
i=1

Eo∼ d
(π

(i)
1 ,...,π

(i)
M

)
[`(o, (π1, . . . , πM )].

Here µN is best described as the true loss of the best learned policy in hindsight. The condition
Uπ
∗

T−t+1(s, π
∗) − Uπ∗T−t+1(s, a) ≤ u can best be described as saying the reward lost from not fol-

lowing the expert at initial state s, but following it after, is at most u. We further remark that µN
is a bound on the performance gap between the multi-agents and centralized expert that may not
necessarily vanish, but rather is best viewed as a guarantee on the reward obtainable by the multi-
agents. The role of partial observability and communication can be considered orthogonal to the
current discussion so we leave this in the Appendix (Section F).

6. Experiments

6.1. Comparison with Decentralized Learning in a Complex Environment

Here we compare our centralized learning (but decentralized execution) method with decentralized
learning. In order to highlight the capabilities of CESMA, as well as the pitfalls of decentralized
learning, we conduct an experiment in a complex environment developed for multi-agent training in
the popular strategy videogame, StarCraft 2 (Samvelyan et al., 2019). In this environment, each unit
receives the following local observations for each allied and enemy unit: distance, relative x, relative
y, health, shield, and unit type. The discrete action space consists of: movement (4 directions), an
attack action available for each enemy unit, a stop, and a no-op (dead agents can only take no-op).
The overall goal is to maximize the win rate, but rewards are given based on hit-point damage dealt
and enemy units killed, as well as a special bonus for winning the battle. The units also have sight-
range/limited visibility, so this is a partially observable environment from the perspective of each
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agent. Here, our multi-agents play an 8 vs 8 battle with heterogeneous units (3 Stalker units and 5
Zealots units), against AI created by game developers under the “very hard” difficulty (the hardest
one before allowing enemies to cheat). See Figure 3 for a screenshot of the environment.

In our experiments, we follow the comparison procedures in (Samvelyan et al., 2019), and use
their implementation of the decentralized learning method, Independent Q-Learning (IQL). Thus
our multi-agents consists of recurrent neural networks (RNNs) with 64 hidden units, and we use
five independent runs of IQL and CESMA to evaluate performance – namely we measure the test
battle-win percentage. Our expert neural network has the same architecture as the multi-agents, but
now receives the concatenated global observations as input, and outputs Q-values for each agent,
and we take the sum of these Q-values as the expert Q-value – this means the action space only
grows linearly with the multi-agents, just like in the IQL case. This is well justified in (Sunehag
et al., 2017; Rashid et al., 2018). After training the centralized expert, we decentralize the one with
the highest test win percentage in order to obtain decentralized multi-agents. Further experimental
setup details can be found in the Appendix D.1, and hyperparameters in E.1.

The results can be seen in Figure 4, where we plot the median win percentage, as well as the
max and min envelopes, over five independent runs. As can be seen, this environment is tough for
the decentralized learner, but for our centralized expert we are able to achieve high win-rates, which
can then be decentralized to find the same high win-rates (sometimes even 100%). This shows we
can effectively decentralize even complex centralized experts in complicated environments such as
StarCraft 2.

Later in Section 6.4, we discuss the difficulty that decentralized learners have in learning how
to communicate.

Figure 3: A screenshot of the StarCraft 2 environment used in our experiment. The green-colored
units are the allies, and the red-colored units are the enemies. This is an 8 vs 8 envi-
ronment against an AI coded by the game developers, under the “very hard” difficulty.
The units are heterogeneous, and due to sight-range/limited visibility, each agent only has
partial observability (i.e. fog of war).

6.2. Cooperative Navigation

Here, our experiments are conducted in the Multi-Agent Particle Environment (Mordatch and Abbeel,
2017; Lowe et al., 2017) provided by OpenAI. In order to conduct comparisons to MADDPG, we
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Figure 4: Learning curves for the StarCraft 2 multi-agent environment based on five independent
runs. The middle bold line represents the median win percentage, and the envelopes
represent the max and min. We compare our method (CESMA) with a decentralized
learning method (IQL). For CESMA, the first red curve represents training of the central-
ized expert, and the second red curve represents decentralization. As can be seen, this
environment is tough for a decentralize learner, but utilizing centralized training and then
decentralization CESMA is able to achieve high win-rates (sometimes even 100% win
rates).

also use the DDPG algorithm with the Gumbel-Softmax (Jang et al., 2016; Maddison et al., 2016)
action selection as they do. For the single-agent centralized expert neural network, we always make
sure the number of parameters/weights matches (or is lower) than that of MADDPG’s. For the
decentralized agents, we use the same number of parameters as the decentralized agents in MAD-
DPG (i.e. the actor part). Following their experimental procedure, we average our experiments over
three runs, and plot the minimum and maximum reward envelopes. And for the decentralization,
we trained three separate centralized experts, and used each of them to obtain three decentralized
policies. Full details of our hyperparameters and the environments are in the appendix. We note
MADDPG cannot be used in the above environment, StarCraft 2, as it only works on continuous
action spaces.

Here we examine the situation ofN agents occupyingN landmarks in a 2D plane, and the agents
are either homogeneous or nonhomogenous, and have control over their acceleration. They are also
allowed to collide and bounce off each other, although collisions are penalized in this environment,
and thus to achieve a high reward collisions must be avoided. The (continuous) observations of each
agent are the relative positions of other agents, the relative positions of each landmark, and its own
velocity. The agents do not have access to others’ velocities so we have partial observability. The
reward is based on how close each landmark has an agent near it, and the actions of each agent are
discrete: up, down, left, right, and do nothing.

In Figure 5, we see that CESMA, when combining the number of samples in training the expert
as well as decentralization, is able to achieve the same reward as MADDPG while utilizing fewer
samples, i.e. CESMA is more sample efficient (the dashed red line is just a visual aid that extrapo-
lates the reward for the decentralized curves, because we stop training once the reward sufficiently
matches MADDPG).
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Figure 5: Reward curves for various multi-agent environments. We train the centralized expert until
its reward matches or betters MADDPG’s reward. Then we decentralize this expert until
we achieve the same reward as the expert. The first red curve is the reward curve of the
centralized expert, and the second red curve is reward curve for the decentralized agents.
The dashed red line is a visual aid extrapolating the reward for the decentralized curves,
because we stop training the agents once the reward matches the expert. We see that
CESMA is more sample-efficient than MADDPG.

In Figure 6, we also noticed that the centralized expert is able to find a policy that achieves a
higher reward than a converged MADDPG; and we were able to decentralize this expert to obtain
decentralized multi-agent policies that achieved higher rewards than MADDPG.

6.3. Cooperative Navigation with Communication

In these experiments, our experimental parameters are the same as in the Cooperative Navigation
case above. Here we adapt CESMA to a task that involves communication. In this scenario, the
communication action taken by each agent at time step t− 1 will appear as an observation to other
agents at time step t. Although we require continuous communication to backprop, in practice we
can use the softmax operator to provide the bridge between the discrete and continuous, as done in
MADDPG (see the Gumbel-Softmax (Jang et al., 2016)). And during decentralized execution, our
agents are able to act with discrete communication inputs.

We examine two scenarios for CESMA that involve communication, and use the training sce-
nario described in section 4.4. The first scenario called the “speaker and listener” environment has
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Figure 6: Reward curves for decentralization of a centralized expert policy that obtains a better re-
ward than a converged MADDPG and independent DDPG. The dashed lines represent
final rewards after convergence of the algorithms (i.e. no reward improvement after many
episodes), and the solid red line represents decentralization of the expert. This demon-
strates that we are able to successfully decentralize expert policies that achieve better
rewards than a converged MADDPG and independent DDPG. In other words, CESMA is
able to find better optimum that MADDPG and independent DDPG were not able to find.

a speaker who broadcasts the correct goal landmark (in a “language” it must learn) out of a possible
3 choices, and the listener, who is blind to the correct goal landmark, must use this information to
move there. Communication is a necessity in this environment. The second scenario is cooperative
navigation with communication and here we have three agents whose observation space includes the
goal landmark of the other agent(s), and not their own, and there are five possible goal landmarks.

We see in Figure 5 that we achieve a higher reward in a more sample efficient manner. For the
speaker and listener environment, using CESMA the decentralized multi-agents are able to imme-
diately learn the correct communication protocol in order to solve the environment. And MADDPG
has a much higher variance in its convergence.

We also see in Figure 6 that the centralized expert was again able to find a policy that achieved
a higher reward than a converged MADDPG, and we were able to successfully decentralize this to
obtain a decentralized multi-agent policy achieving the same superior reward as the expert.
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6.4. The issue with learning communication under decentralized learning

It is worth noting in Figure 6, that the decentralized learner – ind. DDPG – has a hard time in the
communicative environments, as compared to the centralized learning but decentralized execution
methods of CESMA and MADDPG. In fact, it converges to a degenerate/wrong solution! This
is because the learning of communication suffers from sparse rewards. The primary issue is that
agents do not receive a reward signal on communication, and thus must figure out a protocol for
themselves. This problem is exacerbated by the ambiguity of whether a bad reward outcome was
due to the communications of a broadcasting agent, or the actions of the receiving agent. Also in
Figure 6, we see MADDPG suffers a bit from this too as it converges to a lower reward than CESMA
in the communicative environments.

The advantage of CESMA is that there exists an expert action, and thus we have removed the
ambiguity of whose fault it was that the multi-agent team received a bad reward – we know which
correct action to take. Furthermore, due to the structure of the neural networks (see Figure 2), we are
able to backpropagate this expert error signal all the way to the weights of the broadcasting agent’s
communication nodes – this means the broadcasting agents now has a direct signal for updating
their weights in order to improve communication. In this way, we have accelerated learning the
communication protocol by taking advantage of backpropagation.

6.5. DQNs and One-at-a-time Expert
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Figure 7: Reward curves for decentralizing DQNs. The left graph shows reward curves for the
exponential DQN and a centralized VDN (i.e. summing the Q-values). The middle graph
shows the result of decentralizing these experts. The right graph shows the reward curves
for decentralizing a centralized expert that can only move one agent at a time. We note
the decentralized multi-agents achieve a better reward than the one-at-a-time centralized
expert, because the agents have learned to move simultaneously.

Here we examine decentralizing DQNs. We note further details of hyperparameters and de-
scriptions can be found in the appendix.

In the first set of experiments, we used the cross entropy loss for supervised learning, and used
the cooperative navigation environment with 3 nonhomogenous agents. Here we examined the ex-
ponential actions DQN, which is just a naive implementation of DQNs for the multi-agents, and a
Centralized VDN/sum-of-Q-values DQN where the system Q-values are the sum of the individual
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agent Q-values (see Section 4.2). Reward curves can be found in Figure 7 (left-most and mid-
dle). As can be seen, both the exponential and sum-of-Q-values DQNs are able to successfully be
decentralized.

In a second experiment, we examine decentralizing a centralized expert that is restricted to only
move one agent at a time, while others “do nothing” (one may say it’s a “one-at-a-time” expert).
This is another strategy to reduce the exploding number of actions as the number of agents increase
– we now have linear growth of actions as the number of agents grows. We note this dimensionality
reduction has better convergence guarantees than the sum-of-Q-values approach (see Section 4.2
for a discussion). The experiments are done with six homogeneous agents (without communica-
tion). In Figure 7 (right-most), we see that the agents are able to achieve a better reward than the
centralized expert. Examining the motion of the decentralized agents, we found they have learned
to move simultaneously. This is an interesting technique in the case where we want decentralized
multi-agents that move simultaneously, but we don’t have enough computational resources to find
a centralized expert that moves agents simultaneously (because of the exploding action space). So
we do not have to spend as many computational resources for learning the centralized expert by
training a one-at-a-time expert, and when decentralizing we can leverage the natural inclination of
decentralized multi-agents to move simultaneously.

7. Conclusion

We propose a MARL algorithm, called Centralized Expert Supervises Multiagents (CESMA), which
takes the popular training paradigm of centralized training, but decentralized execution. The algo-
rithm first trains a centralized expert policy, and then adapts DAgger to obtain decentralized policies
that execute in a decentralized fashion. We also formulated an approach that enables multi-agents
to learn a communication protocol, which is notoriously hard for decentralized agents to learn. Ex-
periments in a variety of tasks show that CESMA can train successful decentralized multi-agent
polices at a low sample complexity Notably, the decentralization protocol often is able to achieve
the same levels of cumulative reward as a centralized controller, which in our experiments often
achieves higher rewards than the competing methods MADDPG and independent DDPG. And in
particular, we demonstrate successful decentralization in even complex tasks such as StarCraft 2,
where decentralized learners had a tough time learning.
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Appendix

Appendix A. More Experiments

All experiments, with the exception of section A.2, were conducted over three runs, following the
example of (Lowe et al., 2017). And all experiments, with the exception of when using DQNs, had
the same hyperparameters as in the main paper (see Appendix E for the hyperparameters).

A.1. Experiment where each agent has its own dataset of trajectories
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Figure 8: Reward curves where each agent has its own dataset of trajectories it learns from.

Here we describe an experiment where each agent has its own individual dataset of trajectories,
versus a shared dataset. Namely, we plot the learning curves for decentralizing a policy in the two
cases: (1) When each agent has its own dataset of trajectories, or (2) when there is a shared dataset of
trajectories (which is the one we use in the experiments of the paper). We tested on the cooperative
navigation environment with 3 nonhomogeneous agents. We hypothesized that the nonhomogeneity
of the agents would have an effect on the shared reward, but this turned out not to be so. But it is
interesting to note that in the main text, we found that the some agents had a bigger loss when doing
supervised learning from the expert.
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A.2. Reward vs. loss, and slow and fast learners
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Figure 9: Reward vs. loss, and loss vs. episode.

In our experiments with cooperative navigation, we reran the experiments in a truer DDPG fash-
ion by solving a continuous version of the environment, and used the mean-squared error for the
supervised learning. We examined the loss in the cooperative navigation task with 3 agents, both
homogeneous and nonhomogeneous agents. We plot the figures in Figure 9. We found that in these
cases, the reward and loss were negatively correlated as expected, namely that we achieved a higher
reward as the loss decreased. In the nonhomogeneous case, we plot each individual agents’ reward
vs its loss and found that the big and slow agent had the biggest loss, followed by the medium
agent, and the small and fast agent being the quickest learner. This example demonstrates that in
nonhomogeneous settings, some agents may be slower to imitate the expert than others.

We also observe that there is a decrease in marginal reward vs loss – that is, at a certain point,
one needs to obtain a much lower loss for a diminishing gains in reward. The hyperparameters are
the same as in the main paper, described in section Appendix E.
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Appendix B. Pseudo-algorithm of CESMA (without communication)

Algorithm 1 gives detailed pseudocode for CESMA without communicating agents. The notation
follows the main paper.

Algorithm 1 CESMA: Centralized Expert Supervises Multi-Agents
Require: A centralized policy π∗ that sufficiently solves the environment.
Require: M agents π1, . . . πM , observation buffer D for multi-agent observations, batch size B

1: while π1, . . . , πM not converged do
2: Obtain observations o1, . . . , oM from the environment
3: Obtain agents’ actions, a1 = π1(o1), . . . , aM = πM (oM )
4: Obtain expert action labels a∗i = π∗(o1, . . . , oM )i, for i = 1, . . . ,M
5: Store the joint observation with expert action labels ((o1, a∗1), . . . , (oM , a

∗
M ) in D

6: if |D| sufficiently large then
7: Sample a batch of B multi-agent observations {((o(β)1 , a

∗(β)
i ), . . . , (obM , a

∗(β)
M ))}Bβ=1

8: Obtain πnew
i by performing supervised learning for πi where the observation-label pairs

are {(o(β)i , a
∗(β)
i )}Bβ=1.

9: πi ← πnew
i

10: end if
11: end while

Appendix C. Pseudo-code of CESMA with communicating agents

Algorithm 2 gives detailed pseudocode for CESMA with communicating agents. The notation
follows the main paper.
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Algorithm 2 CESMA: Centralized Expert Supervises Multi-Agents (Communicating Agents)
Require: A centralized policy π∗ that sufficiently solves the environment.
Require: M initial agents π1, . . . πM , observation bufferD for multi-agent observations, batch size

B
Require: `, the supervised learning loss

1: while π1, . . . , πM not converged do
2: Obtain the observations and communications {(oi, ci)}Mi=1 from the environment.
3: With these observations, obtain actions and step through the environment, to get new obser-

vations {ôi}Mi=1.
4: Store the physical and communication observations together along with the expert label(

((o1, c1), ô1, â
∗
1), . . . , ((oM , cM ), ôM , â

∗
M )
)

in D, where â∗i = π∗(ô1, . . . , ôM )i.
5: if |D| sufficiently large then
6: Sample a batch of B multi-agent observations {((o(β)1 , c

(β)
1 ), ô

(β)
1 , â

∗,(β)
1 ),

. . . , ((o
(β)
M , c

(β)
M ), ô

(β)
M , â

∗,(β)
M )}Bβ=1

7: Obtain the up-to-date communication actions from each agent: b(β)
′

k = πk(o
(β)
k , c

(β)
k )comm

8: for each agent i = 1 to M do
9: Communication loss:

10: For each agent j 6= i, obtain the up-to-date communication ĉ(β)j , which contains agent
i’s communication action to agent j, so we can backprop to agent i’s weights

11: Obtain the communication loss,

communication loss =
1

B

B∑
β=1

1

M − 1

M∑
j=1,j 6=i

`(â
∗,(β)
j , πj(ô

(β)
j , ĉ

(β)′

j )action)

where the subscript “action” denotes the physical action (and not the communication
action), and where

ĉ
(β)′

j = (b
(β)′

1 , . . . , πi(o
(β)
i , c

(β)
i ), . . . , b

(β)′

j−1, b
(β)′

j+1, . . . , b
(β)′

M )

12: Action loss:
13: Obtain the action loss:

action loss =
1

B

B∑
β=1

`(â
∗,(β)
i , πi(ô

(β)
i , ĉ

(β)
i ))action)

where the subscript “action” denotes the physical action (and not the communication
action), and where,

ĉ
(β)′

i = (b
(β)′

1 , . . . , b
(β)′

i−1 , b
(β)′

i+1 , . . . , b
(β)′

M )

14: Update:
15: Update the weights of πi where the total loss equals the action loss plus the communi-

cation loss, to obtain πnew
i .

16: end for
17: Set πi ← πnew

i , for i = 1, . . . ,M .
18: end if
19: end while
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Appendix D. Environments used in the experiments

D.1. StarCraft 2

We use the StarCraft 2 environment (Samvelyan et al., 2019) in order to have a complex environment
in which to test the effectiveness of CESMA against decentralized learning. In this environment,
there are 8 allied units and 8 enemy units, and the allied units are the multi-agents whose policies
should be learned, while the enemy units are controlled by AI created by the game developers,
under the “very hard” difficulty setting – the hardest one before allowing the enemy to cheat. Each
unit takes in the following properties of each allied and enemy unit: distance, relative x, relative
y, health, shield, and unit type. Shields are an additional source of protection before damage to
health can be dealt. The action space consists of a move action (4 directions), an attack option (for
each enemy unit), a stop, and a no-op (dead agents can only choose no-op). Agents also have a
sight-range/limited visibility, so this creates a partially-observable environment for each agent. The
ultimate goal is to maximize the win rate, but rewards are given based on hit-point damage dealt,
enemy units killed, and a special bonus for winning the battle. During each episode, the agents
are given local observations at each timestep. If an agent dies, then the only action allowable for
this agent is no-op. We note that each episode has varying timesteps, and our learning curve Figure
4 plots median test battle-win percentage vs timesteps, as done in (Samvelyan et al., 2019). And we
in no way change the environment defaults. Here our scenario consists of an 8 vs 8, where each
team has 3 Stalker units and 5 Zealots units. An image of the environment is shown in Figure 3.

In order to be perfectly fair, we follow the comparison procedure of (Samvelyan et al., 2019)
and use their implementation of Independent Q-Learning (IQL). Thus, we perform five indepen-
dent runs of IQL and CESMA, and compute the median win percentages. For both methods, the
decentralized multi-agents are RNNs with 64 hidden units that only receive local observations. For
the centralized expert of CESMA, we use the same architecture except now the input is the con-
catenated observations of all agents, and the outputs are the Q-values for each agent, and we take
the sum of these Q-values to construct the expert Q-value – this is well justified in (Sunehag et al.,
2017; Rashid et al., 2018). After training the centralized expert for 2 million timesteps, we choose
the expert with the best reward to decentralize.

D.2. Cooperative navigation

The goal of this scenario is to have N agents occupy N landmarks in a 2D plane, and the agents are
either homogeneous or heterogeneous. The environment consists of:

• Observations: The (continuous) observations of each agent are the relative positions of other
agents, the relative positions of each landmark, and its own velocity. Agents do not have
access to other’s velocities, and thus each agent only partially observes the environment (aside
from not knowing other agents’ policies).

• Reward: At each timestep, if Ai is the ith agent, and Lj the jth landmark, then the reward rt
at time t is,

rt = −
N∑
j=1

min {‖Ai − Lj‖ : i = 1, . . . , N}
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This is a sum over each landmark of the minimum agent distance to the landmark. Agents
also receive a reward of −1 at each timestep that there is a collision.

• Actions: Each agents’ actions are discrete and consist of: up, down, left, right, and do nothing.
These actions are acceleration vectors (except do nothing), which the environment will take
and simulate the agents’ movements using basic physics (i.e. Newton’s law).

Figure 10: Example of cooperative navigation environment with 6 nonhomogeneous agents. The
agents (blue) must decide how best to cover each landmark (grey).

D.3. Speaker listener

In this scenario, the goal is for the listener agent to reach a goal landmark, but it does not know which
is the goal landmark. Thus it is reliant on the speaker agent to provide the correct goal landmark.
The observation of the speaker is just the color of the goal landmark, while the observation of the
listener is the relative positions of the landmark. The reward is the distance from the landmark.

• Observations: The observation of the speaker is the goal landmark. The observation of the
listener is the communication from the speaker, as well as the relative positions of each goal
landmark.

• Reward: The reward is merely the negative (squared) distance from the listener to the goal
landmark.

• Actions: The actions of the speaker is just a communication, a 3-dimensional vector. The
actions of the listener are the five actions: up, down, left, right, and do nothing.
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Figure 11: Example of the speaker and listener environment. The speaker (grey) must communicate
to the agent which colored landmark to go towards (blue in this case).

D.4. Cooperative navigation with communication

In this particular scenario, we have one version with 2 agents and 3 landmarks, and another version
with 3 agents and 5 landmarks. Each agent has a goal landmark that is only known by the other
agents. Thus the each agent must communicate to the other agents its goal. The environment
consists of:

• Observations: The observations of each agent consist of the agent’s personal velocity, the
relative position of each landmark, the goal landmark for the other agent (an 3-dimensional
RGB color value), and a communication observation from the other agent.

• Reward: At each timestep, the reward is the sum of the distances between and agent and its
goal landmark.

• Actions: This time, agents have a movement action and a communication action. The move-
ment action consists of either not doing anything, or outputting an acceleration vector of
magnitude one in the direction of up, down, left, or right; so do nothing, up, down, left right.
The communication action is a one-hot vector; here we choose the communication action to
be a 10-dimensional one-hot vector.
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Figure 12: Example of cooperative navigation environment with communication. We have 3 agents
and 5 landmarks. The lightly colored circles are agents and they must go towards their
same-colored landmark.

Appendix E. Hyperparameters

E.1. StarCraft 2

For the Independent Q-Learner (IQL), we use the same hyperparameters in (Samvelyan et al., 2019),
namely this is an RNN with a fully-connected layer taking in the input, an RNN layer (GRUCell),
and another fully-connected layer as output. The centralized expert and the decentralized multi-
agents share the exact same architecture. For the multi-agents, again as in the aformentioned work,
the parameters are shared among the multi-agents in order save computational cost, but each agent
is give its own unit ID so the RNN is able to distinguish between heterogeneous units.

For IQL, we train using Double Q-Learning trained after every episode, with a hard target update
of every 200 episodes, optimized with RMSProp with a batch size of 32, a learning rate of 0.0005, a
discount factor of 0.99, a gradient norm clipping of 10, and we use ε-greedy action selection starting
with ε = 1 which is annealed over 50k episodes until it reaches its final ε of 0.05.

For CESMA, the centralized expert is trained with Double Q-Learning using a soft target update
with τ = 0.001, and optimized with the Adam optimizer, with a batch size of 32, a learning rate of
0.0002, weight decay of 0.0001, a gradient norm clipping of 10, and trained for every 20 timesteps.
Here the ε-greedy action selection starts with 1 and is annealed for 3,000 episodes until its final ε of
0.05.

For CESMA, the decentralized multi-agents are trained with supervised learning using the cross-
entropy loss, with the labels being the one-hot actions of the centralized expert. We use the Adam
optimizer with a batch size of 32, a learning rate of 0.0002, a weight decay of 0.0001, and we train
every 20 timesteps. Here, the agents only perform greedy action selection.

E.2. Comparing to MADDPG

When we used DDPG to compare to MADDPG, our hyperparameters were:
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• For all environments, we chose the discount factor γ to be 0.9 for all experiments, as that
seemed to benefit both the centralized expert as well as MADDPG (and as well as indepen-
dently trained DDPG). And we always used a two-hidden-layer neural network for all of
MADDPG’s actors and critics, as well as the centralized expert, and the decentralized agents.
The training of MADDPG used the hyperparameters from the MADDPG paper (Lowe et al.,
2017), which we found to be quite optimal with the exception of having γ = 0.9 (instead of
0.95), as that improved MADDPG’s performance. In the graphs, the reward is averaged every
1,000 episodes.

• For the cooperative navigation environments with 3 agents, for both homogeneous and non-
homogeneous: Our centralized expert neural network was a two-hidden-layer neural network
with 225 units each (as that matched the number of parameters for MADDPG when choosing
128 as their number of hidden units for each of their 3 agents), and we used a batch size of
64. The learning rate was 0.001, and τ = 0.001. We also clipped the gradient norms to
0.1. When decentralizing, each agent was a two-hidden-layer neural network with 128 units
(as in MADDPG), where we trained with a batch size of 32 and a learning rate of 0.001. In
our experiment comparing with MADDPG, we use the cross entropy loss. The MADDPG
and DDPG parameters were 128 hidden units, and we clipped gradients norms at 0.5, with a
learning rate of 0.01.

• For the cooperative navigation with 6 agents, for both homogeneous and nonhomogeneous:
Our centralized expert neural network was a two-hidden-layer neural network with 240 units
each (as that matched the number of parameters for MADDPG when choosing 128 as their
number of hidden units for each of their 3 agents’ actor and critic), and we used a batch size
of 32. The learning rate was 0.0001, and τ = 0.0001. We also clipped the gradient norms to
0.1. When decentralizing, each agent was a two-hidden-layer neural network with 128 units
(as in MADDPG), where we trained with a batch size of 32 and a learning rate of 0.001. In
our experiment comparing with MADDPG, we use the cross entropy loss. The MADDPG
and DDPG parameters were 128 hidden units, and we clipped gradients norms at 0.5, with a
learning rate of 0.01.

• For the speaker and listener environment: Our centralized expert neural network was a two-
hidden-layer neural network with 64 units each (which gave a lower number of parameters
than MADDPG when choosing 64 as their number of hidden units for each of their 2 agents’
actor and critic), and we used a batch size of 32. The learning rate was 0.0001, and τ = 0.001.
When decentralizing, each agent was a two-hidden-layer neural network with 64 units (as
in MADDPG), where we trained with a batch size of 32 and a learning rate of 0.001. In
our experiment comparing with MADDPG, we use the cross entropy loss. The MADDPG
and DDPG parameters were 64 hidden units, and we clipped gradients norms at 0.5, with a
learning rate of 0.01.

• For the cooperative navigation with communication environment: Our centralized expert neu-
ral network was a two-hidden-layer neural network with 95 units each (which matched the
number of parameters as MADDPG when choosing 64 as their number of hidden units for
each of their 2 agents’ actor and critic), and we used a batch size of 32. The learning rate was
0.0001, and τ = 0.0001. When decentralizing, each agent was a two-hidden-layer neural net-
work with 64 units (as in MADDPG), where we trained with a batch size of 32 and a learning

647



LIN DEBORD ESTABRIDIS HEWER MONTÚFAR OSHER

rate of 0.001. In our experiment comparing with MADDPG, we use the cross entropy loss.
The MADDPG and DDPG parameters were 64 hidden units, and we clipped gradients norms
at 0.5, with a learning rate of 0.01.

• We also run all the environments for 25 time steps.

E.3. Deep Q-Networks (DQN)

When we examined DQNs, our hyperparameters were:

• DQNs: We used the cross entropy loss for the supervised learning portion, and used the
cooperative navigation environment with 3 nonhomogenous agents. The DQNs we used are:
the exponential actions DQN, which is just a naive implementation of DQNs for the multi-
agents, and a Centralized VDN where the systemQ value is the sum of the individual agentQ
values. We used a neural network with 200 hidden units, batch size 64, and for the exponential
DQN, we used a learning rate and τ of 5× 10−4, and for the QMIX/Centralized VDN DQN
we used a learning rate and τ of 10−3. We also used a noisy action selection for exploration.
We stopped training of the decentralization once the mulit-agents reached the same reward as
the expert; the dashed lines are a visual-aid that extrapolates the reward.

E.4. One-At-A-Time Expert

When we examined the one-at-a-time expert, the hyperparameters were:

• The hyperparameters: (i) For the one-at-a-time expert, we used a fully-connected two-hidden-
layer network with 380 units in each hidden layer, a batch size of 32, and a learning rate and
τ of 10−4, and we used a gamma of 0.99, (ii) For decentralization, we used for each agent a
fully-connected two-hidden-layer network with 128 units in each hidden layer, a batch size of
32, and a learning rate of 10−3. We also used a weighted cross-entropy loss function, where
we gave more weight to an action; this makes sense as the observation database will naturally
have much more do nothing actions, than a do something action, because the centralized
expert only moves one agent at each timestep (and so the other multi-agent actions will be do
nothing).

Appendix F. The role of partial observability and communication

Here we discuss more the role of partial observability and how it affects decentralization. We also
comment on how communication can alleviate these issues.

F.1. How partial observability affects decentralization

In our setting of multi-agents, the centralized expert and the decentralized multi-agents have dif-
ferent structures of their policies, i.e. they are solving the problem in different policy spaces (this
is desired, or else there would be little point in imitation learning, and we note the experiments in
(Ross et al., 2010) also have this feature). The centralized expert observes the joint observations of
all agents, and thus it is a function π∗ : O1× · · · ×OM → A1× · · · ×AM , and we can decompose
π∗ into

π∗(o) = (π∗1(o), . . . , π
∗
M (o)),
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where π∗i : O1 × · · · × OM → Ai. The goal of decentralization is to find multi-agent policies
π1, . . . , πM such that

π∗(o) = (π∗1(o), . . . , π
∗
M (o)) want

= (πi(o1), . . . , πM (oM )).

Note that π∗i is able to observe the joint observations while πi is only able to observe its own local
observation oi. But from this constraint, this means we may encounter issues where

π∗i (o1, . . . , oi−1, oi, oi+1, . . . , oM ) = ai,

but π∗i (õ1, . . . , õi−1, oi, õi+1, . . . , õM ) = ãi,

so we want πi(oi) = ai or ãi, or even something else. Thus the multi-agent policy can act sub-
optimally in certain situations, being unaware of the global state. This unfortunate situation not
only afflicts our algorithm, but any multi-agent training algorithm (and in general, any algorithm
attempting to solve a POMDP). This is due to the partial observability problem in the multi-agent
setting. More concretely, we can say partial observability is a problem for decentralization if there
exists observations (o1, . . . , oi−1, oi, oi+1, . . . , oM ), and (õ1, . . . , õi−1, oi, õi+1, . . . , õM ) such that

π∗(o1, . . . , oi−1, oi, oi+1, . . . , oM )

6= π∗(õ1, . . . , õi−1, oi, õi+1, . . . , õM ).

Relating this to the no-regret analysis in Theorem 1, the partial observability problem means that
under certain environments it may be impossible for the multi-agents to match the expert exactly;
this manifests in a cost Cp where,

µN = min
(π1,...,πM )

1

N

N∑
i=1

Eo∼ d
(π

(i)
1 ,...,π

(i)
M

)
[`(o, (π1, . . . , πM )]

≥ Cp, for all N ≥ 1,

which implies from Theorem 1 that the best guarantee of the reward for the multi-agents isR(π̂1, . . . , π̂M )
≥ R(π∗)− TCp −O(1).

The main takeaway: In the original DAgger setting (i.e. the single-agent MDP setting), under
reasonable assumptions on the distribution of states (see Ross et al., 2010, Section 4.2), as N →∞
the cumulative reward of the learner can approximate the cumulative reward of the expert arbitrarily
closely. Here when analyzing the multi-agent setting, we find that because µN ≥ Cp, then the
no-regret analysis guarantees that after O(T logk(T )) updates we will find a multi-agent policy that
obtains a cumulative reward that is within Cp of the expert. In relation to this, in Appendix A.2,
we perform experiments and analyse the supervised learning loss versus the reward obtained by the
multi-agents.

F.2. The need for communication

Decentralization without communication is most effective when all multi-agents can observe the
full joint observation. Then from the perspective of each agent the only non-stationarity is from
other agents’ policies (which is alleviated by decentralization).
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But when each agent only has local observations, then to avoid the partial observability problem
in decentralization, there is an incentive to communicate. Namely, we want for the multi-agent
policy (π1, . . . , πM )

π∗(o) = (π∗1(o), . . . , π
∗
M (o))

want
= (πi(o1, c1), . . . , πM (oM , cM )),

where ci is the communication from either all or only some of the other agents, to agent i. Namely
we view ci as a function ci : O1 × · · · × Oi−1 × Oi+1 × · · · × OM → Ci (where Ci is some
communication action space). Then we have the following requirement for the communication
protocol {ci}i=1 in order to fix the partial observability problem in decentralization,

Theorem 2 If the multi-agent communication ci : O1 × · · · × Oi−1 × Oi+1 × · · · × OM → Ci
satisfies the condition

π∗(o1, . . . , oi−1, oi, oi+1, . . . , oM )

6= π∗(õ1, . . . , õi−1, oi, õi+1, . . . , õM ),

implies that

ci(o1, . . . , oi−1, oi+1, . . . , oM )

6= ci(õ1, . . . , õi−1, õi+1, . . . , õM )

for all i = 1, . . . ,M , then there is no cost due to partial observability in decentralization when
the multi-agents use {ci}Mi=1 as their communication protocol, i.e. the multi-agents can match the
expert perfectly on all observations.

Remarks before proof: The theorem above says that a sufficient condition for the commu-
nication protocol {ci}i=1 is that from the perspective of, say, agent j, then cj is able to provide
information to agent j about when the expert decides to output different actions for different global
observations, even if the global observations share oj as a local observation.

Paired with Theorem 1, this implies that under the correct communication protocal, the multi-
agents can approximate the expert arbitrarily closely (and that we need O(T logk(T )) updates). Of
course, in our experiments we learn this communication protocol.
Proof

This theorem is just intuitively saying that if the expert decides to choose different actions, i.e.

π∗(o1, . . . , oi−1, oi, oi+1, . . . , oM ) 6= π∗(õ1, . . . , õi−1, oi, õi+1, . . . , õM )

then even though agent i only sees oi in both cases, the communication ci to agent i must be able to
differentiate between them. Then we have the mathematical proof below:

By assumption, for an agent j with observations o = (o1, . . . , oj−1, oj , oj+1, . . . , oM ) and õ =
(õ1, . . . , õj−1, oj õj+1, . . . , õM ) such that

π∗(o)j = aj , π∗(õ)j = ãj , but aj 6= ãj .

then denoting o−j as the observation without oj and similarly for õ−j , then our assumption implies
cj(o−j) 6= cj(õ−j). Then clearly we can construct a policy where πj(oj , cj(oj)) 6= πj(oj , cj(õj)),
because the inputs to πj are different.
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And so the multi-agents, using the communication protocol of {ci}Mi=1, can detect when an
expert decides to change its action based on differences in the global observation (i.e. o and õ) even
when the local observation (i.e. oj) stays the same.
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