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Abstract

Once integrated into clinical care, patient risk stratification models may perform worse com-
pared to their retrospective performance. To date, it is widely accepted that performance
will degrade over time due to changes in care processes and patient populations. However,
the extent to which this occurs is poorly understood, in part because few researchers re-
port prospective validation performance. In this study, we compare the 2020-2021 (’20-’21)
prospective performance of a patient risk stratification model for predicting healthcare-
associated infections to a 2019-2020 (’19-’20) retrospective validation of the same model.
We define the difference in retrospective and prospective performance as the performance
gap. We estimate how i) “temporal shift”, i.e., changes in clinical workflows and patient
populations, and ii) “infrastructure shift”, i.e., changes in access, extraction and transfor-
mation of data, both contribute to the performance gap. Applied prospectively to 26,864
hospital encounters during a twelve-month period from July 2020 to June 2021, the model
achieved an area under the receiver operating characteristic curve (AUROC) of 0.767 (95%
confidence interval (CI): 0.737, 0.801) and a Brier score of 0.189 (95% CI: 0.186, 0.191).
Prospective performance decreased slightly compared to ’19-’20 retrospective performance,
in which the model achieved an AUROC of 0.778 (95% CI: 0.744, 0.815) and a Brier score
of 0.163 (95% CI: 0.161, 0.165). The resulting performance gap was primarily due to in-
frastructure shift and not temporal shift. So long as we continue to develop and validate
models using data stored in large research data warehouses, we must consider differences
in how and when data are accessed, measure how these differences may negatively affect
prospective performance, and work to mitigate those differences.
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1. Introduction

To date, the application of machine learning (ML) for patient risk stratification in clini-
cal care has relied almost entirely on “retrospective” electronic health record (EHR) data
(Johnson et al., 2016, 2018). That is, researchers typically train and validate models using
data sourced from a database downstream from data used in clinical operations (e.g., a
research data warehouse or MIMIC III (Johnson et al., 2016)). These data are extracted,
transformed and stored in an effort to serve researchers without interrupting hospital op-
erations. While critical to initial model development, model evaluation using such data
may not be representative of prospective model performance in clinical practice. Impor-
tantly, it is prospective or “real-time” model performance that ultimately impacts clinical
care and patient outcomes (Lenert et al., 2019; Beam and Kohane, 2018). Although retro-
spective performance serves as an approximation of prospective performance, the validity of
such an approximation relies on the assumption that the two datasets come from the same
distribution (i.e., the datasets have no major differences in the relationships of covariates
and outcome). However, many ML models are developed and validated with datasets that
do not accurately represent their intended prospective use (Nestor et al., 2018). Without
prospective evaluation, it is impossible to estimate a priori how a model will perform when
deployed.

The need for prospective validation has been previously recognized in the context of
screening for diabetic retinopathy (Bellemo et al., 2019; Keel et al., 2018; Abràmoff et al.,
2018). However, these studies rely mostly on imaging data and as a result the difference in
infrastructure for model development and deployment is minimal. With respect to models
that rely on structured EHR data, researchers have started to report prospective perfor-
mance. For example, Kang et al. (2016) prospectively compared a model to predict in
hospital resuscitation events with existing standards of care (e.g., rapid response team ac-
tivation). In addition, Brajer et al. (2020) prospectively validated an in-hospital mortality
prediction model. While these studies make an important step towards model integra-
tion in clinical care, they do not specifically assess the root cause of discrepancies between
prospective and retrospective performance.

To date, factors driving the differences between prospective and retrospective model
performance have been largely attributed to changes in clinical workflow (Luijken et al.,
2020; Minne et al., 2012) or patient populations (Murphy-Filkins et al., 1996; Finlayson
et al., 2021). For example, a global pandemic might lead to differences in personal pro-
tective equipment protocols. This change in gowning and gloving may have an impact on
communicable diseases within the hospital, and this in turn may affect model performance.
However, such changes are difficult, if not impossible, to anticipate a year prior to outbreak
(Ortega et al., 2020; Artenstein, 2020).

Here, we compare the effects of “temporal shift” (i.e., changes due to differences in clin-
ical workflows and patient populations) on model performance to another kind of shift: “in-
frastructure shift.” We define infrastructure shift as changes due to differences in the data
extraction and transformation pipelines between retrospective and real-time prospective
analyses. For example, some data available retrospectively may not be available prospec-
tively because of the processing pipeline at one’s institution (e.g., vitals might be backdated
by the clinical care team). Differences in how the data are sourced and preprocessed between
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retrospective and prospective pipelines may be more systematically addressed if recognized.
However, it is currently unknown to what extent degradation in prospective performance
can be attributed to changes in temporal shift vs. infrastructure shift.

In this paper, we explore the prospective validation of a data-driven EHR-based patient
risk stratification tool for predicting hospital-associated Clostridioides difficile infections
(CDI) at University of Michigan Health, a large tertiary care academic health system. CDI
is associated with increased length of stay and hospital costs and considerable morbidity
and mortality (Guh et al., 2020; Lessa et al., 2015; Barbut et al., 2014; Dubberke et al.,
2008). The ability to accurately predict infections in advance could lead to more timely
interventions, including patient isolation and antibiotic stewardship strategies, curbing the
incidence and spread of infection. We measure the performance gap between prospective
and retrospective pipelines. More specifically, we quantify how much of the performance
gap can be attributed to temporal and infrastructure shift.

Generalizable Insights about Machine Learning in the Context of Healthcare

As the field of machine learning for healthcare advances and more models move from ‘bench’
to ‘bedside,’ prospective validation is critical. However, the majority of machine learning
models are developed using retrospective data. We explore the impact this disconnect can
have on the performance gap (i.e., the difference between prospective performance and
retrospective performance) through a case study in which we prospectively validated an
EHR-based patient risk stratification model for CDI. Our contributions are as follows:

• We formalize the notion of performance gap when validating ML-based models in
clinical care.

• We characterize the differences between a retrospective pipeline and a prospective
pipeline and the resulting impact on the performance gap.

• We quantify how much of the performance gap can be attributed to temporal shift
and infrastructure shift.

• We develop methods and approaches to identify contributors to the performance gap.

• We propose potential solutions for mitigating the effects of differences in retrospective
versus prospective data infrastructure on the performance gap.

We do not present a new machine learning algorithm or architecture, but instead share
insights gained through our experience with developing and validating an EHR-based model
for patient risk stratification, highlighting practical considerations for those who are moving
from the ‘retrospective’ to ‘prospective’ setting. Given that the ultimate goal of machine
learning for healthcare is to improve patient care, early considerations regarding prospective
validation are critical to ensuring success.

2. Methods

Overview. In the context of inpatient risk stratification, we present an evaluation frame-
work to quantify the differences in performance between machine learning models applied
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in real-time and the anticipated performance based on retrospective datasets. In framing
this problem, we examine two major sources of differences: 1) the shift in the relationships
between the features and labels over time due to changes in clinical workflows and patient
populations (i.e., temporal shift) and, 2) the difference in the infrastructure for extracting
data retrospectively versus prospectively (i.e., infrastructure shift). We leveraged a previ-
ously developed and retrospectively validated framework for predicting hospital-associated
CDI in adult inpatients (Wiens et al., 2016; Oh et al., 2018). Below, we briefly describe
how this framework was applied retrospectively to develop and validate a model, and then
updated to apply prospectively such that model predictions were generated for all adult
inpatients on a daily basis. We also share important details regarding the data extraction
and processing pipelines available for model development and prospective implementation
at University of Michigan Health (summarized in Figure 1). Though some aspects (e.g.,
the precise downstream research database) may be unique to our institution, many aspects
of the data pipelines are generalizable.

2.1. Study Cohort

This retrospective and prospective cohort study was approved by the University of Michi-
gan Institutional Review Board. Our study population included all adult hospital patient
encounters (i.e., inpatient admissions) from January 2013 through June 2021 to University
of Michigan Health. University of Michigan Health has over 1,000 beds and is the tertiary
care academic health center associated with the University of Michigan. Because we were
interested in primary, non-recurrent, hospital-associated CDI we excluded encounters with
a length of stay less than three calendar days and individuals who tested positive in the
first two calendar days of the encounter or in the proceeding 14 days prior to the hospital
encounter (Centers for Disease Control Prevention, 2021).

2.2. Prediction Task

The task was formulated as a binary classification task where a patient encounter was labeled
1 if the patient tested positive for CDI during the encounter and 0 otherwise. The diagnosis
of CDI was identified using a tiered approach, reflecting the institution’s C. difficile testing
protocol when clinicians obtained stool samples for C. difficile based on clinical suspicion
for active disease. First, samples were tested using a combined glutamate dehydrogenase
antigen enzyme immunoassay and toxin A/B EIA (C. Diff Quik Chek Complete, Alere,
Kansas City, MO). No further testing was needed if results were concordant. If discordant,
a secondary polymerase chain reaction (PCR) for the presence of toxin B gene (GeneOhm
Cdiff Assay, BD, Franklin Lakes, NJ) was used to determine the outcome. That is, if
positive by PCR the encounter was considered a CDI positive case. We make predictions
daily, with the goal of identifying high-risk patients as early as possible during an encounter
and prior to their diagnosis.

2.3. Model Development

Training Data. Our training cohort included patients admissions between 2013-2017 who
met our inclusion criteria. When applying our inclusion criteria, we relied on patient class
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Figure 1: Prospective and Retrospective Pipelines. Information generated from the care
process is documented in the electronic health record (EHR), produced by Epic Systems
Corporation, and laboratory information system (LIS), produced by Soft Computer Consul-
tants (SCC). Data are extracted from these sources using two different pipelines. For EHR
data the near real-time prospective pipeline is primarily based on a web service architecture
and has its information stored in near real-time (NRT) database tables. It extracts data
from the EHR more frequently, with less lead time and processing, allowing for prospective
implementation of predictive models (i.e., it produces prospective datasets, Dpro). The
bottom pipeline is a retrospective data pipeline that extracts data less frequently, but with
more curation and processing (i.e., it generates large retrospective datasets, Dret). Both
pipelines rely on an lab results (LR) interface that passes information from the LIS and an
admission, discharge, and transfer (ADT) interface that passes admission information from
the EHR. Components in the pipeline that can be interacted with in near real-time (i.e.,
prospectively) are depicted in red. Components in which subsets of data require time to
pass before having complete information (i.e., retrospectively) are depicted in blue. The
near real-time query utilizes historical patient information, although this information is
technically collected via the retrospective pipeline, it is considered up-to-date when queried
by the near real-time query.

codes to identify hospitalized patient encounters. For each patient admission included in the
training data, we extracted a binary classification label and information pertaining to a pa-
tient’s demographics, medical history, laboratory results, locations, vitals, and medications.
Once retrospective data were extracted, we transformed the data into d-dimensional binary
feature vectors representing each day of a patient’s admission (i.e., an encounter-day). Fea-
tures were transformed into a binary representation. Categorical features were transformed
using one-hot encoding. Real-valued (numerical) features were split into quintiles and then
also one-hot encoded. This is described in further detail in the feature preprocessing section
of Oh et al. (2018) and in Supplemental Material A.
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Training Details. We employ a modeling approach previously described and validated
at multiple institutions (Oh et al., 2018; Wiens et al., 2016). In brief, we used a logistic
regression model that uses a multitask transformation of the inputs in order to learn time
varying parameters (Daume III, 2009). The multitask regularized logistic regression model
seeks to learn an encounter level label (i.e., if the patient is ever diagnosed over their
entire encounter). It does so by minimizing the cross-entropy loss at the encounter-day
level. We subsampled encounter-days to reduce bias towards patient encounters with longer
lengths of stay. This was done by randomly selecting 3 encounter-days per encounter (our
inclusion criteria dictates that all encounters will have a length of stay of at least 3 days).
This ensured that all encounters were represented by an equivalent number of encounter-
days. Cross validation folds were determined by year to partially account for dataset shift.
Hyperparameters were selected based on cross-validation across years in the training data
optimizing for the AUROC. This approach is described in detail in Oh et al. (2018) and
Wiens et al. (2016).

2.4. Data Infrastructure

Retrospective Pipeline. Data used for model development and retrospective validation
were extracted from a research data warehouse (RDW) at the University of Michigan. These
data were extracted, transformed, and loaded (ETL) from University of Michigan Health’s
Epic EHR instance (Epic Systems Corporation, Verona, WI) and laboratory information
system (LIS, Soft Computer Consultants, Clearwater, FL). More precisely, the majority of
EHR data were extracted nightly from the EHR’s underlying Epic MUMPS-based Chron-
icles database and then transformed and loaded into our instance of Epic Clarity, a SQL
database. A second ETL process was then carried out, with data passed to a second SQL
database, RDW. RDW is based on a health information exchange data model (initially
developed by CareEvolution, Ann Arbor, MI), however, in order to support research oper-
ations, has undergone significant additional custom design, development, and maintenance
by the RDW development team at the University of Michigan. The timing of this second
ETL process varied. However, the total delay between data being entered in the EHR to
it arriving in RDW typically ranged between 1 day and 1 week. In addition to this data
pipeline, our EHR also passes hospital occupancy information directly to RDW via an ad-
mission, discharge, and transfer (ADT) interface. Finally, RDW also captures information
from the LIS using a lab results (LR) interface. RDW is designed for large queries of trans-
formed EHR data. Thus, we refer to these data as ‘retrospective’ since they were primarily
used for retrospective analyses.

Prospective Pipeline. Not all data included in the retrospective model were available in
near real-time through the pipeline described above (e.g., medications or laboratory values
for current encounters). Thus, we developed a near real-time prospective pipeline, which
built upon the existing retrospective pipeline by adding daily updates (ETLs) of data that
were previously unavailable in real-time. We developed custom EHR web services to update
the data necessary for model predictions. Specialized near real-time (NRT) database tables
were created to access medications, vital sign measurements, hospital locations, in near
real-time; i.e., with a delay of less than an 8-hours. This maximum delay corresponds with
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the maximum duration for the recording of non-urgent information into the EHR (i.e., the
length of a typical nursing shift). In conjunction with the EHR web services, laboratory
results and admission information are passed to the NRT tables using the aforementioned
LR and ADT interfaces respectively. Additionally, we continued to use components of
the retrospective pipeline to extract features pertaining to historical patient data (e.g.,
medications associated with previous encounters).

Overall, daily data extracts were inherently different from historical data and required
careful validation to ensure queries were accessing the correct aspects of the EHR. Once ex-
tracted, we applied an identical preprocessing step as described in the retrospective pipeline.
Using these daily data streams, we generated daily risk scores for all adult hospital encoun-
ters in our study cohort. Model results were generated daily and stored on a secure server.
These scores were not made available to any clinical care team members and were only
accessed by the authors.

2.5. Model Validation

The model takes as input data describing each day of a patient’s hospital encounter, ex-
tracted through either the retrospective or near-real time prospective pipeline describe
above, (e.g., laboratory results, medications, procedures, vital sign measurements, and pa-
tient demographics) and maps these data to an estimate of the patient’s daily risk of CDI.
This estimate is updated over the course of the patient’s hospital encounter with the goal
of helping clinicians identify patients at risk of developing CDI over the remainder of the
patient’s hospital encounter.

Retrospective Validation. We validated the model on data pertaining to patient hospital
encounters from the study cohort from 2018-2020. We extracted these data using the
retrospective pipeline and identified hospitalized patients using patient class codes as we
did in the training data (see above for inclusion criteria). In our main analyses, we focus
on performance during the more recent year i.e., ’19-’20. For completeness, results from
’18-’19 are provided in the Supplemental Material D.

We measured the area under the receiver operating characteristics curve (AUROC) and
the sensitivity, specificity, and positive predictive value when selecting a decision threshold
based on the 95th percentile from ’18-’19. In addition we computed the Brier score, by
comparing the max probability of the outcome (i.e., risk score) during a patient’s visit with
their actual outcome. We calculated empirical 95% confidence intervals on each test set
using 1,000 bootstrap samples.

Prospective Validation. We applied the model prospectively to all hospital encounters
from July 10th, 2020 to June 30th, 2021, estimating daily risk of CDI for all patients who
met our inclusion criteria. We relied on the hospital census tables instead of the patient
class codes to identify our study population in real-time. The hospital census table tracked
all hospitalized patients in real-time and enabled reliable identification of patients who were
in the hospital for three calendar days or more.

We compared retrospective performance in ’19-’20 to prospective performance in ’20-
’21. We evaluated model performance in terms of discrimination and calibration using the
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same metrics described above. In addition, to account for seasonal fluctuations in CDI rates
(Furuya-Kanamori et al., 2015), we further compared AUROC performance on a month-
by-month basis. We compared monthly retrospective performance in ’19-’20 to monthly
prospective performance in ’20-’21. Although encounters may span across multiple months,
encounters were grouped into month-years based on the date of admission. Finally, given
the large shift to care processes resulting from the onset of the COVID-19 pandemic, we
conducted a separate follow-up analysis in which we compared model performance prior to
and following March 2020 (Supplemental Material C).

Figure 2: Retrospective Evaluation and Prospective Implementation Timeline. The dashed
vertical line denotes the time of model integration into silent prospective deployment. Prior
to implementation, the retrospective pipeline may be used to retrospectively validate the
model, f , applied to Dret. After the model implementation the model is applied to Dpro

using the prospective pipeline. Once sufficient time has elapsed the retrospective pipeline
may be used to extract D′ret, data from the same period of time as the prospective dataset.

2.6. Estimating the Performance Gap

We evaluated model performance over time, comparing the same model applied to i) ret-
rospective data from 2019-2020 and ii) prospective data from 2020-2021. We formalize our
prospective validation framework as follows.

Let the labeled data extracted from the retrospective and prospective pipeline be de-
noted as Dret and Dpro, respectively. Given a predictive model (f), f maps a given feature
vector (X) to an estimate of patient risk (y), formally f : X → y. We evaluate f applied
to a dataset D using a performance measure function: p : (f,D) → R in which the goal is
to maximize p. While p(f,Dret) often serves as an estimate for how the model will likely
perform in the future, given differences between retrospective and prospective pipelines
(discussed above) we do not necessarily anticipate p(f,Dret) to equal p(f,Dpro). The dif-
ference between the retrospective and prospective model performance with respect to p is
the performance gap:

∆p = p(f,Dret)− p(f,Dpro). (1)

We analyzed the performance gap that arises between retrospective ’19-’20 (Dret) and
prospective ’20-’21 (Dpro). We measured the gap in terms of the AUROC because optimizing
for discriminative performance was the primary goal of prior work. However, calibration is
known to be sensitive to temporal changes (Davis et al., 2017; Hickey et al., 2013; Minne
et al., 2012). As such, we also measure the performance gap in terms of Brier Score (Brier,
1950; Hernández-Orallo et al., 2012). However, since one aims to minimize Brier Score
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and the performance gap assumes the goal is to maximize the performance measure, we
take the negative of the Brier Score when computing the gap. Confidence intervals for the
performance gap values were calculated using an empirical bootstrap where the samples
(1, 000 replications) were independently drawn for each data distribution separately.

When comparing model performance on retrospective data (Dret: ’19-’20) to model
performance on prospective data (Dpro: ’20-’21), there are two unique sources of potential
differences: the shift in time period from ’19-’20 to ’20-’21 (i.e., temporal shift) and the
shift in pipelines (i.e., infrastructure shift).

1. Temporal Shift arises due to changes in the underlying data generating process over
time (e.g., the evolution of disease pathology, updates in clinical practice/workflows
and changes in patient characteristics). If the retrospective and prospective pipelines
were identical, then any difference between retrospective and prospective pipeline
would be attributed to ∆time

p , defined as:

∆time
p = p(f,Dret)− p(f,D′ret). (2)

where we control for changes in infrastructure by re-extracting the data from the
prospective period using the retrospective pipeline, D′ret.

2. Infrastructure Shift occurs when the data returned from the retrospective and
prospective pipelines differ, after controlling for changes in time period. We calculate
∆infra

p by comparing performance on the prospective dataset, Dpro, to performance
on a retrospective dataset generated for the identical time period D′ret (Figure 2).
Once aligned in time, the only differences come about from the pipeline infrastructure
used to create the datasets:

∆infra
p = p(f,D′ret)− p(f,Dpro). (3)

The performance gap from Equation 1 can be broken into these two sources of differences:

∆p = p(f,Dret)− p(f,Dpro)

= p(f,Dret)− p(f,Dpro) +
(
− p(f,D′ret) + p(f,D′ret)

)
= p(f,Dret)− p(f,D′ret) + p(f,D′ret)− p(f,Dpro)

= ∆time
p + ∆infra

p .

To date, it is unknown to what extent differences in infrastructure contribute to the per-
formance gap relative to differences that arise due to temporal shift. Thus, to control for
temporal shift and estimate the effect of infrastructure shift on the performance gap, we
used the retrospective pipeline to query data for the prospective validation time period (i.e.,
July 10th, 2020 to June 30th, 2021), generating D′ret. Using the datasets Dret, D′ret, and

Dpro, we estimated ∆infra
p and ∆time

p .

2.7. Performance Gap Source Analyses

To better understand how infrastructure choices related to the prospective pipeline con-
tribute to ∆infra

p , we further analyzed Dpro and D′ret. These analyses are motivated and
described in the sections below.
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2.7.1. Analyzing Sources of Infrastructure Shift

First, we characterized the difference in the estimated risk between the two datasets. Since
the AUROCs and Brier Scores are summary statistics they may hide differences. Thus, we
compared the risk scores output by the retrospective versus prospective pipeline for every en-
counter observed prospectively. These correspond to D′ret and Dpro, which share encounter-
days, and thus the model’s output for both datasets can be compared directly. Score
pairs representing the maximum score were found for each encounter using the prospective
pipeline and the retrospective pipeline. These score pairs were graphed as a scatter plot
and then were analyzed for their concordance in terms of Pearson’s correlation coefficient
and the slope of the best-fit line. Extremely discordant prospective and retrospective score
pairs were identified by selecting points far away from the best fit line (i.e., score pairs with
a difference ≥ 0.5).

In order to understand factors that could potentially be addressed with modifications
to infrastructure, we compared the pair of feature vectors present for each instance (a
patient hospitalization encounter-day) in Dpro and D′ret by computing differences in feature
inputs between the two datasets. The difference in the two data pipelines (Dpro and D′ret)
was quantitatively assessed for every feature, at the encounter-day level. Since our model
utilized a binary feature space, we deemed features discrepant at the encounter-day level if
their prospective and retrospective values were not exactly equivalent. This can be extended
to real-valued (numerical) features through either exact equivalency or by using ranges. To
assess the impact of these features, we stratified features by the absolute value of their
model coefficients and the proportion of discrepancies.

Finally, large differences in features can result in minimal differences in estimated risk
if the features that vary greatly are not deemed important by the model. Thus, we also
calculated the effect of swapping out individual aspects of the prospective pipeline with
the retrospective pipeline on overall prospective performance. These swaps were conducted
on the feature groups defined in Supplemental Material A. For every feature group we
computed the performance of the model on a modified version of Dpro where the feature
matrix Xpro has a column (or columns) corresponding to the feature replaced with values
from X′ret. We conducted a feature swap analysis between the retrospective and prospective
’20-’21 datasets using AUROC as the performance measure. Due to computational com-
plexity, this analysis was only conducted at the mid-point of our study, and as such only
uses data from July 10th to December 21st for both Dpro and D′ret.

2.7.2. Analyzing Sources of Temporal Shift

To determine sources of model performance degradation due to population and workflow
changes over time we conducted a set of experiments that sought to uncover the impact
of temporal shift by controlling for infrastructure shift sources. We identified sources of
temporal shift by comparing the distribution of features between Dret and D′ret. Specifically,
for each feature we conducted a Z-test with a Bonferroni correction to test the difference
in proportion of times that feature was ’turned on’ in one time period versus the other,
controlling for differences in infrastructure. E.g., was a particular medication used more
frequently in one time period? We report the number of significant differences within each
feature group (see Supplemental Material A for feature grouping).
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Table 1: Yearly Cohort Characteristics. Retrospective and prospective cohorts from ’19-’20,
and ’20-’21 each span from July 10th to June 30th of the following year. The cohorts have
similar characteristics across years. For median values we also present the interquartile
range (IQR).

’19-’20 ’20-’21
(Dret) (Dpro)
n=25,341 n=26,864

Median Age (IQR) 59 (41, 70) 60 (42, 71)
Female (%) 51% 51%
Median Length of Stay (IQR) 5 (4, 9) 5 (4, 9)
History of CDI in the past year (%) 1.5% 1.4%
Incidence Rate of CDI (%) 0.6% 0.7%
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(a) ROC Curves with 95% Confidence In-
tervals.

(b) Confusion Matrices and Performance
Measures.

Figure 3: Risk prediction model performance on ’19-’20, and ’20-’21 validation datasets.
When compared with the model’s retrospective validation period (’19-’20) performance the
model demonstrated slightly worse discriminative performance, sensitivity, specificity, and
positive predictive value during its prospective validation period (’20-’21).

3. Results

Our training cohort included 175,934 hospital encounters, in which 1,589 (0.9%) developed
hospital-associated CDI. Feature extraction and processing resulted in 8,070 binary features.
Our ’19-’20 retrospective validation set (Dret) consisted of 25,341 hospital encounters, in
which 157 (0.6%) met the CDI outcome. Prospectively in ’20-’21, we identified 26,864
hospital encounters, in which 188 (0.7%) met the CDI outcome (Dpro). Study population
characteristics for both validation cohorts are reported in Table 1. During the prospective
validation of the model, the prospective pipeline failed to run due to circumstances beyond
the study team’s control in 10 out of the 356 days. Specifically, from mid-December to
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Figure 4: Monthly AUROC Performance. AUROC for ’20-’21 prospective dataset and the
’19-’20 retrospective dataset broken down by month and bootstrap sampled 1, 000 times to
generate empirical 95% confidence intervals. Performance fluctuates month-by-month with
the prospective pipeline generally outperforming or on par with retrospective performance
with the exceptions of March and May.

February of 2021, an ADT data-feed issue led to a lag in some of the prospective data being
processed. Risk scores were not generated on days in which the model failed to run.

Validation Results. Applied to the ’19-’20 and ’20-’21 validation cohorts, the model
achieved an AUROC of 0.778 (95% CI: 0.744, 0.815) and 0.767 (95% CI: 0.737, 0.801) and a
positive predictive value of 0.036 and 0.026, respectively (Figure 3). Model calibration was
fair across both ’19-’20 and ’20-’21 datasets, Brier scores: 0.163 (95% CI: 0.161, 0.165) and
0.189 (95% CI: 0.186, 0.191), respectively. On a monthly basis, prospective performance
during ’20-’21 did not differ significantly from the retrospective performance during ’19-’20,
except in March and May (Figure 4).

Performance Gap. Overall, the performance gap between Dret in ’19-’20 and Dpro in
’20-’21 was ∆AUROC = 0.011 (95% CI: −0.033, 0.056) and ∆Brier = 0.0251 (95% CI: 0.016,
0.110). Applied to the re-extracted retrospective ’20-’21 cohort (D′ret) the model achieved
higher discriminative and calibration performance, AUROC=0.783 (95% CI: 0.755, 0.815)
and Brier score=0.186 (95% CI: 0.184, 0.188). Thus, according to Equations 1, 2, and
3, the performance gap breaks down as follows:

1.Clarification: Reader may wonder why this isn’t 0.026, this is simply due to rounding.
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Table 2: Model Performance Comparison. The prospective validation ran from July 10th,
2020 to June 30th, 2021 (’20-’21) and yielded dataset, Dpro, and performance results. The
’20-’21 retrospective dataset, D′ret, uses the retrospective pipeline to pull the same popula-
tion observed in Dpro. The retrospective ’19-’20 retrospective dataset pulled data from July
10th, 2019 to June 30th, 2020 in order to have an equivalent annual comparison. We see a
positive AUROC performance gap and a negative Brier Score performance gap indicating
degraded prospective performance.

’19-’20 Retrospective ’20-’21 Retrospective ’20-’21 Prospective
(Dret) (D′ret) (Dpro)
n=25,341 n=26,864 n=26,864

AUROC (95% CI: ) 0.778 (0.744, 0.815) 0.783 (0.755, 0.815) 0.767 (0.737, 0.801)
Brier Score (95% CI: ) 0.163 (0.161, 0.165) 0.186 (0.184, 0.188) 0.189 (0.186, 0.191)

∆AUROC = AUROC(Dret)−AUROC(Dpro) = 0.011 (95% CI: − 0.033, 0.056)

∆infra
AUROC = AUROC(D′ret)−AUROC(Dpro) = 0.016 (95% CI: − 0.022, 0.058)

∆time
AUROC = ∆AUROC −∆infra

AUROC = −0.005 (95% CI: − 0.051, 0.036)

∆Brier = −(Brier(Dret)− Brier(Dpro)) = 0.025 (95% CI: 0.016, 0.110)

∆infra
Brier = −(Brier(D′ret)− Brier(Dpro)) = 0.002 (95% CI: − 0.021, 0.064)

∆time
Brier = ∆Brier −∆infra

Brier = 0.023 (95% CI: − 0.003, 0.084)

For simplicity we suppressed the display of f . Figure 5 visualizes the breakdown of the
AUROC (∆AUROC) performance gap into ∆time

AUROC and ∆infra
AUROC.

In terms of discriminative performance (AUROC), the differences in infrastructure
pipelines between retrospective and prospective analyses had a larger impact on the perfor-
mance gap compared to temporal shift. However, the converse is true for calibration (Brier
score) gap, where the shift from ’19-’20 to ’20-’21 had a greater impact on calibration
performance.

The infrastructure performance gaps indicate that the differences in the data extrac-
tion and processing pipeline led to a small (though not statistically significant) decrease
in performance. When we compared the risk scores output by the model when applied to
the retrospective versus prospective pipeline for every encounter in our ’20-’21 cohort, we
measured a correlation of 0.9 (Figure 6a). 46 (0.2%) encounters had extreme score differ-
ences (greater than 0.5, denoted by the bounding dashed lines in the plot). 41 of these 46
encounters had a large number of days (more than 7 days for nearly all encounters) during
which the prospective pipeline failed to run.

Comparing the input features, we found that 6,178 (77%) of the 8,070 features had
at least one instance (i.e., encounter day) in which that feature differed across the two
pipelines, (Figure 6b). However, only 1, 612 (20%) of features differed in more than 1% of
instances. However, not all features are equally important. To measure the actual impact
of the discrepancies on model performance, we must look at the feature swap analysis.
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tion. This degredation is primarily due to the infrastructure shift since ∆infra > ∆time.
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Figure 6: Infrastructure Performance Gap Analysis. In (a) a scatter plot of risk scores
generated by the ’20-’21 prospective pipeline vs. ’20-’21 retrospective pipeline is shown.
We see that although highly correlated, the prospective and retrospective risk scores no-
ticeably differ. In (b) we show the distribution of features based on how discrepant the
features are (i.e., percent of instances where a feature is discrepant between retrospective
and prospective ’20-’21). We see that although most features have low levels of discrep-
ancy, there exists a subset of features whose values can vary greatly from the prospective
to retrospective pipeline.

Applied to data from the first half of the prospective study period, the model achieved
an AUROC performance of 0.769 on Dpro. The AUROC after each feature group swap is
displayed in Table 3. Hx: Medications, Idx: Medications, and Idx: In-Hospital Locations
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were the feature groups that had the largest positive swap difference in terms of AUROC,
corresponding to improved model performance when given feature information from the
retrospective pipeline. In the case of Hx: Medications, one would think these features
would be consistent prospectively and retrospectively. However, we use both retrospective
and prospective pipelines to calculate prospective values. To obtain 90 day patient histories
we augment retrospective tables with prospective tables in order to fill the gap between
when the data is logged in the EHR and when the data appears within RDW’s tables. In
addition, to identify which previous admissions were inpatient admissions, we use patient
class codes which are dynamic similar to laboratory results and medications. In addition
to these more subtle changes, data that may be considered ‘static’ (e.g., where a patient
lives or BMI) is liable to be change over the course of a patient encounter as information is
collected and updated by the clinical care team. The full feature swap analysis is displayed
in Supplemental Table 6.

Table 3: Infrastructure Performance Gap Analysis - Feature Swap Performance. By swap-
ping column values corresponding to feature groups between Xpro and X′ret we were able to
quantify the performance impact of differences in the infrastructure related to each feature
group. Note, this analysis was conducted at an interim time-point of our study, as such
only uses data from July 10th to December 21st for both Dpro and D′ret. In addition to the
feature group name, and the number of features in each feature group we display the AU-
ROC on Dpro after the feature swap. Originally, we observed an AUROC of 0.769 on Dpro,
the final column displays the difference between this value after the swap and the original
0.769. We restrict this table to only positive differences, that is feature swaps that improve
AUROC, all feature swap values are displayed in Supplemental Table 6 (Supplemen-
tal Material B). Hx: Medications, Idx: Medications, and Idx: In-Hospital Locations had
the largest positive swap difference in terms of AUROC, corresponding to improved model
performance when given feature information from the retrospective pipeline.

Feature Group Number of Features AUROC After Swap Difference

Hx: Medications 2,731 0.787 0.018
Idx: Medications 2,731 0.774 0.005
Idx: In-Hospital Locations 932 0.772 0.003
Hx: Previous Encounters (Length of Stay) 7 0.770 0.001
Demographics: Body Mass Index 5 0.770 0.001
Demographics: County & State 102 0.770 0.001
Idx: Colonization Pressure 10 0.770 0.001

Descriptions of feature groups can be found in Table 5.

Comparing the feature distributions between and Dret ’19-’20 and D′ret ’20-’21 we noted
significant differences in 116 (1.44%) of the features. Features pertaining to medications, in-
hospital locations, had the largest fraction of differences; however these categories also had a
large number of overall features Table 4. In terms of the fractions of differences within each
category colonization pressure, patient history pertaining to number of previous encounters,
and admission details had the greatest differences across time periods.
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Table 4: By feature group, lists the number of features that are significantly different
between the ’19-’20 study population and the ’20-’21 study population. Significance was
determined using a Z-test of the difference in proportions with a Bonferroni correction.
One day was randomly sampled from each hospital encounter so that all feature instances
are independent. Note, data that may be considered ‘obviously static’, like the location a
patient lives (i.e., County & State) may be updated over the course of an encounter, leading
to discrepancies between prospective and retrospective data.

Feature Group
Number of Significantly
Different Features

Total Number of Features

Demographics 0 124
Hx: History of CDI 0 2
Hx: Diagnoses 1 983
Idx: Vital Sign Measurements 1 17
Idx: Admission Details 5 22
Hx: Previous Encounters 5 10
Idx: Laboratory Results 6 508
Idx: Colonization Pressure 7 10
Hx: Medications 23 2731
Idx: In-Hospital Locations 30 932
Idx: Medications 38 2731

Descriptions of feature groups can be found in Table 5.

4. Discussion & Conclusion

In healthcare, risk stratification models are trained and validated using retrospective data
that have undergone several transformations since being initially observed and recorded
by the clinical care and operations teams. In contrast, during deployment models are
applied prospectively to data collected in near real-time. Thus, relying on retrospective
validation alone can result in an overestimation of how the model will perform in practice.
In this paper, we sought to characterize the extent to which differences in how the data are
extracted retrospectively versus prospectively contribute to a gap in model performance. We
compared the performance of a patient risk stratification model when applied prospectively
from July 2020-June 2021 to when it was applied retrospectively from July 2019-June 2020.
Overall, the gap in performance was small. However, differences in infrastructure had a
greater negative impact on discriminative performance compared to differences in patient
populations and clinical workflows.

To date, much work has focused on addressing changes in model performance over time
due to temporal shift (Vickers et al., 2017; Minne et al., 2012; Siregar et al., 2016; Hickey
et al., 2013). In contrast, we focused on gaps due to differences in infrastructure. We
relied on data extracted from a research data warehouse for model development and ret-
rospective validation. Whereas, for near real-time prospective application of the model,
we leveraged data extracted from a combination of custom web services and existing data
sources. Prospectively, we had to shift to using the hospital census tables to identify our
study cohort (i.e., who was in the hospital) in real-time, in part because inpatient classi-

16



Mind the Performance Gap - Dataset Shift During Prospective Validation

fication is dynamic and can shift over time. But even after accounting for differences in
population, differences in how and when the data were sourced continued to contribute
to a gap in performance. Our analysis pointed to two sources of inconsistencies between
the retrospective and prospective pipelines: i) inaccurate prospective infrastructure and ii)
dynamic data entry.

The first cause can be mitigated by revisiting the near real-time extraction, transfor-
mation, and load processes (e.g., rebuild prospective infrastructure to pull from different
components of the EHR). For example, our analysis identified discrepancies in patient lo-
cation codes between prospective and retrospective datasets. While the EHR passed the
same location information to both pipelines, the two pipelines transformed and served this
information in an inconsistent manner. Thus, we can rebuild the prospective infrastructure
such that it uses the same processing code as the retrospective infrastructure. The second
cause is more difficult to address. The EHR itself is inherently dynamic as it serves many
operational purposes (Evans, 2016). For example, the start and end dates for medications
can change over time as the desired treatment plan changes and laboratory result names
can change as initial results lead to further testing. In addition, specific aspects of fea-
tures, such as laboratory result abnormality flags, can populate after the actual test results
are filed (up to a day in our systems). To mitigate the impact of these differences on the
performance gap, one can update the model to rely less on such dynamic elements of the
EHR. For example, in our project, we substituted out medication orders for medication
administrations. Although order time is available earlier than administration, orders are
frequently cancelled or updated after they are initially ordered by a physician. In contrast,
medication administration information is more stable across time. Our findings underscore
the need to build pipelines that are representative of the data available at inference time.
The closer the retrospective representation of data are to data observed prospectively, the
smaller the potential performance gap.

Beyond differences in infrastructure, it is reassuring that changes in patient populations
and workflows between time periods (i.e., temporal shift) did not increase the gap in dis-
criminative performance. On a month-by-month basis the only significant differences in
performance were during the months of March and May, otherwise the model performed as
well, if not better, prospectively. Interestingly, predicting which patients were most likely
to acquire CDI during the current hospital visit was significantly easier in March 2020, com-
pared to March 2021. This discrepancy is likely due to significant operational changes at
University of Michigan Health due to the onset of the COVID-19 pandemic. Comparing the
expected feature vectors in ’19-’20 vs. ’20-’21, we noted significant differences in locations
and admission types, changes likely attributed to the COVID-19 pandemic. For example,
new patient care units were created for patients hospitalized for COVID-19 (Masson, 2021)
and patient volume to existing units and services decreased significantly (Goldenberg and
Parwani, 2021; Venkatesan, 2020; Wong et al., 2020). Additionally, colonization pressure de-
pends on locations, as such we would expect this to change with the distribution of patients
in locations changing. Many of the other changes in feature groups may also be explained by
this drastic change in patient population. While these changes actually made the problem
easier during prospective validation (Supplemental Material C), in-line with previous
work, the calibration performance of the model was negatively impacted by the temporal
shift (Davis et al., 2017; Hickey et al., 2013; Minne et al., 2012).
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This study is not without limitations. Aside from the limitations associated with study-
ing a single model at a single center, there is another nuanced limitation that pertains to
timing of data. The age (i.e., time between data collection and use for this analysis) of the
retrospective data varied in our analysis. Some validation data had been present in RDW
for over two years, while other data were populated far more recently. Data collected in
large retrospective databases are always subject to change, but the likelihood of changes
decreases over time as updates from clinical care and billing workflows settle. As we use
data closer to the present (July 2021), it is possible that the data may continue to change.
Thus, if we were to revisit the analysis in the future, the infrastructure gap could further
increase. However, most updates to the retrospective data occur within 30 days of discharge
and thus we expect the impact on our results to be limited.

The performance gap is due, in part, to the fact that we are trying to capture a moving
target with a single snapshot. Existing EHR and associated database systems are primarily
designed to support care operations. Therefore, they lack features to help with development
and deployment of real-time predictive models. EHR vendors are working to develop tools
for the efficient and effective deployment of ML models (Bresnick, 2017). However, to the
extent that we continue to develop models using data extracted from databases that are
several steps removed from clinical operations, issues are likely to remain. While overwriting
records and values may be of little consequence for care operations, it makes retrospective
training fraught with workflow issues. Mechanisms are needed to keep track of what the
database looked like at every moment in time - à la Netflix’s time machine (Taghavi et al.,
2016). However, in lieu of such solutions, thorough prospective validation and analysis can
help bridge the gap, providing a more accurate evaluation of production model behavior
and elucidating areas for improvement.
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Supplemental Material

Supplemental Material A - Feature Groups

Feature groups are grouping of features that have a shared meaning or source. We uti-
lize them to pin-point sources of discrepancies between the prospective and retrospective
pipelines. Feature groups may be composed of other feature groups, Table 5 displays this
hierarchical aspect of feature groups. For example, feature group “Idx: Admission Details”
contains the feature groups “Idx: Admission Type” and “Idx: Insurance Type”.

Table 5: Feature Groups and their descriptions. Feature groups are hierarchical, with
two major categories Demographics and Clinical Characteristics. Demographics are
generally static patient-level attributes. Clinical characteristics are dependent on time and
may change over the course of an encounter. Clinical characteristics may also be broken
into two major categories, based on which encounters the information is tied to: historical
encounters or index encounters. Historical encounter information may be denoted in the
main text with a “Hx” prefix and represents information collected in the encounters leading
up to the current encounter. This history look-back is limited to 90 days. The index
encounter information pertains to the current encounter and may be denoted with the “Id”
prefix. Descriptions of each of these feature groups are provided along with the number of
features included in this feature group. Various levels of feature group hierarchical structure
are employed depending on the analysis.

Feature Group Number of Features

Demographics 124
Age 5
Gender 2
Race 8
Marital Status 2
County and State 102
Body Mass Index 5

Clinical Characteristics
Historical Encounters (Hx)

History of CDI 2
Previous Encounters (stats) 10

Number of Previous Encounters 3
Length of Stay 7

Diagnoses (Diagnosis-Related Group/ICD9/ICD10) 983
Medications 2,731

Medication 1,886
Ingredient 620
Class 225

Index Encounter (Idx)
Admission Details 22

Admission Type 3

Continued on next page
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Table 5 – Continued from previous page

Feature Group Number of Features

Patient Type 12
Insurance Type 6
Emergency Visit 1

In-Hospital Locations 932
Vital Sign Measurements 17
Laboratory Results 508
Medications 2,731

Medication 1,879
Ingredient 629
Class 223

Colonization Pressure 10
Unit-based 5
Hospital-wide 5
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Supplemental Material B - Infrastructure Performance Gap Analysis

Table 6: Infrastructure Performance Gap Analysis - Full Feature Swap Performance. By
swapping column values corresponding to feature groups between swap analysis between
Xpro and X′ret we were able to quantify the performance impact of differences in the in-
frastructure related to each feature group. Note, this analysis was conducted at an interim
time-point of our study, as such only uses data from July 10th to December 21st for both
Dpro and D′ret. In addition to the feature group name, and the number of features in each
feature group we display the AUROC on Dpro after the feature swap. Originally, we ob-
served an AUROC of 0.769 on Dpro, the final column displays the difference between this
value after the swap and the 0.769. Hx: Medications, Idx: Medications, and In-Hospital
Locations were the feature groups that had the largest positive swap difference in terms
of AUROC, corresponding to improved model performance when given feature information
from the retrospective pipeline.

Feature Category AUROC After Swap Difference

Hx: Medications 0.787 0.018
Idx: Medications 0.774 0.005
Idx: In-Hospital Locations 0.772 0.003
Hx: Previous Encounters (Length of Stay) 0.770 0.001
Demographics (Body Mass Index) 0.770 0.001
Demographics (County & State) 0.770 0.001
Idx: Colonization Pressure 0.770 0.001
Demographics (Race) 0.769 0.000
Idx: Admission Details (Emergency Visit) 0.769 0.000
Demographics (Gender) 0.769 0.000
Hx: History of CDI 0.769 0.000
Idx: Admission Details (Patient Type) 0.769 0.000
Demographics (Age) 0.769 0.000
Demographics (Marital Status) 0.769 0.000
Idx: Admission Details (Admission Type) 0.769 0.000
Idx: Admission Details (Insurance Type) 0.769 0.000
Hx: Previous Encounters (Number of Previous Encounters) 0.769 0.000
Idx: Laboratory Results 0.768 -0.001
Hx: Diagnoses 0.767 -0.002
Idx: Vitals 0.766 -0.003

Descriptions of feature groups can be found in Table 5.
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Supplemental Material C - Model Performance Pre vs During COVID-19

In order to measure the impact of COVID-19 on model performance, we look at monthly
AUROC performance before and during COVID-19 in Figure 7. We notice that perfor-
mance pre-Covid is generally lower than during Covid with the exception of April which has
long error bars due to small numbers of cases. We hypothesize the improved performance
during Covid may be due to a simplification of the task. Our task is to predict hospital
associated, hospital-associated CDI. However, our method for distinguishing between hospi-
tal associated, hospital-associated vs community associated/recurrent, hospital-associated
is dictated by guidelines which may or may not always reflect ground truth. We hypothe-
size that the increased contact precautions led to relatively fewer hospital associated cases
and relatively more community associated/recurrent cases. The latter is easier to identify
because it only requires identifying susceptibility versus susceptibility and exposure.
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Figure 7: Monthly performance of model in 2019 vs 2020 to show trends in performance
before and during COVID-19. We see that performance is slightly higher during COVID-19.
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Supplemental Material D - ’18-’19 Retrospective Validation

All validation datasets include encounters from July 10th to June 30th of the following
year. After applying inclusion criteria, the ’18-’19 retrospective validation set consisted of
26,450 hospital encounters, population characteristics are detailed in Table 7. It should
be noted that the ’18-’19 time period overlaps with the model validation period in 2018.
This means that feature distributions from 2018 were used to help inform the decision to
discard rare features. Applied to the retrospective validation data from ’18-’19 the risk
prediction model achieved AUROCs of 0.794 (95% CI: 0.767, 0.823) (Figure 8a). Selecting
a decision threshold based on the 95th percentile of risk from the training set and applying
on ’18-’19 led to positive predictive values of 0.045, 0.036, and 0.027 respectively (Figure
8b). Monthly performance for ’18-’19 is displayed in Figure 9

Table 7: ’18-’19 Cohort Characteristics.

’18-’19
n=26,450

Median Age (IQR) 59 (41, 70)
Female (%) 51%
Median Length of Stay (IQR) 5 (4, 9)
History of CDI in the past year (%) 1.7%
Incidence Rate of CDI (%) 0.7%
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Figure 8: Risk prediction model performance on the retrospective ’18-’19 validation dataset.
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Figure 9: Monthly AUROC Performance. AUROC for ’20-’21 prospective dataset and the
’19-’20 retrospective dataset broken down by month and bootstrap sampled 1, 000 times
to generate 95% confidence intervals. We see that performance fluctuates month-by-month
with higher performance in January, February and April. There appear to be some monthly
trends in performance across years. Similar to ’19-’20 we see lower, less variable scores, in
the later months of the year with higher and more variable scores in the earlier months of
the year.
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