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Abstract

Sparse Principal Component Analysis (PCA)
is a prevalent tool across a plethora of sub-
fields of applied statistics. While several re-
sults have characterized the recovery error of
the principal eigenvectors, these are typically
in spectral or Frobenius norms. In this paper,
we provide entrywise ℓ2,∞ bounds for Sparse
PCA under a general high-dimensional sub-
gaussian design. In particular, our results
hold for any algorithm that selects the cor-
rect support with high probability, those that
are sparsistent. Our bound improves upon
known results by providing a finer character-
ization of the estimation error, and our proof
uses techniques recently developed for entry-
wise subspace perturbation theory.

1 INTRODUCTION

Principal component analysis (PCA) is a standard sta-
tistical technique for dimensionality reduction of data
in an unsupervised manner. Given i.i.d mean-zero ob-
servations X1, . . . , Xn ∈ Rp with covariance matrix
Σ ∈ Rp×p, the goal of PCA is to estimate the leading
k-dimensional subspace of Σ, which has the interpreta-
tion of representing each observation as a linear combi-
nation of principal components, where each principal
component is a direction of maximal variance. The
classical theory of PCA (e.g. Anderson (2003)) shows
that if the number of covariates p is fixed and the num-
ber of samples n tends to infinity, then the leading
eigenvectors of the sample covariance approximate the
leading eigenvectors of the population covariance well.

In the modern era of big data, it is often unrealistic to
assume that p remains fixed in n. In the seminal work
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of Johnstone and Lu (2009), the authors introduced
the spiked covariance model where the leading eigen-
value of the population covariance satisfies λ1 > 1,
while all other eigenvalues are all 1. In Johnstone and
Lu (2009), the authors showed that if û1 is the lead-
ing eigenvector of the sample covariance and u1 is the
leading eigenvector of the population covariance, then
⟨û1, u1⟩ need not tend to 1 as p and n tend to infin-
ity unless either p/n→ 0 or the leading eigenvalue λ1
tends to infinity. They then went on to show that if
λ1 remains bounded away from infinity but the leading
eigenvector is sparse then a simple thresholding esti-
mator could yield consistent estimation. Since then,
there has been much work on generalizing the model in
Johnstone and Lu (2009) to settings where either the
leading eigenvalues tend to infinity (Bao et al., 2020;
Cai et al., 2020, 2021; Fan et al., 2020; Yan et al.,
2021) or the leading eigenvectors are sparse (Amini
and Wainwright, 2009; d’Aspremont et al., 2007; Cai
et al., 2013; Gao et al., 2017; Gataric et al., 2020; Gu
et al., 2014; Lei and Vu, 2015; Ma, 2013; Yang et al.,
2015).

In this paper we consider the setting where the lead-
ing eigenvalues of the covariance matrix are bounded
away from zero and infinity, but the leading k eigen-
vectors are s-sparse as n and p tend to infinity. There
have been substantial theoretical (Banks et al., 2018;
Cai et al., 2013; Krauthgamer et al., 2015; Vu and Lei,
2013; Wang et al., 2016) and methodological (Berthet
and Rigollet, 2013; Chen and Rohe, 2020; Gataric
et al., 2020; Ma, 2013; Rohe and Zeng, 2020; Xie et al.,
2019) developments in sparse PCA. In Vu et al. (2013)
the authors propose a semidefinite program enforcing
sparsity to estimate the leading eigenvectors of the
population covariance given only the sample covari-
ance, and in Lei and Vu (2015) the authors provide
general results for which the algorithm in Vu et al.
(2013) selects the correct support. Similarly, Gu et al.
(2014) propose a nonconvex algorithm that selects the
correct support with high probability.

In many of the existing theoretical results on sparse
PCA, authors are primarily concerned with subspace
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estimation error in spectral or Frobenius norm (e.g.
Cai et al. (2013); Vu et al. (2013); Vu and Lei (2013)).
However, in many situations entrywise guarantees can
lead to more refined results which can be useful for
downstream inference. In this paper, building upon a
host of recent works on entrywise guarantees for eigen-
vectors (Abbe et al., 2020a,b; Agterberg et al., 2021;
Cai et al., 2021; Cape et al., 2019a,b; Charisopoulos
et al., 2020; Chen et al., 2020a; Damle and Sun, 2020;
Fan et al., 2018; Jin et al., 2019; Lei, 2019; Mao et al.,
2020; Xia and Yuan, 2020; Xie et al., 2019; Xie, 2021;
Yan et al., 2021), we study entrywise guarantees for
sparse PCA for a very general class of models. Our
main results hold for any sparsistent algorithm, i.e.
one that selects the correct support for the eigenvec-
tors, with high probability. Sparsistency has also been
studied in other contexts in high-dimensional statis-
tics, such as in sparse linear models (Fan and Li, 2001;
Wainwright, 2009; Zhao and Yu, 2006). See Bühlmann
and van de Geer (2011) for a more comprehensive
overview.

The literature on entrywise eigenvector analysis in-
cludes a suite of tools and techniques to bound the
entries of eigenvectors in ways that classical matrix
perturbation theory (e.g. Horn and Johnson (2012);
Stewart and Sun (1990); Bhatia (1997)) fails to ad-
dress. The Davis-Kahan Theorem (Yu et al., 2014)
provides a useful benchmark for eigenvector analysis,
but this can lead to suboptimal entrywise bounds. The
primary reason for the lack of optimality is due to the
fact that the Davis-Kahan Theorem can be somewhat
coarse, as it fails to take into account the probabilistic
nature of empirical eigenvectors in statistical settings.
Therefore, entrywise eigenvector bounds require care-
ful probabilistic and matrix analysis techniques that
go beyond what the Davis-Kahan Theorem and clas-
sical matrix perturbation theory can do. See Chen
et al. (2020a) for an accessible introduction to entry-
wise eigenvector estimation. The only other work on
entrywise eigenvector analysis in sparse PCA is in Xie
et al. (2019), which is a Bayesian setting under the
relatively stringent spiked model. In this paper we de-
velop entrywise bounds for sparse PCA under a much
more general model class. More specifically, our results
hold for models satisfying a mild eigengap requirement
(see Assumption 4) that includes the spiked model.

The rest of this paper is organized as follows. In Sec-
tion 2 we provide the requisite background for sparse
PCA and existing results on sparsistency. In Section
3 we provide our main results, and Section 4 includes
the discussion. We include a sketch of our main proof
in Section A, but the full proofs are relegated to the
supplementary material.

1.1 Notation

We use capital letters to denote matrices and random
vectors, which will be clear from context, and lower
case letters to denote fixed vectors. We let X1, . . . , Xn

denote a collection of n random variables in Rp. For
a generic real-valued random variable X, its ψα Or-
licz norm of order α (or just ψα norm) is defined via
∥X∥ψα

:= inf{t > 0 : E exp(|X|α/t) ≤ 1}. Random
variables with finite ψ2 norm are called subgaussian
and random variables with finite ψ1 norm are called
subexponential. More discussion on Orlicz norms is in-
cluded in Appendix C in the supplementary material.

For d1 ≥ d2, we define the set of matrices U ∈ Rd1×d2
with orthonormal columns as O(d1, d2) and when d =
d1 = d2, we denote this set as O(d). We use ∥ · ∥
as the spectral norm on matrices and the Euclidean
norm on vectors, ∥ · ∥F as the Frobenius norm, and
∥ · ∥max for the maximum entry norm. Except for the
spectral norm, we write ∥ · ∥p→q as the operator norm
from ℓp → ℓq; that is ∥M∥p→q := sup∥x∥p=1 ∥Mx∥q.
Of particular importance is the 2 → ∞ norm, which
is the maximum row norm of a matrix. Except for the
maximum entry norm, we write ∥ · ∥p to denote the
entrywise p norm of a matrix viewed as a long vector.
For a matrix M , diag(M) extracts its diagonal, and
Tr(M) is its trace. For two symmetric matrices A and
B, we write A ≽ B if A − B is positive semidefinite.
For a matrix M , Mj· and M·i denote its j’th row and
i’th column respectively. For a collection of indices J ,
MJJ denotes the principal submatrix of M found by
taking its columns and rows corresponding to indices
in J , and for a vector x, x[J ] denotes the components
of x corresponding to indices in J . For a matrix M ,
the operator supp(M) denotes its support, i.e. the
indices corresponding to nonzero components in M .
We denote the reduced condition number of Σ (with
respect to the dimension k) as κ := λ1

λk
.

For two functions f(n) and g(n), we write f(n) ≲ g(n)
or f(n) = O(g(n)) if there exists a constant C such
that f(n) ≤ Cg(n) for all n sufficiently large, and we
write f(n) ≪ g(n) or f(n) = o(g(n)) if f(n)/g(n) → 0
as n → ∞. In the proofs, a generic constant C may
change from line to line.

2 SPARSE PCA AND
SPARSISTENCY

Suppose {Xi}ni=1 ∈ Rp are mean-zero random vari-
ables with covariance matrix Σ and eigenvalues λ1 ≥
· · · ≥ λp ≥ 0. Define the empirical covariance Σ̂ :=
1
n

∑n
i=1XiX

⊤
i , which is just the usual method of mo-

ments estimator. We assume that Σ has a sparse k-
dimensional leading subspace, meaning that its leading
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k eigenvectors are s-sparse, in the sense that there is a
set J ⊂ {1, . . . , p} with cardinality at most s, with each
eigenvector’s nonzero support restricted to indices in
J . In the language of Vu and Lei (2013), this setting
refers to row -sparsity (as opposed to column-sparsity).
See Vu and Lei (2013) for a comparison. We denote
the p × k matrix U as the matrix of k orthonormal
eigenvectors of Σ. Since U is assumed row-sparse, it
has at most s nonzero rows. Concretely, this means
that the nonzero support of each column of U is re-
stricted to rows with indices in J . A useful interpre-
tation of the set J is that it corresponds to the subset
of covariates that contribute to the directions of max-
imum variance. In order for Σ to have a well-defined
(sparse) leading k-dimensional subspace, it must have
an eigengap, meaning that λk−λk+1 > 0. In Section 3,
Assumption 4 offers a slightly more quantitative con-
dition on this eigengap.

The sparse PCA problem consists of estimating the
matrix U from the observations {Xi}ni=1. There have
been a number of approaches, including, but not lim-
ited to semidefinite programming Amini and Wain-
wright (2009); d’Aspremont et al. (2007), Fantope
Projection and Selection algorithm (Vu et al., 2013;
Lei and Vu, 2015), nonconvex approaches (Gu et al.,
2014), Bayesian approaches (Xie et al., 2019), amongst
others (Gataric et al., 2020; Chen and Rohe, 2020;
Wang et al., 2014; Ma, 2013). In this paper we con-
sider any algorithm that selects the correct support
with high probability (see Assumption 2) in an asymp-
totic regime where k ≪ s ≪ n ≲ p. From a practical
standpoint, it is useful to consider the regime where k
stays fixed but s tends to infinity as n and p at a rate
s = o(n). This regime is similar to that studied in the
literature on high-dimensional sparse linear models,
where one assumes that the coefficients are s-sparse
with s ≪ n. While it is possible to use analogous
techniques to those in sparse linear models to study
sparse PCA (e.g. Janková and van de Geer (2021)),
the unsupervised problem of sparse PCA is markedly
distinct from the supervised setting of sparse linear re-
gression, and often requires additional considerations.

Note that if Π is a permutation matrix, then
ΠΣΠ⊤(ΠU) = ΠΣU = ΠUΛ, where Λ is the k × k di-
agonal matrix of leading eigenvalues of Σ. This shows
that ΠU are eigenvectors of ΠΣΠ⊤. Therefore, given
the set of nonzero indices J , without loss of general-
ity, we can assume J = {1, . . . , s} by permuting Σ if
necessary. We can partition Σ via

Σ :=

(
ΣJJ ΣJJc

Σ⊤
JJc ΣJcJc

)
;

a similar partition holds for Σ̂ and U . Under the as-
sumption that the leading eigenvectors of Σ are sparse,

Algorithm 1

Require: Sparsistent sparse PCA algorithm
SparsePCA, empirical covariance matrix Σ̂

1: Run SparsePCA algorithm on Σ̂, obtaining support
set estimate Ĵ ⊂ {1, . . . , p}.

2: Define ŨĴ as the leading k eigenvectors of Σ̂ĴĴ .

return Full matrix Ũ , where

Ũi· =

{
(ŨĴ)i· i ∈ Ĵ

0 i /∈ Ĵ

we have from the eigenvector equation that

ΣU =

(
ΣJJ ΣJJc

Σ⊤
JJc ΣJcJc

)(
UJ
0

)
=

(
ΣJJUJ
Σ⊤
JJcUJ

)
=

(
UJ
0

)
Λ

which shows also that UJ is orthogonal to the matrix
Σ⊤
JJc and that the leading k eigenvectors and eigenval-

ues of ΣJJ are exactly the leading k eigenvectors of Σ
with the zeros removed.

An important property of any sparse PCA algorithm is
identifying the support J with high probability. Sup-

pose Û is any estimator for U (or, equivalently, ÛU⊤

is any estimator for UU⊤). In this work we consider a
“debiased” version of sparse PCA under the assump-
tion that Û and U contain the same set of nonzero
components, which implies that the estimator Û equiv-
alently estimates the support J . We defer the partic-
ular details of this assumption to Assumption 2. Our
estimator is then defined as the following modification
on any sparsistent algorithm: given any set J , let ŨJ
be the s × k matrix of eigenvectors of the principal

submatrix Σ̂JJ , and define Ũ :=

(
ŨJ
0

)
. If the al-

gorithm is sparsistent, then the correct set J will be
selected with high probability. In this way, the partic-
ular choice of sparse PCA algorithm can be viewed as
a variable selection procedure as opposed to an esti-
mation procedure. The full procedure is presented in
Algorithm 1.

A natural question is whether sparsistent algorithms
for sparse PCA exist. The answer is positive: in The-
orem 1 of Lei and Vu (2015), the authors provide de-
terministic conditions on Σ guaranteeing that the Fan-
tope Projection and Selection estimator is unique and
has support set J with probability at least 1−O(p−2)

when s
√

log(p)
n → 0. Their conditions require an error

bound on ∥Σ̂−Σ∥max as well as conditions on the mag-
nitudes of the eigengaps and entries of the projection
matrices. Similarly, Gu et al. (2014) provide general
conditions on Σ (in terms of the magnitudes of the en-
tries) so that their (nonconvex) algorithm obtains the
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support set J with probability at least 1−O(n−2) when
sk log(p)

n → 0. In general, sparsistency is a property of
an algorithm, and the particular structure of Σ must
be taken into account. Therefore, our results will hold
for general matrices Σ with only mild conditions, and
can be coupled with additional structural assumptions
and algorithms to yield improved recovery guarantees.

3 MAIN RESULTS

In order to state our main results, we need a few as-
sumptions. Our main results will be stated for large n
with p, s and k functions of n. We have the following
assumption on the dimensions.

Assumption 1 (Sample Size and Dimension). The
sample size n and dimension p satisfy

s log(p) ≪ n; k ≪ s.

The assumption that s log(p) ≪ n is weaker than the
assumption s ≲

√
n/ log(p) as is the condition in Lei

and Vu (2015) for sparsistency. However, this still al-
lows p/n→ ∞; e.g. p = nc for any c ≥ 1. The second
condition k ≪ s is not explicitly required, but it does
rule out the degenerate case k = O(s), since k ≤ s
by definition. In many works k = 1 (e.g. Amini and
Wainwright (2009); Elsener and van de Geer (2019);
Janková and van de Geer (2021)).

The next assumption imposes the condition that what-
ever variable selection procedure we use selects the cor-
rect support set J with high probability.

Assumption 2 (Sparsistency). The algorithm is
sparsistent, meaning that with probability 1−δ the cor-
rect set J is chosen.

Note that Theorem 1 of Lei and Vu (2015) provides
sufficient conditions for Assumption 2 to hold, as does
Theorem 1 of Gu et al. (2014). In general, this as-
sumption is the hardest to check as it depends on
the particular variable selection algorithm. In Lei and
Vu (2015), the authors show that δ = O(p−2) when

s
√

log(p)
n → 0 (in addition to some other conditions

omitted here). Similarly, Gu et al. (2014) show that

δ = O(n−2) when s log(p)
n → 0 (in addition to other

conditions omitted here). Typically the other con-
ditions include some “signal-strength” requirements,
such as the magnitudes of the entries of Σ being suffi-
ciently large. The particular details for these require-
ments can be found in Lei and Vu (2015) and Gu et al.
(2014) respectively.

The following assumption imposes general tail con-
ditions on the distribution of the observations
X1, . . . , Xn.

Assumption 3 (Randomness). The variables Xi are
mean zero and satisfy Xi = Σ1/2Yi for independent
random variables Yi with independent coordinates with
unit variance. Furthermore, the ψ2 norm of each co-
ordinate Yij satisfies ∥Yij∥ψ2

= 1 .

This assumption says that theXi’s are linear combina-
tions of Yi’s whose entries are independent. In general,
assuming that each observation is a linear combination
of independent random variables is a little stringent,
but still common in the random matrix theory litera-
ture (e.g. El Karoui (2010); Knowles and Yin (2017);
Bao et al. (2020); Ding (2021); Yang (2019, 2020)).
While a more general result may be possible, Assump-
tion 3 includes the setting that the Yi’s are i.i.d. Gaus-
sians with identity covariance.

The following assumption imposes a quantitative con-
dition on the eigengap (note that the existence of an
eigengap is required for identifiability).

Assumption 4 (Eigenvalues). The top eigenvalues of
Σ satisfy

Cλ1

(√
s

n
+

√
log(p)

n

)
+
λk+1

8
≤ λk

8

for some sufficiently large constant C. In addition, for
all p, we have that 2λk+1 < (1−ε)λk for some ε > 1

64 .

The requirement ε > 1
64 is somewhat arbitrary and can

be relaxed in general to any constant strictly greater
than zero. The other part of the assumption is re-
quired to obtain enough signal on the top k eigenvalues
of Σ, and hence ΣJJ . Furthermore, in light of Lemma
1 (our principal submatrix concentration bound), this
ensures that the top k eigenvalues of Σ̂JJ “track” those
of ΣJJ . In lieu of stronger assumptions, such as in
a spiked model, this is the minimum requirement to
guarantee that leading eigenvectors of Σ̂JJ are well-
defined.

The main results will be stated in terms of the 2 → ∞
norm of the difference of two matrices. Recall that for
a matrix M ∈ Rp×k, we have that

∥M∥2→∞ = max
1≤i≤p

∥Mi·∥2;

that is, ∥M∥2→∞ is the maximum (Euclidean) row
norm of the matrixM . Moreover, the 2 → ∞ norm has
some attractive geometrical properties; for example,
for two matrices A and B, we have that ∥AB∥2→∞ ≤
∥A∥2→∞∥B∥. More discussion on these relationships
can be found in Cape et al. (2019b).

The following assumption concerns the incoherence of
the matrix U , which is defined as ∥U∥2→∞. This as-
sumption is only included to ease interpretation and is
not explicitly required. A more general – albeit more
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complicated – result is provided in the supplementary
material.

Assumption 5 (Incoherence and Conditioning). Sup-

pose ∥U∥2→∞ ≲
(
k
s

)1/2
, that k ≲

√
s, and that the

eigenvalues satisfy

λk+1 ≤ λ

2
< λ ≤ λk ≤ λ1 ≤ κλ

for some parameters κ and λ.

The requirement k ≲
√
s is only needed to simplify

terms. The incoherence assumption states that the
matrix ΣJJ is incoherent in the usual sense. In this pa-
per we do not worry about the particular incoherence
constant as long as it is O(1), whereas in the matrix
completion literature (Candes and Plan, 2010; Can-
des and Tao, 2010; Chen et al., 2020b, 2019) one of-
ten studies the precise dependence on the incoherence
constant. If one desires a more refined understanding
of incoherence, our more general result in the supple-
mentary material shows how our upper bound depends
explicitly on the incoherence of U .

In addition, Assumption 5 should not be confused with
Assumption 4 on the eigengap. The parameter κ is the
reduced condition number of the leading k-dimensional
subspace of Σ, and can be much smaller than the usual
(full) condition number of Σ, especially when the lead-
ing k eigenvalues are of comparable order (or “spiked”)
relative to the bottom p− k eigenvalues. Assumption
4 in fact implies an upper bound on κ of order at most√
n/(s log(p)), but it is useful to think of the setting

that κ = O(1), which corresponds to the case where
the leading k eigenvalues are of comparable order. In
the setting that the eigenvalues are uniformly bounded
away from zero and infinity, this assumption is not par-
ticularly strong; moreover, if the leading k eigenvalues
grow sufficiently fast as a function of n and p, then
the leading k eigenvectors are consistent without ad-
ditional assumptions. Consequently, the primary tech-
nical condition in Assumption 5 is on the incoherence,

i.e. ∥U∥2→∞ ≲
(
k
s

)1/2
.

Before stating the main theorem, we will require some
notions from subspace perturbation theory (Bhatia,
1997; Stewart and Sun, 1990). For V, V ′ ∈ O(p, k),
the quantity

dF (V, V
′) = inf

W∈O(k)
∥V − V ′W∥F (1)

defines a metric on k-dimensional subspaces invariant
to choice of basis. Therefore, by analogy, one might
wish to study the quantity

d2→∞(V, V ′) := inf
W∈O(k)

∥V − V ′W∥2→∞. (2)

Unfortunately, for fixed V, V ′, one cannot necessarily
compute the minimizer in (2) in closed form. However,
for fixed V, V ′ the minimizer of (1) is attained using
the singular value decomposition of V ⊤V ′. That is,
let W1DW

⊤
2 be the singular value decomposition of

V ⊤V ′. Then the minimizer of (1), denoted W∗, satis-
fes W∗ :=W1W

⊤
2 . In addition,

d2→∞(V, V ′) ≤ ∥V − V ′W∗∥2→∞.

Therefore, the results will be stated in terms of the
existence of an orthogonal matrix W∗ ∈ O(k) that
provides an upper bound for the 2 → ∞ distance.
In the proof, we show that W∗ is actually a spe-
cific Frobenius-optimal orthogonal matrix. For con-
venience, we also include more information on sub-
space distances in the supplementary material (Ap-
pendix C).

We are now prepared to state our main result.

Theorem 1. Suppose Assumptions 1, 2, 3, 4, and 5
are satisfied, and let Ũ be the output of Algorithm 1.
Then with probability at least 1− δ − p−2, there exists
an orthogonal matrix W∗ ∈ O(k) such that

max
1≤i≤n

∥Ũi· − (UW∗)i·∥

≲ κ2
√
k log(p)

n
+ κ3

s log(p)

n
.

Consequently, if κ = O(1), then

max
1≤i≤n

∥Ũi· − (UW∗)i·∥ ≲

√
k log(p)

n
+
s log(p)

n
.

As a brief remark, the dependence on the reduced con-
dition number κ here may be suboptimal and could po-
tentially be improved – we believe this is primarily an
artifact of our proof technique and not a fundamental
requirement. Recall that in the regime that the eigen-
values are bounded away from zero and infinity, when
the leading k eigenvalues are of comparable order, it
holds that κ = O(1).

Note that by taking δ = O(p−2) and the conditions in
Lei and Vu (2015) needed for sparsistency, the above
bound holds with probability at least 1−O(p−2); sim-
ilarly, under the conditions needed for sparsistency in
Gu et al. (2014), one has δ = O(n−2), in which case
the bound holds with probability at least 1−O(n−2).

4 DISCUSSION

In the regime that the eigenvalues are uniformly
bounded away from zero and infinity in n, then Theo-
rem 1 shows that we have the error rate

max
1≤i≤n

∥Ũi· − (UW∗)i·∥ ≲ max

(√
k log(p)

n
,
s log(p)

n

)
.
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In contrast, under the same conditions, in Frobenius
norm, it has been shown in Cai et al. (2013) that the
minimax rate satisfies

∥Ũ − UW∗∥F ≲

√
s log(p)

n
,

so Theorem 1 improves upon this. Moreover, our re-
sult improves greatly upon the Frobenius norm bound
in Vu et al. (2013), as well as the Frobenius mini-
max rates studied in Cai et al. (2013) and Vu and
Lei (2013). To the best of our knowledge, this is the
first 2 → ∞ guarantee for sparse PCA under a generic
sparsistency requirement. A similar result was found
in Xie et al. (2019) for spiked sparse covariance ma-
trices, but here the only assumption on the spike is
Assumption 4, which is a much weaker assumption.

Our bounds can also be compared to the spiked co-
variance matrix setting Σ = UΛU⊤ + σ2I, where U
is no longer sparse but λk → ∞ in n and p. In this
setting the eigenvectors Û of Σ̂ are consistent in the fol-

lowing sense. Define the effective rank r(Σ) := Tr(Σ)
λ1

.
Theorem 1 of Cape et al. (2019b) (see also Yan et al.
(2021) and Cai et al. (2021)) shows that if λ1 ≳ d/k,
r(Σ) = o(n), κ = O(1), and λk − σ2 ≳ λk, then

max
1≤i≤n

∥Ûi· − (UW∗)i·∥ ≲

√
max{r(Σ), log(d)}

n

√
k3

p
.

Here the primary error is no longer in detecting the
leading eigenvectors (as the assumption that λ1 ≳ d/k
implies large enough separation), but rather in the
inherent statistical error implicit from the difference
Σ̂ − Σ. Our upper bound requires that J is either
known or can be estimated consistently (Assumption
2), so that our error depends on the inherent statistical
error from Σ̂JJ−ΣJJ . In contrast, we do not optimize
for factors of λ1 in our upper bound, as the setting
for sparse PCA typically assumes that the eigenvalues
remain bounded in n and p. We instead need only the
(milder) eigenvalue separation in Assumption 4.

Suppose instead of just observing X1, . . . , Xn ∈ Rp,
one also observes response variables Yi ∈ R. Con-
sider the linear model Yi = X⊤

i β + εi, where εi is a
mean-zero error term with variance σ2. Suppose one
first performs unsupervised dimensionality reduction
on the data matrix via sparse PCA and then computes
β̂ using ordinary least squares with the reduced data
matrix. The 2 → ∞ bound in Theorem 1 could pro-
vide a partial answer to the out-of-sample prediction
performance using a variable selection procedure. To
be concrete, define β̂ as the output of ordinary least
squares by regressing Yi along XŨŨ

⊤, where Ũ is the
output of the sparse PCA procedure in Algorithm 1
and X is the n × p matrix of predictors. Following

Huang et al. (2020), we can bound the risk of a new
sample point (x∗, Y∗) via

E∥Y∗ − x⊤∗ β̃SPCA∥2|X
≤ β⊤(I − Ũ Ũ⊤)Σ(I − Ũ Ũ⊤)β

+
σ2

n
Tr

[(
1

n
ŨŨ⊤X⊤XŨŨ⊤

)†

Σ

]
+ σ2,

where the first term represents the bias, the second
term represents the variance, and the third term (σ2)
is the noise intrinsic to the problem. The bias term
can be expanded further via

β⊤(I − Ũ Ũ⊤)Σ(I − Ũ Ũ⊤)β
= β⊤(Ũ Ũ⊤ − UU⊤)Σ(Ũ Ũ⊤ − UU⊤)β

+ 2β⊤(Ũ Ũ⊤ − UU⊤)Σ(I − UU⊤)β
+ λk+1∥β∥22.

Consider the second term. This could be bounded by
noting that∣∣β⊤(Ũ Ũ⊤ − UU⊤)Σ(I − UU⊤)β∣∣

≤
∥∥β⊤(Ũ Ũ⊤ − UU⊤)∥∥

∞

∥∥Σ(I − UU⊤)β∥∥
1

≤ λk+1∥β∥∞∥β∥1∥Ũ Ũ⊤ − UU⊤∥2→∞.

This bound has a factor of ∥Ũ Ũ⊤−UU⊤∥2→∞, which,
while not exactly the same as what appears in Theo-
rem 1, is closely related to it by appealing to notions
in subspace perturbation theory (see, e.g. Lemma 1
of Cai and Zhang (2018)). Therefore, through similar
analysis, one could obtain bounds for the other bias
and variance terms with respect to the eigenvalues of
Σ, the quantity ∥Ũ Ũ⊤ − UU⊤∥2→∞ and the quan-
tities ∥β∥1 and ∥β∥∞. Consequently, these bounds
would complement those in Theorem 1 of Huang et al.
(2020) as sparse PCA is typically needed in a regime
when r(Σ) ≳ n, whereas Huang et al. (2020) study the
setting that r(Σ) = o(n).

Finally, our upper bound depends on the debiased es-
timator ŨJ , which is the matrix of eigenvectors of Σ̂JJ .
A key requirement is that any algorithm obtains the
correct set J with probability at least 1 − δ. In gen-
eral, one must consider the output of an optimization
procedure to determine whether a specific algorithm
obtains the correct set J . If one additionally wanted
to test whether a certain row of U is equal to zero
(i.e., whether i ∈ J), then one would need to con-
struct a different debiased estimator as in Janková and
van de Geer (2021) that uses the first-order necessary
optimality conditions. This procedure therefore relies
heavily on the particular algorithm used, whereas our
bounds hold for generic algorithms.
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5 OVERVIEW OF THE PROOF OF
THEOREM 1

The full proof of Theorem 1 is in the supplementary
material, though we include a brief overview here.
First, our main upper bound holds without Assump-
tion 5, and we provide this general upper bound in
Theorem 2 (stated in the supplementary material A)
and show how Theorem 1 can be deduced from As-
sumption 5. To prove Theorem 2, we first show the
following principal submatrix concentration bound.

Lemma 1 (Principal Submatrix Concentration). Let
J be an index set of {1, ..., p} of size s. Then

∥Σ̂JJ − ΣJJ∥ ≲ λ1

(√
s

n
+

√
log(p)

n

)
with probability at least 1−O(p−4).

The proof is somewhat standard and primarily follows
arguments detailed in Wainwright (2019) via ε-nets
and concentration, though we include it in Section B.1
for completeness. It is also very similar to a result in
Amini and Wainwright (2009) for Gaussian random
variables. To the best of our knowledge, there is no
general result of this form in the literature for subgaus-
sian random vectors. The following Lemma shows that
the leading k eigenvalues of Σ̂JJ are well-separated
from its bottom eigenvalues.

Lemma 2 (Existence of an Eigengap). Under the
event in Lemma 1 and Assumption 4, the eigenvalues
of Σ̂JJ and ΣJJ satisfy

λk − λ̃k+1 ≥ λk − λk+1

8
; λ̃k − λk+1 ≥ λk − λk+1

8
;

λ̃k ≥ λk
4
.

Consequently, this bound holds with probability at least
1−O(p−4).

We also note that λk+1(ΣJJ) ≤ λk+1 by the Cauchy
interlacing inequalities (Horn and Johnson, 2012), and
the top k eigenvalues of ΣJJ are the same as those of
Σ by the eigenvector equation. These lemmas set the
stage for our main analysis.

As an immediate consequence of Lemmas 1 and 2, we
can obtain the following proposition concerning the
spectral proximity of UJU

⊤
J to ŨJ Ũ

⊤
J , ensuring that

ŨJ (and hence Ũ) is well-defined.

Proposition 1 (Spectral Proximity). Under the as-
sumptions of Theorem 2, we have that

∥UJU⊤
J − ŨJ Ũ

⊤
J ∥ ≲

λ1
λk − λk+1

[√
s

n
+

√
log(p)

n

]
with probability at least 1−O(p−4).

We use this bound several times in our subsequent
analysis. After these preliminary bounds, which are re-
stated for convenience in the supplementary material,
we develop an expansion for the difference ŨJ −UJW∗
in terms of the error matrix (Σ− Σ̂) and deterministic
quantities depending only on Σ. Informally, we show
that we have the “first-order” approximation

ŨJ − UJW∗ = (Σ̂JJ − UJU
⊤
J ΣJJ)ŨJ Λ̃

−1 +R,

where R is a residual term and Λ̃ is the diagonal matrix
of the k leading eigenvalues of Σ̂JJ . Lemma 2 ensures
that the eigenvalues of Λ̃ can be bounded with respect
to the eigenvalues of Σ. The residual term R (the
terms T1, T2, and T3 in the supplementary material) is
bounded in Lemmas 3, 4, and 5 with tools from com-
plex analysis (Greene and Krantz, 2006), matrix per-
turbation theory (Bhatia, 1997), and high-dimensional
probability (Wainwright, 2019; Vershynin, 2018).

To bound the leading term in 2 → ∞ norm, we show
that it can be further decomposed into two terms, that
we dub J1 and J2, by the decomposition

(Σ̂JJ − UJU
⊤
J ΣJJ)ŨJ = (Σ̂JJ − ΣJJ)ŨJ + U⊥Λ⊥U

⊤
⊥ ŨJ

: = J1 + J2,

where U⊥ is the s×(s−k) matrix such that [UJ , U⊥] is
an orthogonal matrix. The first term reflects the error
from the randomness and the leading subspace UJ and
the second term reflects the influence of U⊥ on ŨJ .

The term J2 = U⊥Λ⊥U
⊤
⊥ ŨJ is bounded using a ma-

trix series expansion for the matrix ŨJ (Lemma 6).
More explicitly, we define the perturbation E := Σ̂JJ−
UJU

⊤
J ΣJJUJU

⊤
J , and we show that we can write

ŨJ =

∞∑
m=0

Em(UJΛU
⊤
J )ŨJΛ

−m+1.

We then analyze each term in 2 → ∞ norm, take a
union bound for the first O(log(n)) terms and bound
the remaining part of the series coarsely using the spec-
tral norm. Similar techniques have been used in Cape
et al. (2019a); Xie et al. (2019); Tang (2018) and Tang
et al. (2017), but our analysis requires additional con-
siderations due to the fact that we do not have a mean-
zero perturbation since EE = U⊥U

⊤
⊥ΣJJU⊥U

⊤
⊥ . How-

ever, the matrix EUJ is mean-zero since U⊤
⊥UJ = 0.

The remaining term J1 = (Σ̂JJ − ΣJJ)ŨJ is then an-
alyzed directly through its block-structure (Equation
(7)). Letting X be the n×p matrix whose rows are the
observations, by Assumption 3, X = Y Σ1/2, where Y
is an n × p matrix of independent random variables
with unit variance. Then the empirical covariance
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Σ̂ = 1
nX

⊤X and hence

Σ̂JJ =
1

n

(
(Σ1/2)JJY

⊤
J YJ(Σ

1/2)JJ +Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ

+ (Σ1/2)JJY
⊤
J YJc(Σ

1/2
JJc)

⊤ +Σ
1/2
JJcY

⊤
JcYJc(Σ

1/2
JJc)

⊤
)

where we have abused the notation

Σ
1/2
JJc = (Σ1/2)JJc .

Above, the n × p matrix Y is partitioned via Y =
[YJ , YJc ], where YJ and YJc are the variables corre-
sponding to J and its complement, Jc, respectively.
This term is bounded in Lemmas 7, 8, and 9. Lemmas
7 and 8 are standard applications of matrix perturba-
tion theory (via Proposition 1) and standard concen-
tration inequalities such as Bernstein’s inequality, but
Lemma 9 requires studying the spectral properties of
the matrix ΣJJc and its relation to UJ (Proposition
2).

Our proof is then completed by combining and ag-
gregating all of these bounds. Throughout the proof
we make heavy use of several important concentration
inequalities and notions from subspace perturbation
theory, so Appendix C in the supplementary material
contains additional information on these topics.
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Supplementary Material:
Entrywise Recovery Guarantees for Sparse PCA

via Sparsistent Algorithms

Abstract

This supplementary material contains all the proofs of our main results. Appendix A contains the
proof of Theorem 1, Appendix B contains the proofs of additional lemmas needed en route the the
proof of the main theorem, and Appendix C contains additional background material on Orlicz norms,
concentration inequalities, and subspace perturbation theory.

A Proof of Theorem 1

In this section we prove Theorem 1. First, Theorem 1 is actually a consequence of the following more general
theorem that does not require Assumption 5. Section A.1 develops the preliminary bounds in terms of principal
submatrix and eigenvalue concentration (Lemmas 1 and 2), and in Section A.2 we prove Theorem 2. In Section
A.3 we show how Theorem 1 can be deduced by combining Theorem 2 with Assumption 5. En route to the
proof of Theorem 2 we introduce several technical lemmas; we prove these in Section B. Recall that we denote
κ := λ1

λk
as the (reduced) condition number of Σ.

Theorem 2. Suppose Assumptions 1, 2, 3, and 4 are satisfied. Then with probability at least 1− δ− p−2, there
exists an orthogonal matrix W∗ ∈ O(k) such that

max
1≤i≤p

∥Ũi· − (UW∗)i·∥ ≲ E1 + E2 + E3 + E4 + E5

where

E1 : =
κλ1

λk − λk+1

s log(p)

n
∥U∥2→∞ + κk

√
log(p)

n
∥U∥2→∞

E2 : =
λ21

(λk − λk+1)2
s log(p)

n
∥U∥2→∞

E3 : =

√
s log(p)

n

κλ
1/2
1

λk − λk+1
min

(
∥Σ∥1/2max,

√
λ1∥U∥2→∞

)
E4 : =

λk+1

λk
κ2

√
k log(p)

n
+
λk+1

λk
κ3
s log(p)

n
;

E5 : =
κλ1

λk − λk+1

s log(p)

n
+ κ

√
k log(p)

n
.

A.1 Preliminary Bounds

Note that by Assumption 2, we need only examine the s× k matrix of eigenvectors of Σ̂JJ and ΣJJ respectively.
We will develop an expansion for the difference ŨJ − UJW∗ by viewing Σ̂JJ as a perturbation of ΣJJ . For
convenience we restate the initial preliminary bounds in the main paper. Except for Proposition 1, the proofs
are in Section B.1. The first is the following principal submatrix concentration bound.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
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Lemma 1 (Principal Submatrix Concentration). Let J be an index set of {1, ..., p} of size s. Then

∥Σ̂JJ − ΣJJ∥ ≲ λ1

(√
s

n
+

√
log(p)

n

)
with probability at least 1−O(p−4).

Henceforth, we assume the correct support set J is known; it is the correct set J with probability at least 1− δ
by Assumption 2. As discussed in the main paper, using Lemma 1, we can derive the following eigenvalue bound,
which we present as a lemma below.

Lemma 2 (Existence of an Eigengap). Under the event in Lemma 1 and Assumption 4, the eigenvalues of Σ̂JJ
and ΣJJ satisfy

λk − λ̃k+1 ≥ λk − λk+1

8
; λ̃k − λk+1 ≥ λk − λk+1

8
;

λ̃k ≥ λk
4
.

Consequently, this bound holds with probability at least 1−O(p−4).

Finally, we have the following sinΘ distance error between UJ and ŨJ .

Proposition 1 (Spectral Proximity). Under the assumptions of Theorem 2, we have that

∥UJU⊤
J − ŨJ Ũ

⊤
J ∥ ≲

λ1
λk − λk+1

[√
s

n
+

√
log(p)

n

]
with probability at least 1−O(p−4).

Proof of Proposition 1. By the Davis-Kahan Theorem (Bhatia, 1997; Yu et al., 2014) and Lemma 2,

∥UJU⊤
J − ŨJ Ũ

⊤
J ∥ ≤ ∥Σ̂JJ − ΣJJ∥

λk − λ̃k+1

.

≲
∥Σ̂JJ − ΣJJ∥
λk − λk+1

(3)

By Lemma 1, with probability at least 1−O(p−4), the numerator can be bounded by

∥Σ̂JJ − ΣJJ∥ ≤ λ1

(√
s

n
+

√
log(p)

n

)
Combining this and Equation (3) gives the result.

In the proofs that follow, we will use the fact that by Proposition 1, we have that

∥UJU⊤
J − ŨJ Ũ

⊤
J ∥ ≲

λ1
λk − λk+1

√
s log(p)

n
,

which is a little more amenable to downstream analysis. In addition, we use several equivalent expressions for
the spectral norm of the difference of projections; see Lemma 10 in Appendix C for a discussion of how to equate
these.

A.2 Proof of Theorem 2

We now proceed with the proof. At a high level, the argument consists of a deterministic matrix decomposition,
each term of which we bound in probability. Define Λ̃ as the diagonal k× k matrix of eigenvalues of Σ̂JJ . Define
W∗ to be the matrix

W∗ := argmin
W∈O(k)

∥ŨJ − UJW∥F .
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Is is well-known that W∗ can be computed from the singular value decomposition of U⊤
J ŨJ (e.g. Abbe et al.

(2020b); Cape et al. (2019b); Chen et al. (2020a)).

We now expand the difference via

ŨJ − UJW∗ = ŨJ − UJU
⊤
J ŨJ − UJ(W∗ − U⊤

J ŨJ)

= ŨJ − UJΛU
⊤
J ŨJ Λ̃

−1 + UJΛU
⊤
J ŨJ Λ̃

−1 − UJU
⊤
J ŨJ − UJ(W∗ − U⊤

J ŨJ)

= ŨJ − UJΛU
⊤
J ŨJ Λ̃

−1 + UJ(ΛU
⊤
J ŨJ − U⊤

J ŨJ Λ̃)Λ̃
−1 − UJ(W∗ − U⊤

J ŨJ)

= ŨJ Λ̃Λ̃
−1 − UJΛU

⊤
J ŨJ Λ̃

−1 + UJ(ΛU
⊤
J ŨJ − U⊤

J ŨJ Λ̃)Λ̃
−1 − UJ(W∗ − U⊤

J ŨJ)

= (ŨJ Λ̃− UJΛU
⊤
J ŨJ)Λ̃

−1 + UJ(ΛU
⊤
J ŨJ − U⊤

J ŨJ Λ̃)Λ̃
−1 − UJ(W∗ − U⊤

J ŨJ)

= A+ T1 − T2, (4)

where

A : = (ŨJ Λ̃− UJΛU
⊤
J ŨJ)Λ̃

−1;

T1 : = UJ(ΛU
⊤
J ŨJ − U⊤

J ŨJ Λ̃)Λ̃
−1

T2 : = UJ(W∗ − U⊤
J ŨJ).

Both T1 and T2 are analyzed concisely in Lemmas 3 and 4 as follows. Their proofs are in Section B.2. The
proof of Lemmas 3 and 4 are both rather straightforward and based on previous results in entrywise eigenvector
analysis (Abbe et al., 2020a,b; Agterberg et al., 2021; Cai et al., 2021; Cape et al., 2019a,b; Chen et al., 2020a;
Tang et al., 2017; Xia and Yuan, 2020; Xie et al., 2019; Xie, 2021; Yan et al., 2021).

Lemma 3 (Bound on T1). We have that

∥UJ(ΛU⊤
J ŨJ − U⊤

J ŨJ Λ̃)Λ̃
−1∥2→∞ ≲

∥U∥2→∞λ
2
1

λk(λk − λk+1)

s log(p)

n

+
kλ1∥U∥2→∞

λk

√
log(p)

n

≡ E1
with probability at least 1−O(p−4).

Lemma 4 (Bound on T2). We have that

∥UJ(W∗ − U⊤
J ŨJ)∥2→∞ ≲

∥U∥2→∞λ
2
1

(λk − λk+1)2
s log(p)

n

≡ E2
with probability at least 1−O(p−4).

Expanding Equation (4) into T3 and T4:

We further expand the remaining term in (4) by viewing Σ̂JJ as a perturbation of UJU
⊤
J ΣJJ and using

the eigenvector-eigenvalue equation via

A = (ŨJ Λ̃− UJΛU
⊤
J ŨJ)Λ̃

−1

= (Σ̂JJ ŨJ − ΣJJUJU
⊤
J ŨJ)Λ̃

−1

= (UJU
⊤
J ΣJJ ŨJ + (Σ̂JJ − UJU

⊤
J ΣJJ)ŨJ − ΣJJUJU

⊤
J ŨJ)Λ̃

−1

= UJU
⊤
J ΣJJ(ŨJ − UJU

⊤
J ŨJ)Λ̃

−1 + (Σ̂JJ − UJU
⊤
J ΣJJ)ŨJ Λ̃

−1

= T3 + T4,

where

T3 := UJU
⊤
J ΣJJ(ŨJ − UJU

⊤
J ŨJ)Λ̃

−1

T4 := (Σ̂JJ − UJU
⊤
J ΣJJ)ŨJ Λ̃

−1.
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The term T3 can be analyzed via techniques from complex analysis. We present this bound as a lemma, but
defer the proof to Section B.3.

Lemma 5 (Bound on T3). We have that

∥UJU⊤
J ΣJJ(ŨJ − UJU

⊤
J ŨJ)Λ̃

−1∥2→∞ ≲

√
s log(p)

n

λ
3/2
1

λk(λk − λk+1)
min

(
∥Σ∥1/2max,

√
λ1∥U∥2→∞

)
≡ E3

with probability at least 1−O(p−3).

Expanding T4 in terms of J1 and J2:

We now proceed to bound T4. We have by Lemma 2 and properties of the 2 → ∞ norm that

∥(Σ̂JJ − UJU
⊤
J ΣJJ)ŨJ Λ̃

−1∥2→∞ ≤ 1

λ̃k
∥(Σ̂JJ − UJU

⊤
J ΣJJ)ŨJ∥2→∞

≲
1

λk
∥(Σ̂JJ − UJU

⊤
J ΣJJ)ŨJ∥2→∞. (5)

Note that ŨJ is the matrix of eigenvectors of Σ̂JJ and hence is not independent of the error matrix Σ̂JJ −
UJU

⊤
J ΣJJ , so one cannot bound the maximum row norm of the matrix above with standard concentration

techniques. Let U⊥ be the matrix such that [UJ , U⊥] is an s × s orthogonal matrix, and let Ũ⊥ be defined
similarly. Define also Λ⊥ and Λ̃⊥ as the matrix of bottom s− k eigenvalues of ΣJJ and Σ̂JJ respectively. Since
Ũ⊤
⊥ ŨJ = 0, we have that

1

λk
∥(Σ̂JJ−UJU⊤

J ΣJJ)ŨJ∥2→∞

=
1

λk

∥∥∥∥(ŨJ Λ̃Ũ⊤
J + Ũ⊥Λ̃⊥Ũ

⊤
⊥ − UJΛJU

⊤
J

)
ŨJ

∥∥∥∥
2→∞

≤ 1

λk

∥∥∥∥(ŨJ Λ̃Ũ⊤
J + Ũ⊥Λ̃⊥Ũ

⊤
⊥ − UJΛJU

⊤
J − U⊥Λ⊥U

⊤
⊥

)
ŨJ

∥∥∥∥
2→∞

+
1

λk
∥U⊥Λ⊥U

⊤
⊥ ŨJ∥2→∞

≤ 1

λk
∥(Σ̂JJ − ΣJJ)ŨJ∥2→∞ +

1

λk
∥U⊥Λ⊥U

⊤
⊥ ŨJ∥2→∞

: =
1

λk
∥J1∥2→∞ +

1

λk
∥J2∥2→∞ (6)

where

J1 : = (Σ̂JJ − ΣJJ)ŨJ ;

J2 : = U⊥Λ⊥U
⊤
⊥ ŨJ .

The term J2 can be bounded in the following lemma, but it is rather technical; moreover, it requires some
analysis that is relatively novel in the subspace estimation literature; in particular, we combine some ideas from
Xia and Yuan (2020) as well as Cape et al. (2019a); Xie et al. (2019); Tang (2018); Tang et al. (2017). The proof
is in Section B.4.

Lemma 6 (Bound on J2). The term J2 satisfies

∥U⊥Λ⊥U
⊤
⊥ ŨJ∥2→∞ ≲ κ2λk+1

√
k log(p)

n
+ λk+1κ

3 s log(p)

n

≲ E4λk

with probability at least 1−O(p−3).

Further expanding the term J1:
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What remains is to bound the first term of (6); i.e. the term J1. First, note that by Assumption 3,
each vector Xi ∈ Rp is of the form Xi = Σ1/2Yi, where EYiY ⊤

i = I. Let X be the n× p matrix whose rows are
the Xi’s; it follows that X = Y Σ1/2. Let Y be partitioned via Y = [YJ , YJc ], where YJ is the n × s matrix of
variables corresponding to those in J , and YJc is the n × p − s matrix of the other variables. Define through

slight abuse of notation the matrix Σ
1/2
JJc := (Σ1/2)JJc . With these notations in place, we observe that since

Σ̂ = 1
n (X

⊤X) we have the block structure

Σ̂JJ =
1

n

(
(Σ1/2)JJY

⊤
J YJ(Σ

1/2)JJ +Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ + (Σ1/2)JJY
⊤
J YJc(Σ

1/2
JJc)

⊤ +Σ
1/2
JJcY

⊤
JcYJc(Σ

1/2
JJc)

⊤
)
.

Therefore, we observe that

(Σ̂JJ − ΣJJ)ŨJ =
1

n

(
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ +Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ

+ (Σ1/2)JJY
⊤
J YJc(Σ

1/2
JJc)

⊤ +Σ
1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤
)
ŨJ . (7)

Here the identity matrices are of size s and p − s respectively in order of appearance. In light of the structure
in (7), define the matrices

K1 : =
1

n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ŨJ ;

K2 : =
1

n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ŨJ ;

K3 : =
1

n
(Σ1/2)JJY

⊤
J YJc(Σ

1/2
JJc)

⊤ŨJ ;

K4 : =
1

n
Σ

1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤ŨJ .

Then

J1 = (Σ̂JJ − ΣJJ)ŨJ = K1 +K2 +K3 +K4.

We have lemmas that bound the 2 → ∞ norms of each of these matrices. Each of these bounds follows essentially
the same set of steps:

1. Bound the 2 → ∞ norm using properties of the 2 → ∞ norm in terms of the maximum entry.

2. Write each entry as a sum of mean-zero subexponential random variables and use either Bernstein’s inequality
or the Hanson-Wright inequality (see Appendix C) to bound the result.

The proofs for these lemmas are in Sections B.5 and B.6. Recall that we define E5 via

E5 : =
κλ1

λk − λk+1

s log(p)

n
+ κ

√
k log(p)

n

≡ 1

λk

(
λ21

λk − λk+1

s log(p)

n
+ λ1

√
k log(p)

n

)
.

Lemma 7 (The matrix K1). The matrix K1 satisfies

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ Ũ∥2→∞ ≲

λ21
λk − λk+1

s log(p)

n
+ λ1

√
k log(p)

n

≲ E5λk

with probability at least 1−O(p−4).
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Lemma 8 (The matrix K2). The matrix K2 satisfies

∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ Ũ∥2→∞ ≲ λ1

√
k log(p)

n
+

λ21
λk − λk+1

s log(p)

n

≲ E5λk

with probability at least 1−O(p−4).

Lemma 9 (The matrices K3 and K4). The matrices K3 and K4 satisfy

∥ 1
n
(Σ1/2)JJY

⊤
J YJc(Σ

1/2
JJc)

⊤ŨJ∥2→∞ ≲
s log(p)

n

λ21
λk − λk+1

≲ E5λk;

∥ 1
n
Σ

1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤Ũ∥2→∞ ≲
s log(p)

n

λ21
λk − λk+1

≲ E5λk

with probability at least 1−O(p−3).

Putting it together:

We are now ready to complete the proof. We have that

∥ŨJ − UJW∗∥2→∞ ≤
∥∥∥∥(ŨJ Λ̃− UJΛU

⊤Û
)
Λ̃−1

∥∥∥∥
2→∞

+ ∥T1∥2→∞ + ∥T2∥2→∞

≤
∥∥∥∥(ŨJ Λ̃− UJΛU

⊤Û
)
Λ̃−1

∥∥∥∥
2→∞

+ E1 + E2

≤ ∥T3∥2→∞ + ∥T4∥2→∞ + E1 + E2
≤ ∥T4∥2→∞ + E1 + E2 + E3

≲
∥J1∥2→∞ + ∥J2∥2→∞

λk
+ E1 + E2 + E3

≲
∥J1∥2→∞

λk
+ E1 + E2 + E3 + E4

≲
1

λk

(
∥K1∥2→∞ + ∥K2∥2→∞ + ∥K3∥2→∞ + ∥K4∥2→∞

)
+ E1 + E2 + E3 + E4

≤ E1 + E2 + E3 + E4 + E5

with probability at least 1 − O(p−3). Consequently, by the union bound and Assumption 2, this bound holds
with probability at least 1− δ − p−2 as desired.

A.3 Proof of Theorem 1

In this section we show how Theorem 1 can be deduced from Theorem 2. We simply bound E1 through E5 using
the additional assumptions introduced in Assumption 5.

Note that under Assumption 5, we have that λk+1 ≤ λ
2 and λk ≥ λ, implying that λk − λk+1 ≥ λ

2 . In addition
λ1 ≤ κλ. Therefore,

λ1
λk

≤ κλ

λ
≤ κ;

λ1
λk − λk+1

≲
κλ

λ
≤ κ.
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Therefore,

E1 =
κλ1

λk − λk+1

s log(p)

n
∥U∥2→∞ + κk

√
log(p)

n
∥U∥2→∞

≲ κ2
s log(p)

n
∥U∥2→∞ + κk

√
log(p)

n
∥U∥2→∞

≲ κ2
√
sk log(p)

n
+ κ

k3/2√
s

√
log(p)

n

≲ κ2
s log(p)

n
+ κ

√
k log(p)

n
, (8)

where the penultimate inequality comes from the fact that ∥U∥2→∞ ≲ (k/s)1/2 and that k ≲
√
s. Similarly,

E2 : =
λ21

(λk − λk+1)2
s log(p)

n
∥U∥2→∞

≲ κ2
s log(p)

n
∥U∥2→∞

≲ κ2
√
sk log(p)

n

≲ κ2
s log(p)

n
. (9)

For E3,

E3 =

√
s log(p)

n

κλ
1/2
1

λk − λk+1
min

(
∥Σ∥1/2max,

√
λ1∥U∥2→∞

)
≲

√
s log(p)

n

κλ
1/2
1

λk − λk+1

√
λ1∥U∥2→∞

≲ κ2
√
s log(p)

n
∥U∥2→∞

≲ κ2
√
k log(p)

n
(10)

since ∥U∥2→∞ ≲ (k/s)1/2. For E4, we have that since λk+1 < λk, then

E4 = κ2
λk+1

λk

√
k log(p)

n
+
λk+1

λk
κ3
s log(p)

n

≲ κ2
√
k log(p)

n
+ κ3

s log(p)

n
. (11)

Finally, for E5, we see that

E5 : =
κλ1

λk − λk+1

s log(p)

n
+ κ

√
k log(p)

n
.

≲ κ2
s log(p)

n
+ κ

√
k log(p)

n
. (12)

The condition number is always larger than 1. Hence, combining (8),(9),(10),(11) and (12) completes the proof.

B Proofs of Intermediate Lemmas

In this section we collect the proofs of the Lemmas needed en route to the proof of Theorem 2. All the lemmas
are self-contained and repeated for convenience.
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B.1 Proofs of Lemmas 1 and 2

First, we recall the statement of Lemma 1.

Lemma 1 (Principal Submatrix Concentration). Let J be an index set of {1, ..., p} of size s. Then

∥Σ̂JJ − ΣJJ∥ ≲ λ1

(√
s

n
+

√
log(p)

n

)
with probability at least 1−O(p−4).

Proof of Lemma 1. The result is similar to Amini and Wainwright (2009), but for general subgaussian ensembles
as opposed to Gaussian ensembles. The proof is standard via an ε-net; we follow similarly to the proof of
Theorem 6.5 in Wainwright (2019).

Let ∆ = Σ̂JJ − ΣJJ . First take an 1/8-net of the Ss−1 sphere; denote these vectors v1, ..., vN , where N ≤ 17s

(see Example 5.8 in Wainwright (2019)). Then for any s-unit vector v, there exists some vector vj of distance
at most ε = 1

8 to v. Therefore

⟨v,∆v⟩ = ⟨vj ,∆vj⟩+ 2⟨(v − vj),∆vj⟩+ ⟨v − vj ,∆(v − vj)⟩.

Hence, we see that by the triangle inequality and Cauchy-Schwarz,

|⟨v,∆v⟩| ≤ |⟨vj ,∆vj⟩|+ 2∥∆∥∥v − vj∥∥vj∥+ ∥∆∥∥v − vj∥2

≤ |⟨vj ,∆vj⟩|+
1

2
∥∆∥,

where the final inequality comes from the fact that vj is at most distance 1
8 to v. Letting v denote the unit

vector achieving sup⟨v,Qv⟩ and rearranging we have that

∥∆∥ ≤ 2|⟨vj ,∆vj⟩| ≤ 2 max
1≤i≤n

|⟨vi,∆vi⟩|.

So we therefore have that

E(exp(λ∥∆∥)) ≤ E
(
exp(2λ max

1≤i≤N
|⟨vi,∆vi⟩|)

)
≤

N∑
i=1

(
E(exp(2λ⟨vi,∆vi⟩)) + E(exp(−2λ⟨vi,∆vi⟩))

)
.

We now bound the mgf above, which is the primary technical difference between this and Theorem 6.5 in
Wainwright (2019). Denote Xi[J ] as the vector Xi with only the components in J , and let u be an arbitrary
unit vector. From the assumption the Xi’s are iid we have that

E exp(tu⊤∆u) =

n∏
i=1

EXi

[
exp

(
t

n
[(Xi[J ]

⊤u)2 − u⊤ΣJJu]

)]
=

(
EX1

[
exp

(
t

n
[(X1[J ]

⊤u)2 − u⊤ΣJJu]

)])n
.

Let ε be a Rademacher random variable independent of X1. Then by the contraction property of Rademacher
random variables,

EX1

[
exp

(
t

n
[(X1[J ]

⊤u)2 − u⊤ΣJJu]

)]
≤ EX1,ε

[
exp

(
2t

n
ε((X1[J ])

⊤u)2
)]

=

∞∑
k=0

1

k!

(
2t

n

)k
E(εk(X1[J ]

⊤u)2k)

= 1 +

∞∑
k=1

1

(2k)!

(
2t

n

)2k

E((X1[J ]
⊤u)4k)
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where the first is by the series expansion for the exponential, and the second is by noting that the ε are rademacher
and hence have vanishing odd moments.

Note that by assumption theXi’s can be written asXi = Σ1/2Yi for some independent Yi’s satisfying ∥Yij∥ψ2 ≤ 1.
Then ∥Σ1/2Yi∥ψ2 ≤

√
λ1. Hence, by equivalence of the subgaussian norm, the moments satisfy

E((X1[J ]
⊤u)4k) ≤ (4k)!

22k(2k)!
(
√
8eλ

1/2
1 )4k.

From this, we deduce

1 +

∞∑
k=1

1

(2k)!

(2t
n

)2kE((X1[J ]
⊤u)4k) ≤ 1 +

∞∑
k=1

1

(2k)!

(
2t

n

)2k
(4k)!

22k(2k)!
(
√
8eλ

1/2
1 )4k

≤ 1 +

∞∑
k=1

(
16t

n
e2λ1

)2k

which is a geometric series. Hence, since 1
1−a ≤ e2a for all a ∈ [0, 1/2], we have that

1 +

∞∑
k=1

(
16t

n
e2λ1

)2l

≤ exp

(
2
[16t
n
e2λ1

]2)
for all |t| < n

32e2λ1
. Therefore, we have shown

E exp(tu⊤∆u) ≤ exp

(
512

t2

n
e4λ21

)
.

From here, using the sum, we have that for all |t| < n
64e2λ1

that

E(exp(t∥∆∥)) ≤
N∑
i=1

(
E(exp(2t⟨vi,∆vi⟩)) + E(exp(−2t⟨vi,∆vi⟩))

)
≤ 2Ne2048

t2

n e
4λ2

1

≤ exp(C
t2λ21
n

+ 4s),

since 2(17s) ≤ e4s. Therefore, by the Chernoff bound,

P
(
∥∆∥ > η

)
≤ exp

(
C
t2λ21
n

+ 4s− ηt

)
.

Minimizing over t shows that

t =
nη

2Cλ21

is the minimizer provided that η < Cλ1

32e2 . Plugging this value of t in yields

P
(
∥∆∥ > η

)
≤ exp

(
4s− η2n

4Cλ21

)
= exp

[
n

(
4s

n
− η2

4Cλ21

)]
.

Suppose η = C2λ1

(√
s
n +

√
4 log(p)
n

)
for some sufficiently large constant C2. Note that Assumption 1 ensures

that this choice of η satisfies η < Cλ1

32e2 since s/n = o(1) and log(p)/n = o(1). Therefore, with this choice of η, we
have that

exp

[
n

(
4s

n
− η2

4Cλ21

)]
≤ exp(−4 log(p))

≤ p−4.
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Consequently, recalling that ∆ = Σ̂JJ − ΣJJ we have that

P
[
∥Σ̂JJ − ΣJJ∥ > C2λ1

(√
s

n
+

√
4 log(p)

n

)]
≤ p−4

as desired.

Again, we recall the statement of Lemma 2.

Lemma 2 (Existence of an Eigengap). Under the event in Lemma 1 and Assumption 4, the eigenvalues of Σ̂JJ
and ΣJJ satisfy

λk − λ̃k+1 ≥ λk − λk+1

8
; λ̃k − λk+1 ≥ λk − λk+1

8
;

λ̃k ≥ λk
4
.

Consequently, this bound holds with probability at least 1−O(p−4).

Proof of Lemma 2. By Weyl’s inequality, the event in Lemma 1 implies that for all 1 ≤ i ≤ s that

|λi − λ̃i| ≤ Cλ1

(√
s

n
+

√
log(p)

n

)
.

Note that ΣJJ is a principal submatrix of Σ; hence its eigenvalues satisfy λi(ΣJJ) ≤ λi for all i ≥ k + 1 (when
1 ≤ i ≤ k we have equality). Therefore, By Assumption 4, we have that

λk − λ̃k+1 ≥ λk − λk+1(ΣJJ)− Cλ1

(√
s

n
+

√
log(p)

n

)
≥ λk − λk+1 − Cλ1

(√
s

n
+

√
log(p)

n

)
≥ 7

8
(λk − λk+1)

≥ λk − λk+1

8
,

and similarly for λ̃k − λk+1. For the final bound,

λ̃k ≥ λk − Cλ1

(√
s

n
+

√
log(p)

n

)
≥ λk − λk/8

≥ λk
4
,

which completes the proof.

B.2 Proof of Lemmas 3 and 4

First we will recall the statement of Lemma 3.

Lemma 3 (Bound on T1). We have that

∥UJ(ΛU⊤
J ŨJ − U⊤

J ŨJ Λ̃)Λ̃
−1∥2→∞ ≲

∥U∥2→∞λ
2
1

λk(λk − λk+1)

s log(p)

n

+
kλ1∥U∥2→∞

λk

√
log(p)

n

≡ E1

with probability at least 1−O(p−4).
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Proof of Lemma 3. Note that by properties of the 2 → ∞ norm, we have

∥UJ(ΛU⊤
J Ũ − U⊤

J ŨJ Λ̃)Λ̃
−1∥2→∞ ≤ ∥UJ∥2→∞∥ΛU⊤

J Ũ − U⊤
J ŨJ Λ̃∥λ̂−1

k . (13)

We note that λk ≲ λ̃k with probability 1−O(p−4) by Lemma 2. Furthermore, by the eigenvector equation,

ΛU⊤
J ŨJ − U⊤

J ŨJ Λ̃ = (UJΛ)
⊤ŨJ − U⊤

J ŨJ Λ̃

= (ΣJJUJ)
⊤Ũ − U⊤

J Σ̂JJ ŨJ

= U⊤
J (ΣJJ − Σ̂JJ)ŨJ .

In addition,

U⊤
J (ΣJJ − Σ̂JJ)ŨJ = U⊤

J (ΣJJ − Σ̂JJ)UJU
⊤
J ŨJ + U⊤

J (ΣJJ − Σ̂JJ)(I − UJU
⊤
J )ŨJ .

The second term satisfies

∥U⊤
J (ΣJJ − Σ̂JJ)(I − UJU

⊤
J )ŨJ∥ ≤ ∥U⊤

J (ΣJJ − Σ̂JJ)∥∥(I − UJU
⊤
J )ŨJ∥.

Note that

∥(ΣJJ − Σ̂JJ)UJ∥ ≤ ∥ΣJJ − Σ̂JJ∥∥UJ∥
≤ ∥ΣJJ − Σ̂JJ∥

since UJ has orthonormal columns. Therefore, by Lemma 1,

∥U⊤
J (ΣJJ − Σ̂JJ)∥ ≲ λ1

(√
s log(p)

n

)
. (14)

Note that ∥(I − UJU
⊤
J )ŨJ∥ ≲ ∥ sinΘ(UJ , ŨJ)∥ ≲ ∥UJU⊤

J − ŨJ Ũ
⊤
J ∥ (see Lemma 10 in Appendix C). Therefore,

by Proposition 1, we have that

∥(I − UJU
⊤
J )ŨJ∥ ≲

λ1
λk − λk+1

(√
s log(p)

n

)
. (15)

In summary, we have shown so far that by (13), (14), and (15),

∥UJ(ΛU⊤
J ŨJ − U⊤

J ŨJ Λ̃)Λ̃
−1∥2→∞ ≲

∥U∥2→∞λ
2
1

λk(λk − λk+1)

s log(p)

n

+
∥U∥2→∞

λk
∥U⊤

J (ΣJJ − Σ̂JJ)UJU
⊤
J ŨJ∥.

Therefore, we focus on bounding the term

∥U⊤
J (ΣJJ − Σ̂JJ)UJU

⊤
J ŨJ∥.

Naively, ∥U⊤
J ŨJ∥ ≤ 1 so by submultiplicativity, we have that

∥U⊤
J (ΣJJ − Σ̂JJ)UJU

⊤
J ŨJ∥ ≤ ∥U⊤

J (ΣJJ − Σ̂JJ)UJ∥.

For any indices i and k, the entry of the above matrix can be written as

1

n

n∑
l=1

⟨(UJ)·i, (XlX
⊤
l − E(XlX

⊤
l ))(UJ)·k⟩ =

1

n

n∑
l=1

(
((UJ)

⊤
·iXl)(X

⊤
l (UJ)·k)− (UJ)

⊤
·iΣ(UJ)·k

)
.

This is a sum of independent, mean-zero subexponential random variables. Therefore, to apply the generalized
Bernstein inequality (see Theorem 3 in Appendix C), we need to find the ψ1 norm of the above random variable.
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By properties of the ψ1 norm, we have that

∥((UJ)⊤·iXl)(X
⊤
l (UJ)·k)− (UJ)

⊤
·jΣ(UJ)·i∥ψ1

≤ C∥((UJ)⊤·iXl)(X
⊤
l (UJ)·k)∥ψ1

≤ C∥(UJ)⊤·iXl∥ψ2
∥X⊤

l (UJ)·k∥ψ2

= C∥(UJ)⊤·iΣ1/2Yl∥ψ2
∥Y ⊤

l Σ1/2(UJ)·k∥ψ2

= C
√
λiλk∥(UJ)⊤·iYl∥ψ2

∥(UJ)⊤·kYl∥ψ2

≤ C
√
λjλk

≤ Cλ1

since Xl = Σ1/2Yl, the (UJ)·i are the eigenvectors of Σ and the vectors Y are assumed to be subgaussian with
unit ψ2 norm. Therefore, by the generalized Bernstein inequality (Theorem 3), we have that for fixed i, k, that

P
(
| 1
n

n∑
l=1

⟨(UJ)·i, (XlX
⊤
l − E(XlX

⊤
l ))(UJ)·k|⟩ ≥ t

)
≤ 2 exp

[
− c0nmin

(
t2

(λ1)2
,
t

λ1

)]
.

Since log(k) ≪ log(p), taking t = Cλ1

√
2 log(k)+4 log(p)

n for some constant C yields that

|(U⊤
J (ΣJJ − Σ̂JJ)UJ)ik| ≤ Cλ1

√
2 log(k) + 4 log(p)

n

≲ λ1

√
log(p)

n

with probability at least 1−O(p−4k−2). Therefore,

∥U⊤
J (ΣJJ − Σ̂JJ)UJ∥ ≤ ∥U⊤

J (ΣJJ − Σ̂JJ)UJ∥F
≤ k∥U⊤

J (ΣJJ − Σ̂JJ)UJ∥max

≤ Ckλ1

√
2 log(k) + 4 log(p)

n

≲ kλ1

√
log(p)

n

with probability at least 1−O(p−4) by taking a union bound over all k2 entries. Therefore, putting it all together,
we see that

∥UJ(ΛU⊤
J Ũ − U⊤

J ŨJ Λ̃)Λ̃
−1∥2→∞ ≲

∥U∥2→∞λ
2
1

λk(λk − λk+1)

s log(p)

n

+
kλ1∥U∥2→∞

λk

√
log(p)

n

with probability at least 1−O(p−4) as desired.

Now we prove Lemma 4.

Lemma 4 (Bound on T2). We have that

∥UJ(W∗ − U⊤
J ŨJ)∥2→∞ ≲

∥U∥2→∞λ
2
1

(λk − λk+1)2
s log(p)

n

≡ E2

with probability at least 1−O(p−4).

Proof of Lemma 4. This proof follows similarly to ideas in Cape et al. (2019a); Abbe et al. (2020b); Lei (2019).
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By properties of the 2 → ∞ norm, we have

∥UJ(W∗ − U⊤
J ŨJ)∥2→∞ ≤ ∥UJ∥2→∞∥W∗ − U⊤

J ŨJ∥.

We will now analyze the term inside the spectral norm. Note that W∗ is the Frobenius-optimal Procrustes
transformation. Let V1ΣV

⊤
2 be the SVD of U⊤

J ŨJ . Then Σ contains the sines of the canonical angles between
UJ and ŨJ (see Bhatia (1997) or Stewart and Sun (1990) for details; Lemma 10 in Appendix C also contains
equivalent expressions for the sinΘ distances). Then, letting θj be the canonical angles and σj = cos(θj),

∥W∗ − U⊤
J ŨJ∥ = ∥V1V ⊤

2 − V1ΣV
⊤
2 ∥

= ∥I − Σ∥
= max

1≤j≤k
|(1− σj)|

≤ max
1≤j≤k

(1− σ2
j )

= max
j

sin2(θj)

= ∥UJU⊤
J − ŨJ Ũ

⊤
J ∥2

≲
λ21

(λk − λk+1)2
s log(p)

n
.

with probability at least 1−O(p−4) by Proposition 1.

B.3 Proof of Lemma 5

Recall the statement of Lemma 5.

Lemma 5 (Bound on T3). We have that

∥UJU⊤
J ΣJJ(ŨJ − UJU

⊤
J ŨJ)Λ̃

−1∥2→∞ ≲

√
s log(p)

n

λ
3/2
1

λk(λk − λk+1)
min

(
∥Σ∥1/2max,

√
λ1∥U∥2→∞

)
≡ E3

with probability at least 1−O(p−3).

Proof of Lemma 5. Note that since U⊤
J ΣJJ = ΛU⊤

J , we have that

∥UJU⊤
J ΣJJ(ŨJ − UJU

⊤
J ŨJ)Λ̃

−1∥2→∞ ≤ ∥U∥2→∞

λ̃k
∥U⊤

J ΣJJ(ŨJ − UJU
⊤
J ŨJ)∥

≤ ∥U∥2→∞

λ̃k
∥ΛU⊤

J (ŨJ Ũ
⊤
J − UJU

⊤
J )∥.

On the other hand,

∥UJU⊤
J ΣJJ(ŨJ − UJU

⊤
J ŨJ)Λ̃

−1∥2→∞ ≤ ∥UΛ1/2∥2→∞

λ̃k
∥Λ1/2U⊤

J (ŨJ − UJU
⊤
J ŨJ)∥

≤
√
∥Σ∥max

λ̃k
∥Λ1/2U⊤

J (ŨJ Ũ
⊤
J − UJU

⊤
J )∥,

where the term ∥Σ∥max comes from the fact that

|UJU⊤
J Σi,j | = |⟨(UΛ1/2)i, (UΛ1/2)j⟩|,

and hence that

∥U |Λ|1/2∥2→∞ = max
i

√
⟨(UΛ1/2)i, (UΛ1/2)i⟩

≤ max
i

√
|(UJU⊤

J Σ)ii|

≤ max
i,j

√
|Σij |,
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since the eigenvalues of Σ are all positive. Therefore,

∥UJU⊤
J ΣJJ(ŨJ − UJU

⊤
J ŨJ)Λ̃

−1∥2→∞ ≤ 1

λ̃k
min

(√
λ1∥U∥2→∞∥Λ1/2U⊤

J (ŨJ Ũ
⊤
J − UJU

⊤
J )∥,

∥Σ∥1/2max∥Λ1/2U⊤
J (ŨJ Ũ

⊤
J − UJU

⊤
J )∥

)
(16)

Therefore, what remains is to analyze

∥Λ1/2U⊤
J (ŨJ Ũ

⊤
J − UJU

⊤
J )∥.

To find this bound, we will represent the difference ŨJ Ũ
⊤
J −UJU

⊤
J using the holomorphic functional calculus as

done in Lei (2019) for the spiked Wigner matrix setting. This technique has been used extensively in studying
eigenvector perturbation; e.g. Mao et al. (2020); Lei (2019); Koltchinskii and Xia (2016); Xia (2021); Wahl
(2019a,b). More specifically, let C denote a contour on the complex plane with real part ranging from λk − η to
λ1 + η, and with imaginary part ranging from −γ to γ. Then, for a proper choice of η, the top k eigenvalues of
both ΣJJ and Σ̂JJ lie in C, and one can write the difference of the spectral projections via a complex integral

ŨJ Ũ
⊤
J − UJU

⊤
J = −

[
1

2πi

∮
C
(Σ̂JJ − zI)−1dz − 1

2πi

∮
C
(ΣJJ − zI)−1dz

]
by the residue theorem (e.g. (Greene and Krantz, 2006)). Using the identity A−1 − B−1 = B−1(A − B)A−1,
and assuming the real number η is chosen appropriately so that the contours are the same, the integrals can be
combined to arrive at the expression

ŨJ Ũ
⊤
J − UJU

⊤
J = − 1

2πi

∮
C
(ΣJJ − zI)−1(Σ̂JJ − ΣJJ)(Σ̂JJ − zI)−1dz.

Premultiplying by Λ1/2U⊤
J yields (formally) that

∥Λ1/2U⊤
J (ŨJ Ũ

⊤
J − UJU

⊤
J )∥ =

1

2π

∥∥∥∥∮
C
Λ1/2U⊤

J (ΣJJ − zI)−1(Σ̂JJ − ΣJJ)(Σ̂JJ − zI)−1dz

∥∥∥∥.
Note that the matrix is diagonalizable by the same eigenvectors as ΣJJ , so that

U⊤
J (ΣJJ − zI)−1 = U⊤

J (UJ(Λ− zI)−1U⊤
J ) + U⊤

J (U⊥(Λ⊥ − zI)−1U⊤
⊥

= (Λ− zI)−1U⊤
J

by orthonormality, where U⊥ are defined as the s× s completion of UJ such that [UJ , U⊥] is an s× s orthogonal
matrix. Therefore, we have

∥Λ1/2U⊤
J (ŨJ Ũ

⊤
J − UJU

⊤
J )∥ =

1

2π

∥∥∥∥∮
C
Λ1/2(Λ− zI)−1U⊤

J (Σ̂JJ − ΣJJ)[Ũ , Ũ⊥](Λ̂all − zI)−1dz

∥∥∥∥,
where Λ̂all is the diagonal matrix of all the eigenvalues of Σ̂JJ .

The rest of the proof mirrors closely that of Lemma A.8 in Lei (2019). Recall that in order to do all these
manipulations, we required that the parameter η was chosen such that the contour C contains the top k eigenvalues
of Σ̂JJ and ΣJJ . In fact, Lemma 2 shows that the choice

η :=
λk − λk+1

4

suffices. To see this, note that by Lemmas 1 and 2,

|λ̃k − λk| ≤
λk − λk+1

8
;

|λ̃k+1 − λk+1| ≤
λk − λk+1

8
,
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so that the interval λk ± η contains λ̃k, the interval λk ± η does not contain λ̃k+1, and both λ̃k and λ̃k+1 satisfy

|λk − λ̃k − η| ≥ η/2

|λk − λ̃k+1 − η| ≥ η/2.

Therefore, the top k eigenvalues of Σ̂JJ lie within C with high probability and the bottom eigenvalues lie outside
of it. With this particular choice of η, we can proceed to bound the integrand along the contour C. We will
conduct the rest of the analysis assuming that this event holds; it does with probability at least 1−O(p−4).

Define a := λk − η and b := λ1 + η. We decompose the contour C into the following sets

C1 := {z = a+ xi, x ∈ (−γ, γ)} C2 := {z = x+ γi : x ∈ [a, b]}
C3 := {z = b+ xi, x ∈ (−γ, γ)} C4 := {z = x− γi : x ∈ [a, b]}.

Let I(z) be the integrand. Observe that∥∥∥∥ ∮
C
I(z)dz

∥∥∥∥ ≤
∮
C1

∥∥∥∥I(z)dz∥∥∥∥+

∮
C2

∥∥∥∥I(z)dz∥∥∥∥+

∮
C4

∥∥∥∥I(z)dz∥∥∥∥+

∮
C4

∥∥∥∥I(z)dz∥∥∥∥.
Therefore, we bound the above integrals directly. The tricky analysis will be along C1 and C3; we will show that
the integral along C2 and C4 tend to zero for large γ. To this end, we will focus on C1 first. Note that∮

C1

∥∥∥∥Λ1/2(Λ− zI)−1U⊤
J (Σ̂JJ − ΣJJ)[Ũ , Ũ⊥](Λ̂all − zI)−1

∥∥∥∥dz (17)

≤
∮
C1

∥∥∥∥Λ1/2(Λ− zI)−1

∥∥∥∥∥∥∥∥U⊤
J (Σ̂JJ − ΣJJ)[Ũ , Ũ⊥]

∥∥∥∥∥∥∥∥(Λ̂all − zI)−1

∥∥∥∥dz
≤

∥∥∥∥U⊤
J (Σ̂JJ − ΣJJ)[Ũ , Ũ⊥]

∥∥∥∥∫ γ

−γ

∥∥∥∥Λ1/2(Λ− (a+ xi)I)−1

∥∥∥∥∥∥∥∥(Λ̂all − (a+ xi)I)−1

∥∥∥∥dx.
First, recall the definition of a := λk − η. The term on the right-most side satisfies∥∥∥∥(Λ̂all − (a+ xi)I)−1

∥∥∥∥ ≤ 1√
(η)2/4 + x2

for all x since (λ̂i − a) ≥ η/2. Therefore, we are left to bound the middle term, for which we must bound

max
1≤i≤k

λ
1/2
i√

(λi − a)2 + x2
.

Define the function

g(u;x, a) :=
u√

(u− a)2 + x2
.

Then

max
1≤i≤k

λ
1/2
i√

(λi − a)2 + x2
≤ sup
u≥a+η

(
g(u;x, a)

)1/2
1

(η2 + x2)1/4
.

The details of the function g are carried out in Lei (2019); the analysis therein implies

sup
u≥a+η

g(u;x, a) ≤ a+ η√
η2 + x2

I|x|≤√
aη +

√
a+ η

η
I|x|>√

aη.
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Therefore the integral from (17) satisfies∫ γ

−γ
∥Λ1/2(Λ− (a+ xi)I)−1∥∥(Λ̂all − (a+ xi)I)−1∥dx

≤
∫ γ

−γ

1√
η2/4 + x2

1

(η2 + x2)1/4

(
a+ η√
η2 + x2

I|x|≤√
aη +

√
a+ η

η
I|x|>√

aη

)1/2

dx

≤
∫
|x|≤√

aη

4

(η2 + x2)3/4

(
a+ η√
η2 + x2

)1/2

dx+

∫
|x|>√

aη

4

(η2 + x2)3/4

(√
a+ η

η

)1/2

dx

≤ 4
√
a+ η

∫
|x|≤√

aη

1

η2 + x2
dx+ 4

(
a+ η

η

)1/4 ∫
|x|>√

aη

1

(η2 + x2)3/4
dx

≤ 8
√
a+ η

∫ √
aη

0

1

η2 + x2
dx+ 8

(
a+ η

η

)1/4 ∫ ∞

√
aη

1

(η2 + x2)3/4
dx

≤ 8

√
a+ η

η

∫ √
a/η

0

1

1 + u2
du+ 8

(
a+ η

η

)1/4
1

η1/2

∫ ∞

√
a/η

1

(1 + u2)3/4
du

≤ 8

√
a+ η

η
2π + 8

(
a+ η

η

)1/4
1

η1/2

∫ ∞

√
a/η

1

u3/2
du

≤ 16π

√
a+ η

η
+ 8

(
a+ η

η

)1/4
1

η1/2
2

(a/η)1/2

≲

√
a+ η

η
+

(
a+ η

a

)1/4
1

a1/2
.

Recall that a+ η = λk; η = (λk − λk+1)/4. With these, the bound becomes (up to constants)∮
C1

∥∥∥∥Λ1/2(Λ− zI)−1U⊤
J (Σ̂JJ − ΣJJ(Ũ , Ũ⊥)(Λ̂all − zI)−1

∥∥∥∥dz
≲

√
λ1

λk − λk+1
∥(Σ̂JJ − ΣJJ)UJ∥+ κ1/4

1

λ
1/2
k

∥(Σ̂JJ − ΣJJ)UJ∥

≲

√
λ1

λk − λk+1
∥(Σ̂JJ − ΣJJ)UJ∥.

The exact same argument goes through for contour C3 as well. We will see that the contours along the imaginary
axis tend to zero as γ → ∞. Assuming this for the moment, by Equation (16), we see that the final bound is of
the form

1

λk
∥Λ1/2U⊤

J (ŨJ Ũ
⊤
J − UJU

⊤
J )∥min

(
∥Σ∥1/2max,

√
λ1∥U∥2→∞

)
≲

∥(Σ̂JJ − ΣJJ)UJ∥
λk

( √
λ1

λk − λk+1

)
min

(
∥Σ∥1/2max,

√
λ1∥U∥2→∞

)
By Lemma 1, we have that the term ∥(Σ̂JJ − ΣJJ)UJ∥ can be bounded via

λ1

√
s log(p)

n

with probability at least 1−O(p−4). Therefore, the bound becomes√
s log(p)

n

λ
3/2
1

λk(λk − λk+1)
min

(
∥Σ∥1/2max,

√
λ1∥U∥2→∞

)
,

which is the desired bound.
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It remains to show that the integrals tend to zero along the curves C2 and C4. Let I(z) denote the integrand.
Then for sufficiently large γ,∮

C2

∥I(z)∥dz =
∫ b

a

∥∥∥∥Λ1/2(Λ− (x+ γi)I)−1U⊤
J (Σ̂JJ − ΣJJ)[ŨJ Ũ⊥](Λ̂all − (x+ γi)I)−1

∥∥∥∥dx
≤ (b− a) sup

x∈[a,b]

∥∥∥∥Λ1/2(Λ− (x+ γi)I)−1U⊤
J (Σ̂JJ − ΣJJ)[ŨJ Ũ⊥](Λ̂all − (x+ γi)I)−1

∥∥∥∥
= O(γ−2),

which tends to zero as γ → ∞.

B.4 Proof of Lemma 6

First, recall the statement of Lemma 6.

Lemma 6 (Bound on J2). The term J2 satisfies

∥U⊥Λ⊥U
⊤
⊥ ŨJ∥2→∞ ≲ κ2λk+1

√
k log(p)

n
+ λk+1κ

3 s log(p)

n

≲ E4λk

with probability at least 1−O(p−3).

Recall the definition of J2 via

J2 := U⊥Λ⊥U
⊤
⊥ ŨJ .

Again U⊥ is the matrix such that the s× s matrix [UJ , U⊥] is orthogonal.

Proof of Lemma 6. Define the matrix E := Σ̂JJ − UJU
⊤
J ΣJJUJU

⊤
J . Note that

ŨJΛ− EŨJ = UJU
⊤
J ΣJJUJU

⊤
J ŨJ .

Following Cape et al. (2019a) (see also Xie et al. (2019); Tang et al. (2017); Tang (2018)), by Assumption 4, the
spectra of E and Λ are disjoint almost surely, so the matrix Ũ can be expanded as a matrix series (Theorem
VII.2.2 in Bhatia (1997)) via

ŨJ =

∞∑
m=0

Em(UJΛU
⊤
J )ŨJΛ

−(m+1).

Therefore,

J2 = U⊥Λ⊥U
⊤
⊥ ŨJ = U⊥Λ⊥U

⊤
⊥EUΛU⊤ŨΛ−2 +

∞∑
m=2

U⊥Λ⊥U
⊤
⊥E

mUΛU⊤
J ŨJΛ

−(m+1)

since the 0-th term cancels off because U⊤
⊥UJ = 0. Taking the first term and setting R to be the rest of the

series, we have that,

∥U⊥Λ⊥U
⊤
⊥ ŨJ Ũ

⊤
J ∥2→∞ = ∥U⊥Λ⊥U

⊤
⊥EUJΛU

⊤
J ŨΛ−2∥2→∞ + ∥R∥2→∞, (18)

where R is the residual to be bounded. We first bound the leading term. We have that

∥U⊥Λ⊥U
⊤
⊥EUJΛU

⊤
J ŨJΛ

−2∥2→∞ ≤ ∥U⊥Λ⊥U
⊤
⊥EUJ∥2→∞λ

−1
k κ. (19)

We note that since U⊤
⊥UJ = 0, then

EUJ = (Σ̂JJ − UJU
⊤
J ΣJJUJU

⊤
J )UJ = (Σ̂JJ − ΣJJ)UJ .
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Define Σ⊥
JJ := U⊥Λ⊥U

⊤
⊥ . In light of the block structure in (7), we see that we can write Σ⊥

JJEUJ via the sum of
the terms

1

n
(Σ⊥

JJ)

(
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ +Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ

+ (Σ1/2)JJY
⊤
J YJc(Σ

1/2
JJc)

⊤ +Σ
1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤
)
UJ .

Recalling that (Σ
1/2
JJc)⊤UJ = 0, this yields the only the terms

1

n
(Σ⊥

JJ)

(
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ +Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ

)
UJ = Σ⊥

JJ(Σ
1/2)JJ

(
Y ⊤
J YJ
n

− I

)
UJΛ

1/2

+Σ⊥
JJΣ

1/2
JJc

Y ⊤
JcYJ
n

UJΛ
1/2.

Define A3/2 := Σ⊥
JJ(Σ

1/2)JJ , which satisfies ∥A3/2∥ ≤
√
λ1λk+1. In 2 → ∞ norm, we have that

∥A3/2

(
Y ⊤
J YJ
n

− I

)
UJΛ

1/2∥2→∞ ≤
√
kλ1 max

i,j

∣∣∣∣(A3/2

(
Y ⊤
J YJ
n

− I

)
UJ

)
ij

∣∣∣∣.
Define the matrix M via Mkl := (A3/2)ikUlj . Fixing i and j, note that we can write the i, j entry above as∣∣∣∣∑

k,l

Mkl

(
1

n
(

n∑
q=1

(YqlYqk − EYqlYqk)
)∣∣∣∣ = 1

n

∣∣∣∣∑
q

∑
k,l

Mkl

(
YqlYqk − EYqlYqk

)∣∣∣∣
≤ 1

n

∑
q

∣∣∣∣∑
k,l

Mkl

(
YqlYqk − EYqlYqk

)∣∣∣∣
≤ max

q

∣∣∣∣∑
k,l

Mkl

(
YqlYqk − EYqlYqk

)∣∣∣∣,
which is a quadratic form in the random variables Yql (for fixed q). To bound this, we will apply the Hanson-
Wright inequality (Theorem 4 in Appendix C), which requires bounding the Frobenius norm of M . Note that
we can bound the Frobenius norm of M via

∥M∥2F =
∑
k,l

M2
kl

=
∑
k,l

(A3/2)
2
ikU

2
lj

= ∥A3/2∥22→∞

≤
(√

λ1λk+1

)2

.

Therefore, applying the Hanson-Wright inequality shows that

P
(∣∣∣∣∑

k,l

Mkl

(
YqlYqk − EYqlYqk

)∣∣∣∣ > t

)
≤ 2 exp

(
− cmin

{
t2

∥M∥2F
,

t

∥M∥

})
.

Set t := C
√

log(s)+log(k)+5 log(p)
n

√
λ1λk+1. Then since log(p)

n = o(1), we see that with probability at least 1 −
O(s−1k−1p−5) that ∣∣∣∣∑

k,l

Mkl

(
YqlYqk − EYqlYqk

)∣∣∣∣ ≲ √
λ1λk+1

√
log(p)

n
.
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Taking a union bound over all n random variables shows that with probability at least 1−O(s−1k−1p−4),

√
kλ1

∣∣∣∣(A3/2

(
Y ⊤
J YJ
n

− I

)
UJ

)
ij

∣∣∣∣ ≲ λ1λk+1

√
k log(p)

n
.

Taking a union bound over all s rows and k columns yields that with probability at least 1−O(p−4),

∥A3/2

(
Y ⊤
J YJ
n

− I

)
UJΛ

1/2∥2→∞ ≲ λk+1λ1

√
k log(p)

n
. (20)

For the other term, proceeding similarly,

∥Σ⊥
JJΣ

1/2
JJc

Y ⊤
JcYJ
n

UJΛ
1/2∥2→∞ ≤

√
λ1kmax

i,j

∣∣∣∣((Σ⊥
JJΣ

1/2
JJc)

Y ⊤
JcYJ
n

UJ

)
ij

∣∣∣∣
≤

√
λ1kmax

i,j
max
q

∣∣∣∣ p∑
k=s+1

s∑
l=1

(Σ⊥
JJΣ

1/2
JJc)ikYqkYql(UJ)lj

∣∣∣∣.
For fixed q, i, and j, note that k ranges from s+1 to p and l ranges from 1 to s, so this is a sum of independent
exponential random variables. We will bound these using Bernstein’s inequality (Theorem 3 in Appendix C).
Note that the ℓ2 norm of the coefficients is bounded by

p∑
k=s+1

s∑
l=1

(Σ⊥
JJΣ

1/2
JJc)

2
ik(UJ)

2
lj ≤ ∥Σ⊥

JJΣ
1/2
JJc∥22→∞ ≤ (2

√
λ1λk+1)

2.

Similarly,

max
k,l

|(Σ⊥
JJΣ

1/2
JJc)ik(UJ)lj | ≤ ∥UJ∥2→∞ max

i,k
|e⊤i (Σ⊥

JJΣ
1/2
JJc)ek|

≤ 2∥UJ∥2→∞
√
λ1λk+1.

By the generalized Bernstein Inequality (Theorem 3), we have for any fixed i,j, and q that

P
(∣∣∣∣ p∑

k=s+1

s∑
l=1

(Σ⊥
JJΣ

1/2
JJc)ikYqkYql(UJ)lj

∣∣∣∣ > t

)
≤ 2 exp

[
− cmin

(
t2

(
√
λ1λk+1)2

,
t

∥U∥2→∞
√
λ1λk+1

)]
.

Taking t =
√
λ1λk+1

√
log(s)+log(k)5 log(p)

n shows that this holds with probability at least 1 − O(s−1k−1p−5).

Taking a union bound over s rows, k columns, and n different random variables shows that with probability at
least 1−O(p−4) that

∥Σ⊥
JJΣ

1/2
JJc

Y ⊤
JcYJ
n

UJΛ
1/2∥2→∞ ≤

√
λ1kmax

i,j

∣∣∣∣((Σ⊥
JJΣ

1/2
JJc)

Y ⊤
JcYJ
n

UJ

)
ij

∣∣∣∣
≲ λk+1λ1

√
k log(p)

n
(21)

Combining (21) and (20) with (19) yields that

∥U⊥Λ⊥U
⊤
⊥EUJΛU

⊤
J ŨJΛ

−2U⊤
J ∥2→∞ ≲

κ

λk
∥U⊥Λ⊥U

⊤
⊥EUJ∥2→∞

≲
κ

λk

(
λ1λk+1

√
k log(p)

n

)
≲ κ2λk+1

√
k log(p)

n
. (22)

So what remains is to bound the residual term R in (18). Recall the definition of R via

R :=

∞∑
m=2

U⊥Λ⊥U
⊤
⊥E

mUJΛU
⊤
J ŨJΛ

−(m+1).
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We will bound for each m, but for clarity, we will first study the case m = 2. We have that

U⊥Λ⊥U
⊤
⊥E

2UJ = U⊥Λ⊥U
⊤
⊥ (Σ̂JJ − UJU

⊤
J ΣJJUJU

⊤
J )(Σ̂JJ − UJU

⊤
J ΣJJUJU

⊤
J )UJ

= U⊥Λ⊥U
⊤
⊥ (Σ̂JJ − UJU

⊤
J ΣJJUJU

⊤
J )(Σ̂JJ − ΣJJ)UJ

= U⊥Λ⊥U⊥(Σ̂JJ − ΣJJ)
2UJ + (U⊥Λ⊥U⊥)

2(Σ̂JJ − ΣJJ)UJ .

The first term is readily bounded by Lemma 1, and the second term can be bounded using the techniques in the
previous part of the proof of this Lemma.

We now generalize this strategy for each m, by first providing a similar identity to the one above. Define
∆ := Σ̂JJ − ΣJJ . Note that by definition E = ∆+ U⊥Λ⊥U

⊤
⊥ and that EUJ = ∆UJ . Then we have that

U⊥Λ⊥U
⊤
⊥E

mUJ = U⊥Λ
⊤
⊥U⊥E

m−1∆UJ

= U⊥Λ⊥U
⊤
⊥E

m−2(∆ + U⊥Λ⊥U⊥)∆UJ

= U⊥Λ⊥U
⊤
⊥E

m−2∆UJ + U⊥Λ⊥U
⊤
⊥E

m−2U⊥Λ⊥U
⊤
⊥∆UJ . (23)

Let s(m) be the set of indices such that s1 + ...+ sm = m. Then for all m we have that

U⊥Λ⊥U
⊤
⊥E

mUJ = U⊥Λ⊥U
⊤
⊥

[ ∑
s(m)

∆s1(U⊥Λ⊥U
⊤
⊥ )s2∆s3(U⊥Λ⊥U

⊤
⊥ )s4 · · · (U⊥Λ⊥U

⊤
⊥ )sm−1∆sm

]
UJ ,

which is essentially a noncommutative Binomial Theorem.

First, consider the case that s1, ..., sm has only single powers of ∆ appearing. If ∆ appears all the way on the
right hand side; that is, sm = 1, then for any integer m0, we have that

∥U⊥Λ
m0

⊥ U⊤
⊥∆UJ∥2→∞ ≤ Cλm0

k+1

(
λ1

√
k log(p))

n

)
,

with probability at least 1 − O(p−4) using analogous techniques to the steps leading up to Equation (22) (i.e.
the case m0 = 1). If ∆ is not on the right hand side, suppose that its index is sg = 1. Then this term is of the
form

(U⊥Λ⊥U
⊤
⊥ )1+s1+s2+...+sg−1∆(U⊥Λ⊥U

⊤
⊥ )sg+1+...+sm0UJ ≡ 0

since U⊤
⊥UJ = 0. So the only terms that have at most one factor of ∆ appearing are those that show up as ∆UJ .

Next, if s1, ..., sm is a set of integers and at least two of the terms si that appear on the ∆ factor are greater
than 1, then

∥U⊥Λ⊥U
⊤
⊥∆s1(U⊥Λ⊥U

⊤
⊥ )s2∆s3(U⊥Λ⊥U

⊤
⊥ )s4 · · · (U⊥Λ⊥U

⊤
⊥ )sm−1∆smUJ∥2→∞ ≤ ∥∆∥2λm−1

k+1 ,

provided that ∥∆∥ < λk+1, which happens by Assumption 1 and the spectral norm concentration in Lemma
1 with probability at least 1 − O(p−4). Fix this event. Then for any m, there are at most 2m ways to select
exponents with a power of at least two on the term ∥∆∥. Therefore, this implies that for fixed m

∥U⊥Λ⊥U
⊤
⊥E

mUJ∥2→∞ ≤ ∥U⊥Λ
m
⊥U

⊤
⊥∆UJ∥

+
∑

{m:exponent on ∥∆∥ is at least 2}

∥U⊥Λ⊥U
⊤
⊥∆s1 · · · (U⊥Λ⊥U

⊤
⊥ )sm−1∆smUJ∥2→∞

≤ Cλmk+1

(
λ1

√
k log(p))

n

)
+ 2mλm−1

k+1 ∥∆∥2.

This bound corresponds to one such m, and hence is its own event. In order to bound for all m, we follow a
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strategy in Xia and Yuan (2020). Let m̃ := ⌈log(p)⌉. Then

∥
∞∑
m=2

U⊥Λ⊥U
⊤
⊥E

mUJΛU
⊤
J ŨJΛ

−(m+1)∥2→∞

≤
∞∑
m=2

∥U⊥Λ⊥U
⊤
⊥E

mUJ∥2→∞
λ1

λm+1
k

≤
m̃∑
m=2

∥U⊥Λ⊥U
⊤
⊥E

mUJ∥2→∞
λ1

λm+1
k

+

∞∑
m=m̃

∥U⊥Λ⊥U
⊤
⊥E

mUJ∥2→∞
λ1

λm+1
k

≤
m̃∑
m=2

(
Cλmk+1

(
λ1

√
k log(p))

n

)
λ1

λm+1
k

+

m̃∑
m=2

(
2mλm−1

k+1 ∥∆∥2
)

λ1

λm+1
k

+
∞∑

m=m̃

λ1

λm+1
k

∥∆∥λm+1
k+1 .

Define

δ1 : = Cκ

(
λ1

√
k log(p))

n

)
δ2 : = κλ−1

k ∥∆∥2

Then the three sums above can be written as

δ1

m̃∑
m=2

λmk+1

λmk
+ δ2

m̃∑
m=2

2mλm−1
k+1

λm−1
k

+ λ1∥∆∥
∞∑

m=m̃

λm+1
k+1

λm+1
k

≲ δ1
λ2k+1

λ2k
+ δ2(1 + ε)

λk+1

λk
+ λ1∥∆∥

(
λk+1

λk

)log(p)

≲ δ1
λ2k+1

λ2k
+ δ2

λk+1

λk
+ λ21

√
s log(p)

n
(1− ε)log(p).

Here, the penultimate inequality follows from the fact that by Assumption 4, we have that for some ε > 1/64,
2λk+1/λk < 1− ε, and hence the second term’s geometric series converges. The final inequality follows from the
assumption λk+1/λk < (1−ε). Note that this event holds with probability at least 1−O(log(p)p−4) ≥ 1−O(p−3).
Noting that

∥∆∥ ≲ λ1

√
s log(p)

n

by Lemma 1, we see that the resulting bound for the residual satisfies

∥R∥2→∞ ≲ δ1
(λk+1

λk

)2
+ δ2

λk+1

λk
+ λ21

√
s log(p)

n
(1− ε)log(p)

≲
(λk+1

λk

)2
κ

(
λ1

√
k log(p))

n

)
+
λk+1

λk
κλ−1

k ∥∆∥2 + λ21

√
s log(p)

n
(1− ε)log(p)

≲
(λk+1

λk

)2
κ

(
λ1

√
k log(p))

n

)
+
λk+1

λk
κλ−1

k ∥∆∥2

≲
(λk+1

λk

)2
κ

(
λ1

√
k log(p))

n

)
+
λk+1

λk
κλ−1

k λ21
s log(p)

n

≲ κ2λk+1

√
k log(p)

n
+ λk+1κ

3 s log(p)

n
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with probability at least 1 − O(p−3) by the assumption ε > 1
64 . Combining with our initial bound in (22), we

see that

∥J2∥2→∞ ≲ κ2λk+1

√
k log(p)

n
+ λk+1κ

3 s log(p)

n

with probability at least 1−O(p−3) as desired.

B.5 Proof of Lemmas 7 and 8

Recall the statement of Lemma 7.

Lemma 7 (The matrix K1). The matrix K1 satisfies

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ Ũ∥2→∞ ≲

λ21
λk − λk+1

s log(p)

n
+ λ1

√
k log(p)

n

≲ E5λk

with probability at least 1−O(p−4).

Recall K1 is given by

K1 : =
1

n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ Ũ .

Proof of Lemma 7. Note that since UJU
⊤
J + U⊥U

⊤
⊥ = I, we have that

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ŨJ∥2→∞ ≤ ∥ 1

n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJU

⊤
J ŨJ∥2→∞

+ ∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥U

⊤
⊥ ŨJ∥2→∞

≤ ∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJ∥2→∞∥U⊤

J ŨJ∥

+ ∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥∥2→∞∥U⊤

⊥ ŨJ∥

≤
√
k∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJ∥max

+
√
s∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥∥max∥U⊤

⊥ ŨJ∥, (24)

We bound each term inside the max norm, using a strategy similar to the beginning of the proof of Lemma 6.
For the first term, note that we can write the absolute value of its i, j entry via∣∣∣∣ 1n∑

q

∑
k,l

(
(Σ1/2)JJ

)
ik

(YqkYql − EYqkYql))
(
(Σ1/2)JJUJ

)
kj

∣∣∣∣
≤ max

q

∣∣∣∣∑
k,l

(
(Σ1/2)JJ

)
ik

(YqkYql − EYqkYql))
(
(Σ1/2)JJUJ

)
lj

∣∣∣∣.
We focus on bounding for fixed q. This is a quadratic form in the random variable {Yqk}sk=1. Define the matrix
M via

Mkl :=

(
(Σ1/2)JJ

)
ik

(
(Σ1/2)JJUJ

)
lj

.

Note that

∥M∥2F =
∑
k,l

(
(Σ1/2)JJ

)2

ik

(
(Σ1/2)JJUJ

)2

lj

≤ λ1∥(Σ1/2)JJ∥22→∞

≤ λ21.
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Therefore, for any fixed q, i, and j, applying the Hanson-Wright inequality (Theorem 4 in Appendix C),

P
(∣∣∣∣∑

k,l

(
(Σ1/2)JJ

)
ik

(YqkYql − EYqkYql))
(
(Σ1/2)JJUJ

)
lj

∣∣∣∣ > t

)
≤ 2 exp

(
− cmin

{
t2

λ21
,

t

∥M∥

})
.

Setting t = Cλ1

√
log(s)+log(k)+5 log(p)

n and taking a union bound for all n random variables shows that with

probability at least 1−O(s−1k−1p−4) that

max
q

∣∣∣∣∑
k,l

(
(Σ1/2)JJ

)
ik

(YqkYql − EYqkYql))
(
(Σ1/2)JJUJ

)
lj

∣∣∣∣ ≲ λ1

√
log(p)

n
.

Therefore, taking a union bound over all s rows and k columns shows that with probability at least 1−O(p−4)
that

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJ∥max ≲ λ1

√
log(p)

n
. (25)

The exact same argument yields with the same probability that

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥∥max ≲ λ1

√
log(p)

n
. (26)

Combining (24) with (25) and (26) yields

∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ŨJ∥2→∞ ≤

√
k∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJUJ∥max

+
√
s∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJU⊥∥max∥U⊤

⊥ ŨJ∥

≲ λ1

√
k log(p)

n
+ λ1

√
s log(p)

n
∥U⊤

⊥ ŨJ∥.

So what remains is to bound the term ∥U⊤
⊥ ŨJ∥, However, we note that this is simply (by a factor of

√
2) the

sinΘ distance between the subspace UJU
⊤
J and ŨJ Ũ

⊤
J (see Lemma 10 in Appendix C). Therefore, by Proposition

1, we have that this can be bounded by

∥U⊤
⊥ ŨJ∥ ≲

λ1
λk − λk+1

√
s log(p)

n
.

Putting it all together, this yields that with probability at least 1−O(p−4) that

∥K1∥2→∞ = ∥ 1
n
(Σ1/2)JJ(Y

⊤
J YJ − nI)(Σ1/2)JJ ŨJ∥2→∞

≲
λ21

λk − λk+1

s log(p)

n
+ λ1

√
k log(p)

n
,

which is the desired bound.

Again, we repeat the statement of Lemma 8.

Lemma 8 (The matrix K2). The matrix K2 satisfies

∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ Ũ∥2→∞ ≲ λ1

√
k log(p)

n
+

λ21
λk − λk+1

s log(p)

n

≲ E5λk

with probability at least 1−O(p−4).
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Recall that

K2 : = Σ
1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ŨJ

Proof of Lemma 8. We have that

∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ŨJ∥2→∞ ≤ ∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJUJ∥2→∞

+ ∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJU⊥∥2→∞∥U⊤
⊥ ŨJ∥

≤
√
k∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJUJ∥max

+
√
s∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJU⊥∥max∥U⊤
⊥ ŨJ∥. (27)

We bound each norm inside the max separately. Define the random variable ηij as the i, j entry of the matrix

Σ
1/2
JJcY ⊤

JcYJ(Σ
1/2)JJUJ . Then

ηij =
1

n

n∑
q=1

s∑
k=1

p−s∑
l=1

[Σ
1/2
JJc ]ilξ

(q)
s+l,k

(
(Σ1/2)JJUJ

)
kj

,

where ξ
(q)
s+l,k := Yq,s+lYqk. Following a strategy similar to the proof of Lemma 6, we have to bound both the

maximum and sum of squared ψ1 norms of the random variable

αqlj :=
1

n
[Σ

1/2
JJc ]ilξ

(q)
s+l,k

(
(Σ1/2)JJUJ

)
kj

.

The squared entries satisfy

∥ 1
n
[Σ

1/2
JJc ]ilξ

(q)
s+l,k

(
(Σ1/2)JJUJ

)
kj

∥2ψ1
≤ 1

n2
([Σ

1/2
JJc ]il)

2

(
(Σ1/2)JJUJ

)2

kj

.

Summing up over q, l, j,

n∑
q=1

s∑
k=1

p−s∑
l=1

∥αqlj∥2ψ1
≤ 1

n

s∑
k=1

p−s∑
l=1

([Σ
1/2
JJc ]il)

2

(
(Σ1/2)JJUJ

)2

kj

≤ 1

n

s∑
k=1

(
(Σ1/2)JJUJ

)2

kj

∥Σ1/2
JJc∥22→∞

≤
λ1∥Σ1/2

JJc∥22→∞
n

.

Also,

max
q,l,j

∥αqlj∥ψ1 ≤ 1

n

√
λ1∥Σ1/2

JJc∥2→∞.

By the the Generalized Bernstein inequality (Theorem 3 in Appendix C),

P
(
|ηij | > t

)
≤ 2 exp

(
− cnmin

[
t2

λ1∥Σ1/2
JJc∥22→∞

,
t

√
λ1∥Σ1/2

JJc∥2→∞

])
.

Again taking t = C∥Σ1/2
JJc∥2→∞

√
λ1

√
log(s)+log(k)+4 log(p)

n shows that this holds with probability 1 −
O(s−1k−1p−4). Taking a union over all s rows and k columns of the matrix yields that

∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJUJ∥max ≲ ∥Σ1/2
JJc∥2→∞

√
λ1

√
log(p)

n

≲ λ1

√
log(p)

n
.
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Applying precisely the same argument to the other term yields with probability 1−O(p−4) that

∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJU⊥∥max ≲ λ1

√
log(p)

n
.

Therefore, combining these bounds with the initial bound in (27) and Proposition 1 and the equivalent expressions
for the sinΘ distances (Lemma 10 in Appendix C), we have that with probability at least 1−O(p−4),

∥K2∥2→∞ = ∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJ ŨJ∥2→∞ ≤
√
k∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJUJ∥max

+
√
s∥ 1
n
Σ

1/2
JJcY

⊤
JcYJ(Σ

1/2)JJU⊥∥max∥U⊤
⊥ ŨJ∥

≲ λ1

√
k log(p)

n
+

λ21
λk − λk+1

s log(p)

n

as desired.

B.6 Proof of Lemma 9

It will be useful to collect some properties of the matrix Σ
1/2
JJc , which we state as a proposition.

Proposition 2 (Properties of the Matrix Σ
1/2
JJc). The matrix Σ

1/2
JJc satisfies

∥Σ1/2
JJc∥ ≤ 2

√
λ1

Furthermore, the left singular subspace of Σ
1/2
JJc must contain columns of U⊥.

Proof of Proposition 2. First, we note that

∥Σ1/2
JJc∥ =

∥∥∥∥( 0 (Σ1/2)JJc

((Σ1/2)JJc)⊤ 0

)∥∥∥∥
≤ ∥Σ∥1/2 +

∥∥∥∥((Σ1/2)JJ 0

0 Σ
1/2
JcJc

)∥∥∥∥
≤ 2

√
λ1,

since eigenvalues bound eigenvalues of any principal submatrix. For the second claim, note that

Σ1/2

(
UJ
0

)
=

(
(Σ1/2)JJ (Σ1/2)JJc

((Σ1/2)JJc)⊤ Σ
1/2
JcJc

)(
UJ
0

)
=

(
UJ
0

)
Λ1/2.

This shows that the matrix (Σ
1/2
JJc)⊤ satisfies (Σ

1/2
JJc)⊤UJ = 0, so that its null space must contain the space

spanned by UJ . However, this also shows that since (Σ
1/2
JJc)⊤ ∈ R(p−s)×s, then its rank is at most s− k. Hence,

define (Σ
1/2
JJc)⊤ = V1DV

⊤
2 as the reduced singular value decomposition of (Σ

1/2
JJc)⊤. Since its rank is at most

s− k, we have that V1 ∈ O(p− s, s− k), V2 ∈ O(s, s− k), and D is an s− k × s− k diagonal matrix of singular
values.

Since (Σ
1/2
JJc)⊤UJ = V1DV

⊤
2 UJ = 0, the term V2 ∈ O(s, s− k) must span a space perpendicular to UJ . The only

matrix up to choice of basis in O(s, s− k) satisfying V ⊤
2 UJ = 0 is the matrix U⊥, which establishes the second

claim.

Therefore, all this shows that

• The left singular subspace of Σ
1/2
JJc contains columns of U⊥;
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• Its singular values are all uniformly bounded by 2
√
λ1.

We are now prepared to prove Lemma 9.

Lemma 9 (The matrices K3 and K4). The matrices K3 and K4 satisfy

∥ 1
n
(Σ1/2)JJY

⊤
J YJc(Σ

1/2
JJc)

⊤ŨJ∥2→∞ ≲
s log(p)

n

λ21
λk − λk+1

≲ E5λk;

∥ 1
n
Σ

1/2
JJc(Y

⊤
JcYJc − nI)(Σ

1/2
JJc)

⊤Ũ∥2→∞ ≲
s log(p)

n

λ21
λk − λk+1

≲ E5λk

with probability at least 1−O(p−3).

Proof of Lemma 9. Let Σ
1/2
JJc have singular value decomposition U⊥DV

⊤, where U⊥ ∈ O(s, s − k), Dii ≥ 0,
1 ≤ i ≤ s− k, V ∈ O(p− s, s− k). We will show the result for Dii > 0, though the same proof goes through if
Dii = 0 for some i.

Then the term K3 satisfies

∥K3∥2→∞ = ∥(Σ1/2)JJ
Y ⊤
J YJc

n
(Σ

1/2
JJc)

⊤ŨJ∥2→∞

≤ ∥(Σ1/2)JJ
Y ⊤
J YJc

n
V DU⊤

⊥ ŨJ∥2→∞

≤ ∥(Σ1/2)JJ
Y ⊤
J YJc

n
V DU⊤

⊥U⊥∥2→∞∥U⊤
⊥ ŨJ∥

≤ ∥(Σ1/2)JJ
Y ⊤
J YJc

n
V ∥2→∞

√
λ1∥U⊤

⊥ ŨJ∥. (28)

The term ∥U⊤
⊥ ŨJ∥ can be bounded via Proposition 1 and Lemma 10 in Appendix C. So what remains is to

bound the 2 → ∞ norm in (28). Note that the matrix V is of column dimension at most (s − k). Hence, each
of the s rows of the matrix (Σ1/2)JJYJYJcV is of dimension at most s− k.

Following a strategy similar to that in Lemmas 7 and 8, we have that

∥(Σ1/2)JJ
Y ⊤
J YJc

n
V ∥2→∞ ≤

√
s− kmax

i,j

∣∣∣∣(Σ1/2)JJ
Y ⊤
J YJc

n
V

∣∣∣∣
i,j

≤
√
smax

i,j

∣∣∣∣(Σ1/2)JJ
Y ⊤
J YJc

n
V

∣∣∣∣
i,j

.

By analogous arguments as in Lemma 8, the i, j entry is a sum of independent mean-zero subexponential random
variables, each with ψ1 norm bounded 1

n

√
λ1. Therefore, by Bernstein’s inequality, any i, j entry is bounded by

C
√
λ1

√
log(p)

n

with probability at most 1−O(p−3). Combining with Proposition 1, we have the bound

∥K3∥2→∞ ≲ λ1

√
s log(p)

n
∥U⊤

⊥ ŨJ∥

≲ λ1

√
s log(p)

n

(
λ1

λk − λk+1

√
s log(p)

n

)
≲

λ21
λk − λk+1

s log(p)

n
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as desired.

For the term K4, we see that

∥K4∥2→∞ = ∥Σ1/2
JJc

(
Y ⊤
JcYJc

n
− I

)
V DU⊤

⊥ ŨJ∥2→∞

≤ ∥Σ1/2
JJc

(
Y ⊤
JcYJc

n
− I

)
V ∥2→∞

√
λ1∥U⊤

⊥ ŨJ∥

≤
√
sλ1∥Σ1/2

JJc

(
Y ⊤
JcYJc

n
− I

)
V ∥max∥U⊤

⊥ ŨJ∥. (29)

We will bound the term inside the max norm for fixed i and j. Observe that∣∣∣∣(Σ1/2
JJc

(
Y ⊤
JcYJc

n
− I

)
V

)
ij

∣∣∣∣ = max
i,j

∣∣∣∣ 1n∑
q

∑
k,l

(
Σ

1/2
JJc

)
ik

(YqkYql − EYqkYql)Vlj
∣∣∣∣

≤ max
q

∣∣∣∣∑
k,l

(
Σ

1/2
JJc

)
ik

(YqkYql − EYqkYql)Vlj
∣∣∣∣.

We will first bound the term inside the absolute value for fixed q by Hanson-Wright (Theorem 4 in Appendix
C). Let M be the matrix defined via

Mkl :=

(
Σ

1/2
JJc

)
ik

Vlj .

Then

∥M∥2F =
∑
k,l

(
Σ

1/2
JJc

)2

ik

V 2
lj =

∑
k

(
Σ

1/2
JJc

)2

ik

≤ ∥Σ1/2
JJc∥22→∞ ≤ 4λ1.

Therefore, by applying the Hanson-Wright inequality, for any fixed q it holds that

P
(∣∣∣∣∑

k,l

(
Σ

1/2
JJc

)
ik

(YqkYql − EYqkYql)Vlj
∣∣∣∣ ≥ t

)
≤ 2 exp

(
− cmin

{
t2

4λ1
,

t

∥M∥

})
.

Setting t = C
√
λ1

√
log(s)+log(k)+5 log(p)

n and taking a union bound over all q random variables shows that for

fixed i and j, with probability at least 1−O(s−1k−1p−4),∣∣∣∣(Σ1/2
JJc

(
Y ⊤
JcYJc

n
− I

)
V

)
ij

∣∣∣∣ ≲ √
λ1

√
log(p)

n
.

Taking a union bound over s rows and k columns shows that with probability at least 1−O(p−4),

∥Σ1/2
JJc

(
Y ⊤
JcYJc

n
− I

)
V ∥max ≲

√
λ1

√
log(p)

n
.

Therefore, from the initial bound in (29) and Proposition 1,

∥K4∥2→∞ = ∥Σ1/2
JJc

(
Y ⊤
JcYJc

n
− I

)
V DU⊤

⊥ ŨJ∥2→∞

≤
√
sλ1∥Σ1/2

JJc

(
Y ⊤
JcYJc

n
− I

)
V ∥max∥U⊤

⊥ ŨJ∥

≲ λ1

√
s log(p)

n
∥U⊤

⊥ ŨJ∥

≲
s log(p)

n

λ21
λk − λk+1

as desired.
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C Background Material on Orlicz Norms, Concentration, and Subspace
Perturbation

Here we briefly discuss Orlicz ψα Norms and Bernstein’s inequality for subexponential random variables.

The Orlicz Norm of order α for a real-valued random variable X is defined via

∥X∥ψα := inf{t > 0 : E exp(|X|α/t) ≤ 1}.

Random variables with finite ψ2 norm are called subgaussian and those with a finite ψ1 norm are called subex-
ponential. Generally speaking, if X is subgaussian, then X2 is subexponential and ∥X2∥ψ1 ≲ ∥X∥2ψ2

. One also
has the “Cauchy-Schwarz” bound ∥XY ∥ψ1

≲ ∥X∥ψ2
∥Y ∥ψ2

(Vershynin, 2018).

For subexponential random variables, one has the following generalized Bernstein’s inequality. See Theorem
2.8.2 in Vershynin (2018) for the proof.

Theorem 3 (Theorem 2.8.2 in Vershynin (2018)). Let X1, ..., XN be independent, mean zero subexponential
random variables and let a = (ai)

N
i=1. Then there exists a universal constant c > 0 such that for all t ≥ 0, we

have that

P

{∣∣∣∣∣
N∑
i=1

aiXi

∣∣∣∣∣ ≥ t

}
≤ 2 exp

[
−cmin

(
t2

K2∥a∥22
,

t

K∥a∥∞

)]
where K = maxi ∥Xi∥ψ1

.

We also make use of the Hanson-Wright Inequality. See Theorem 6.2.1 in Vershynin (2018) for the proof.

Theorem 4 (Hanson-Wright Inequality –Theorem 6.2.1 in Vershynin (2018)). Let X1, . . . , XN be independent,
mean-zero subgaussian random variables. Let M be some fixed N × N matrix. Then there exists a universal
constant c > 0 such that for all t ≥ 0, we have that

P
{∣∣∣∣∑

k,l

MklXkXl − EMklXkXl

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− cmin

{
t2

K4∥M∥2F
,

t

K2∥M∥

})
,

where K = maxi ∥Xi∥ψ2
.

We also use several notions from subspace perturbation theory. Suppose U and Û are two d1 × d2 matrices with
orthonormal columns with d2 ≤ d1. The sinΘ distance between the subspaces spanned by U and Û is defined
as follows. Let I − UU⊤ = U⊥U

⊤
⊥ . Then the (spectral) sinΘ distance is defined as

∥ sinΘ(U1, U2)∥ : = ∥Û⊤U⊥∥.

Throughout the supplementary material, we use several equivalent terms for the sinΘ distance. We present this
here as a lemma, the statement of which is slightly modified from Lemma 1 of Cai and Zhang (2018).

Lemma 10 (Modified from Lemma 1 of Cai and Zhang (2018)). The sinΘ distance between two matrices satisfies

∥ sinΘ(Û , U)∥ ≤ inf
W :WW⊤=Id2

∥Û − UW∥ ≤
√
2∥ sinΘ(Û , U)∥;

∥ sinΘ(Û , U)∥ ≤ ∥Û Û⊤ − UU⊤∥ ≤ 2∥ sinΘ(Û , U)∥.


	INTRODUCTION
	Notation

	SPARSE PCA AND SPARSISTENCY
	MAIN RESULTS
	DISCUSSION
	OVERVIEW OF THE PROOF OF THEOREM 1
	Proof of Theorem 1
	Preliminary Bounds
	Proof of Theorem 2
	Proof of Theorem 1

	Proofs of Intermediate Lemmas
	Proofs of Lemmas 1 and 2
	Proof of Lemmas 3 and 4
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemmas 7 and 8
	Proof of Lemma 9

	Background Material on Orlicz Norms, Concentration, and Subspace Perturbation

