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Abstract

Second-order methods have shown state-of-
the-art performance for optimizing deep neu-
ral networks. Nonetheless, their large memory
requirement and high computational complex-
ity, compared to first-order methods, hinder
their versatility in a typical low-budget setup.
This paper introduces a general framework
of layerwise loss construction for multilayer
neural networks that achieves a performance
closer to second-order methods while utilizing
first-order optimizers only. Our methodology
lies upon a three-component loss, target, and
regularizer combination, for which altering
each component results in a new update rule.
We provide examples using squared loss and
layerwise Bregman divergences induced by the
convex integral functions of various transfer
functions. Our experiments on benchmark
models and datasets validate the e�cacy of
our new approach, reducing the gap between
first-order and second-order optimizers.

1 INTRODUCTION

Backpropagation (or BackProp for short) (Rumelhart
et al., 1986) has been the prominent technique for train-
ing neural networks. BackProp is simply an expansion
of the chain rule for calculating the derivative of the
output loss function with respect to the weights in each
layer. The BackProp update involves a forward pass
to calculate the network’s activations given the input
batch of training data. After the forward pass, the gra-
dients of the loss function with respect to the network
weights are backpropagated from the output layer all
the way to the input and the weights are updated by
applying a single gradient step.
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Stochastic gradient descent is the most basic update
rule, which involves taking a step in the direction of
the negative backpropagated gradients. The more ad-
vanced first-order techniques such as AdaGrad (Duchi
et al., 2011), RMSprop (Tieleman and Hinton, 2012),
and Adam (Kingma and Ba, 2014) involve precondi-
tioning the gradient by a diagonal matrix, as well as
incorporating momentum. In contrast, second-order
optimizers such as Shampoo (Gupta et al., 2018; Anil
et al., 2020) and K-FAC (Heskes, 2000; Martens and
Grosse, 2015; Ba et al., 2017) use Kronecker products
to approximately form a full-matrix preconditioner, i.e.,
Full Matrix AdaGrad and Natural Gradient (Amari,
1998), respectively. Shampoo and K-FAC achieve signif-
icantly faster convergence than the first-order methods
in terms of the number of steps and wall-time. However,
large memory requirements (Anil et al., 2019; Shazeer
and Stern, 2018) and the high computational cost of
calculating matrix inverses (inverse-pth roots, in the
case of Shampoo) make these approaches prohibitive
for larger models. These methods require further ex-
tensions such as block diagonalization to make them
scalable, and demand high precision arithmetic for
computing the inverses. Moreover, they require more
resources and are di�cult to parallelize (Anil et al.,
2020; Ba et al., 2017; Osawa et al., 2018). The ques-
tion remains whether it is possible to achieve a similar
performance to second-order methods with first-order
optimizers without any extra forward-backward passes
per batch or explicitly forming the preconditioners.

In this paper, we propose a simple local loss construc-
tion and minimization approach to enhance the e�cacy
of every BackProp step that is easily scalable to modern
large-scale architectures. Our method involves form-
ing a local loss for each layer by fixing a target and
then minimizing this loss iteratively. The updates for
each layer are entirely decoupled and run in parallel.
A single iteration on the local loss always recovers a
single BackProp step. Thus, any further iterations
on the local loss work towards enhancing the initial
BackProp step. Our approach is comparable to first-
order methods in terms of memory and computation
requirements: It involves a single forward-backward
pass on each batch, followed by a few parallelizable lo-
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cal iterations. Our approach significantly improves the
convergence of first-order methods, thus reducing the
gap between first-order and second-order optimization
techniques.

1.1 Related Work

Alternative update rules or extensions to BackProp
have been proposed over the years (Carreira-Perpinan
and Wang, 2014; Carreira-Perpinán and Alizadeh, 2016;
Taylor et al., 2016; Zhang et al., 2018; Gotmare et al.,
2018; Zach and Estellers, 2019; Zeng et al., 2019; Askari
et al., 2018; Li et al., 2019; Gu et al., 2020). For in-
stance, the Di↵erence Target Propagation method (Lee
et al., 2015) involves estimating a target value in each
layer to approximate the BackProp gradient. The tar-
gets are formed via a separate network which performs
as the inverse function. The main goal of such ap-
proaches is decoupled training (Jaderberg et al., 2017)
by approximating the gradients or introducing auxil-
iary variables. Such decoupled training approaches are
not the focus of our current work.

In this paper, we mainly focus on improving the perfor-
mance of first-order optimizers (Nesterov, 1983; Duchi
et al., 2011; Tieleman and Hinton, 2012; Kingma
and Ba, 2014) to match the performance of their
second-order contenders, namely K-FAC (Heskes, 2000;
Martens and Grosse, 2015) and Shampoo (Gupta et al.,
2018; Anil et al., 2020), via a local loss construction
approach. The local problems are solved approximately
using first-order optimizers, while we show that the
exact solutions to these problems recover second-order
update rules such as K-FAC. Our construction also re-
covers Proximal Backpropagation (Frerix et al., 2018),
which builds upon the idea of local squared loss mini-
mization, as a special case (analysis relegated to the
appendix). Closely related is the work of Johnson and
Zhang (2020) which proposes finding a guide function
that is ahead of the current model with respect to
the loss minimization and pushing the model towards
the guide. They show that this construction improves
training e�ciency and is related to self-distillation.

1.2 Notation

We adopt the following notation throughout the pa-
per. We use (x,y) to denote the input instance and
target label pair. For an M -layer neural network and
at a given layer m 2 [M ], we use âm (respectively,
ŷm) and am (respectively, ym) for the predicted and
target pre (post)-activations, respectively. Note that
âm = Wm ŷm�1 and ŷm = fm(âm) where Wm is
the weight matrix1 and fm is an elementwise non-
decreasing transfer function. (Also using this notation,

1We assume that biases are incorporated in the weights.

Figure 1: The matching loss Lf of an increasing transfer
function f as an integral under the curve f which is
always convex in â.

we have ŷ0 = x and ŷ = ŷM , but we distinguish be-
tween yM and y.) We denote the loss of the network
in the final layer (which is used for training with stan-
dard BackProp) as L(y, ŷ) = L(y, ŷM ). We make no
assumption on the final loss L other than di↵erentia-
bility.

Lastly, � and ⌦ denote Hadamard product and Kro-
necker product, respectively, and I denotes the indicator
function.

1.3 Our Contributions

• We introduce a layerwise loss construction frame-
work that relies on a three-component loss, target,
and regularizer combination. Our construction al-
lows flexibility in setting each component to recover
multiple di↵erent update rules.

• We discuss the motivation behind several combina-
tions and show the connection to implicit gradient
updates, Proximal Backpropagation, and second-
order methods such as K-FAC. In each case, we
show that the combination is set such that a single
iteration on the local objective recovers BackProp
(or a more advanced update such as natural gradi-
ent descent (Amari, 1998)), while applying further
iterations recovers a second-order update.

• Experimentally, we show that performing additional
iterations significantly improves convergence of the
first-order methods on a benchmark optimization
problem, thus reducing the gap between first-order
and second-order techniques. After computing the
BackProp gradients, our method is embarrassingly
parallelizable across layers (Nielsen, 2016).

In particular, we will discuss in detail two variants of
our local loss construction approach. The first method
relies on using the squared loss as the local loss. Except
for setting the targets, the squared loss construction
approach uses no information about the local transfer
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function. Instead, the second variant, based on the
matching loss, adapts the local loss function to the
transfer function of the layer.

Matching loss was initially introduced as a line inte-
gral (Helmbold et al., 1999) and was later motivated
via a convex duality argument involving Bregman di-
vergences (Kivinen and Warmuth, 2001; Amid et al.,
2019). Specifically, consider an elementwise strictly
increasing transfer function f : Rd

! Rd. Given input
x 2 Rn and target label y 2 Rd, let â 2 Rd be the
predicted pre (transfer function) activation produced
by the model (for instance, the linear activation before
softmax in a single-layer logistic regression classifier).
The (post-activation) prediction of the model is given
by ŷ = f(â) (in this example, the softmax proba-
bilities). The goal of training is to make the model
prediction ŷ closer to the target label y by means of
minimizing a measure of discrepancy, commonly known
as a loss function. In particular, the matching loss of
the transfer function f between the target y and the
prediction ŷ = ŷ(â) is defined as the following line
integral of f ,

Lf

�
y, ŷ(â))

.
=

Z â

a

�
f(z)� f(a)

�>
dz , (1)

where a = f�1(y) is the target pre-activation. Figure 1
depicts this integral when d = 1. By definition, the
gradient of the matching loss with respect to â admits
a simple form in terms of the di↵erence between the
prediction and the target:

râLf

�
y, ŷ(â)) = f(â)� f(a) = ŷ � y . (2)

Consequently, when f is elementwise strictly increasing,
then the local matching loss is strictly convex with
respect to â. Note that the majority of the non-linear
transfer functions used in practice (e.g., leaky ReLU,
tanh, softmax, etc.) are indeed (elementwise) strictly
increasing and thus their matching losses are strictly
convex.2

As we shall see, the logistic loss is one of the main
examples of a matching loss. When the logistic loss (i.e.,
softmax transfer function and KL (or cross entropy)
divergence) is used for multilayer neural networks, then
the overall loss is strictly convex in the weights of
the last layer. Nonetheless, the convexity does not
necessarily extend to the weights of the layers below.
These weights are then updated by backpropagating
the gradient of the same final loss. As one of our main
contributions, we extend this construction to layerwise
convex losses.

2The integral of the softmax function, known as “log-
sum-exp”, is strictly convex in Rd � {±c1d, c 2 R+}.

2 LOCAL LOSS OPTIMIZATION

Given an input example3 x, our local loss construction
framework splits an M -layer feedforward neural net-
work into independent layerwise (i.e., single neuron)
problems. In layer m 2 [M ], we fix the input to the
layer ŷm�1 and define a target am (or ym = fm(am)),
which lies in the pre (or post) activation domain. The
update proceeds by minimizing a loss between the cur-
rent prediction of the layer and a target am, plus a
regularizer term on the weights,

W
new = argmin

fW

�
D(fWŷm�1,am)| {z }

loss

+R(fW ,W )| {z }
regularizer

 
,

where D denotes a divergence function and R is a reg-
ularizer (e.g., a squared L2-norm). This formulation
allows flexibility in term of setting the loss (i.e., diver-
gence function), the target, and the regularizer term.
In the next section, we will show how changing each
component results in a di↵erent update rule, one of
which recovers the K-FAC method. In each case, we
pick the combination such that a single fixed-point
iteration on the objective recovers standard gradient
descent (i.e., BackProp) or a more advanced update
such as natural gradient descent (Amari, 1998). We
will refer to our Local Loss Optimization framework
as LocoProp.

2.1 Local Squared Loss

We now motivate the more basic approach for construct-
ing the local problems using a squared loss. Given
the current pre-activation âm = Wm ŷm�1 at layer
m 2 [M ], we first define the gradient descent (GD)
target of the layer as am = âm � �râmL(y, ŷ) where
� > 0 is an activation step size. That is, our target
corresponds to a GD step on the current pre-activation
using the gradient of the final loss with respect to the
pre-activation. Keeping the input to the layer ŷm�1

fixed, our local optimization problem at layer m 2 [M ]
consists of minimizing the squared loss between the
new pre-activation fWŷm�1 and the GD target am,
plus a squared L2-norm regularizer which keeps the
updated weights close to the current weights,

1/2 kfWŷm�1 � amk
2 + 1/2⌘ kfW �Wmk

2 . (3)

Here, ⌘ > 0 controls the trade-o↵ between minimizing
the loss and the regularizer. Setting the derivative
of the objective to zero, we can write W

new
m as the

solution of a fixed point iteration,

W
new
m = Wm � ⌘

�
W

new
m ŷm�1 � am

�
ŷ
>
m�1 . (4)

3The construction generalizes to a batch of examples
trivially.



LocoProp: Enhancing BackProp via Local Loss Optimization

Interestingly, one iteration over Eq. (4) by replacing
W

new
m with Wm on the r.h.s. yields,

W
new
m ⇡Wm � ⌘

�
Wmŷm�1 � am

�
ŷ
>
m�1

= Wm � ⌘
�
Wmŷm�1

� (Wmŷm�1 � �râmL(y, ŷ))
�
ŷ
>
m�1

= Wm � ⌘ �râmL(y, ŷ) ŷ>
m�1

= Wm � ⌘e
@L(y, ŷ)

@âm

@âm

@Wm
. (BackProp)

Thus, a single iteration on the objective in Eq (3)
recovers BackProp, with an e↵ective learning rate of
⌘e

.
= ⌘ � > 0. Nonetheless, Eq. (4) can in fact be solved

in a closed-form as,

W
new
m = Wm � ⌘erWmL(y, ŷ)

�
I + ⌘ ŷm�1ŷ

>
m�1

��1
,

which corresponds to an implicit gradient update (Has-
sibi et al., 1996; Kivinen et al., 2006). Implicit updates
can be motivated as the backward Euler approxima-
tion of the continuous-time gradient flow (Amid and
Warmuth, 2020b) and generally provide faster conver-
gence compared to their approximate (explicit) coun-
terpart (Amid and Warmuth, 2020a). The matrix
preconditioner which trails the BackProp gradient also
corresponds to the right preconditioner that appears in
the K-FAC update rule (see the appendix). In fact, the
following proposition states that we can also recover
the full K-FAC update as a special case.

Proposition 1. The update that minimizes Eq. (3)
with a natural gradient descent target am = âm �

� F�1
m râmL(y, ŷ), in which Fm is the Fisher Informa-

tion matrix treating the pre-activations as parameters,
recovers the K-FAC update.

Instead of forming the matrix inverse, which is com-
putationally expensive for large layers, we apply the
fixed-point update in Eq. (4) for a certain number of
iterations that suits the computational budgets. We
refer to our local squared loss construction approach
with GD targets as LocoProp-S for short.

2.2 Matching Loss

We now extend the local loss construction in the previ-
ous section by replacing the squared loss between the
pre-activations and the targets with a Bregman diver-
gence which is tailored to the transfer function of each
layer. We start by reviewing the idea of a matching
loss of a transfer function and show that when using a
matching loss, the local problem remains convex with
respect to the weights in each layer. Additional Loco-
Prop variants based on dual of the matching loss as well
as those obtained by using di↵erent weight regularizers
are given in the appendix.

2.2.1 Bregman Divergence

The integral in Eq. (1) expands to a Bregman diver-
gence (Bregman, 1967) induced by the strictly convex
integral function F : Rd

! R such that f = rF :

Lf

�
y, ŷ(â)

�
=
⇣
F (z)� f(a)>z

⌘���
â

a

= F (â)� F (a)� f(a)>(â� a)
.
= DF (â,a) .

(5)

Bregman divergences are non-negative distance mea-
sures that satisfy many desirable properties includ-
ing: (I) Convexity: DF (â,a) is always convex in the
first argument, but not necessarily in the second ar-
gument. (II) Duality: DF (â,a) = DF⇤(y, ŷ) where
F ⇤(y)

.
= supz{y ·z�F (z)} is the Fenchel dual (Hiriart-

Urruty and Lemaréchal, 2001) of the convex func-
tion F , and (â, ŷ) and (a,y) are pairs of dual points,
ŷ = f(â) , â = f⇤(ŷ) , y = f(a) , a = f⇤(y) , where
f⇤ = rF ⇤ = f�1. (III) Strict non-negativity:

DF (â,a) � 0 for all â,a 2 dom(F ) and DF (â,a) = 0
i↵ â = a.

Since Bregman divergence are convex with respect to
the first argument (Property (I)), the rewrite (5) of the
matching loss as a Bregman divergence implies that
this loss is convex in the pre-activation â. Additionally,
using the duality argument (Property (II)), we have
Lf

�
y, ŷ

�
= DF⇤(y, ŷ). Consequently, Property (III)

ensures that Lf

�
y, ŷ

�
� 0 and when f is (elementwise)

strictly increasing, Lf

�
y, ŷ

�
= 0 i↵ y = ŷ (or â = a).

A classical example of a matching loss is the commonly
used logistic loss for classification. The logistic loss
amounts to the relative entropy divergence (a.k.a. KL
divergence)4:

KL(y, ŷ)
.
=
X

i

yi log
yi
ŷi
� yi + ŷi , (6)

between the target y and the softmax probabilities,
ŷ = fSM(â) = softmax(â)

.
= exp(â)P

i exp âi
. The integral

of the softmax function is the so called “log-sum-exp”
function, FSM(a) = log

P
i exp(ai). KL divergence is a

Bregman divergence induced by the negative Shannon
entropy function F ⇤

SM(y) =
P

i(yi log yi � yi), which is
in fact the Fenchel dual of FSM (restricted to the unit
simplex (Amid, 2020)). Thus, by Property (II), the
KL divergence in Eq. (6) between the label y and the
output ŷ is equal to the Bregman divergence induced
by the convex function FSM formed between the pre-
activation of the final layer â and the target a =
f�1
SM (y) = log y � 1

d

P
i log yi 1,

DFSM
(â,a) = log

P
i exp(âi)P
i exp(ai)

�

X

i

exp(ai) (âi � ai)P
j exp(aj)

.

4The last two terms cancel when y and ŷ are probability
distributions.
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Figure 2: Matching losses induced by the (a) tanh and
(b) ReLU transfer functions. For strictly increasing
transfer functions such as tanh, the matching loss is
equal to zero i↵ â = a. On the contrary, non-decreasing
(but not strictly increasing) transfer functions such
as ReLU only satisfy the if condition, thus inducing
matching losses with flat regions. (For instance for
ReLU, DF (â, a) = 0 for all â, a  0 .)

Consequently, neural networks trained with logistic
loss (i.e., softmax transfer function paired with KL
divergence) aim to minimize the matching loss of the
softmax transfer function5,

LfSM(y, ŷ) = KL(y, ŷ) = DFSM
(â,a) .

Also, the matching loss ensures convexity with respect
to to the weights of the last layer since â is linear in
the weights, i.e., â = âM = WŷM�1 where ŷM�1 is
the input to the last layer.

2.2.2 Common Transfer Functions

Interestingly, the majority of the commonly used trans-
fer functions in the modern neural network architec-
tures are elementwise non-decreasing. Examples of such
transfer functions include (leaky) ReLU, hyperbolic tan,
softplus, softmax (sigmoid), etc. (see the appendix for
an extensive list). To simplify the construction, we
refer to the Bregman divergence DF (â,a) induced by
the convex integral function F as the matching loss
of the transfer function f . Although in some cases
(such as softplus) the matching loss has a sophisticated
form, in practice, the only requirement is to calculate
the gradient with respect to the first argument, i.e.,
râDF (â,a). Favorably, Bregman divergences facili-
tate this calculation by providing a general form for the
derivative with respect to the first argument; regardless
of the form, the derivative only requires evaluation of
the transfer function, as in Eq. (2).

Lastly, transfer functions such as step function and
ReLU are non-decreasing but not strictly increasing.

5Although the target pre-activation amay be unbounded
in the case of a one-hot y vector, the construction still
carries out.

Thus, the integral function does not induce a strictly
convex function. As a result, DF (â,a) = 0 does not
necessarily imply â = a. Also, the inverses a = f�1(y)
are not uniquely defined in this case. Figure 2 illus-
trates an example. Nonetheless, our construction still
applies for non-decreasing transfer functions as we dis-
cuss in the next section. Thus, we will loosely refer
to the divergences induced by non-decreasing transfer
functions as Bregman divergences.

2.2.3 Local Matching Loss

We now discuss another variant of LocoProp using
the matching loss of each layer. Given the current
post-activation ŷm = fm(Wm ŷm�1) at layer m 2 [M ]
with a non-decreasing transfer function fm, we de-
fine the Mirror Descent (MD) target of the layer as
ym = ŷm � �râmL(y, ŷ) where � > 0 is again the
activation step size. The MD target corresponds to a
MD step (Nemirovsky and Yudin, 1983) on the current
post-activations using the gradient of the final loss with
respect to the pre-activation. Keeping the input to the
layer ŷm�1 fixed, our local optimization problem at
layer m 2 [M ] now consists of minimizing the match-

ing loss between the new post-activation fm(fWŷm�1)
and the MD target, plus a similar squared L2-norm
regularizer,

DFm

�
ym, fm(fWŷm�1)

�
+ 1/2⌘ kfW �Wmk

2 . (7)

Similarly, ⌘ > 0 controls the trade-o↵ between min-
imizing the loss and the regularizer. The following
proposition shows the convexity of the problem (7) in
Wm in every layer m 2 [M ] for a fixed input ŷm�1 and
MD target ym.
Proposition 2. Given fixed input ŷm�1 and MD tar-
get ym, the optimization problem (7) is convex in Wm

in every layer m 2 [M ].

Setting the derivative of the objective to zero, we can
write W

new
m as the solution of a fixed point iteration,

W
new
m = Wm � ⌘

�
fm(W new

m ŷm�1)� ym

�
ŷ
>
m�1 . (8)

Notably, calculating the gradient in Eq. (8) only re-
quires the value of the input to the layer along with
the di↵erence between the post-activations. Unlike
LocoProp-S, the fixed-point iteration of LocoProp-M
in Eq. (8) does not yield a closed-form solution in gen-
eral. However, the following proposition provides the
approximate preconditioned update form.

Proposition 3. The LocoProp-M update in Eq. (8)
can approximately be written in the vectorized form
wm = vecWm as w

new
m = wm + �m,

�m = �⌘e C
�1
m (I ⌦H

�1
Fm

) vec(rWmL(y, ŷ)) ,

where HFm = r2Fm is the Hessian matrix and

Cm = I ⌦H
�1
Fm

+ ⌘ ŷm�1ŷ
>
m�1 ⌦ I ,
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Algorithm 1 LocoProp-S: LocoProp Using Squared Loss

Input weights {Wm} where m 2 [M ] for an M -layer network, acti-
vation step size �, weight learning rate ⌘
repeat

• perform a forward pass and fix the inputs {ŷm�1}

• perform a backward pass and set the GD targets

am = âm � �râmL(y, ŷ)

for each layer m 2 [M ] in parallel do

for T iterations do

Wm  Wm � ⌘
�
Wm ŷm�1 � am

�
ŷ
>
m�1

until {Wm} not converged

Algorithm 2 LocoProp-M: LocoProp Using Matching Loss

Input weights {Wm} where m 2 [M ] for an M -layer network, acti-
vation step size �, weight learning rate ⌘
repeat

• perform a forward pass fix the inputs {ŷm�1}

• perform a backward pass and set the MD targets

ym = ŷm � �râmL(y, ŷ)

for each layer m 2 [M ] in parallel do

for T iterations do

Wm  Wm � ⌘
�
fm(Wm ŷm�1)� ym

�
ŷ
>
m�1

until {Wm} not converged

is the preconditioner matrix.

Interestingly, similar to LocoProp-S, the first iteration
of the procedure always recovers BackProp,

W
new
m ⇡Wm � ⌘

�
fm(Wmŷm�1)� ym

�
ŷ
>
m�1

=Wm � ⌘erâmL(y, ŷ) ŷ>
m�1 . (BackProp)

Thus, any further iterations enhances the initial Back-
Prop update towards the fixed-point solution of Eq. (8).
Also interestingly for a network which already utilizes a
matching loss in the last layer, the objective in Eq. (7)
with MD target and � = 1 corresponds to directly
minimizing the final loss.

Proposition 4. For networks with a matching loss
L(y, ŷ) = LfM(y, ŷ) in the last layer M , the LocoProp-
M objective in Eq. (7) with � = 1 corresponds to the
the loss of the network plus the regularizer term on the
weights.

Proposition 4 shows why layerwise matching loss is a
more natural choice for defining the local problems, as
the last layer simply minimizes the final loss with re-
spect to to the weights of the last layer. The LocoProp-
S and LocoProp-M variants are given in Algorithm 1
and Algorithm 2, respectively.

3 EXPERIMENTS

We perform an extensive study on optimizing a deep
auto-encoder on three standard datasets: MNIST (Le-
Cun and Cortes, 2010), Fashion MNIST (Xiao et al.,
2017), and CURVES6. Our emphasis on the deep auto-
encoder task is due to it being a standard benchmark
when studying new second-order methods for optimiza-
tion (Martens, 2010; Goldfarb et al., 2020). Due to
the limited size (only a few million parameters), it al-
lows answering a plethora of questions with rigor on
the e↵ectiveness of our local loss construction. With
our extensive tuning for the experiments, we find that
adaptive first-order methods work far better than what
is reported in the existing literature (Goldfarb et al.,
2020).

6Downloadable at www.cs.toronto.edu/~jmartens/
digs3pts_1.mat.

For all experiments, the batch size is set to 1000 and
the model is trained for 100 epochs with a learning rate
schedule that includes a linear warmup for 5 epochs
followed by a linear decay towards zero. The local
iterations in LocoProp variants apply an additional
linear decay schedule on the given learning rate. There
are three configurations of autoencoders used in train-
ing: (a) Standard sized (2.72M parameters) with layer
sizes: [1000, 500, 250, 30, 250, 500, 1000] (b) Deep
(6.72M parameters) [1000, 500 ⇥ 8 times, 250, 30,
250, 500 ⇥ 8 times, 1000] and (c) Wide (26M param-
eters) [4000, 2000, 1000, 120, 1000, 2000, 4000]. We
conduct several ablation studies on choices such as
(a) transfer functions (ReLU, tanh), (b) model sizes,
(c) datasets, (d) number of local iterations, and (e)
inner optimizer for local iterations. Our implemen-
tation is in TensorFlow (Abadi et al., 2015) and all
walltime measurements are made on a V100 GPU. For
the second-order method implementation, K-FAC com-
putes statistics based on the sampled gradients from
the model distribution (Kunstner et al., 2019). For tun-
ing, we use a Bayesian optimization package for each
of our experiments. We search for hyper-parameters
(⌘,�1,�2, ✏) for over hundreds (for larger scale models)
to several thousand trials (for standard sized models).
The search space, list of hyper-parameters, and fur-
ther ablations across transfer functions, regularization,
and batch sizes are available in the supplementary ma-
terial, and the code to reproduce the experiments is
available at https://github.com/google-research/
google-research/tree/master/locoprop. We focus
on our results on the standard, deep, and wide au-
toencoder variants with tanh transfer function on the
MNIST dataset and relegate the additional results to
the appendix.

3.1 Tuned Results for First-order Methods

We tune baseline first-order optimizers with a Bayesian
optimization package for thousands of trials. We use
standard implementations of optimizers in TensorFlow
and tune all relevant hyper-parameters. The search
space and further information are given in the sup-
plementary material. Firstly, we observe that the
RMSProp optimizer works remarkably well, as seen

www.cs.toronto.edu/~jmartens/digs3pts_1.mat
www.cs.toronto.edu/~jmartens/digs3pts_1.mat
https://github.com/google-research/google-research/tree/master/locoprop
https://github.com/google-research/google-research/tree/master/locoprop
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(a) RMSProp performs the best (for Back-
Prop).

(b) LocoProp ‘M’ variant performs better
than ‘S’, at 10 local iterations

(c) RMSProp works best for local
iterations with LocoProp-M

Figure 3: Results on the MNIST dataset with tanh transfer function. Comparisons on the standard autoencoder:
(a) first-order methods, (b) LocoProp-S vs. LocoProp-M, (c) e↵ect of inner optimizer on LocoProp-M.

Table 1: Additional computational and memory cost for a layer with dimensions {di} and batch size b. The
number of local iterations for LocoProp is denoted by T .

Algorithm Memory Computation

Adam O
�Q

i di
�

O
�Q

i di
�

Shampoo O
�P

i d
2
i

�
O
�P

i d
3
i

�

K-FAC O
�P

i d
2
i

�
O
�
b
P

i d
2
i

�
+ O

�P
i d

3
i

�
+ O

�
b
Q

i di
�

LocoProp O
�Q

i di
�
+ O

�
b
P

i di
�

O
�
bT

Q
i di

�

in Figure 3(a). A di↵erence to note is that RMSProp
in TensorFlow includes an option for enabling momen-
tum. We utilize this option, which is very similar to
Adam: The former uses heavy ball momentum whereas
the latter uses exponential moving averages. We dis-
cover that the performance gap between first-order
and second-order methods, while still significant, is
smaller than what has been previously reported in the
literature. We attribute this to our exhaustive hyper-
parameter tuning as well as the fact that we made use
of of best practices for training neural networks such
as learning rate warmup and decay.

3.2 Comparison between LocoProp-S and

LocoProp-M Variants

We compare the performance of (a) LocoProp-S (us-
ing GD targets) and (b) LocoProp-M (using MD tar-
gets) on the standard sized deep encoder model on the
MNIST dataset. We notice that the matching loss vari-
ant consistently performs better as seen in Figure 3(b).
A rationale is that the matching losses are more adap-
tive to the local non-linear transfer functions (tanh, in
this case) than squared loss.

3.3 Number of Local Iterations and Choice

of Optimizer for LocoProp-M

The number of local gradient descent steps is a hyper-
parameter for LocoProp. As described earlier, a single

local iteration is equivalent to BackProp. Intuitively,
further iterations are expected to improve on minimiz-
ing the local losses and make the update closer to a
preconditioned gradient form. Thus, we expect to see
more improvements as we increase the number of local
iterations. However, additional improvements should
diminish with the number of iterations. This is aligned
with our observation in Figure 3(b), where increasing
the number of local iterations from 5 to 10 and 50
consistently improves the performance. However, the
performance gain after 10 local iterations is marginal,
and thus, for all further experiments, we fix the num-
ber of local iterations to 10. Consequently, we refer to
LocoProp-M with 10 local iterations as LocoProp. The
LocoProp iterations minimize the local losses for each
layer by gradient descent. We ablate across various
choices of optimizers in Figure 3(c). Again, we find
that RMSProp works quite well.

3.4 Computational and Memory Complexity

Here we provide a detailed account of the additional
computational and memory complexity of LocoProp
along with standard first-order and second-order meth-
ods in Table 1. For notations, we use b for batch size,
and {di} denotes the dimension of the weights of the
layer, for example, {d1, d2} for a fully connected net-
work, and T denotes the number of local iterations.
K-FAC has an additional computational complexity



LocoProp: Enhancing BackProp via Local Loss Optimization

(a) Standard autoencoder (b) Wide autoencoder (c) Deep autoencoder

Figure 4: Comparisons for standard, wide, and deep autoencoders on MNIST with tanh transfer function. All
algorithms are trained for 100 epochs. @k indicates the interval for carrying out inverse (pth root) operation.

(a) Standard autoencoder (b) Wide autoencoder (c) Deep autoencoder

Figure 5: Walltime comparisons for standard, wide, and deep autoencoders on MNIST with tanh transfer function.
LocoProp is much faster than optimized second-order methods on a single V100 GPU (limited parallelism). @k
indicates the interval for carrying out inverse (pth root) operation.

compared to Shampoo due to calculating sampled gra-
dients for the Fisher approximation. LocoProp has
an advantage over KFAC and Shampoo both in terms
of memory and computational complexity when batch
size is comparable or smaller than the dimensions of
the layers. Indeed we observe this in our experiments
in Section 3.5.

3.5 Comparison to Second-order Methods

We perform an end to end wall time comparison against
second-order methods. LocoProp has similar conver-
gence behavior to second-order methods while having
significantly less overhead both in terms of memory
and computation time. Second-order methods can be
made faster by reducing the amount of computation
by running the most expensive part of the step (i.e.,
matrix inverse or root) only every k steps. Note this
comes with degradation in overall quality which we no-
tice especially for K-FAC. The e↵ectiveness of delayed
inverse calculation depends on task specific parame-

ters such as batch size and number of examples. For
larger batch sizes, every step makes large progress and
the curvature estimates need to be updated more fre-
quently. Several investigations along these lines have
studied the e↵ect of stale preconditioners (Anil et al.,
2020; Osawa et al., 2018; Ba et al., 2017). We find that
LocoProp has a significant wall-time advantage com-
pared to second-order methods. Second-order methods
barely match the walltime performance of LocoProp
by running the inverse p-th roots every 50 steps for
Shampoo whereas for K-FAC delayed preconditioning
configuration degrades the solution quality as seen in
Figure 5 and the corresponding steps to convergence
in Figure 4.

4 Conclusions

We presented a simple yet e↵ective enhancement to
BackProp via a local loss construction that reduces the
gap between first-order and second-order optimizers.
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We perform a critical study of its e↵ectiveness across
a wide range of model sizes and dataset choices. The
construction is embarrassingly parallel, allowing it to
have a wallclock time advantage. Finally, we also have
shown that our variant with squared (matching) loss is
(approximately) an iterative version of a preconditioned
update. Future work involves scaling the method up
to much larger architectures across tasks.

Broader Impact and Limitations. This paper in-
troduces a technique that could be used to accelerate
the training of neural networks. This could have a
positive downstream implication on reducing the en-
ergy usage of training large models. LocoProp is a
new technique; it still remains to be seen how well the
method generally works across tasks.
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Supplementary Material:
LocoProp: Enhancing BackProp via Local Loss Optimization

A MATCHING LOSSES OF COMMON TRANSFER FUNCTIONS

We provide a more extensive list of convex integral functions of common transfer functions in Table 2.

Table 2: Example of elementwise non-decreasing transfer functions and their corresponding convex integral
function. The Bregman divergence can be formed by plugging in the convex integral function into the definition:
DF (â,a) = F (â)� F (a)� f(a)>(â� a). For instance, for “linear” activation, we have FSq(a) = 1/2 kak2 and
the Bregman divergence is DFSq

(â,a) = 1/2 kâk2 � 1/2 kak2 � a
>(â� a) = 1/2 kâ� ak

2. For non-decreasing but
not strictly increasing transfer functions such as “ReLU”, the induced divergence does not satisfy the necessity
condition in Property (III): DF (â,a) = 0 if â = a (but not only if).

Name Transfer Function f(a) Convex Integral Function F (a) Note

Step Function 1/2 (1 + sign(a))
P

i max(ai, 0) –

Linear a 1/2 kak2 –

(Leaky) ReLU max(a, 0)� �max(�a, 0) 1/2
P

i ai

�
max(ai, 0)� �max(�ai, 0)

�
� � 0

Sigmoid (1 + exp(�a))�1 P
i

�
ai + log(1 + exp(�ai))

�
–

Softmax exp(a)/Pi exp(ai) log
P

i exp(ai) –

Hyperbolic Tan tanh(a)
P

i log cosh(ai) –

Arc Tan arctan(a)
P

i

�
ai arctan(ai)� log

p
1 + a2

i

�
–

SoftPlus log(1 + exp(a)) �
P

i Li2(� exp(ai)) Li2 := Spence’s func.

ELU [f(a)]i =

(
ai ai � 0

�(exp ai � 1) otherwise

P
i

�
a2
i/2 I(ai � 0) + �(exp ai � ai � 1)

�
I(ai < 0)

�
� � 0

B MISSING PROOFS

Proposition 2. Given fixed input ŷm�1 and MD target ym, the optimization problem (7) is convex in Wm in
every layer m 2 [M ].

Proof. The proof simply follows from the construction of the matching loss; that is, the convexity of Bregman
divergence DFm(âm,am) = Lfm(Wm ŷm�1, f�1

m (ym)) in the first argument âm and the fact that âm is a linear
function of Wm, i.e., âm = Wm ŷm�1.

Proposition 3. The LocoProp-M update in Eq. (8) can approximately be written in the vectorized form wm =
vecWm as w

new
m = wm + �m,

�m = �⌘e C
�1
m (I ⌦H

�1
Fm

) vec(rWmL(y, ŷ)) ,

where HFm = r2Fm is the Hessian matrix and

Cm = I ⌦H
�1
Fm

+ ⌘ ŷm�1ŷ
>
m�1 ⌦ I ,

is the preconditioner matrix.

Proof. Consider the LocoProp-M update:

W
new
m = Wm � ⌘

�
fm(W new

m ŷm�1)� ym

�
ŷ
>
m�1 .
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Writing W
new
m = Wm +�m, we have

�m = �⌘
�
fm((Wm +�m)ŷm�1)� ym

�
ŷ
>
m�1 (9)

Assuming that k�mk ⌧ kWmk, we can approximate the rhs as

�m ⇡ �⌘
�
fm(Wmŷm�1) +HFm�mŷm�1 � ym

�
ŷ
>
m�1

= �⌘HFm�mŷm�1ŷ
>
m�1 � ⌘erâmL(y, ŷ)ŷ>

m�1

where HFm
:= r2Fm is the Hessian. Rearranging the terms, we can write

�m + ⌘HFm�mŷm�1ŷ
>
m�1 = �⌘erWmL(y, ŷ)

Or alternatively

H
�1
Fm

�m + ⌘�mŷm�1ŷ
>
m�1 = �⌘e H

�1
Fm
rWmL(y, ŷ) (10)

Eq. (10) corresponds to a Sylvester equation (Birkho↵ and Mac Lane, 2017). The solution to this equation can
be written in the vectorized form as

�m = vec�m = �⌘e (I ⌦H
�1
Fm

+ ⌘ ŷm�1ŷ
>
m�1 ⌦ I)�1 (I ⌦H

�1
Fm

) vec(rWmL(y, ŷ)) (11)

Note that LocoProp-S assumes a flat geometry for which HFm = Id and Eq. (10) reduces to the implicit gradient
update obtained from the closed-form solution of LocoProp-S.

Proposition 4. For networks with a matching loss L(y, ŷ) = LfM(y, ŷ) in the last layer M , the LocoProp-M
objective in Eq. (7) with � = 1 corresponds to the the loss of the network plus the regularizer term on the weights.

Proof. For a MD target with � = 1 at the last layer M , we have

yM = ŷ �râMLfM(y, ŷ) = ŷ � (ŷ � y)| {z }
gradient of matching loss

= y .

Thus, the objective in Eq. (7) corresponds to minimizing the final loss LfM(y, ŷ) plus the regularizer term with
respect to WM .

C LOCOPROP-S RECOVERS PROXPROP

ProxProp (Frerix et al., 2018) is motivated by approximating the proximal mapping (Moreau, 1965) of a function,
which is commonly known as the implicit update (Hassibi et al., 1996; Kivinen et al., 2006). ProxProp is motivated
by first forming updated pre and post-activations recursively starting from the layer M�1 (one before the last
layer):

ŷ
+
M�1 = ŷM�1 � ⌧ rŷM�1L(y, ŷ) ,

and for the layers below as,

â
+
m = âm �râmfm(âm)

�
fm(âm)� ŷ

+
m

�
, for m 2 [M�1] ,

ŷ
+
m�1 = ŷm�1 �rŷm�1

⇣1
2
kWmŷm�1 � â

+
mk

2
⌘
, for m 2 [M�1]� {1} .

The ProxProp then proceeds by first updating the weights of the last layer using gradient descent,

W
new
M = WM � ⌧ rWML(y, ŷ) .

The remaining weights are then updated by as minimizing a squared loss between the current pre-activations and
the updated pre-activations plus a squared regularizer terms on the wights:

W
new
m = argmin

fW

�
1/2 kfWŷm�1 � â

+
mk

2 + 1/2⌧m kfW �Wmk
2
 
, m 2 [M�1] .
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At first glance, due to the convoluted formulation of the updated activations, it is unclear what the objective of
ProxProp is chasing after. Although not mentioned in the original ProxProp paper, after some simplification, we
can rewrite the updated activations as a gradient step on the current values of the activations:

ŷ
+
m = ŷm � ⌧ rŷML(y, ŷ) ,

â
+
m = âm � ⌧ râML(y, ŷ) , for m 2 [M�1] .

With this simplification, we can recognize that the updated activations (i.e., the targets, in our terminology)
can in fact be formed in parallel for all layers after the backward pass. Thus, the LocoProp-S and ProxProp
formulations become equivalent except for updating the weights of the last layer; ProxProp applies vanilla gradient
descent while LocoProp-S uses a local loss function for updating these weights as well, which recovers ProxProp
when the number of local iterations is one.

This example further illustrates how our LocoProp formulation, which minimizes a loss to a target plus a
regularizer on the weights, simplifies the construction and allows developing several extensions by adjusting each
component.

D LOCOPROP-S CLOSED-FORM UPDATE RESEMBLES K-FAC
PRECONDITIONERS

There are several types of preconditioners such as K-FAC and Shampoo that one could use to train neural
networks. In this section, we make a connection to the K-FAC (Martens and Grosse, 2015) update rule, which
applies a Kronecker factored approximation to the Fisher information matrix (Amari, 1998). Let w be the
vectorized form of matrix W . Recall that the Fisher information matrix is defined as

F (w) = E x s data
y s p(y|x,w)

⇥
rwL(y, ŷ)rwL(y, ŷ)>

⇤
, (12)

where the expectation is over the data and the model’s predictive distribution. The natural gradient update (Amari,
1998) is then defined as

w
+ = w � ⌘F (w)�1

rwL(y, ŷ) . (13)

For a single fully connected layer Wm 2 Rd⇥n where m 2 [M ], the gradient, denoted by Gm 2 Rd⇥n can
be obtained via the chain rule as Gm = râmL(y, ŷ) ŷ>

m�1, which in the vectorized form can be written as:
râmL(y, ŷ)⌦ ŷm�1. We can then write the Fisher information matrix as

F (wm) = E
⇥
(râmL(y, ŷ)⌦ ŷm�1) (râmL(y, ŷ)⌦ ŷm�1)

>⇤

= E
⇥
(râmL(y, ŷ)râmL(y, ŷ)>)⌦ (ŷm�1 ŷ

>
m�1)

⇤
.

Assuming independence between râmL(y, ŷ) and ŷm�1, K-FAC rewrites the Fisher in a tractable form as

F (wm) ⇡ E
⇥
(râmL(y, ŷ)râmL(y, ŷ)>)

⇤
⌦ E

⇥
ŷm�1 ŷ

>
m�1

⇤
.

Let D
.
= E

⇥
(râmL(y, ŷ)râmL(y, ŷ)>)

⇤
and X

.
= E

⇥
ŷm�1 ŷ

>
m�1

⇤
. Then the K-FAC update rule can be

simplified as:
W

+
m ⇡Wm � ⌘D�1

GmX
�1 . (14)

The prototypical implementation of K-FAC uses the moving average of the statistics over training batches. In
Section 2.1, we noted that how the exact solution of the squared loss in Eq. (3) emerges as a preconditioner that
is similar to the right preconditioner of K-FAC in Eq. (14), formed by the outer-product of the input activations.
(In practice, constant diagonal entries are added to matrix X to avoid numerical issues.) Interestingly, one could
similarly recover the left preconditioner as well by setting the target pre-activations using a natural gradient step
on the pre-activations:

am = âm � �D�1
râmL(y, ŷ) ,

where D acts as the Fisher Information matrix treating the pre-activations as parameters, in which case the
expectation is conditioned on x and is taken over the model’s predictive distribution. Substituting for the targets
yields the closed-form update rule for LocoProp-S with natural gradient descent targets:

W
+
m = Wm � ⌘e D

�1
rWmL(y, ŷ)

�
I + ⌘ ŷm�1ŷ

>
m�1

��1
. (15)
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Algorithm 3 PocoProp-S: PocoProp Using Squared Loss

Input weights {Wm} where m 2 [M ] for an M -layer network, acti-
vation step size �, weight learning rate ⌘
repeat

• perform a forward pass and fix the inputs {ŷm�1}

• perform a backward pass and set the post GD targets

ym = ŷm � �rŷmL(y, ŷ)

for each layer m 2 [M ] in parallel do

for T iterations do

Wm  Wm � ⌘J>
fm

�
fm(Wmŷm�1)� ym

�
ŷ
>
m�1

until {Wm} not converged

Algorithm 4 PocoProp-M: PocoProp Using Matching Loss

Input weights {Wm} where m 2 [M ] for an M -layer network, acti-
vation step size �, weight learning rate ⌘
repeat

• perform a forward pass fix the inputs {ŷm�1}

• perform a backward pass and set the dual MD targets

am = âm � �rŷmL(y, ŷ)

for each layer m 2 [M ] in parallel do

for T iterations do

Wm  Wm � ⌘ J>
fm

�
Wmŷm�1 � am

�
ŷ
>
m�1

until {Wm} not converged

Our exposition here is to make the connection which may aid us in analyzing the properties of LocoProp in the
future.

E ALTERNATE LOCOPROP FORMULATIONS

We introduce two additional formulations of LocoProp based on the post-activations, for which we defer the
experimental evaluation to future work. Similarly, the first formulation is based on the squared loss whereas the
second formulation uses the dual form of the Bregman divergence used in LocoProp-M. In both cases, a single
local iteration recovers BackProp. These two variants are given in Algorithm 3 and 4.

E.1 A Variant of LocoProp-S Based on Post-activations

We define a LocoProp-S variant by first setting the targets as ym = ŷm� �rŷmL(y, ŷ) for m 2 [M ], where � > 0
is the activation step size. We refer to these targets as post GD targets. Next, the local optimization problem is
defined as

W
new
m = argmin

fW

�
1/2 kfm(fWŷm�1)� ymk

2 + 1/2⌘ kfW �Wmk
2
 
. (16)

Similarly, ⌘ > 0 controls the trade-o↵ between minimizing the loss and the regularizer. By setting the derivative
of the objective to zero, the fixed point iteration for W+

m can be written as,

W
new
m = Wm � ⌘ Jfm(W

new
m ŷm�1)

>�fm(W new
m ŷm�1)� ym

�
ŷ
>
m�1 , (17)

where Jfm(â) =
@fm(â)

@â is the Jacobian of the transfer function fm (which is many cases is a diagonal matrix).
Note that for the choice of post GD targets, a single fixed point iteration again recovers vanilla BackProp,

W
new
m ⇡Wm � ⌘ Jfm(Wmŷm�1)

>�fm(Wmŷm�1)� ym

�
ŷ
>
m�1

= Wm � ⌘ Jfm(Wmŷm�1)
>�fm(Wmŷm�1)� (fm(Wmŷm�1)� �rŷmL(y, ŷ))

�
ŷ
>
m�1

= Wm � ⌘ � Jfm(Wmŷm�1)
>
rŷmL(y, ŷ) ŷ>

m�1

= Wm � ⌘e
@L(y, ŷ)

@âm

@âm

@Wm
, (BackProp)

with an e↵ective learning rate of ⌘e = ⌘ � > 0. However in this case, the fixed point iteration in Eq. (17) does
not yield a closed-form solution in general and therefore, should be solved iteratively. We refer to this local loss
construction variant as Post LocoProp-S for short. Other variants of PocoProp-S can be obtained by replacing
the post GD targets with post natural GD targets with respect to the post activations. We defer the analysis of
such variants to future work.

E.2 A Variant of LocoProp-M Based on Post-activations

Similarly, we define the dual MD targets as am = âm � �rŷmL(y, ŷ) for m 2 [M ], where � > 0 is the activation
step size. The local optimization problem is then defined using the dual form of the Bregman divergence used in
Eq. (7), that is

W
new
m = argmin

fW

�
DF⇤

m

�
fm(fWŷm�1), fm(am)

�
+ 1/2⌘ kfW �Wmk

2
 

(18)
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Hyper-parameter Range Scaling

⌘ [10�7, 0.1] Log

1� �1 [10�3, 0.1] Log

1� �2 [10�3, 0.1] Log

✏ [10�10, 10�5] Log

Table 3: Search space for comparing first-order
optimizers. Note that the hyper-parameters are
dropped when not applicable (e.g., �2 for non-
adaptive methods).

Hyper-parameter Range Scaling

⌘ [10�7, 10] Log

1� �1 [10�3, 0.1] Log

1� �2 [10�3, 0.1] Log

✏ [10�10, 10�1] Log

Table 4: Search space for Shampoo and K-FAC.

Similarly, ⌘ > 0 controls the trade-o↵ between minimizing the loss and the regularizer. Setting the derivative of
the objective to zero, we can write W

+
m as the solution of a fixed point iteration,

W
new
m = Wm � ⌘ Jfm(W

new
m ŷm�1)

>�f⇤
m(fm(W new

m ŷm�1))� f⇤
m(fm(am))

�
ŷ
>
m�1

= Wm � ⌘ Jfm(W
new
m ŷm�1)

>�
W

new
m ŷm�1 � am

�
ŷ
>
m�1 . (19)

Interestingly, the first iteration again recovers BackProp with an e↵ective learning rate of ⌘e = ⌘ �. We refer to
this LocoProp-M variant with dual MD targets as PocoProp-M.

E.3 Other Possible Variants Based on the Regularizer Term

So far, we discussed LocoProp (and PocoProp) variants by considering di↵erent local loss functions as well as
targets. A tangential approach to such constructions is to consider other possible options for the regularizer term
on the weights. A number of possible alternatives are L1-regularizer, i.e., kfW �Wmk1 (for sparse updates), and
a local Mahalanobis distance based on the Fisher matrix, that is

1/2 ( ew �wm)>F (wm)( ew �wm) ,

where ew and wm are the vectorized forms of fW and Wm, respectively, and F (wm) is the Fisher information
matrix, defined in Eq. (12). Note that a single iteration of LocoProp and PocoProp variants with this local
Mahalanobis distance corresponds to a natural gradient descent step on Wm (see Eq. (13)). Thus, computationally
e↵ective approximations of such variants may yield an improved convergence. We also defer the analysis of such
variants to future work.

F TUNING PROTOCOL AND SEARCH SPACES

We setup a search space for each experiment as shown in Table 3, 5, and 4. We use a Bayesian optimization
package for hyper-parameter search to optimize for training loss. We use decoupled weight decay of 10�5 across
all experiments. We run up to 4096 trails for all experiments, except for the wider/deeper sized autoencoder
where we run only up to 512 trials. Experiments are conducted on V100 GPUs. Our rough estimate for the total
GPU time is ⇠15k GPU hours.

G RESULTS ON RELU AND OTHER DATASETS

We provide additional results using ReLU transfer function on the MNIST dataset in Figure 6(a). Interestingly,
K-FAC performs poorly on this problem and converges to a worse solution than RMSProp. LocoProp-M also
performs well initially, but converges to a similar solution to RMSProp. Shampoo outperforms all other methods
on this problem.
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Hyper-parameter Range Scaling

� [10, 1⇥ 102, 5⇥ 102, 103, 2⇥ 103, 3⇥ 103, 5⇥ 103] Log

⌘ [10�7, 0.1] Log

1� �1 [10�3, 0.1] Log

1� �2 [10�3, 0.1] Log

✏ [10�10, 10�5] Log

Table 5: Search space for LocoProp (both variants). Base optimizer is RMSProp.

(a) MNIST with ReLU transfer func-
tion.

(b) Fashion MNIST with tanh transfer
function.

(c) CURVES with tanh transfer func-
tion.

(d) Test loss on MNIST with ReLU trans-
fer function.

(e) Test loss on Fashion MNIST with tanh
transfer function.

(f) Test loss on CURVES with tanh trans-
fer function.

Figure 6: Results on di↵erent transfer functions and datasets. Comparisons on the standard autoencoder: (a)
MNIST dataset and ReLU transfer function, (b) Fashion MNIST and (c) CURVES datasets using tanh transfer
function. @k indicates the interval for carrying out inverse (pth root) operation.

We also show results on the Fashion MNIST and CURVES datasets (using the standard autoencoder with tanh
transfer function) in Figure 6(b) and 6(c), respectively. Again, K-FAC performs poorly on Fashion MNIST, but
works well on the CURVES dataset. LocoProp-M performs closely to the best performing second-order method.

Lastly, we also show the test loss in Figure 6(d)-(f) for these problems. The test loss results show signs of
overfitting in all cases. The main reason for overfitting is that, in this work, we only focus on optimizing
the fixed loss and thus, do not tune the weight decay regularizer term, which is set to 1e�5 in the default
autoencoder definition. Similar behavior on this problem has been observed in previous work using the default
hyper-parameters (Goldfarb et al., 2020).
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(a) LocoProp-S and LocoProp-M has com-
parable performance to second-order
methods even with a smaller batch size.

(b) Test loss on the same problem for dif-
ferent methods.

Figure 7: MNIST autoencoder with tanh transfer function trained with batch size of 100.

(a) Test loss on the standard autoencoder
with tanh transfer function.

(b) Test loss on the wide autoencoder with
tanh transfer function.

(c) Test loss on the deep autoencoder with
tanh transfer function.

Figure 8: Test loss results on the MNIST dataset with tanh transfer function. Comparisons on: (a) standard, (b)
wide, and (c) deep autoencoder variants.

H RESULTS WITH A SMALLER BATCH SIZE

We train the standard autoencoder on the MNIST dataset with a batch size of 100. Results are presented in
Figure 7, which look similar to the earlier results at batch size 1000. One thing that stands out is that LocoProp-S
works just as well in this setting as LocoProp-M.

I TEST LOSS FOR STANDARD, WIDE, AND DEEP VARIANTS

We provide the plots of the test loss for all variants of the autoencoder model in Figure 8. In general, the
autoencoder model does not generalize well when trained with second-order methods or LocoProp. As discussed
earlier, this behavior is due to an undertuned weight decay regularizer parameter for each case. In this work, we
only focus on minimizing the training loss and defer the analysis of the generalization properties of LocoProp to
future work.

J HYPER-PARAMETERS FOR EXPERIMENTS

The entire hyper-parameter sweeps along with the sensitivity analysis, training and test losses, and the code to
reproduce the results is available at https://github.com/google-research/google-research/tree/master/
locoprop.

https://github.com/google-research/google-research/tree/master/locoprop
https://github.com/google-research/google-research/tree/master/locoprop
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