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Abstract

We study the problem of estimating the value
of a known smooth function f at an un-
known point µ 2 Rn, where each compo-
nent µi can be sampled via a noisy oracle.
Sampling more frequently components of µ
corresponding to directions of the function
with larger directional derivatives is more
sample-e�cient. However, as µ is unknown,
the optimal sampling frequencies are also un-
known. We design an instance-adaptive al-
gorithm that learns to sample according to
the importance of each coordinate, and with
probability at least 1�� returns an " accurate
estimate of f(µ). We generalize our algo-
rithm to adapt to heteroskedastic noise, and
prove asymptotic optimality when f is linear.
We corroborate our theoretical results with
numerical experiments, showing the dramatic
gains a↵orded by adaptivity.

1 Introduction

Estimation is a ubiquitous and expensive task in many
modern applications. Often, however, we are not in-
terested in estimation for estimation’s sake, but rather
for a downstream task through an application specific
function. For an unknown parameter vector µ 2 Rn

which we are given noisy coordinate-wise query access
to, it is well understood how to sample to construct an
estimate to minimize the approximation error between
our estimate µ̂ and the true vector µ. Instead, if we
are interested in estimating f(µ), a natural question
is whether we can leverage knowledge of this function
f to construct a more e�cient estimation procedure.
In this paper we show that using adaptivity we can
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dramatically reduce the number of samples required
to estimate f(µ) to a target accuracy ", exploiting the
fact that we are interested in µ solely through its eval-
uation f(µ). This problem has been well studied in
the special case of f(µ) = maxi2[n] µi in the multi-
armed bandit literature. In this paper, we focus on
settings where f has Lipschitz gradients.

We motivate our focus on smooth f with several appli-
cations; software reliability testing [Cai et al., 2004],
stratified sampling for Monte Carlo integration
[Carpentier et al., 2015], and estimating the norm of
a matrix vector product kAxk22. In software reliabil-
ity testing [Cai et al., 2004], we are interested in es-
timating the failure rate of a piece of software across
n classes or tasks. This is formulated as estimating
f(µ) =

P
n

i=1 piµi, where µi is the probability that a
test from class i fails, and pi is the fraction of time
that a task in class i will be used. Since µ is unknown
a priori, we adaptively select what subroutines to test
in order to estimate f(µ). We note that in this set-
ting the di�culty of the problem stems not from the
complexity of f , as it is linear, but rather from the un-
known variance of our observations. These variances
amplify the estimation errors in di↵erent coordinates
by di↵ering amounts, and so the optimal sampling fre-
quencies critically depend on these unknown variances

Another application of smooth function estimation
lies in the basic linear algebraic task of estimating
the power in a matrix vector product kAxk22. For
A 2 Rn⇥d, we see that defining µ , Ax we have
that dAi,JxJ is an unbiased estimator of A>

i
x when

J ⇠ Unif([d]). This primitive of converting a compu-
tational problem to one of statistical estimation was
formalized in [Bagaria et al., 2021]. This allows us
to convert the computational problem of estimating
kAxk22 into the problem of estimating f(µ) = kµk22
for an unknown vector µ that can only be sampled
coordinate-wise via a noisy oracle.

We operate in the stochastic multi-armed bandit set-
ting, a common framework for studying sequential
decision making problems [Lai and Robbins, 1985].
In this setting the vector of arm means µ 2
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Rn is fixed but unknown, and at every time step
we are able to query one coordinate of µi, an
arm, and obtain a noisy but unbiased sample, an
arm pull [Bubeck and Cesa-Bianchi, 2012]. A pro-
totypical multi-armed bandit problem is best arm
identification, which has been extensively studied
[Jamieson and Nowak, 2014], and can be posed as
f(µ) = argmax

i2[n] µi where f : Rn 7! [n] for [n] ,
{1, . . . , n}. With this discrete valued output, the er-
ror between f(µ) and f(µ̂) is taken as 0 if they are
equal and 1 otherwise, with the same 0-1 loss being
used across other pure exploration multi-armed ban-
dit variants [Lattimore and Szepesvári, 2020].

For smooth f , however, we are better able to ana-
lyze the function error caused by our µ estimation er-
ror. We obtain via a Taylor expansion that a plug-in
estimator µ̂ will achieve an error of f(µ̂) � f(µ) =
rf(µ)>(µ̂ � µ) + O(kµ̂ � µk22). This suggests that
in the high accuracy regime where kµ̂� µk2 is small,
it is beneficial to sample coordinates with larger par-
tial derivatives more. Such Taylor expansions do
not arise in classical multi-armed bandit variants like
the best arm identification problem, as examining its
real valued analogue f(µ) = maxi2[n] µi, we see that
rf(µ) = ei⇤ , where i⇤ = argmax

i2[n] µi (assumed to
be unique). If µ is well estimated such that i⇤ has
been identified, then the only way to improve our es-
timation of f(µ) is to improve our estimation of µi⇤ .
This agrees with intuition but is not very useful, as
in order for this dependence to hold, we need to have
identified i⇤, as f is not everywhere di↵erentiable nor
are its gradients smooth. In the setting with smooth
f however, we can guarantee that our estimate of the
gradient rf(µ) will improve as our estimate of µ im-
proves.

1.1 Outline

In Section 2 we discuss related work and place this pa-
per within the broader multi-armed bandit literature.
We formalize our problem setting in Section 3. In Sec-
tion 4 we propose our algorithm for adaptive function
approximation. We extend our analysis to more gen-
eral scenarios in Section 5. In Section 6 we numerically
validate the theoretical improvements a↵orded by our
scheme. We conclude in Section 7. All theoretical
claims are proved in the Appendix.

2 Related work

The study of multi-armed bandits has a long his-
tory dating back to the 1950’s [Robbins, 1952,
Paulson, 1964, Lai and Robbins, 1985]. Numerous
variants of this fundamental problem have been stud-
ied, including many identification-based objectives

[Lattimore and Szepesvári, 2020]. Regarding estima-
tion of a known functional of the unknown mean vec-
tor, several previous works have studied the case of
linear functions f with heteroskedastic noise, which we
highlight below. While the aim of our work is on con-
structing an algorithm with a stopping condition and
fixed confidence guarantees, these alternative schemes
instead focus on regret and anytime performance and
do not provide such guarantees.

2.1 Software reliability assessment

One well studied problem that fits as a special
case of our results is software reliability testing
[Cai et al., 2004]. In this setting there are n classes of
tests C1, . . . , Cn that can be run on a piece of software.
Tests from class i fail independently with an unknown
but fixed probability µi. The system is known to be
run under a given operational profile {pi}ni=1, where pi
indicates the fraction of time that a task in class Ci

will be used. In this setting the objective is to estimate
the unreliability of the system, which is f(µ) = p>µ.
Works in the adaptive software reliability estimation
literature utilize the plug-in estimator f(µ̂) which is
unbiased due to the linearity of f , and so the primary
objective is to minimize the estimator’s variance. This
is accomplished by a careful finite sample analysis of
the corresponding Markov Chain that is induced by
all possible sampling patterns [Hu et al., 2013]. Since
each arm fails with probability µi and succeeds with
probability 1 � µi, the noise in this problem is het-
eroskedastic. Asymptotic sampling frequencies are de-
rived by using a Lagrangian for constrained optimiza-
tion [Lv et al., 2014]. These works provide a special-
ized analysis for the setting with Bernoulli noise, and
can only accommodate linear functions f .

2.2 Stratified sampling bandit literature

A similar vein of literature has arisen in works on
adaptive stratified sampling for Monte-Carlo integra-
tion [Carpentier and Munos, 2012]. In this setting the
objective is to integrate a function f over a domain X
by partitioning the domain into strata and adaptively
allocating samples within. Assuming that we can com-
pute the measure of each strata i = 1, . . . , n, the objec-
tive can be formulated as estimating f(µ) =

P
i
wiµi,

where wi is the measure of strata i and µi is the ex-
pectation of f over strata i. Due to the di↵erent and
unknown variances �2

i
of f over di↵erent strata, adap-

tivity is required to learn the optimal sampling fre-
quencies ↵i / wi�i, the well known Neyman alloca-
tion [Lohr, 2019], in order to obtain sublinear regret.
An important distinction between the Monte Carlo
integration problem and our setting is that in these
works the objective is to estimate E{f(X)}. In our
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setting however, we are interested in evaluating f at
some ground truth value µ = E{X} of which we are
only able to obtain noisy coordinate-wise observations.
This means that our objective is to estimate f(E{X}),
which only coincides with the previous objective when
f is linear.

As these stratified sampling works both focus on re-
gret, they provide guarantees on the deviation of the
empirical sampling ratios from the optimal ones. How-
ever, it is unclear how to construct algorithmic stop-
ping conditions for these regret-focused methods to al-
low them to operate in the fixed confidence regime.
Such stopping conditions are necessary for fixed con-
fidence algorithms, which are significantly more useful
in practical estimation settings. In the software relia-
bility estimation setting for example, we wish to run
tests until we are 98% sure that we’ve estimated the re-
liability to within 1%; regret is not a notion of interest,
as the primary goal is this fixed confidence guarantee.
Additionally these works can only handle linear f with
heteroskedastic noise. We are able to generalize to
arbitrary di↵erentiable f with L-Lipschitz gradients,
providing fixed confidence guarantees.

2.3 Bandits as a computational tool

Due to the ever increasing size of datasets, multi-
armed bandit-based randomized algorithms have
been recognized as a useful tool for construct-
ing instance-optimal algorithms for computational
tasks. Dating back to works in Monte Carlo
Tree Search [Kocsis and Szepesvári, 2006] and hyper-
parameter tuning [Li et al., 2017], adaptivity has
been used to focus computational e↵orts towards
promising solutions. Formalized into the frame-
work of Bandit-Based Monte Carlo Optimization
[Bagaria et al., 2021], this reduction from computa-
tion to adaptive statistical estimation has been used to
solve many problems including finding the medoid of a
dataset [Bagaria et al., 2018, Baharav and Tse, 2019,
Tiwari et al., 2020], k-nearest neighbor graph con-
struction [LeJeune et al., 2019, Mason et al., 2019,
Mason et al., 2021], Monte Carlo permutation-based
multiple testing [Zhang et al., 2019], and mode es-
timation [Singhal et al., 2021]. Most similarly,
a rank-one estimation problem was solved in
[Kamath et al., 2020] via an adaptive SVD, showing
the utility of this technique for linear algebraic primi-
tives, which we extend here to estimating kAxk22.

In order to realize statistical gains as wall-clock
gains, it is advantageous to use algorithms that
require fewer rounds of adaptivity and avoid extra
synchronization steps. Semi-adaptive algorithms have
been studied in various contexts in the multi-armed
bandit literature, first for a multiplayer setting

[Hillel et al., 2013], then for halving based algorithms
[Karnin et al., 2013], and recently in more general set-
tings [Karpov and Zhang, 2020, Karbasi et al., 2021],
including for submodular optimization
[Balkanski and Singer, 2018, Esfandiari et al., 2021].
Such schemes exploit the e�ciency of batched
operations in modern computer architec-
tures leading to dramatically faster algorithms
[Baharav and Tse, 2019, Bagaria et al., 2021]. To
this end, all algorithms proposed in this paper per-
form batched sampling, and show dramatic wall-clock
improvements over fully sequential methods in our
experiments.

3 Problem Formulation

We study the problem of minimizing the number of
samples T required to construct an estimator µ̂ of µ
such that |f(µ) � f(µ̂)|  " with probability at least
1 � �. The function f : Rn 7! R is known, and is
di↵erentiable with L-Lipschitz gradients, where we de-
note rif(x) , @

@xi
f(x) , gi. µ is unknown, and at

each time step t 2 N we select i 2 [n] and obtain
µi + Zi,t, where {Zi,t} are independent standard nor-
mals. Our results are readily extendable to the case
where {Zi,t} are 1-sub-Gaussian, but for clarity of ex-
position we present our results for the Gaussian case.
Given these three metrics of interest (", �, T ), we focus
on algorithms for the fixed confidence setting where we
constrain both the error probability � and the output
error ", and minimize the number of samples needed.

4 Adaptive Sampling Scheme

To design our adaptive algorithm, we begin by ex-
amining the error incurred by a plug-in estimator µ̂
more closely. Due to the L-Lipschitz gradients of f
[Bubeck, 2013] this error satisfies

��f(µ̂)� f(µ)�rf(µ)>(µ̂� µ)
��  L

2
kµ̂� µk22. (1)

Since our estimator for µi is distributed as µ̂i ⇠
N (µi, 1/Ti) after Ti samples, the second order error
kµ̂ � µk22 is readily bounded by uniformly sampling
the arms. This indicates that we need to have a suf-
ficiently accurate estimate of µ before our linearized
first order approximation is accurate. Once the second
order error has been su�ciently controlled, we exam-
ine the first order error rf(µ)>(µ̂�µ) by noting that

rf(µ)>(µ̂� µ) ⇠ N
 
0,

nX

i=1

g2
i

Ti

!
. (2)

To guarantee that this error is less than " in magnitude
with probability at least 1 � �, Hoe↵ding’s inequality
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indicates that we need to sample until
P

n

i=1 g
2
i
/Ti 

2"2/ log(2/�). Minimizing our sample complexity in
order to reach this condition, we define our sampling
distribution ↵ 2 �n, the n dimensional probability
simplex, such that Ti = ↵iT . Observe that for a fixed
number of samples T we can equivalently minimize
over ↵ instead of {Ti}, yielding the optimal sampling
distribution

argmin
↵2�n

X

i

g2
i

↵iT
=) ↵i / |gi|, (3)

due to Sion’s minimax theorem [Sion, 1958] and first
order conditions. Sampling each coordinate propor-
tional to the magnitude of its partial derivative |gi| ef-
fectively rescales our confidence interval on each arm
inversely proportional to the scalar multiplying it.

If g is known a priori, as is the case in the linear
setting, then so is the optimal allocation, and hence
adaptivity is not necessary. In our setting however,
the gradient g = rf(µ) is unknown, as the point µ
is unknown. Motivated by the goal of sampling pro-
portionally to the unknown gradient magnitudes, we
propose Algorithm 1. It proceeds in rounds with dou-
bling budgets Br = 2rB0, and within each round uni-
formly samples the arms to yield improved estimation
of µ and by extension rf(µ), to estimate the optimal
sampling frequencies. At each iteration the algorithm
checks the stopping condition in Line 10, determining
whether sampling according to the estimated optimal
sampling frequencies with the same budget would yield
su�ciently small error. If so, it performs these pulls
and returns the plug-in estimate of f(µ). Otherwise,
it continues to the next round to refine its estimates
of the optimal sampling frequencies.

Through our algorithm we construct estimators µ̂(r) of

µ for estimating rf(µ), where µ̂(r)
i

is the average of
the B̃r ,Pr

`=1dB`/ne samples of arm i taken prior to
and including round r. We utilize anytime confidence
intervals of width Cr, where after B̃r pulls of arm i we
have that

|µ̂(r)
i
� µi| 

s
2 log(12nr2/�)

B̃r

, Cr (4)

with high probability, formalized in Lemma 1.
While tighter confidence intervals based on the law
of the iterated logarithm can be utilized as in
[Jamieson et al., 2014, Kaufmann et al., 2016], in this
work we use simple ones derived from Hoe↵ding’s in-
equality for clarity of exposition.

To estimate the importance of each coordinate, we con-
struct upper and lower bounds for our gradient as

ĝ(r,L)
i

, min
y:ky�µ̂(r)k1Cr

|rif(y)| ,

ĝ(r,U)
i

, max
y:ky�µ̂(r)k1Cr

|rif(y)| . (5)

Assuming that our confidence intervals hold, we have

that ĝ(r,L)
i

 gi  ĝ(r,U)
i

for all i, r. Our estimators

ĝ(r,L)
i

presume that the partial derivative is as small
as it could feasibly be. This is critical to ensure that
we do not oversample unimportant arms. If this mini-
mization is computationally intensive, one e�cient al-

ternative is to define ĝ(r,L)
i

as (|rif(µ̂
(r))|�L

p
nCr)+

where (x)+ , max(x, 0). This coarse bound ignores
the local geometry of the problem and instead utilizes
the global Lipschitzness bound L, but maintains the
same guarantees for the worst case functions. We cor-

respondingly can set ĝ(r,U)
i

as |rif(µ̂
(r))| + L

p
nCr.

These overestimates ĝ(r,U)
i

ensure that we do not ter-
minate too early.

Algorithm 1 Adaptive function approximation

1: Input: arms [n], function f , target accuracy ",
error probability �

2: Set B0 = 17Ln2"�1 log(12n/�)
3: for r = 1, 2, . . . do
4: Set round budget Br = B02r

5: Pull each arm dBr/ne times

6: Use all previous samples to construct µ̂(r)

7: Compute bounds {ĝ(r,L)
i

, ĝ(r,U)
i

} as in (5)

8: Construct sampling frequencies ↵(r)
i
/ ĝ(r,L)

i

9: Set T̃ (r)
i

, d(↵i +
1
n
)Bre

10: if
P

i

⇣
ĝ
(r,U)
i

⌘2

T̃
(r)
i

 "
2

16 log(6/�) then

11: Pull arm i T̃ (r)
i

times to construct µ̃
12: return f (µ̃)
13: end if

14: end for

We provide the following theorem regarding the per-
formance of Algorithm 1. We express our results uti-
lizing big O notation to highlight the dependence on
relevant problem parameters. All constants are made
explicit in Appendix B.

Theorem 1. Algorithm 1 succeeds with probability at
least 1�� in outputting µ̃ such that |f(µ̃)� f(µ)|  ",
using a number of arm pulls at most

O

✓
krf(µ)k21 log(1/�)

"2
+

n2L log(n/�)

"

◆
.

The proof of this theorem is relegated to Appendix B,
but we provide a sketch below. The proof begins by
showing that the good event ⇠, where the mean esti-

mators {µ̂(r)
i

} stay within their confidence intervals,
occurs with high probability. Then, we show that our
error due to the second order terms is less than "/2
due to our choice of a su�ciently large B0. Next, we

show that our sampling frequencies ↵(r)
i

are su�ciently
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large for important arms. Critically, arms with small
gi are su�ciently sampled from the uniform sampling

in T̃ (r)
i

, and arms with large gi will have large ↵(r)
i

.
Finally, we bound the number of rounds required until
the termination condition is met.

In Appendix B.3 we discuss how Algorithm 1 and its
analysis can be improved for the special case where
f(µ) = kµk22, where we are able to tighten our bounds
on the lower order terms. In this case we are able
to improve our gradient bounds, defining ĝ(r,L)

i
,

(|µ̂(r)
i

| � 4Cr)+, where we no longer need to use the
Lipschitzness of the entire gradient operator due to
the separability of f . More importantly, we are now
able to subtract the mean of the second order error
terms; concretely kµ̃(r)k22�

P
n

i=1 1/T̃i is now an unbi-
ased estimator of f(µ). This allows us to argue prob-
abilistically that our second order errors average out,
reducing our lower order sample complexity by a factor
of
p
n.

Corollary 1. This variant of Algorithm 1 will with
probability at least 1 � � estimate kµk22 to accuracy "
using a number of arm pulls at most

O

✓
krf(µ)k21 log(1/�)

"2
+

n3/2 log(n/�)

"

◆
.

4.1 Gain of adaptivity

Examining the result of Theorem 1, we see that the
first term stemming from the first order Taylor ex-
pansion will dominate when H2 > Ln2", where the
problem complexity measure H is defined as H ,
krf(µ)k1. This scaling with n is to be expected, as
H is the sum of n terms. This naturally occurs in the
high accuracy regime when "! 0, where we show that
a sample complexity of ⇥(H2 log(1/�)"�2) is the opti-
mal dependence on problem parameters, as formalized
in our lower bound in Section 5.3 (Proposition 1).

Comparing against the uniform sampling baseline, we
see that taking Ti = T/n would require a budget of ap-
proximately nkrf(µ)k22 log(2/�)"�2 pulls. Hence, the
ratio between the number of samples required by this
uniform baseline and the number of samples required
by our adaptive scheme scales as

gain(f ;µ) , nkrf(µ)k22
krf(µ)k21

, (6)

which is bounded between 1 and n. This lower limit
is achieved if all the partial derivatives are equal, as
then there is no imbalance in the gradient to exploit.
On the other extreme, if our gradient has only one
nonzero entry we see that uniform sampling requires
a factor of n more samples than its adaptive counter-
part. Studying the special case of `p norms, we see that

gain(k · k1;µ) = 1 as all coordinates matter equally,
and gain(k · k22;µ) = nkµk22/kµk21 � 1. In accordance
with intuition, in Appendix A we show that when the
coordinates of µ are not all identical the gain of adap-
tivity in estimating kµkp

p
is a monotonically increasing

function of p 2 [1,1).

5 Algorithmic Extensions

We now discuss practical extensions to Algorithm 1,
showing how it can be generalized to accommodate
broader scenarios of practical interest.

5.1 Thresholding variant

We first extend our algorithm to the setting where
our objective is to minimize the number of samples re-
quired to determine whether our function value f(µ)
is above a given threshold ⌧ or not, i.e. to deter-
mine whether f(µ) > ⌧ . This is a useful primitive
in settings where the desired task is not estimation
but rather decision making, for example in certifying
software reliability. This thresholding objective can be
thought of as providing an “adaptive” ", where fewer
samples can be used if f(µ) is far from ⌧ . Our pro-
posed algorithm for this setting proceeds in a similar
manner to Algorithm 1, but at each round now explic-
itly computes an estimate f(µ̃(r)) to check whether the
estimated gap |f(µ̃(r))� ⌧ | is large enough relative to
a bound on the error |f(µ̃(r))� f(µ)|.

Algorithm 2 Adaptive thresholding

1: Input: arms [n], function f , threshold ⌧ , error
probability �

2: for r = 1, 2, . . . do
3: Set round budget Br = n2r

4: Pull each arm dBr/ne times

5: Use all previous samples to construct µ̂(r)

6: Compute bounds {ĝ(r,L)
i

, ĝ(r,U)
i

} as in (5)

7: Construct sampling frequencies ↵(r)
i
/ ĝ(r,L)

i

8: Set T̃ (r)
i

, d(↵i +
1
n
)Bre

9: Pull arm i T̃ (r)
i

times to construct µ̃(r)

10: if C(f)
r  |f(µ̃(r))� ⌧ | then

11: Define estimate µ̃ , µ̃(r)

12: return f (µ̃) > ⌧
13: end if

14: end for

For this adaptive thresholding algorithm we define and
utilize confidence intervals Cf

r
for the function evalua-

tion estimators f(µ̃(r)) such that |f(µ̃(r))�f(µ)|  Cf

r
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with high probability, where

Cf

r,1 ,

vuuut2 log(24r2/�)
X

i

⇣
ĝ(r,U)
i

⌘2

T̃ (r)
i

Cf

r,2 , Ln log(24nr2/�)

B̃r

Cf

r
, Cr,1 + Cr,2, (7)

where Cf

r,1 is our confidence interval on our first or-

der error in round r, and Cf

r,2 is our confidence in-
terval on our higher order error in round r. For sim-
plicity we assume that f(µ) 6= ⌧ , but Algorithm 2
can be modified to output ? in borderline cases
where f(µ) is very close to ⌧ . Concretely, the algo-
rithm can output ? if it has not yet terminated and
Cf

r
 "/2 for some input tolerance " to indicate that

|f(µ) � ⌧ |  " with high probability. This is similar
to the indi↵erence zone formulation in the operations
research community [Kim and Nelson, 2001]. We pro-
vide the following theorem regarding the performance
of Algorithm 2, where Õ suppresses log log terms in
poly

�
n, �, krf(µ)k1, (f(µ)� ⌧)�1

�
.

Theorem 2. Algorithm 2 succeeds with probability at
least 1� � and outputs whether f(µ) > ⌧ , using

Õ

✓
krf(µ)k21 log(1/�)

(f(µ)� ⌧)2
+

n2L log(n/�)

|f(µ)� ⌧ |

◆

arm pulls, assuming that f(µ) 6= ⌧ .

The proof of this theorem, relegated to Appendix C,
proceeds similarly to that of Theorem 1, with some
interesting nuances stemming from the fact that our "
is now unknown. Since we do not a priori know what
accuracy to estimate f(µ) to, we need to sample ac-

cording to our estimated optimal frequencies ↵(r)
i

in

every round to generate f(µ̃(r)) to estimate the neces-
sary accuracy as |f(µ̃(r))�⌧ |. Proceeding in rounds of
doubling budgets, we analyze our sample complexity
by bounding the number of rounds until our sampling
frequencies are su�ciently accurate, our estimate of
" is su�ciently tight, and the number of samples is
su�ciently large to yield the desired error.

5.2 Adapting to unknown variances

As stated, Algorithms 1 and 2 assume that the addi-
tive noise corrupting the arm pulls is i.i.d. N (0, 1).
In many scenarios of practical interest however, noise
variance may vary dramatically across arms. In soft-
ware reliability assessment for example, the arm re-
ward distributions are Bernoulli with mean µi, where
the variances are a function of the unknown arm re-
wards, with �2

i
= µi(1�µi). More generally, these un-

known variances can be thought of as nuisance param-
eters, which we need to estimate in order to e�ciently
run our algorithm but do not need to output. To adapt
to this scenario we generalize our algorithm to accom-
modate bounded distributions by utilizing an empir-
ical Bernstein-type bound [Maurer and Pontil, 2009],
subsuming the software reliability assessment setting.
Our doubly adaptive algorithm adapts to both the
unknown arm variances �i as well as the unknown
gradient rf(µ). For simplicity of exposition, in this
section we assume that our function is separable, i.e.
f(µ) =

P
n

i=1 fi(µi), but all ideas extend to the general
case as discussed at the end of this section.

In order to accommodate these unknown variances,
our new algorithm utilizes variance adaptive confi-
dence intervals of width Cµ(i, r) for our sample mean

estimators µ̂(r)
i

of µi in round r, defined in (9). To
quantify the improved rate of decay of our confidence
intervals, and to sample coordinates with high vari-
ance more, we utilize confidence intervals for our sam-

ple standard deviation estimators �̂(r)
i

. We construct
these confidence intervals C�(i, r) for our estimator

�̂(r)
i

of �i in round r as below:

C�(i, r) ,
s

2 log(8nr2/�)

T (r)
i
� 1

(8)

Cµ(i, r) , �̂(r)
i

s
2 log(32nr2/�)

T (r)
i

+
7 log(32nr2/�)

3(T (r)
i
� 1)

. (9)

In accordance with our variance adaptive confidence
intervals, we redefine our gradient estimators as

ĝ(r,L)
i

, min
|yi�µ̂

(r)
i |Cµ(i,r)

|f 0
i
(yi)| ,

ĝ(r,U)
i

, max
|yi�µ̂

(r)
i |Cµ(i,r)

|f 0
i
(yi)| . (10)

We note that we have similar bounds for our sam-
ple standard deviation estimates, as �̂(r,L)

i
,
�
�̂(r)
i
�

C�(i, r)
�
+

and �̂(r,U)
i

= �̂(r)
i

+ C�(i, r). With these in
hand we are able to define Algorithm 3, which oper-
ates in a manner similar to Algorithm 1. It proceeds
in rounds of increasing accuracy, first coarsely estimat-
ing all the means and standard deviations via uniform
sampling then refining estimates on higher variance
arms by sampling proportionally to a (pessimistic) es-
timate of their standard deviation. At the end of each
round termination sampling allocations T̃ (r)

i
are con-

structed, and the algorithm samples according to these
allocations and terminates if the following termination
condition is met:

nX

i=1

⇣
ĝ(r,U)
i

�̂(r,U)
i

⌘2

T̃ (r)
i

+
"

3
max

i

ĝ(r,U)
i

T̃ (r)
i

 "2

8 log(8/�)
. (11)
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Algorithm 3 Adaptive function approximation

under heteroskedastic noise

1: Input: arms [n], function f , target accuracy ",
error probability �

2: Set B0 = 2n2
L log(8n/�)

"

3: for r = 1, 2, . . . do
4: Set round budget Br = B02r

5: Pull each arm dBr/ne times

6: Compute µ̂(r), �̂(r)

7: Construct {ĝ(r,L)
i

, ĝ(r,U)
i

} as in (10)

8: Compute sampling frequencies �(r)
i
/ �̂(r,L)

i

9: Pull arm i T (r)
i

= d(�(r)
i

+ 1/n)Bre times

10: Update µ̂(r), �̂(r), recompute {ĝ(r,L)
i

, ĝ(r,U)
i

}
11: Compute frequencies ↵(r)

i
/ ĝ(r,L)

i
�̂(r,L)
i

12: Set T̃ (r)
i

, d(↵i +
1
n
)Bre

13: if Termination condition in (11) is met then

14: Pull arm i T̃ (r)
i

times to construct µ̃
15: return f (µ̃)
16: end if

17: end for

We are able to state the following Theorem regarding
the performance of Algorithm 3, expressing our sam-
ple complexity in big Oh notation with respect to "
for clarity, but detailing all the lower order dependen-
cies on {gi}, {�i}, n, ", and � with explicit constants in
Appendix D (Lemma 11).

Theorem 3. Algorithm 3 successfully outputs f(µ̃)
such that |f(µ̃) � f(µ)|  " with probability at least
1� � using a number of arm pulls at most

O

 
(
P

i
gi�i)

2 log(1/�)

"2

!
+ o

�
"�2
�
.

We prove Theorem 3 in Appendix D, beginning by

showing that the estimators µ̂(r)
i

and �̂(r)
i

stay within
their confidence intervals. This yields sampling fre-

quencies �(r)
i

that sample high variance arms su�-

ciently, which in turn results in ↵(r)
i

that ensure that
arms with large gi and �i are sampled enough. We
then show that once su�ciently many rounds have
elapsed the algorithm will terminate and output an
" accurate estimate. Additionally, while the sampling

frequencies ↵(r)
i

in Algorithm 3 are constructed with
simplicity and asymptotic optimality in mind, we dis-
cuss further optimizations in Appendix D to improve
lower order terms in ".

For the sake of simplicity, in this section we assumed
that our function f is separable. Our algorithm can
be modified to accommodate general f by adding into

our �(r)
i

sampling frequencies a term proportional to

(�̂(r,L)
i

)2 to minimize the maximum confidence inter-
val width, as in [Antos et al., 2010]. While here we
handled the case of bounded noise distributions, our
results can additionally be extended to the case of ad-
ditive gaussian noise with unknown noise variances �2

i
.

5.3 Lower bound

As previously discussed, our algorithms appears to be
order optimal in terms of all relevant problem param-
eters in the high accuracy regime. To this end we
provide a matching lower bound for the linear setting
where f(µ) = g>µ, a plug-in estimator is used, and
our arm pulls for arm i are corrupted by additive Gaus-
sian noise with variance �2

i
.

Proposition 1. In order to estimate f(µ) = g>µ
to accuracy " with error probability at most �, where
pulls from arm i are corrupted by independent addi-
tive Gaussian noise with variance �2

i
, a plug-in es-

timator based on any static sampling allocation {Ti}
where

P
n

i=1 Ti = T requires

T �
 
X

i

|gi|�i

!2

"�2 log(1/4�).

We conjecture that this lower bound extends beyond
linear functions to general f with L-Lipschitz gradi-
ents. This bound should be expected to hold, as in the
high accuracy regime where " ! 0 the function is es-
sentially linear within the region of estimation. Similar
techniques can be used to extend this lower bound to
static allocations for such f when " is su�ciently small
and Ti = !("�1), as then the error in the linear ap-
proximation can be bounded with probability at least
1�� as L

2 kµ̂�µk
2
2 � L

2 maxi T
�1
i

log(1/�) = o("). The
technical di�culty in providing an information theo-
retic lower bound in this more general setting is that
the number of pulls per arm cannot be independently
bounded, as the estimation error accumulates jointly
across the coordinates. This lower bound, proved in
Appendix E, shows that our scheme’s dependence on
all relevant problem parameters {gi}, {�i}, ", and �, is
order optimal in the linear case.

6 Numerical Experiments

We corroborate our theoretical claims with numeri-
cal simulations to show the practical utility and desir-
able finite sample performance of our scheme. Note
that, while not shown in these plots, one significant
advantage of our schemes over optimisim-based ones is
that our schemes o↵er valuable fixed-confidence stop-
ping conditions. Additional experimental details can
be found in Appendix F.
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6.1 Estimating kAxk22

Here we tackle the problem of estimating the power
of a matrix vector product, which arises in statisti-
cal testing and Fourier signal processing applications.
In our simulations we compare our Algorithm 1 with
a uniform sampling benchmark, which pulls all arms
T/n times for a total budget of T . Due to the non-
linearity of f(µ) = kµk22, we cannot compare with
the software reliability estimation algorithms or the
optimism-based regret minimization ones. We are able
to construct a modified optimism-based algorithm for
this setting, which we discuss and show our improve-
ment over in Appendix F.1.

(a) (b)

Figure 1: Time until termination for (a) f(µ) = kµk22
and (b) f(µ) = g>µ for " = 10�4, � = .01. Dashed red
line indicates theoretically predicted gain from adap-
tivity, the line y = x. 100 randomly generated problem
instances are shown.

In Figure 1 we plot the improvement in stopping time
a↵orded by adaptivity. Taking the ratio of the num-
ber of samples required by the uniform sampling based
algorithm to terminate to the number of samples re-
quired by our adaptive sampling based algorithm to
terminate, we see that these ratios follow a linear

trend. In these plots we took T̃ (r)
i

= d10↵iBre, which
does not orderwise impact our theoretical guaran-
tees but allows for superior finite sample performance.
While theory would predict that all points fall on the

line y = x, finite sample issues and our choice of T̃ (r)
i

yield the resulting slope of ⇡ 10/12, for which we pro-
vide further discussion in Appendix F. Additionally,
we reduce the confidence intervals constants to allow
for more aggressive sampling. All modifications from
the written algorithm are detailed in Appendix F.2.

In Figure 2 we see the dramatic gain a↵orded by adap-
tivity in the estimation of kAxk22. For this random
example the gain between uniform and adaptive sam-
pling was projected to be 60.5. While in these exper-
iments we utilize A, x such that the variance of our
drawn samples is approximately 1 for simplicity, in
many applications one would need to adapt to the un-
known variance of di↵erent entries. In order to ac-
complish this, a bound on maxi,j |Aijxj | is required.

Figure 2: Estimation error of kAxk22 for matrix A,
vector x, for n = 100 and d = 10k.

This allows for adaptation to the unknown variances
�2
i
= d

P
d

j=1(Aij � µi)2.

Note that in this computational setting, we have that
in addition to high probability bounds on the sample
complexity of the algorithm, we can provide bounds
on the expected runtime as well, as the total num-
ber of samples required is upper bounded by nd with
probability 1.

6.2 Linear f with heteroskedastic noise

We provide further numerical validation of our method
by demonstrating its performance in the software reli-
ability estimation setting, where we wish to estimate
f(µ) = g>µ, and when we query arm i we obtain a
Bernoulli sample with mean µi (heteroskedastic noise)
indicating whether the test failed. We see that our
general algorithm is able to outperform the optimism-
based one of [Carpentier et al., 2015] in both error and
wall-clock time, while additionally providing stopping
time guarantees.

Figure 3: Estimation error of g>µ under Bernoulli
noise for n = 100, gi uniform in [0,1] and µ normalized
pareto distribution.

In Figure 3 we see the favorable comparison of Algo-
rithm 3 to the optimism based method. Even though
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Algorithm 3 is designed with a fixed confidence stop-
ping condition in mind, and does not optimize for
this fixed budget metric of error after T samples, we
see that it is in fact able to slightly outperform the
optimism-based algorithm. Both adaptive algorithms
exhibit an inflection point (which is much sharper in
Algorithm 3) when they identify the most important
coordinate with largest giµi and are able to use the
majority of their samples on it. This e↵ect can also be
seen to some degree in Figure 2. Additional numerical
experiments can be found in Appendix F.1.

Uniform Algorithm 3 Optimism
T = 104 3.4⇥ 10�3 7.0⇥ 10�3 3.2⇥ 10�1

T = 105 5.2⇥ 10�3 8.4⇥ 10�3 3.1
T = 106 7.5⇥ 10�3 1.1⇥ 10�2 3.1⇥ 10

Table 1: Wall-clock time comparison for estimation of
f(µ) = g>µ as in Figure 3, averaged over 100 trials.
Simulation details in Appendix F.

We see that while the statistical performance of
the optimism-based algorithm is comparable to our
scheme, it is computationally much slower. This is
shown in Table 1, where we see that our algorithm is
over 3 orders of magnitude faster when run for T = 106

samples, and is almost as fast as the batched pure uni-
form sampling algorithm. The runtimes of the two
batched methods increase extremely slowly (logarith-
mically) as the budget increases, while the fully se-
quential optimism based algorithm su↵ers from a run-
time linear in T .

7 Conclusions and Future Work

In this paper, we considered the problem of estimat-
ing the value of a known smooth function f at an
unknown point µ 2 Rn. We provided a novel algo-
rithm to solve this problem, showing that adaptively
estimating the important coordinates of the unknown
point can yield dramatic performance improvements.
We provided a matching lower bound in the linear set-
ting, showing that our algorithm achieves order opti-
mal performance in terms of all relevant problem pa-
rameters. We demonstrated the broad applicability of
our scheme by showing its extensions to a thresholding
decision setting, as well as our algorithms’ ability to
adapt to unknown variances.

There are several interesting directions for future work.
We showed in the special case where f(µ) = kµk22 that
additional structure can lead to a more e�cient algo-
rithm. One natural question is what other classes of
functions can yield improved rates. Additionally, while
in this work we only considered bounded noise distri-
butions (or Gaussian noise with unknown variance),
one should be able to use more sophisticated estima-

tors like Catoni’s M-estimator [Catoni, 2012] to ac-
commodate more general noise distributions with mo-
ments of order 1+" for " 2 (0, 1] [Bubeck et al., 2013].
Finally, the technique we use for estimating kAxk2 can
also be utilized for the estimation of kABk2

F
, as this

can be viewed as the `2 norm of the vectorized re-
sulting matrix. This matrix matrix product contains
additional structure, and has been studied from alter-
native perspectives in the Monte Carlo matrix multi-
plication literature [Drineas et al., 2006], so designing
wall-clock e�cient algorithms for this setting is an in-
teresting question for future work.
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Szepesvári, C. (2010). Active learning in het-
eroscedastic noise. Theoretical Computer Science,
411(29-30):2712–2728.

[Bagaria et al., 2021] Bagaria, V., Baharav, T. Z., Ka-
math, G. M., and David, N. T. (2021). Bandit-
based monte carlo optimization for nearest neigh-
bors. IEEE Journal on Selected Areas in Informa-
tion Theory.

[Bagaria et al., 2018] Bagaria, V., Kamath, G., Ntra-
nos, V., Zhang, M., and Tse, D. (2018). Medoids in
almost-linear time via multi-armed bandits. In In-
ternational Conference on Artificial Intelligence and
Statistics, pages 500–509. PMLR.

[Baharav and Tse, 2019] Baharav, T. and Tse, D.
(2019). Ultra fast medoid identification via corre-
lated sequential halving. Advances in Neural Infor-
mation Processing Systems, 32.

[Balkanski and Singer, 2018] Balkanski, E. and
Singer, Y. (2018). The adaptive complexity of
maximizing a submodular function. In Proceedings
of the 50th annual ACM SIGACT symposium on
theory of computing, pages 1138–1151.

[Bubeck, 2013] Bubeck, S. (2013). Oracle complexity
of smooth convex functions.

[Bubeck and Cesa-Bianchi, 2012] Bubeck, S. and
Cesa-Bianchi, N. (2012). Regret analysis of
stochastic and nonstochastic multi-armed bandit
problems. Foundations and Trends in Machine
Learning, 5(1):1–122.

[Bubeck et al., 2013] Bubeck, S., Cesa-Bianchi, N.,
and Lugosi, G. (2013). Bandits with heavy
tail. IEEE Transactions on Information Theory,
59(11):7711–7717.

[Cai et al., 2004] Cai, K.-Y., Li, Y.-C., and Liu, K.
(2004). Optimal and adaptive testing for software



Approximate Function Evaluation via Multi-Armed Bandits

reliability assessment. Information and Software
Technology, 46(15):989–1000.

[Carpentier and Munos, 2012] Carpentier, A. and
Munos, R. (2012). Adaptive stratified sampling for
monte-carlo integration of di↵erentiable functions.
Advances in neural information processing systems,
25.

[Carpentier et al., 2015] Carpentier, A., Munos, R.,
and Antos, A. (2015). Adaptive strategy for strat-
ified monte carlo sampling. J. Mach. Learn. Res.,
16:2231–2271.

[Catoni, 2012] Catoni, O. (2012). Challenging the em-
pirical mean and empirical variance: a deviation
study. In Annales de l’IHP Probabilités et statis-
tiques, volume 48, pages 1148–1185.

[Drineas et al., 2006] Drineas, P., Kannan, R., and
Mahoney, M. W. (2006). Fast monte carlo algo-
rithms for matrices i: Approximating matrix multi-
plication. SIAM Journal on Computing, 36(1):132–
157.

[Esfandiari et al., 2021] Esfandiari, H., Karbasi, A.,
and Mirrokni, V. (2021). Adaptivity in adaptive
submodularity. In Conference on Learning Theory,
pages 1823–1846. PMLR.

[Hillel et al., 2013] Hillel, E., Karnin, Z. S., Koren, T.,
Lempel, R., and Somekh, O. (2013). Distributed
exploration in multi-armed bandits. Advances in
Neural Information Processing Systems, 26.

[Hu et al., 2013] Hu, H., Jiang, C.-H., Cai, K.-Y.,
Wong, W. E., and Mathur, A. P. (2013). Enhancing
software reliability estimates using modified adap-
tive testing. Information and Software Technology,
55(2):288–300.

[Jamieson et al., 2014] Jamieson, K., Malloy, M.,
Nowak, R., and Bubeck, S. (2014). lil’ucb: An opti-
mal exploration algorithm for multi-armed bandits.
In Conference on Learning Theory, pages 423–439.

[Jamieson and Nowak, 2014] Jamieson, K. and
Nowak, R. (2014). Best-arm identification al-
gorithms for multi-armed bandits in the fixed
confidence setting. In Information Sciences and
Systems (CISS), 2014 48th Annual Conference on,
pages 1–6. IEEE.

[Kamath et al., 2020] Kamath, G., Baharav, T., and
Shomorony, I. (2020). Adaptive learning of rank-
one models for e�cient pairwise sequence align-
ment. Advances in Neural Information Processing
Systems, 33:7513–7525.

[Karbasi et al., 2021] Karbasi, A., Mirrokni, V., and
Shadravan, M. (2021). Parallelizing thompson sam-
pling. Advances in Neural Information Processing
Systems, 34.

[Karnin et al., 2013] Karnin, Z., Koren, T., and
Somekh, O. (2013). Almost optimal exploration in
multi-armed bandits. In International Conference
on Machine Learning, pages 1238–1246. PMLR.

[Karpov and Zhang, 2020] Karpov, N. and Zhang, Q.
(2020). Batched coarse ranking in multi-armed ban-
dits. Advances in Neural Information Processing
Systems, 33.

[Kaufmann et al., 2016] Kaufmann, E., Cappé, O.,
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A `p norms

In this Appendix we analyze our algorithms’ performance for `p norms, where we wish to estimate f(µ) =
f(µ; p) , kµkp

p
to accuracy ". We focus on the high accuracy regime for the sake of exposition, taking " ! 0

and ignoring o("�2) terms. For kµk1, in the high accuracy regime it is order optimal to first identify an "/2
optimal arm i⇤ such that |µi⇤ | � maxi |µi|�"/2, and then estimate µi⇤ to accuracy "/2. This two step procedure

has an identification cost of Õ(
P

n

i=1(�
(")
i

)�2) for �(")
i

= max(�i, ") [Jamieson and Nowak, 2014], after which
the identified arm can be pulled Õ("�2) times to estimate its mean to accuracy "/2, yielding an overall sample

complexity of Õ("�2 +
P

n

i=1(�
(")
i

)�2) ! Õ("�2), assuming that only a constant number of arms attain this
maximum. Here, Õ hides log factors in poly(n, 1/�, 1/", 1/�i). This is in contrast to a uniform sampling based
algorithm, which would estimate the means of all arms to accuracy "/2 and then output the largest value,
requiring Õ(n"�2) samples. This yields a performance improvement a↵orded by adaptivity of Õ(n) when the
best arm is unique. As shown in Theorem 1, our adaptive algorithm requires O(krf(µ)k21"�2 log(1/�)) samples
for smooth f ignoring lower order terms in ", as opposed to a uniform sampling algorithm which will require
O(n"�2krf(µ)k22 log(1/�)), yielding a ratio of O(nkrf(µ)k22/krf(µ)k21). On the other end of the spectrum, the
case of f(µ) = kµk1 is surprising in that adaptivity does not save samples, as for all i such that µi 6= 0 we have
that |rif(µ)| = 1. Thus, all coordinates are equally important, and it is optimal to uniformly sample the entries.
Revisiting f(µ) = kµk22, we have that rf(µ) = 2µ, and so the gain from adaptivity will be O(nkµk22/kµk21),
potentially a factor of n improvement. Defining the gain a↵orded by adaptivity for a fixed vector µ as

gain(k · kp
p
,µ) , nkrf(µ; p)k22

krf(µ; p)k21
, (12)

we are able to state the following proposition showing that the gain increases with p as the function becomes
less smooth.

Proposition 2. For p 2 [1,1), the sample complexity improvement gain(k · kp
p
;µ) in (12) is a monotone

nondecreasing function of p, and a monotone increasing function if the µi are not all identical.

Proof of Proposition 2. Analyzing our gain, we see that we can assume without loss of generality that µi � 0 for

all i. Defining h(µ; p) ,Pn

i=1 µ
2(p�1)
i

and g(µ; p) , (
P

n

i=1 µ
p�1
i

)2, we have that

gain(k · kp
p
,µ) =

nkrf(µ; p)k22
krf(µ; p)k21

=
n
P

n

i=1 µ
2(p�1)
i⇣P

n

i=1 µ
p�1
i

⌘2 =
nh(µ; p)

g(µ; p)
. (13)

To show that this is a nondecreasing function of p, we simply need to show that h0(µ; p)g(µ; p)�h(µ; p)g0(µ; p) �
0, where the derivatives are taken with respect to p for a fixed µ. Since coordinates where µi = 0 a↵ect neither the
numerator nor the denominator we can remove them from consideration, and assume without loss of generality
that µi > 0 for all i. Taking the derivatives and simplifying, we have that our gain is a non decreasing function
of p as

⇣X
µ2(p�1)
i

lnµi

⌘⇣X
µp�1
i

⌘
�
⇣X

µ2(p�1)
i
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µp�1
i

lnµi

⌘

=

0
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X
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i
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� 0. (14)
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Where in (a) we grouped pairs of terms (i, j) and (j, i) from both sums, and in the last inequality we observe
that for µi, µj > 0, the expression is always nonnegative. This shows that the derivative of the gain with respect
to p is nonnegative for all p 2 [1,1). Examining this final line more closely, we see that unless µi = µj for all
pairs (i, j) there will be a positive term in this sum, indicating that the gain is a monotone increasing function
of p when the µi are not all identical.

B Proofs of Algorithm 1

Proof sketch: we define the good event ⇠ where the mean estimators {µ̂(r)
i

} stay within their confidence
intervals, and show in Lemma 1 that this event occurs with probability at least 1 � �/3. This yields control of

our gradient bounds {ĝ(r,L)
i

, ĝ(r,U)
i

}, and guarantees that the sampling frequencies ↵(r)
i

are su�ciently large for
important arms. Then, we show in Lemma 2 that the error due to higher order terms is less than "/2 due to
our choice of B0. We then analyze our first order error term, and show that this is su�ciently small when the
termination condition is met. Finally, we bound the number of rounds required until the termination condition
is met.

B.1 Algorithm terminates correctly

We begin by showing that the confidence intervals on the mean estimators hold. To do this we define the good
event ⇠, where our confidence intervals on our mean estimators hold.

⇠ ,
\

i2[n],r2N

n
|µ̂(r)

i
� µi| < Cr

o
(15)

This event occurs with very high probability, as formalized in the lemma below.

Lemma 1. The good event ⇠ where the estimators {µ̂(r)
i

} stay within their confidence intervals satisfies P(⇠) �
1� �/3.

Proof. Analyzing ⇠, we have that the probability that any of our confidence intervals fail is at most

P(⇠̄) = P
⇣
9i 2 [n], r 2 N, s.t. |µ̂(r)

i
� µi| � Cr

⌘


X

i2[n],r2N
2 exp

�
� log(12nr2/�)

�
 �/3. (16)

The rest of the analysis will be conditioned on this good event ⇠. Analyzing the gradient estimators {ĝ(r,L)
i

, ĝ(r,U)
i

},
we have for all i, r that

gi + 2L
p
nCr � ĝ(r,U)

i
� gi � ĝ(r,L)

i
� gi � 2L

p
nCr (17)

This is because, conditioned on ⇠,

ĝ(r,L)
i

= min
y:ky�µ̂(r)k1Cr

|rif(y)|

� gi � max
y:ky�µk12Cr

|rif(y)�rif(µ)|

� gi � max
y:ky�µk12Cr

krf(y)�rf(µ)k

� gi � 2L
p
nCr. (18)

Additionally, gi � ĝ(r,L)
i

as the set we are minimizing over includes y = µ. The result for ĝ(r,U)
i

follows identically.

With Lemma 1 in hand, we can now proceed with the analysis knowing that our gradient estimators stay within
their confidence intervals for the duration of the algorithm with high probability. This result directly implies the
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accuracy of our sampling frequencies ↵(r)
i

, where we can see that after defining our problem complexity measure
H ,P

i
gi = krf(µ)k1 we have that

↵(r)
i

=
ĝ(r,L)
iP
j
ĝ(r,L)
j

�
(

gi

2H if gi � 4L
p
nCr,

0 otherwise.
(19)

We now analyze the higher order error terms in our output f(µ̃) caused by not knowing the true gradient.

Lemma 2. If each arm is sampled at least 2nL log(6n/�)"�1 times, then with probability at least 1� �/3

L

2
kµ̃� µk22  "/2

Proof. We have by Hoe↵ding’s inequality [Wainwright, 2019] that if arm i has been pulled T̃ (r)
i

times then

P

✓
L

2
kµ̃� µk22 � "/2

◆
 P

⇣
kµ̃� µk21 �

"

nL

⌘
 2

nX

i=1

exp

 
� T̃ (r)

i
"

2nL

!
 �/3, (20)

where the last inequality holds for T̃ (r)
i
� 2nL log(6n/�)"�1 which is satisfied by B0 � 2n2L log(6n/�)"�1.

This requirement is non-adaptive, being independent of µ, where above this sampling threshold these higher
order e↵ects can be readily bounded.

Moving to the error in our linear approximation in (2), we can design our ideal termination condition by appealing
to the linear case, noting that by Hoe↵ding’s inequality

nX

i=1

g2
i

T̃ (r)
i

 "2

8 log(6/�)
=) P

�
|rf(µ)>(µ̃� µ)| > "/2

�
 �/3. (21)

Without knowledge of the true rf(µ) however, we cannot compute this stopping condition. This necessitates

an algorithmic stopping condition involving our estimators ĝ(r,L)
i

. Conditioning on the good event ⇠, we proceed
with our analysis in this section assuming that our gradient bounds are well behaved. This leads to the stopping
condition in Algorithm 1 of

nX

i=1

(ĝ(r,U)
i

)2

T̃ (r)
i

 "2

8 log(6/�)
=)

nX

i=1

g2
i

T̃ (r)
i

 "2

8 log(6/�)
, (22)

where the implication holds on ⇠, meaning that our algorithm will not incorrectly terminate early except on this
error event.

B.2 Bounding the sample complexity

We analyze the number of pulls required for the bound in (22) to hold by splitting our arms into 2 sets; those
with gi larger or smaller than ⌧ = 4L

p
nCr. Note that B̃r � Br/n. Conditioned on ⇠ we have that

nX

i=1

(ĝ(r,U)
i

)2

T̃ (r)
i


(a)

nX

i=1

(gi + 2L
p
nCr)2

T̃ (r)
i


X

i:gi<⌧

(gi + 2L
p
nCr)2

Br/n
+
X

i:gi�⌧

(gi + 2L
p
nCr)2

↵iBr


X

i:gi<⌧

36nL2C2
r

Br/n
+
X

i:gi�⌧

9giH

4Br

 36n3L2C2
r

Br

+
9H2

4Br

, (23)
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where (a) utilizes the event ⇠.

Analyzing the first term in (23), we see that this is less than "
2

16 log(6/�) for all r > 0 as long as B0 �
17n2L log(12n/�)"�1, since

36n3L2C2
r

Br

 36n3L2C2
1

2B0
 18n4L2 log(12n/�)

B2
0

 "2

16 log(6/�)
. (24)

Moving to the second term in (23), we see that it is less than "
2

16 log(6/�) when Br � 36H2 log(6/�)"�2. This
means that our algorithm will terminate no later than the first round r such that

Br � 36H2 log(6/�)"�2. (25)

Due to the doubling of budgets round to round, the round where this condition is met must satisfy Br 
72H2 log(6/�)"�2.

Analyzing the total sample complexity, we see that in round r Algorithm 1 takes at most Br + n = B02r + n
samples, yielding a cumulative sample complexity of at most 2Br � B0 + rn samples by the end of round r.

After the termination condition is met, the algorithm will perform
P

n

i=1 T̃
(r)
i
 2Br + n additional pulls before

returning its estimate. Hence, if our algorithm terminates at the end of round r its sample complexity can be
upper bounded by 4Br �B0 + (r + 1)n  5Br, as B0 � n and Br � 2rn � rn for r � 1.

Analyzing the failure probability of Algorithm 3, we see that we will output an estimate f(µ̃) with error at most
" with probability at least 1� �, as by Lemma 1, Lemma 2, and (21) we have that

P (|f(µ̃)� f(µ)| � ")  P (|f(µ̃)� f(µ)| � " | ⇠) + P(⇠̄)

 P
�
|rf(µ̃)>(µ̃� µ)| � "/2 | ⇠

�
+ P

✓
L

2
kµ̃� µk22 � "/2

���� ⇠
◆
+ P(⇠̄)

 �. (26)

This means that Algorithm 1 will with probability at least 1 � � return an estimate f(µ̃) of f(µ) such that
|f(µ̃)� f(µ)|  " using at most

85n2L log(12n/�)

"
+

360H2 log(6/�)

"2
(27)

samples, as desired.

More refined termination conditions: Note that our termination condition essentially only requires that
we provide an upper bound on the first order error. In certain cases, we can utilize the structure of the function
to provide tighter, but more computationally intensive, stopping conditions, where on ⇠ we have that

nX

i=1

g2
i

T̃ (r)
i

 max
y:ky�µ̂(r)k1Cr

nX

i=1

|rif(y)|2

T̃ (r)
i


nX

i=1

maxy:ky�µ̂(r)k1Cr
|rif(y)|2

T̃ (r)
i


nX

i=1

(|rif(µ̂
(r))|+ L

p
nCr)2

T̃ (r)
i

.

(28)
Currently, our algorithms utilize the rightmost quantity in their stopping conditions, but the middle two can
provide better performance depending on the structure of the function. Concretely, the second from right quantity
can be thought of as computing “pessimistic” estimators for the magnitudes of the gradient entries, where each
gradient entry is assumed to be as large as it could possibly be within its confidence interval. This contrasts
with our sampling frequency construction, where for the ↵(r) we utilize “optimistic” estimators of our gradient
magnitudes, where they are assumed to be as small as they could possibly be. Note that a similar argument can
be made for the construction of sampling frequencies, taking

↵(r)
i

= min
y:ky�µ̂(r)k1

rif(y)

krf(y)k1
. (29)

This duality between our sampling and termination frequencies allows our algorithm to e�ciently run and
guarantee an " correct output.
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B.3 Proof of Corollary 1, tightened results for f(µ) = kµk22

In the case where the function f is separable, i.e. f(µ) =
P

n

i=1 fi(µi), where each fi has L-Lipschitz derivatives,

we are able to give a tighter bound on ĝ(r,L)
i

as ĝ(r,L)
i

� gi� 2LCr, since the error in estimating rif(µ) depends
only on the error in estimating µi. This allows us to loosen the termination condition in Line 1 of Algorithm 1,
and provide a tighter bound on the lower order sample complexity terms. If in addition fi(µi) = µ2

i
(more

generally, quadratic), then we are able to partially correct for the second order error, as our plug-in estimator

yields fi(µ̂i) = µ2
i
+ 2µiWi/

p
B̃r + W 2

i
/B̃r for standard normal Wi. While the crossterm has zero mean and

involves the unknown µi, our standard first order error term, the final term W 2
i
/B̃r has expectation 1/B̃r which

does not depend on any unknown parameters, and can be subtracted to yield an unbiased estimator of f(µ).

Dropping the tilde and overloading Ti as Ti = T̃ (r)
i

for notational simplicity, we see that estimating fi(µi) as

fi(µ̃
(r)
i

)� 1
Ti

allows us to attain a tighter bound, as stated in Corollary 1.

Proof of Corollary 1. Expanding the error of our approximation for our modified algorithm, we have that

P

 �����kµ̃k
2
2 �

nX

i=1

1

Ti

� kµk22

����� � "

!
= P

 �����

nX

i=1

⇣
µi +Wi/

p
Ti

⌘2
� 1

Ti

�
nX

i=1

µ2
i

����� � "

!

= P

 �����

nX

i=1

2µiWip
Ti

+
nX

i=1

1

Ti

(W 2
i
� 1)

����� � "

!

 P
 �����

nX

i=1

2µiWip
Ti

����� � "/2

!
+ P

 �����

nX

i=1

1

Ti

(W 2
i
� 1)

����� � "/2

!
. (30)

For each i, 1
Ti
(W 2

i
� 1) is independent across i, has 0 mean, and is

⇣
2
Ti
, 4
Ti

⌘
-sub-exponential [Wainwright, 2019].

This shows that the sum is (⌫⇤, b⇤)-sub-exponential, where ⌫⇤ = 2
qP

n

i=1 T
�2
i

and b⇤ = 4
mini Ti

. Hence,

P

 �����

nX

i=1

Z2
i

Ti

� 1

Ti

����� > "/2

!

(
2 exp

⇣
� "

2

8
Pn

i=1 T
�2
i

⌘
if 0  "  ⌫⇤

b⇤

2 exp
�
� "mini Ti

8

�
if " > ⌫⇤

b⇤

(31)

In order to guarantee that our higher order error terms are less than "/2 with probability at least 1 � �/3, we
tackle the two possible cases. In the first case

P
i
T�2
i
 4n3/B2

r
 n3/B2

0 and so B0 �
p
8n3/2 log(6/�)"�1 is

su�cient. In the second case, mini Ti � Br/n � 2B0/n, and so B0 � 4n log(6/�)"�1 is su�cient. Thus, taking
B0 = 4n3/2 log(6/�)"�1 guarantees that our error due to these second order terms in (31) is less than "/2 with
probability at least 1� �/3.

With our tighter bound on gi due to the separability of f across coordinates, we have that the first term in (23),
due to indices with gi < ⌧ , is upper bounded by 36n2L2C2

r
/Br. This can be made su�ciently small by taking

B0 � 17n3/2L log(12n/�)"�1.

Combining these improved bounds on B0 with the analysis from Theorem 1 yields a reduced overall sample
complexity of

85n3/2L log(12n/�)

"
+

360H2 log(6/�)

"2
(32)

analogously to (27).

C Proofs for Algorithm 2: thresholding

Proof sketch: the proof proceeds similarly to that of Theorem 1, with some interesting nuances stemming from
the fact that our " is now unknown. Concretely, since we do not a priori know what accuracy to estimate f(µ)

to, we need to sample according to our estimated optimal frequencies ↵(r)
i

in every round to generate f(µ̃(r)) to

estimate the necessary accuracy as |f(µ̃(r))� ⌧ |. We begin by defining the event ⇠̃ where our estimators f(µ̃(r))
fall within their Cf

r
confidence intervals, and show in Lemma 3 that this occurs with probability at least 1�2�/3.
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Next, we show that on ⇠ and ⇠̃, our algorithm will terminate correctly. Then, since our estimators f(µ̃(r)) are
correct up to an error of Cf

r
, we show that when Cf

r
< |f(µ) � ⌧ |/2, the termination condition must be met.

Finally, we bound the number of samples required for this to occur.

C.1 Algorithm terminates correctly

As before we condition on the good event ⇠, where our mean estimators fall within their confidence intervals.
We define an additional good event ⇠̃ where our estimators f(µ̃(r)) fall within their confidence intervals as

⇠̃ ,
\

r2N

n
|f(µ̃(r))� f(µ)| < Cf

r

o
. (33)

With this, we can state the following Lemma.

Lemma 3. Following Algorithm 2, we have that

P
⇣
⇠̃
��� ⇠
⌘
� 1� 2�/3

where ⇠ is the event that our confidence intervals on the estimators µ̂(r)
i

hold.

Proof. Due to the L-Lipschitz gradients of f we have that

|f(µ̃)� f(µ)|  |rf(µ)>(µ̃� µ)|+ L

2
kµ̃� µk22, (34)

and so we can upper bound the deviation probability as

P
⇣
|f(µ̃(r))� f(µ)| � Cf

r

��� ⇠
⌘

 P
 
|rf(µ)>(µ̃(r) � µ)|+ L

2
kµ̃(r) � µk22 �

s
2 log(24r2/�)

X

i

g2
i

T̃ (r)
i

+ Cf

r,2

����� ⇠
!

 P
 
|rf(µ)>(µ̃(r) � µ)| �

s
2 log(24r2/�)

X

i

g2
i

T̃ (r)
i

����� ⇠
!

+ P

✓
L

2
kµ̃(r) � µk22 � Cf

r,2

���� ⇠
◆

 2P

 
|rf(µ)>(µ̃(r) � µ)| �

s
2 log(24r2/�)

X

i

g2
i

T̃ (r)
i

!
+ 2P

✓
L

2
kµ̃(r) � µk22 � Cf

r,2

◆
. (35)

where we used the fact that on ⇠ we have that ĝ(r,U)
i

� gi, allowing us to bound the width of Cf

r,1 in terms of
deterministic quantities, the gi (recalling the definitions of these constants in (7)). We additionally noted that

for an event E, P(E|⇠) = P(E)�P(E|⇠̄)P(⇠̄)
P(⇠)  2P(E), as P(⇠) � 2/3.

Analyzing the first term in (35), we see by Hoe↵ding’s inequality [Wainwright, 2019] that

P

 
|rf(µ)>(µ̃(r) � µ)| �

s
2 log(24r2/�)

X

i

g2
i

T̃ (r)
i

!
 2 exp

�
� log(24r2/�)

�
 �

12r2
, (36)

as rf(µ)>(µ̃(r)�µ) ⇠ N
✓
0,
P

n

i=1
g
2
i

T̃
(r)
i

◆
. Analyzing the second term in (35), we have by Hoe↵ding’s inequality

that

P

✓
L

2
kµ̃(r) � µk22 � Cf

r,2

◆
 �

12r2
. (37)

Plugging (36) and (37) into (35), we have that

P
⇣
|f(µ̃(r))� f(µ)| � Cf

r

��� ⇠
⌘
 �

3r2
, (38)
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and so

P
⇣
⇠̃
��� ⇠
⌘
= 1� P

 
[

r2N

n
|f(µ̃(r))� f(µ)| < Cf

r

o ����� ⇠
!

� 1�
X

r�1

�

3r2

� 1� 2�/3. (39)

Hence, on the events ⇠̃, ⇠, our estimator f(µ̃(r)) is within its confidence interval for all r. This implies that on
these events, Algorithm 2 well never incorrectly output whether f(µ̃) > ⌧ : assume for the sake of contradiction
that ⇠, ⇠̃ occur, and that without loss of generality f(µ) > ⌧ but the algorithm outputs f(µ̃) < ⌧ . Then for all
r we have

f
⇣
µ̃(r)

⌘
� ⌧ � f(µ)� ⌧ � Cf

r
> �Cf

r
. (40)

However, the algorithm will only terminate and output f(µ̃) < ⌧ if f(µ̃(r))� ⌧ < �Cf

r
, a contradiction. Hence

Algorithm 2 will not output an incorrect decision on ⇠, ⇠̃. Bounding this probability, we have that

P(⇠ \ ⇠̃) = P(⇠)P(⇠̃ | ⇠) � (1� �/3)(1� 2�/3) � 1� �. (41)

C.2 Bounding the sample complexity

We see that this algorithm’s sample complexity will not be too large since it will stop sampling when 2Cf

r
<

|f(µ)� ⌧ |, as then we have that

|f(µ̃(r))� ⌧ | � |f(µ)� ⌧ |� |f(µ̃(r) � f(µ)| � Cf

r
, (42)

using the fact that |f(µ̃(r) � f(µ)|  Cf

r
on ⇠, ⇠̃. We can now provide our proof regarding Algorithm 2.

Proof of Theorem 2. Algorithm 2 returns the correct answer with probability at least 1� �, as shown in (41).

To provide the desired sample complexity guarantee, we bound the number of rounds required until Cf

r
<

|f(µ)� ⌧ |/2 on ⇠, ⇠̃. This is accomplished similarly to before;

Cf

r
=

vuuut2 log(24r2/�)
X

i

⇣
ĝ(r,U)
i

⌘2

T̃ (r)
i

+ Cf

r,2


(a)

vuut2 log(24r2/�)
X

i

(gi + 2L
p
nCr)

2

T̃ (r)
i

+
Ln log(24nr2/�)

B̃r


(b)

s
2 log(24r2/�) (36n3L2C2

r
+ 9H2/4)

Br

+
Ln2 log(24nr2/�)

Br



s
9H2 log(24r2/�)

2Br

+

s
144n3L2 log2(24r2/�)

B2
r

+
Ln2 log(24nr2/�)

Br

(43)

where in (a) we utilized the event ⇠, and in (b) we divided the sum into two two sets based on whether gi
dominates the confidence interval or vice versa. This must be less than |f(µ)� ⌧ |/2 when

Br �
18 log(24r2/�)H2

(f(µ)� ⌧)2
+

24Ln2 log(24nr2/�)

|f(µ)� ⌧ | , (44)

and so our algorithm will terminate in the first round r where this condition is met. Since Br = n2r, we have
that log(r) = log log(Br/n), yielding that our algorithm terminates when

Br = Õ

✓
H2 log(1/�)

(f(µ)� ⌧)2
+

n2L log(n/�)

|f(µ)� ⌧ |

◆
, (45)
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where Õ suppresses log log(·) terms in poly
�
n, �, H, (f(µ)� ⌧)�1

�
, which can be explicitly obtained by solving

in (44). Since Algorithm 2 makes at most 3Br + n arm pulls per round, we have that its total budget through
round r can be at most

P
r

`=1(3B` + n)  6Br + nr  7Br. This means that the total number of samples used
will be

Õ

✓
H2 log(1/�)

(f(µ)� ⌧)2
+

n2L log(n/�)

|f(µ)� ⌧ |

◆
, (46)

yielding the desired result.

D Proofs for Algorithm 3: variance adaptive algorithm

Proof sketch: we begin by stating concentration results on sample variances and sample means of bounded
random variables in Lemmas 4 and 5. We then redefine the good event ⇠ for this algorithm as the event where

{µ̂(r)
i

} and {�̂(r)
i

} stay within their confidence intervals. We show in Lemma 6 that this occurs with probability

at least 1� �/2. These immediately yields control of our gradient estimators and bounds {ĝ(r,L)
i

, ĝ(r,U)
i

} and the

sampling frequencies {�(r)
i

} and {↵(r)
i

}. In Lemma 7 we show that the second order error incurred by Algorithm
3 is at most "/2, and in Lemma 8 bound the first order error by "/2 when the termination condition is met.
These are combined in Lemma 9 to show that the output has error at most ". Lemmas 10 and 11 guarantee
that once the round budget is su�ciently large, the termination condition must be met. Finally, we invert this
requirement to yield a bound on the total number of pulls required by our algorithm.

D.1 Algorithm terminates correctly

We begin by controlling the sample variance �̂(r)
i

of each of the µ̂(r)
i

estimators. For this, we turn to a concen-
tration result regarding the sample variance.

Lemma 4 (Concentration of �̂(r)
i

, Theorem 10 [Maurer and Pontil, 2009]). Let n � 2 and X = (X1, . . . , Xn)
be a vector of independent random variables with values in [0,1]. Then for �0 > 0 we have, writing EVn for
EXVn(X),

P

 ���
p
Vn(X)�

p
EVn

��� >
r

2 log(2/�0)

n� 1

!
 �,

where the sample variance Vn(X) , 1
n(n�1)

P
i<j

(Xi �Xj)2.

This gives us concentration for the sample standard deviation estimators {�̂(r)
i

}, for which we have defined our
confidence intervals as

C�(i, r) ,
s

2 log(8nr2/�)

T (r)
i
� 1

. (47)

Assuming these confidence intervals hold, we then have that

�i + 2C�(i, r) � �̂(r,U)
i

� �i � �̂(r,L)
i

� �i � 2C�(i, r) (48)

for all i, r with probability at least 1� �/3.

In the following Lemma we obtain sample variance dependent confidence intervals for our mean estimators {µ̂(r)
i

}.

Lemma 5 (Concentration of µ̂(r)
i

, Theorem 4 [Maurer and Pontil, 2009]). Let Z,Z1, . . . , Zn be i.i.d. random
variables with values in [0,1], and let �0 > 0. Then with probability at least 1� �0 we have

�����EZ �
1

n

nX

i=1

Zi

����� 
r

2Vn(Z) log(4/�0)

n
+

7 log(4/�0)

3(n� 1)

Using Lemmas 4 and 5 we construct anytime confidence intervals for our mean estimators {µ̂(r)
i

}. In the r-th
round, the confidence intervals are set to individually fail with probability at most �0 = �/(8nr2), so that when
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union bounding over all i, r, we have that with probability at least 1 � � our estimators {µ̂(r)
i

} all fall within
their Cµ(i, r) confidence intervals, where

Cµ(i, r) , �̂(r)
i

s
2 log(32nr2/�)

T (r)
i

+
7 log(32nr2/�)

3(T (r)
i
� 1)

. (49)

With these definitions in hand we can state the following good event ⇠, a modification from Theorem 1, where
all our confidence intervals hold:

⇠ ,
\

i2[n],r2N

nn
|µ̂(r)

i
� µi|  Cµ(i, r)

o
\
n
|�̂(r)

i
� �i|  C�(i, r)

oo
. (50)

This event occurs with very high probability, as formalized in the lemma below.

Lemma 6. The good event ⇠ where the mean and standard deviation estimators stay within their confidence
intervals satisfies P(⇠) � 1� �/2.

Proof. The proof follows directly from Lemmas 4 and 5 and a union bound, with

P
�
⇠̄
�

X

i,r

P
⇣n

|µ̂(r)
i
� µi| > Cµ(i, r)

o
[
n
|�̂(r)

i
� �i|  C�(i, r)

o⌘

X

i,r

�

4nr2
 �

2
. (51)

With this in hand, we can control the bounds of our gradient estimators {ĝ(r,L)
i

, ĝ(r,U)
i

} as before, where on ⇠ we
have that for all i, r

gi + 2LCµ(i, r) � ĝ(r,U)
i

� gi � ĝ(r,L)
i

� gi � 2LCµ(i, r). (52)

This follows as

ĝ(r,L)
i

= min
y:|y�µ̂

(r)
i |Cµ(i,r)

|f 0
i
(y)|

� gi � max
y:|y�xi|Cµ(i,r)

|f 0
i
(y)� f 0

i
(xi)|

� gi � 2LCµ(i, r) (53)

We additionally have that gi � ĝ(r,L)
i

, as on ⇠ the set we are minimizing over includes y = µi.

These estimators are critical in the construction of our sampling frequencies ↵(r),�(r). On this event ⇠, we see

that our �(r)
i

, which impact T (r)
i

, satisfy

�(r)
i

=
�̂(r,L)
iP
j
�̂(r,L)
j

�
(

�i
2
P

j �j
if �i � 2C�(i, r),

0 otherwise.
(54)

Regarding the frequencies ↵(r), we see that

↵(r)
i

=
ĝ(r,L)
i

�̂(r,L)
iP

j
ĝ(r,L)
j

�̂(r,L)
j

+
1

n
�
(

gi�i

2
P

j gj�j
if �i � 2C�(i, r) and gi � 4LCµ(i, r),

1/n otherwise.
(55)

We now turn to bounding the error in our estimator f(µ̃), which we can write as

|f(µ̃)� f(µ)| 
��rf(µ)>(µ̃� µ)

��+ L

2
kµ̃� µk22. (56)

We begin by bounding the second order error in (56), showing that our initial sampling is su�cient to guarantee
that it is less than "/2 with probability at least 1� �/4.
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Lemma 7. After sampling as in Algorithm 3 we have that

L

2
kµ̃� µk22 

"

2

with probability at least 1� �/4.

Proof. Since our arm pulls are 1-sub-Gaussian, by Hoe↵ding’s inequality we have that

P
⇣
|µ̃i � µi|2 >

"

nL

⌘
 2 exp

 
� T̃ (r)

i
"

2nL

!
. (57)

Since T̃ (r)
i
� dB0/ne, and by construction B0 = 2n2

L log(8n/�)
"

, we have that

P
�
kµ̃� µk22  "/L

�
 P

 
[

i

n
|µ̃i � µi|2 >

"

nL

o!
 2

X

i

exp

 
� T̃ (r)

i
"

2nL

!
 �/4. (58)

We next bound the error in our linear approximation, the first order error term in (56), showing that when our
termination condition is met the error in our linear term is at most "/2.

Lemma 8. When sampling according to T̃ (r)
i

which satisfy

nX

i=1

g2
i
�2
i

T̃ (r)
i

+
"

3
max

i

gi

T̃ (r)
i

 "2

8 log(8/�)
,

we have that
P
���rf(µ)>(µ̃� µ)

�� � "/2
�
 �/4.

Proof. To prove this lemma we utilize Bernstein’s inequality, which states that if X1, . . . , Xn are independent
zero-mean random variables, where |Xi| M almost surely for all i, then for all " > 0

P

 �����

nX

i=1

Xi

����� � t

!
 2 exp

✓
� "2/2P

n

i=1E{X2
i
}+M"/3

◆
. (59)

Denoting the j-th pull of arm i as Zi,j ⇠
i.i.d.

Zi, where Zi is the distribution of arm i, we have for all i, j that

E{Zi,j} = µi, Var(Zi,j) = �2
i
, and that |Zi,j |  1 almost surely. Since E{rf(µ)>(µ̃ � µ)} = 0 we can apply

Bernstein’s inequality on these
P

n

i=1 T̃
(r)
i

random variables, yielding

P
���rf(µ)>(µ̃� µ)

�� � "/2
�
= P

0

@

������

nX

i=1

T̃
(r)
iX

j=1

gi

T̃ (r)
i

(Zi,j � µi)

������
� "/2

1

A

 2 exp

0

B@�
"2/8

P
n

i=1
g
2
i �

2
i

T̃
(r)
i

+ "

3 maxi
gi

T̃
(r)
i

1

CA . (60)

As claimed, this is less than �/4 when

nX

i=1

g2
i
�2
i

T̃ (r)
i

+
"

3
max

i

gi

T̃ (r)
i

 "2

8 log(8/�)
. (61)

Combining together Lemmas 7 and 8, we have the following lemma.
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Lemma 9. If
nX

i=1

g2
i
�2
i

T̃ (r)
i

+
"

3
max

i

gi

T̃ (r)
i

 "2

8 log(8/�)

then with probability at least 1� �/2
|f(µ̃)� f(µ)|  ".

D.2 Bounding the sample complexity

The drawback of Lemma 9 is that it requires knowledge of the true gradient rf(µ) and the noise variances.
Since we know neither {�i} nor {gi}, we must instead construct a termination condition in Algorithm 3 using
our empirical estimates of these quantities. We do this by considering the worst feasible instance within our
confidence intervals, as in Algorithm 1, since we then have that conditioned on ⇠

nX

i=1

g2
i
�2
i

T̃ (r)
i

+
"

3
max

i

gi

T̃ (r)
i


nX

i=1

⇣
ĝ(r,U)
i

�̂(r,U)
i

⌘2

T̃ (r)
i

+
"

3
max

i

ĝ(r,U)
i

T̃ (r)
i

, (62)

where this right hand side is our computable stopping condition in Algorithm 3 which we compare with "
2

8 log(8/�) .

We bound the time it takes for this termination condition to be reached in the following lemma. We begin by
analyzing the number of samples required for the second term in (62) to be su�ciently small.

Lemma 10. On ⇠, Algorithm 3 must terminate and produce T̃ (r)
i

such that

"

3
max

i

ĝ(r,U)
i

T̃ (r)
i

 "2

16 log(8/�)

when

Br �
13nL2/3 log(32nr2/�)

"2/3
+

48nmaxi gi log(8/�)

"
.

Proof. We use the same techniques as in the proof of Theorem 1, bounding our expression as

"

3
max

i

ĝ(r,U)
i

T̃ (r)
i


(a)

"

3
max

i

gi + 2LCµ(i, r)

T̃ (r)
i

 "

3
·max

i

gi + 2L
⇣q

2 log(32nr2/�)
Br/n

+ 7 log(32nr2/�)
3(Br/n�1)

⌘

Br/n

 "

3

0

@
maxi gi + 8L

q
log(32nr2/�)

Br/n

Br/n

1

A , (63)

where (a) utilizes the event ⇠. We see that this expression is less than "
2

16 log(8/�) when

Br �
13nL2/3 log(32nr2/�)

"2/3
+

48nmaxi gi log(8/�)

"
. (64)

We now examine the number of samples required for the dominant portion of our stopping condition, the first
term in (62), to be su�ciently small. For notational simplicity we define our new measure of problem complexity
H ,P

i
gi�i.

Lemma 11. On ⇠, Algorithm 3 will produce T̃ (r)
i

such that

nX

i=1

⇣
ĝ(r,U)
i

�̂(r,U)
i

⌘2

T̃ (r)
i

 "2

16 log(8/�)
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when

Br = ⌦

 
H2 log(1/�)

"2
+

"
n
pP

i
g2
i
+ nL

pP
i
�4
i

"
+

(nL
P

i
�i)

2/3

"2/3
+

p
Ln5/4

p
"

#
log(nr2/�)

!
.

Proof. Examining when this termination is met, we need to upper bound terms in the right hand side of (62). We
do so by analyzing four separate cases, based on the magnitudes of gi and �i. Our primary term of consideration
is when both are relatively large, in which case ↵i (dropping the implicit r superscript) are order optimal sampling
frequencies. For ease of notation, we define the set of coordinates with large gi as Sg , {i : gi � 4LCµ(i, r)},
and the corresponding set S� , {i : �i � 2C�(i, r)}, where we note that for those indices S , {i : gi �
4LCµ(i, r) and �i � 2C�(i, r)} = Sg \ S�, we have T̃ (r)

i
� ↵iBr � gi�i

4H Br for i 2 S. We note that due to

our second round of sampling, we have that T (r)
i
� �(r)

i
Br � �i

2
P

j �j
Br for i 2 S�, and that for all i we have

T (r)
i
� Br/n and T̃ (r)

i
� Br/n. We begin by splitting our summation into the 4 terms discussed.

nX

i=1

⇣
ĝ(r,U)
i

�̂(r,U)
i

⌘2

T̃ (r)
i


nX

i=1

(gi + 2LCµ(i, r))2 (�i + C�(i, r))
2

T̃ (r)
i


X

i2S

6g2
i
�2
i

T̃ (r)
i

+
X

Sg\S

7g2
i
C2

�
(i, r)

T̃ (r)
i

+
X

S�\S

81L2C2
µ
(i, r)�2

i

T̃ (r)
i

+
X

i2S̄�[S̄g

324L2C2
µ
(i, r)C2

�
(i, r)

T̃ (r)
i

(65)

We now bound each of these terms sequentially. We begin by noting that on ⇠

X

i2S

g2
i
�2
i

T̃ (r)
i

 H2

4Br

, (66)

which is our primary error term.

Our second term stems from when gi is large but �i is small, where we utilize the uniform sampling based lower
bound on the number of pulls. Here we see that

X

Sg\S

g2
i
C2

�
(i, r)

T̃ (r)
i

=
X

Sg\S

2g2
i
log(8nr2/�)

T̃ (r)
i

· (T (r)
i
� 1)

= O

 
n2
�P

i
g2
i

�
log(nr2/�)

B2
r

!
. (67)

Our third term occurs when �i is large but gi is small, in which case we utilize the fact that T (r)
i
� �i

2
P

j �j
Br

sample proportionally to �i. Using the fact that on ⇠ our estimators stay within their confidence intervals, we
can bound this sum as

X

S�\S

L2C2
µ
(i, r)�2

i

T̃ (r)
i


X

S�\S

L2

✓
�i

r
2 log(32nr2/�)

T
(r)
i

+ 13 log(32nr2/�)

3(T (r)
i �1)

◆2

�2
i

T̃ (r)
i

= O

0

BBBB@

X

S�\S
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�
2
i log(nr2/�)

T
(r)
i

+ log2(nr2/�)⇣
T

(r)
i

⌘2

!
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i

T̃ (r)
i

1

CCCCA
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0

B@L2
X

S�\S

0

B@
�4
i
log(nr2/�)

T (r)
i

· T̃ (r)
i

+
�2
i
log2(nr2/�)

⇣
T (r)
i

⌘2
· T̃ (r)

i

1

CA

1

CA

 O

 
n2L2

�P
i
�4
i

�
log(nr2/�)

B2
r

+
n2L2 (

P
i
�i)

2 log2(nr2/�)

B3
r

!
. (68)
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Our final term is when both �i and gi are small. In this case �2
i
 2C�(i, r) =

2 log(8nr2/�)

T
(r)
i �1

, and so we can simplify

the sum as

X

i2S̄�[S̄g

L2C2
µ
(i, r)C2

�
(i, r)

T̃ (r)
i


X

i2S̄�[S̄g

L2

✓
�i

r
2 log(32nr2/�)

T
(r)
i

+ 13 log(32nr2/�)

3(T (r)
i �1)

◆2
2 log(8nr2/�)

T
(r)
i �1

T̃ (r)
i

= O

0

B@
X

i2S̄�[S̄g

L2 log3(nr2/�)

T̃ (r)
i

⇣
T (r)
i

⌘3

1

CA
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✓
L2n5 log3(nr2/�)

B4
r

◆
. (69)

We now see that the left hand side of our termination condition is upper bounded by plugging (66), (67), (68),
and (69) into (65), yielding

nX

i=1

⇣
ĝ(r,U)
i

�̂(r,U)
i

⌘2

T̃ (r)
i

= (70)

O

 
H2
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+
n2
�P

i
g2
i

�
log(nr2/�)

B2
r

+
n2L2

�P
i
�4
i

�
log(nr2/�)

B2
r

+
n2L2 (

P
i
�i)

2 log2(nr2/�)

B3
r

+
L2n5 log3(nr2/�)

B4
r

!
.

We can terminate as soon as this quantity is less than "
2

16 log(8/�) , which must happen when

Br = ⌦

 
H2 log(1/�)

"2
+

"
n
p
(
P

i
g2
i
)

"
+

nL
p

(
P

i
�4
i
)

"
+

(nL
P

i
�i)

2/3

"2/3
+

p
Ln5/4

p
"

#
log(nr2/�)

!
. (71)

The final thing to note is that our algorithm starts with a budget of B0, and so the total number of samples
used must be at least B0.

With these lemmas in hand, the proof of Theorem 3 is straightforward.

Proof of Theorem 3. The error of the plug-in estimator f(µ̃) satisfies

P (|f(µ̃)� f(µ)| > ") = P
�
⇠̄
�
+ P (|f(µ̃)� f(µ)| > " | ⇠)

 P
�
⇠̄
�
+ P

���rf(µ)>(µ̃� µ)
�� > "/2

�� ⇠
�
+ P

✓
L

2
kµ̃� µk22 > "/2

���� ⇠
◆

 �, (72)

by utilizing Lemmas 6 and 9, as on ⇠ Algorithm 3 will not terminate until the conditions of Lemma 9 are met.

Analyzing the number of arm pulls required for this algorithm to succeed, we have by Lemmas 10 and 11 that
the algorithm will terminate when

Br = ⌦

 
H2 log(1/�)

"2
+

"
n
p
(
P

i
g2
i
)

"
+

nL
p
(
P

i
�4
i
)

"
+

(nL
P

i
�i)

2/3 + nL2/3

"2/3
+

p
Ln5/4

p
"

#
log(nr2/�)

!
. (73)

Since our algorithm makes at most 3B` + 2n pulls during round `, and at most 4Br + n pulls to construct µ̃ if
the termination condition is met in round r, it in total makes no more than 10Br pulls before terminating at the
end of round r.
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Converting this to an overall budget, we see that the log(r) term generates additional log log factors due to the
doubling round budgets, as in Theorem 2. This yields an overall budget of

O

✓
H2 log(1/�)

"2
+

n2L log(n/�)

"

◆

+ Õ

 "
n
p
(
P

i
g2
i
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"
+

nL
p
(
P

i
�4
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"
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(nL
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i
�i)

2/3 + nL2/3

"2/3
+

p
Ln5/4

p
"

#
log(n/�)

!
, (74)

where Õ suppresses log log(·) terms in poly
�
n, �,

P
i
gi,
P

i
�i, "�1

�
.

D.3 Improved ↵(r)
i

As previously mentioned, the frequencies ↵ in Algorithm 3 are deisgned with simplicity and asymptotic optimality
in mind. By taking

↵(r)
i

=
ĝ(r,L)
i

�̂(r,L)
iP

j
ĝ(r,L)
j

�̂(r,L)
j

+
ĝ(r,L)
iP
j
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⇣
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⌘2 +
1

n
, (75)

we are able to give tighter bounds on our lower order terms, eliminating dependencies on
P

i
�4
i
and

P
i
g2
i
.

Concretely, the sample complexity bound can be improved to
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. (76)

This is achieved by using that T̃ (r)
i
� gi

2
P

j gj
for large enough gi in (67), and that T̃ (r)

i
� �

2
i

2
P

j �
2
j
for large enough

�i in (68), as sampling proportionally to �2
i
minimizes the maximal confidence interval width.

This only increases the sample complexity by at most a factor of 3 as we are doubling the amount of sampling
we perform in the last iteration, and performing a ceiling operation.

D.4 Gain of variance adaptivity

In the case with unknown variance and gradient information, we see that our optimal sampling frequencies are
↵i / gi�i, yielding a first order error of
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Hence, we have that

O
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1

A+ o("�2) (78)

samples are su�cient for an adaptive algorithm to achieve " error. For a nonadaptive scheme, we see by a similar
argument that the first order error of such a scheme is distributed as
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, (79)

requiring
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+ o("�2) (80)
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samples to achieve " error. Hence, the gain a↵orded by adaptivity is

O

 
n
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i
�2
i

(
P

i
gi�i)

2

!
. (81)

E Lower bound

Proof of Proposition 1. For a plug-in estimator µ̂ generated by sampling the i-th arm Ti times, we see that the
error f(µ)� f(µ̂) is distributed as

g>(µ� µ̂) ⇠ N
 
0,
X

i
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i
�2
i
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!
(82)

when arm pulls from arm i are corrupted by independent additive Gaussian noise with variance �2
i
. We then

have by standard Gaussian anti-concentration inequalities that P(N (0, 1) > x) � 1
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, and so
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where in order for this to be less than �, it must be the case that
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Rewriting this as Ti = ↵iT , where ↵ is the sampling probability vector, we have as before that

min
↵2�n
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↵iT
=

1

T

 
X

i

gi�i

!2

(85)

by taking the Lagrangian, invoking Sion’s minimax theorem [Sion, 1958], and optimizing to yield ↵i / gi�i.
Plugging this back in, we see that
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↵iT
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i

gi�i
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F Experimental Details

We implemented all algorithms in Python. The results and figures in this paper can be reproduced from the
available code. We now describe important practical optimizations for our adaptive methods to outperform the
optimism-based fully sequential method and batched uniform scheme. All experiments were run on one core of
an AMD Opteron Processor 6378 with 500GB memory (no parallelism within a trial). No empirical standard
deviations were included, as all simulations were run for 100 trials for the optimism based fully sequential method
and 1000 trials for the batched methods. Due to the low variance in our outputs, the confidence intervals around
our average error are extremely small. We use � = .01 for all experiments.

F.1 Additional numerical results

For generating data for our Ax experiments, we construct our ground truth µ vector as drawn from a pareto(.5)
distribution, then normalize it so the largest entry is 20, to maintain a reasonable signal to noise ratio. We
then construct A = µx>/kxk22 + Z, where the entries of x are i.i.d. Uniform([.5,1]), and Z 2 Rn⇥d has i.i.d.
normal entries with variance 1/d2, to prevent the variances from scaling with the dimension. We correct the final
product by updating A A�(Ax�µ)1>/kxk1 to ensure that Ax = µ. This functions as desired, as since x > 0
entrywise we have that kxk1 = 1>x. We provide several additional simulations below in Figure 4, corroborating
our numerical results in the main body. Note that when there is an underlying computational problem, as in
the case of estimating kAxk22, this underlying computational problem allows for exact computation of certain
coordinates, resulting in much larger gains of adaptivity for certain computational budgets.
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(a) (b) (c)

Figure 4: In (a) we have the estimation error of kAxk22 for matrix A, vector x, for n = 10 and d = 10k. The
problem instance shown in Figure 4a is projected to have a gain of adaptivity of 7.5. In (b) we see the estimation
error of kAxk22 for matrix A, vector x, for n = 100 and d = 10k. In (c) we plot the estimation error of g>µ for
n = 10, w uniform in [0,1] and µ normalized pareto distribution.

F.2 Modifications from written algorithm

In order to obtain good finite sample performance, we make several changes to the algorithms as stated. Firstly,
we reuse all samples throughout the algorithm, including in the final outputted µ̃. Secondly, we start from a
budget of 1 pull per arm with B0 = n, and double from there. Additionally, we use as our confidence interval

width Cr =
q

log(1/�)/B̃r. Finally, we use T̃ (r)
i

= dmin(r, 10)↵iBre, where uniform sampling is not practically
necessary due to the reuse of samples, and the factor of 10 allows our algorithm to perform better in terms
of constants. Our theoretical analysis can accommodate this factor of 10. Note that this factor of 10 directly
translates into the slope of the linear relationship; since the algorithm will have made approximately 2Br uniform
samples by the end of round r, it is only able to allocate 10/(10+ 2) ⇡ .83 fraction of its samples to the optimal
sampling frequencies. This is empirically validated by our simulations, as we can see that the slope of the line of
best fit is indeed approximately .83. This parameter of 10 needs to be tuned carefully in practice, as it indicates
how greedy the algorithm will be; if this factor is chosen to be too large, then the algorithm will ignore higher
order e↵ects and act too strongly on the imperfect gradient information. For the plots showing the error as a
function of number of samples, we take all the uniform samples up to round r for the adaptive algorithm, then

generate the termination sampling pattern T̃ (r)
i

, sample according to that, and measure and record the error.

These samples, corresponding to the T̃ (r)
i

, are then discarded, and uniform samples for round r + 1 are taken.

For the gain in terms of stopping time of adaptive over uniform sampling, we use slightly perturbed realizations
to better display the trend, and avoid edge / rounding e↵ects. To this end, we modify our algorithms to utilize
the round budget Br = n(2 � c)r. We then iterate over this base, ranging c from c0 = 2 to c99 = 301

200 with
ci = 2 � i

200 for 100 trials. No failures were recorded in the stopping time simulations; that is, all outputted µ̃
satisfied |f(µ̃)�f(µ)|  " for both the batched uniform and our adaptive algorithms. Additionally, the stopping
conditions yielded comparable error for both methods, with average outputted error within a factor of 2 for the
uniform and adaptive methods across all settings tested.

We implement the optimism-based algorithm of [Carpentier et al., 2015] with a priority queue to ensure e�cient
selection of an arm at time t, requiring amortized log n time instead of O(n) time. We additionally generate all
possible Bernoulli samples ahead of time, and within our timed experiments only query the pre-drawn samples.
Confidence intervals are used with � =

p
log(1/�).

In order to make the algorithms e�cient in the kAxk22 example, we first randomly permute the columns of A and
entries of x jointly, and then take our arm pulls as iterating over these entries in order. This allows the uniform
arm pulls in our batched algorithms to be taken as BLAS e�cient operations, simply taking the matrix vector
product between a column subsampled A and x. Note that this can have statistical benefits from correlating the
noise in our sampling, as discussed in [Baharav and Tse, 2019].
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F.3 Optimism based algorithm

We describe our optimism based algorithm below for estimating f(µ) = kµk22 in the case of kAxk22. When we
refer to pulling arm i, we mean selecting a random coordinate J ⇠ Unif([d]) and computing Ai,JxJ . We utilize
a priority queue on the Bi,t, noting that only Bi

⇤
t ,t

will change at any given time step. This means that every
iteration of this algorithm can be performed in amortized O(log n) time, instead of the naive O(n) complexity
of recomputing the Bi,t from scratch in every iteration and iterating over to find the largest.

Algorithm 4 Optimism based algorithm for kAxk22
1: Input: arms [n], matrix A 2 Rn⇥d, vector x 2 Rd, target accuracy ", error probability �
2: Pull each arm once
3: for t = n+ 1, . . . , T do

4: Compute for each arm i 2 [n]

Bi,t =
1

Ti,t

 
µ̂i,t +

p
log(1/�)

Ti,t

!

5: Select i⇤
t
2 argmax

i:Ti,td
Bi,t

6: if Ti,t = d then

7: Exactly compute µi = A>
i
x

8: else

9: Pull arm i⇤
t

10: end if

11: if Ti,t = d for all i then
12: return Exactly computed kµ̂

t
k22 = kAxk22

13: end if

14: end for

15: return
P

n

i=1 µ̂
2
i,t
� 1{Ti,t<d}

Ti,t


