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Abstract

Differential Privacy (DP) has become a gold
standard in privacy-preserving data analysis.
While it provides one of the most rigorous
notions of privacy, there are many settings
where its applicability is limited.

Our main contribution is in augmenting
differential privacy with Flexible Accuracy,
which allows small distortions in the input
(e.g., dropping outliers) before measuring ac-
curacy of the output, allowing one to ex-
tend DP mechanisms to high-sensitivity func-
tions. We present mechanisms that can help
in achieving this notion for functions that had
no meaningful differentially private mecha-
nisms previously. In particular, we illustrate
an application to differentially private his-
tograms, which in turn yields mechanisms for
revealing the support of a dataset or the ex-
tremal values in the data. Analyses of our
constructions exploit new versatile composi-
tion theorems that facilitate modular design.

All the above extensions use our new defini-
tional framework, which is in terms of “lossy
Wasserstein distance” – a 2-parameter error
measure for distributions. This may be of
independent interest.

1 Introduction

In the era of big data, privacy has been a major con-
cern, to the point that recent legislative moves, like
General Data Protection Regulation (GDPR) in the
European Union, have mandated various measures for
ensuring privacy. Further, in the face of a global pan-
demic that has prompted governments to collect and
share individual-level information for epidemiological
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purposes, debates on privacy-utility trade-offs have
been brought to sharper relief. Against this backdrop,
mathematical theories of privacy are of great impor-
tance. Differential Privacy [Dwork et al., 2006b] is by
far the most impactful mathematical framework to-
day for privacy in statistical databases. It has seen
large scale adoption in theory and practice, including
machine learning applications and large scale commer-
cial implementations (e.g., [Abadi et al., 2016, Borgs
et al., 2015, 2018, Erlingsson et al., 2014, Differential
Privacy Team, 2017]).

In this work, we make foundational contributions to
the area of Differential Privacy (DP), extending its
applicability. Our main contribution is the notion
of Flexible Accuracy – a new framework for mea-
suring the accuracy of a mechanism (while retaining
the DP framework unaltered for quantifying privacy).
This lets us develop new DP mechanisms with non-
trivial provable (and empirically demonstrable) accu-
racy guarantees for high-sensitivity functions.

Motivating Flexible Accuracy (FA). Consider
querying a database consisting of integer valued ob-
servations – say, ages of patients who recovered from a
certain disease – for the maximum value. For the sake
of privacy, one may wish to apply a DP mechanism,
rather than output the maximum in the data itself.
Two possible datasets which differ in only one patient
are considered neighbors and a DP mechanism needs
to make the outputs on these two samples indistin-
guishable from each other. However, the function in
question is highly sensitive – two neighboring datasets
can have their maxima differ by as much as the entire
range of possible ages1 – and, as we shall see in our
empirical evaluations in Section 6, the various kinds of
mechanisms in the literature [McSherry and Talwar,
2007, Bun et al., 2019, Vadhan, 2017, Dwork and Lei,
2009, Nissim et al., 2007, Beimel et al., 2016] do not
provide a satisfactory solution.

1In fact, all datasets with low maximum values have
high sensitivity locally, by considering a neighboring
dataset with a single additional data item with a large
value.
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The difficulty in solving this problem is related to an-
other issue. Consider the problem of reporting a his-
togram (again, say, of patients’ ages). Here a stan-
dard DP mechanism, of adding a zero-mean Laplace
noise to each bar of the histogram is indeed reason-
able, as the histogram function has low sensitivity in
each bar. Now, note that maximum can be computed
as a function of the histogram. However, even though
the histogram mechanism was sufficiently accurate in
the standard sense, the maximum computed from its
output is no longer accurate! This is because when
a non-zero count is added to a large-valued item with
original count 0, the maximum can increase arbitrarily.

Flexible Accuracy (FA) is a relaxed notion of accu-
racy that lets us address both of the above issues. In
particular, it not only enables new DP mechanisms for
maximum, but also allows one to derive the mechanism
from a new DP mechanism for histograms. We pro-
vide a general composition theorem that enables such
transfer of accuracy guarantees that is not applica-
ble to conventional accuracy measures. The high-level
idea of FA is to allow for some distortion of the input
when measuring accuracy. A good example of distor-
tion is dropping a few items from the dataset; note that
in this case, adding a data item is not considered low
distortion. Referring back to the example of reporting
maximum, given a dataset with a single elderly patient
and many young patients, FA with respect to (w.r.t.)
this distortion allows a mechanism for maximum to
report the maximum age of the younger group.2

Flexible accuracy needs to account for errors that can
be attributed to distortion of the input (input error),
as well as to inaccuracies in the output (output error).
To be able to exploit input distortion while retaining
privacy, we allow input distortion to be randomized. A
side-effect of this is that our measure of output accu-
racy needs to allow the “correct output” to be random-
ized (i.e., defined by a distribution), even if we are in-
terested in only deterministic functions. To generalize
the conventional probabilistically approximately correct
(PAC) guarantees to this setting, we introduce a natu-
ral, but new quantity called lossy ∞-Wasserstein dis-
tance. Our final definition of flexible accuracy is a
3-parameter quantity, with one parameter accounting
for input distortion, and 2 parameters used for output
error measured using lossy ∞-Wasserstein distance.

Our contributions. These are three folds:

• Definitions: We present a conceptual enhancement
to the framework of DP – flexible accuracy ; see Def-
inition 3. In founding a solid mathematical formal-

2Of course, it is not obvious what should determine
which items should be dropped and with what probabil-
ity. This will be the subject of our new mechanisms.

ization of this concept, we define lossy ∞-Wasserstein
distance; see Definition 1. This extends the classical
notion of Wasserstein distance (or Earth Mover Dis-
tance), along with several existing notions, such as the
PAC guarantee, the total variation distance, etc.

• Composition Theorems: We present a composition
theorem for flexible accuracy (Theorem 1), which in-
volves identifying new quantities, including distortion
sensitivity (Definition 4) and error sensitivity (Defini-
tion 5). We also present a new pre-processing theorem
for DP (Theorem 2).

• Mechanisms: We give a DP mechanism with FA
guarantee for releasing a sanitized histogram (called
the Shifted-Truncated Laplace mechanism; see Algo-
rithm 1 and Algorithm 3), which, via our composi-
tion theorems, yield DP mechanisms with FA guar-
antees for histogram-based statistics (see Theorem 5).
These include several high-sensitivity functions, such
as maximum and minimum, support of a set, range,
median, maximum margin separator, etc. (we give con-
crete bounds for max/min and support). Our em-
pirical comparison against state-of-the-art DP mecha-
nisms reveals that apart from the theoretical guaran-
tees we obtain (where none were available till now),
our mechanisms compare favorably in terms of accu-
racy (flexible and otherwise) empirically as well.

The surprising power of flexible accuracy. Con-
sider a sequence of n+ 1 neighboring histograms, such
that the first in the sequence has all its n elements in
the first bar, and the last one has all elements in the
last bar, and the first and the last bars are far away
from each other. In any reasonably accurate (flexi-
ble or not) mechanism for a histogram-based statis-
tic like max, the answers for these two extremes must
be very different with probability almost 1. So, intu-
itively, there should be some pair of neighbors in this
sequence for which the answers should be significantly
different with probability at least 1/n. This seems to
preclude obtaining (ε, δ)-DP for a small constant ε with
δ � 1/n. Remarkably, this intuition turns out to be
wrong! By carefully calibrating the probability of the
responses (while also making sure that the responses
can be attributed to only dropping a few items – as
permitted by flexible accuracy), our mechanism can
obtain the following guarantee for the max function:

Informal result for max: Our flexibly-accurate
mechanism for max over a bounded range achieves(
ε, εe−Ω(εαn)

)
-DP while incurring an arbitrarily small

output error after dropping only αn elements.

The above result gives a trade-off between the privacy
guarantee and number of elements dropped. For ex-
ample: (i) By choosing ε = 1

n1/4 and α = 1√
n
, our
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mechanism is ( 1
n1/4 , e

−Ω(n1/4))-DP while dropping only
O(
√
n) elements. (ii) By choosing ε to be a small con-

stant (say, 0.1) and say, α = log2 n
n , our mechanism is

(0.1, n−Ω(logn))-DP while dropping only O(log2 n) ele-
ments. See Appendix H.4 for several other parameter
choices that are of interest.

Significance of the New Mechanisms. Tradi-
tional DP literature has largely not addressed func-
tions like the maximum function, fmax, due to the very
high sensitivity of such functions: When the database
has entries from [0, B], the sensitivity of fmax is B.3
The same holds for other functions like a “thresholded
maximum” maxk, which outputs the maximum value
that appears at least k times in the database. With
FA, for the first time, we provide DP mechanisms for
such functions, with meaningful worst-case accuracy
guarantees. We emphasize that we retain the standard
definition of (ε, δ)-DP, and achieve strong parameters
for it (see above). Further, the additional dimension of
inaccuracy that we allow – namely, input distortion –
is in line with what applications like (robust) Machine
Learning often anticipate and tolerate.

Related work. DP, defined by Dwork et al. [2006b]
has developed into a highly influential framework for
providing formal privacy guarantees; see [Dwork and
Roth, 2014] for more details. The notion of flexible ac-
curacy we define is motivated by the difficulty in han-
dling outliers in the data. Some of the work leading to
DP explicitly attempts to address the privacy of out-
liers [Chawla et al., 2005a,b], as did some of the later
works within the DP framework [Dwork and Lei, 2009,
Bun et al., 2019, Thakurta and Smith, 2013]. These
results rely on having a distribution over the data, or
responding only when the answer is a “stable value”.
Blum et al. [2013] introduced the notion of usefulness,
that is motivated by similar limitations of DP as those
which motivated flexible accuracy, but as explained
later, is less generally applicable. Incidentally, Wasser-
stein distance has been used in privacy mechanisms in
the Pufferfish framework [Kifer and Machanavajjhala,
2014, Song et al., 2017], but assuming a data distribu-
tion.

Several DP mechanisms for histograms are available
with a variety of accuracy guarantees, as discussed in
Section 6. While these mechanisms do not claim any
accuracy guarantees for functions computed from his-
tograms, on specific data distributions and for some
of these mechanisms, we see that FA can be used to

3The sensitivity of a real-valued function f : X → R
is defined by ∆f := maxx,x′∈X :x∼x′ |f(x) − f(x′)|. In the
case of fmax, there are neighboring databases x,x′, where
x has all the inputs as 0 and x′ has n− 1 inputs as 0 but
one input is B, so, ∆fmax = B.

empirically capture meaningful accuracy guarantees.

2 Lossy Wasserstein Distance

Central to the formalization of all the results in this
work is a new notion of distance between distributions
over a metric space, that we call lossy Wasserstein dis-
tance. Lossy Wasserstein distance generalizes the no-
tion of Wasserstein distance [Villani, 2008], or Earth
Mover Distance, which is the minimum cost of trans-
porting probability mass (“earth”) of one distribution
to make it match the other. We shall use the “infinity
norm” version, where the cost paid is the maximum
distance any mass is transported.

Formally, consider a metric space (Ω, d), where
Wasserstein distance can be defined. For example, one
may consider Ω = Rn and the metric d being an `p-
metric. For γ ∈ [0, 1], and distributions P,Q over the
metric space (Ω, d),4 we define Φγ(P,Q), the set of
γ-lossy couplings of P and Q, as consisting of joint
distributions φ over Ω2 with its first marginal φ1 and
second marginal φ2 such that ∆(φ1, P )+∆(φ2, Q) ≤ γ,
where ∆(P,Q) := 1

2

∫
Ω
|P (ω) − Q(ω)|dω denotes the

total variation distance between P and Q.

Definition 1 (γ-Lossy ∞-Wasserstein Distance). Let
P and Q be two distributions over a metric space
(Ω, d). For γ ∈ [0, 1], the γ-lossy ∞-Wasserstein dis-
tance between P and Q is defined as:

W∞γ (P,Q) = inf
φ∈Φγ(P,Q)

sup
(x,y)←φ

d(x, y). (1)

For simplicity, we writeW∞(p, q) to denoteW∞0 (p, q).
We remark that while our definition of W∞γ uses a
worst case notion of distance (as signified by∞), there
is an analogous average case definition, that may be of
independent interest. We define this in Appendix A.2.

Now we show that the Lossy ∞-Wasserstein distance
generalizes some existing notions.

• Generalizing the PAC guarantee: The PAC
guarantee states that a randomized quantity G is, ex-
cept with some small probability γ, within an approx-
imation radius β of a desired deterministic quantity
f : i.e., Prg←G[d(f, g) > β] ≤ γ. For example, when G
takes values over R, d can be the standard difference
metric over R, i.e., d(f, g) = |f−g|. Representing f by
a point distribution Ff , this can be equivalently writ-
ten as W∞γ (Ff , G) ≤ β, where the underlying metric
is d; see Lemma 6 in Appendix A.3 for a proof of this.

• Generalizing the total variation distance: It
4We will use upper case letters (P,Q,X, Y , etc.) to

denote random variables (r.v.), as well as the probability
distributions associated with them.
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can be shown that W∞γ (P,Q) = 0 iff ∆(P,Q) ≤ γ; see
Lemma 7 in Appendix A.3 for a proof of this.

Triangle inequality for lossy Wasserstein dis-
tance. W∞γ satisfies the following triangle inequal-
ity.

Lemma 1. For distributions P , Q, and R over a met-
ric space (Ω, d) and for all γ1, γ2 ∈ [0, 1], we have

W∞γ1+γ2
(P,R) ≤W∞γ1

(P,Q) +W∞γ2
(Q,R). (2)

We can easily prove Lemma 1 for the special case when
γ1 = γ2 = 0 using standard tools from [Villani, 2008];
see Lemma 3 in Appendix A.1 for a proof. However,
proving Lemma 1 in its full generality requires a sig-
nificantly more involved proof; see Appendix A.1.

3 Flexible Accuracy (FA)

The high-level idea of FA is to allow for some distor-
tion of the input before measuring accuracy. We would
like to define “natural” distortions of a database, that
are meaningful for the function in question. For many
functions, removing a few data points (say, outliers)
would be a natural distortion, while for others, per-
turbing the data points (or a combination of both) is
more natural. Note that adding new entries – even just
one – is often not a reasonable distortion. Therefore,
distortion is generally defined not using a metric over
databases, but a quasi-metric (which is not required
to be symmetric) with range R≥0 ∪ {∞}, where ∞
indicates that one database cannot be distorted into
another one. As we shall need distortion measure be-
tween two distributions in our accuracy guarantees and
also for defining distortion and error sensitivities, it
will be useful to extend the distortion measure to dis-
tributions. This can be done in same way as W∞, but
w.r.t. a quasi-metric rather than a metric.

Definition 2 (Measure of Distortion). A measure of
distortion on a set X is a function ∂ : X ×X → R≥0 ∪
{∞} which forms a quasi-metric over X . We define
∂̂ as the extension of ∂ to distribution, which maps a
pair of distributions P,Q over X to a real number as

∂̂(P,Q) := inf
φ∈Φ0(P,Q)

sup
(x,y)←φ

∂(x, y).

It is easy to verify that if ∂ is a quasi-metric, so is ∂̂.
We prove this in Lemma 13 in Appendix K.

Examples of measures of distortion. We formally
define three measures of distortion: ∂drop for dropping
elements, ∂move for perturbing/moving elements, and
∂ηdrmv for a combination of dropping and moving ele-
ments. These are defined when each element in X is a

finite multiset over a ground set G. Formally, x ∈ X is
a function x : G → N that outputs the multiplicity of
each element of G in x. Due to lack of space, we define
∂move and ∂ηdrmv in Appendix I and only define ∂drop

here. For finite x,x′ ∈ X , we define ∂drop(x,x′) as{∑
g∈G x(g)−x′(g)∑

g∈G x(g) if ∀g ∈ G,x(g) ≥ x′(g),

∞ otherwise.
(3)

∂drop(x,x′) measures the fraction of elements in x that
are to be dropped to get x′ (unless x′ cannot be derived
thus). It is easy to see that ∂drop is a quasi-metric.5

Most of the results in this paper are derived w.r.t.
∂drop, but they can also be extended to ∂ηdrmv; see Ap-
pendix I for the extension.

Defining flexible accuracy. Informally, flexible ac-
curacy with distortion α guarantees that on an input
x, a mechanism shall produce an output that corre-
sponds to f(x′) for some x′ such that ∂(x,x′) ≤ α.
In addition to such input distortion, we may allow
the output to be also probably approximately correct,
with an approximation error parameter β and an error
probability parameter γ. Formally, the probabilistic
approximation guarantee of the output is given as a
bound of β on a γ-lossy ∞-Wasserstein distance.

Definition 3 ((α, β, γ)-accuracy). Let ∂ be a mea-
sure of distortion on a set X and f : X → Y be a
randomized function such that Y admits a metric. A
mechanismM is (α, β, γ)-accurate for f w.r.t. ∂, if

sup
x∈X

inf
X′:∂̂(x,p

X′
)≤α

W∞γ (M(x), f(X ′)) ≤ β. (4)

In other words, for each x ∈ X , there is a r.v. X ′
satisfying ∂̂(x, p

X′ ) ≤ α (i.e., ∂(x,x′) ≤ α for all x′ ∈
support(X ′)) such that W∞γ (M(x), f(X ′)) ≤ β.

See Figure 1a for an illustration of flexible accuracy
using a pebbling game.

Flexible accuracy generalizes existing accuracy
definitions. It should be noted that FA is not a com-
pletely disparate notion but a more generalized form
of the standard accuracy guarantees. In particular: (i)
As mentioned in Section 2, (0, β, γ)-accuracy already
extends the PAC guarantees. For example, the Laplace
mechanism (see [Dwork and Roth, 2014, Chapter 3])
for a function f : X → R that achieves ε-DP is
(0,
∇f
ε ln(1/γ), γ)-accurate for any γ > 0, where ∇f is

the sensitivity of f . (ii) Blum et al. [2013] introduced
usefulness to measure accuracy w.r.t. a “perturbed”

5While showing that ∂drop is a quasi-metric is trivial,
it is not always so with other measures of distortion; in
particular, showing that ∂ηdrmv is a quasi-metric is highly
non-trivial; see Appendix I.1.
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(c) Error Sensitivity

Figure 1: An illustration of the flexible accuracy, distortion sensitivity, and error sensitivity. Dotted arrows indi-
cate closeness in terms of distortion between histograms (or distributions thereof), and the solid two-sided arrows
indicate closeness in terms of the lossy Wasserstein distance. Each figure shows the corresponding guarantee
(accuracy, error sensitivity or distortion sensitivity) as a pebbling game: The white boxes with black pebbles
correspond to given histograms, and the yellow boxes indicate histograms that are guaranteed to exist, such that
the given closeness relations hold. This allows those boxes to be pebbled. Accuracy guarantee of M2 ◦M1 is
derived by first applying the pebbling rule of accuracy of M1 (to obtain the purple pebbles), then that of the
error sensitivity of M2 (to get the pink pebbles) and finally using the pebbling rule of the distortion sensitivity
of f1 to pebble the remaining yellow box.

function. While adequate for the function classes they
considered (half-space queries, range queries etc.), it
is not applicable to queries like maximum. FA gener-
alizes usefulness (see Appendix B).

As we show later, FA lets us develop DP mechanisms
for highly sensitive functions (e.g., max), for which
existing DP mechanisms offered only limited, if not
vacuous, guarantees.

4 Flex. Accuracy Under Composition

In order to give our composition theorem for flexible
accuracy, we need to define two new sensitivity no-
tions: distortion sensitivity for a function and error
sensitivity for a mechanism.

Distortion sensitivity. When we compose two flex-
ibly accurate mechanisms M1 and M2 for f1 : A→ B
and f2 : B → C, respectively, to obtain the flexible
accuracy guarantee of M2 ◦M1 for f2 ◦ f1 : A → C,
we would like to attribute all the distortion made in
A and B (for measuring the output error of M1 and
M2, respectively) to the distortion in A. This requires
transferring the input distortion from B back into A,
and the notion of distortion sensitivity allows us to
quantify this. Informally, distortion sensitivity of a
function f (denoted by σf ) captures the amount of
distortion required in the domain of f to capture a
certain amount of distortion in the codomain of f .
Definition 4 (Distortion sensitivity). Let f : A→ B
be a randomized function where B admits Wasser-
stein distance. Let ∂1, ∂2 be measures of distortion

on A,B, respectively. Then, the distortion-sensitivity
of f w.r.t. (∂1, ∂2) is defined as the function σf :
R≥0 ∪ {∞} → R≥0 ∪ {∞} given by

σf (α) = sup
x,Y :

∂̂2(f(x),p
Y

)≤α

inf
X:

f(X)=Y

∂̂1(x, p
X

) (5)

where x ∈ A, and the random variables X and Y are
distributed over A and B, respectively. Above, infi-
mum over an empty set is defined to be ∞.

See Figure 1b for an illustration of distortion sensitiv-
ity using a pebbling game.

• Distortion sensitivity at α = 0. It is easy to verify
that for any randomized map f , we have σf (0) = 0.

• Distortion sensitivity of deterministic bijective func-
tions: When f : A → B is a deterministic and bijec-
tive map, then we can simplify the expression of σf as
follows (see Appendix C.1 for more details):

σf (α) = sup
x∈A,y∈B:

∂2(f(x),y)≤α

∂1(x, f−1(y)). (6)

In particular, if f : A → A is an identity function
and ∂1 = ∂2, then we have σf (α) ≤ α. Many of our
flexibly accurate mechanisms in this paper are given
for the identity function over the space of histograms.

• A relaxed definition of distortion sensitivity. σf may
not exist for many functions, though we didn’t en-
counter such situations in our paper. To accommo-
date more functions, we define its relaxation in (18)
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Figure 2: An illustration of the composition
theorem, Theorem 1. Accuracy guarantee of
M2 ◦ M1 is derived by first applying the peb-
bling rule of accuracy of M1 (to obtain the pur-
ple pebbles), then that of the error sensitivity
of M2 (to get the pink pebbles), and finally
using the pebbling rule of the distortion sen-
sitivity of f1 to pebble the remaining yellow
box. The final parameters are α = α1 + σ

(
f1
α2),

β = τα2,γ2

M2,f2
(β1, γ1), and γ = γ2.
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in Appendix C.1. All the results in this paper can be
extended to work with this relaxed definition.

Error sensitivity. When we compose two flexi-
bly accurate mechanisms M1,M2, first we measure
the output error of M1 on input x in terms of
W∞γ1

(M1(x), f1(X ′)), where X ′ is a distortion of the
same x on which we run the mechanism M1, and then
measure the output error of the composed mechanism
by W∞γ (M2(M1(x)), f2(Y )), where Y is a distortion
of f1(X ′). This is not directly computable from the
FA guarantees of M2 because the input (distribution)
f(X ′) that we distort is not the same as the input
(distribution) M1(x) that we run M2 on. The error
sensitivity generalizes the measure of accuracy (out-
put error) of a flexible accurate mechanism when the
input (distribution) to the mechanism is not the same
as the input (distribution) that we distort, but they are
at a bounded distance from each other (as measured
in terms on the lossy ∞-Wasserstein distance). More
details on the motivation are given in Appendix C.2.
Definition 5 (Error sensitivity). Let M : B → C
be a mechanism for f : B → C, where B,C admit
Wasserstein distance. Let ∂̂ be a measure of distor-
tion on B. Then, for α2, γ2 ≥ 0, the error-sensitivity
τα2,γ2

M,f : R≥0× [0, 1]→ R≥0 ofM w.r.t. f is defined as:

τα2,γ2

M,f (β1, γ1) = sup
(X,X′)∈U

inf
Y ∈V

W∞γ2
(M(X), f(Y )), (7)

where U = {(X,X ′) : W∞γ1
(p
X
, p

X′ ) ≤ β1} and V =

{Y : ∂̂(X ′, Y ) ≤ α2}.

See Figure 1c for an illustration of error sensitivity
using a pebbling game.
Remark 1. As mentioned earlier, the notion of error
sensitivity generalizes the definition of flexible accu-
racy. In other words, if a mechanismM for computing
a function f is (α, β, γ)-accurate, then β = τα,γM,f (0, 0).

We can simplify the τα2,γ2

M,f (β1, γ1) expression in some
special cases that arise in our applications in Section 5;
we discuss these after stating Theorem 1 next.

Composition theorem for flexible accuracy.

Our composition theorem for flexible accuracy is
given below, and we prove it in Appendix D.

Theorem 1 (Flexible Accuracy Composition). Let
M1 : A → B and M2 : B → C be mechanisms, re-
spectively, with (α1, β1, γ1)-accuracy for f1 : A → B
and τM2,f2

error sensitivity for f2 : B → C, w.r.t.
measures of distortion ∂1, ∂2 defined on A,B and met-
rics d1, d2 defined on B,C, respectively. Suppose f1, α2

are such that σf1
(α2) is finite. Then, for any α2 ≥ 0

and γ2 ∈ [0, 1], the mechanism M2 ◦M1 : A → C is
(α, β, γ)-accurate for f2 ◦ f1 w.r.t. ∂1 and d2, where
α = α1 + σf1

(α2), β = τα2,γ2

M2,f2
(β1, γ1), and γ = γ2.

An illustration of how the composition theorem works
is given as a pebbling game in Figure 2.

Simplified error sensitivity in spacial cases.
Theorem 1 requires computing/bounding the error
sensitivity ofM2 in order to compute the FA param-
eter β of M2 ◦ M1. Now we show that the expres-
sion of error sensitivity can be simplified in some im-
portant special cases: (i) When M1, f1 are deter-
ministic maps and M1 is (0, β1, 0)-accurate. In
this case, it suffices to take the supremum in (7) over
x, x′ ∈ B such that dB(x, x′) ≤ β1; see Appendix C.3
for more details. This setting arises when we com-
pute the FA parameters of our bucketed histogram
mechanismMBucHist =MSTLap◦Mbuc (Algorithm 3)
while proving Theorem 4. (ii) When M2, f2 are de-
terministic maps and M1 is (α1, β1, 0)-accurate
and α2 = γ2 = 0. This setting arises in the case of
histogram-based-statistics in Section 5.2 with β2 = 0.
In this case, the expression for the error sensitivity
can be much simplified as shown in the lemma below,
which we prove in Appendix C.4.

Lemma 2. Let M : B → C be a deterministic mech-
anism for a deterministic function f : B → C. Then,
for any β1 ≥ 0, we have

τ0,0
M,f (β1, 0) = sup

x,x′∈A:
dB(x,x′)≤β1

dC(M(x), f(x′)). (8)
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4.1 A Pre-Processing Theorem for DP

A simple but very useful result in differential privacy
(we formally define DP in Appendix E) is the “post-
processing” theorem for DP, which states that ifM1 is
(ε, δ)-DP, then for any mechanismM2, the composed
mechanismM2◦M1 would remain (ε, δ)-DP. We prove
a “pre-processing” theorem for DP (complementing the
post-processing theorem for DP), which states that if
M2 is private, then so would M2 ◦M1 be, provided
that M1 is neighborhood-preserving; see Definition 9
in Appendix E for the definition of neighborhood-
preserving mechanism.

We prove the following theorem in Appendix E.

Theorem 2 (Differential Privacy under Pre-Process-
ing). Let M1 : A → B and M2 : B → C be any
two mechanisms. If M1 is neighborhood-preserving
w.r.t. neighborhood relations ∼A and ∼B over A and
B, respectively, and M2 is (ε, δ)-DP w.r.t. ∼B, then
M2 ◦M1 : A→ C is (ε, δ)-DP w.r.t. ∼A.

We will require Theorem 2 to establish the DP guar-
antee of ourMBucHist mechanism (Algorithm 3).

5 Mechanisms with Flexible Accuracy

In this section, we propose and analyze concrete mech-
anisms for several important functions w.r.t. the dis-
tortion ∂drop. We extend these results to other mea-
sures of distortion in Appendix I.

5.1 Histograms with Flexible Accuracy

We will derive our new histogram mechanism by solv-
ing a simpler Boolean task of privately reporting
whether a given set is empty or not.

Private mechanism for determining whether a
given set is empty or not. For this, the only in-
put distortion we are allowed is to drop some elements
– i.e., we cannot report an empty set as non-empty.
Since we seek to limit the extent of distortion, let us
add a constraint that if a set has q or more elements,
then with probability 1 (or very close to 1), we should
report the set as being non-empty. Let pk denote the
probability that a set of size k ∈ [0, q] is reported as
being non-empty, so that p0 = 0 and pq = 1.

For our scheme to be (ε, δ)-DP, we require

pk ≤ pk+1e
ε + δ, (1− pk) ≤ (1− pk+1)eε + δ,

pk+1 ≤ pkeε + δ, (1− pk+1) ≤ (1− pk)eε + δ,

for 0 ≤ k < q, with boundary conditions p0 = 0 and
pq = 1. We are interested in simultaneously reducing
ε and δ subject to the above constraints. The pareto-

optimal (ε, δ) turn out to be given by δ
(
e(q/2)ε−1
eε−1

)
=

1
2 , with corresponding values of pk being given by

pk =

{
δ
(
ekε−1
eε−1

)
if k ≤ q/2,

1− pq−k otherwise .
(9)

Towards a private mechanism for histograms.
To generalize this Boolean mechanism to a full-fledged
histogram mechanism, we reinterpret it. In a his-
togram mechanism, where again, the distortion al-
lowed in the input is to only drop elements, we can
add a negative noise to the count in each “bar” of the
histogram. (If the reduced count is negative, we report
it as 0.) We seek a noise function such that the prob-
ability of the reported count being 0 (when the actual
count is k ∈ [0, q]) is the same as that of the above
mechanism reporting that a set of size k is empty, i.e.,
the probability of adding a noise ν ≤ −k should be
1 − pk. That is, if the noise distribution is given by
the density function σ, we require that∫ −k
−q

σ(t) · dt = 1− pk and σ(t) = 0 for t 6∈ [−q, 0].

Substituting pk from (9), and then differentiating
w.r.t. k, we obtain the following expression for σ(t):

σ(t) =

{
1

1−e−εq/2 Lap(t | − q2 ,
1
ε ), if t ∈ [−q, 0],

0, otherwise,

where Lap is the Laplace distribution with mean − q2
and scale parameter 1/ε.6 We call σ(t) the truncated
Laplace distribution, which is equal to the (normal-
ized) Laplace distribution with mean − q2 and scale
parameter 1

ε when t ∈ [−q, 0]; otherwise equal to zero.

The Shifted-Truncated Laplace mechanism for
releasing histograms with flexible accuracy. Our
final histogram mechanism is derived by adding the
noise σ(t) from above with appropriate parameter q
to each bar of the histogram, followed by rounding to
the nearest integer (or to 0, if it is negative). Before
describing the mechanism, we need some notation.

Datasets can be abstractly represented by multi-sets,
and each element in the multi-set belongs to a ground
set G. Formally, a multi-set x over the ground set
G is a function x : G → N that outputs the multi-
plicity of elements in G. The size and support of x
are defined as |x| :=

∑
i∈G x(i) and support(x) :=

6The Laplace distribution over R, with scaling parame-
ter b > 0 and mean µ, is defined by the density function
Lap(x|µ, b) := 1

2b
e
−|x−µ|

b for all x ∈ R. We denote a r.v.
that is distributed according to the Laplace distribution
with the scaling parameter b and mean 0 by Lap(b).
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Algorithm 1 Shifted and Truncated Laplace Mecha-
nism,Mτ,ε,G

STLap

Input: A histogram, x : G → N.
Output: A histogram, y : G → N.

1: for all g ∈ G do
2: zg ← πq, where q := τ |x| and πq(z) ={

1
1−e−εq/2 Lap(z | − q2 ,

1
ε ) if z ∈ [−q, 0],

0 otherwise.
3: y(g) := max(0, bx(g) + zge)
4: end for
5: y(g) := max(0, bx(g) + zge).
6: Return y.

{i ∈ G : x(i) 6= 0}, respectively. We shall be inter-
ested in finite-sized multi-sets, which we refer to as
histograms. We denote the domain of all histograms
over G by HG . For DP, the standard notion of neigh-
borhood among histograms is defined as x ∼hist x

′ iff∑
i∈G |x(i)− x′(i)| ≤ 1. Later, we shall also require G

to be a metric space, endowed with a metric d.

We describe our Shifted-Truncated Laplace for the
identity function (denoted by Mτ,ε,G

STLap : HG → HG)
in Algorithm 1. It simply decreases the multiplicity
of each element by adding a bounded quantity sam-
pled from the truncated Laplace distribution. The fol-
lowing theorem states the privacy and FA guarantees
achieved byMτ,ε,G

STLap, and we prove it in Appendix F.

Theorem 3. On inputs x of size n, Mτ,ε,G
STLap from

Algorithm 1 satisfies the following guarantees:
• Privacy: For any ε, τ such that ετn ≥ 2, Mτ,ε,G

STLap is(
ε, εe−Ω(ετn)

)
-DP w.r.t. ∼hist.

• Flexible accuracy: If |support(x)| ≤ t, then for any
ε > 0, Mτ,ε,G

STLap is (τt, 0, 0)-accurate for the identity
function, w.r.t. the distortion measure ∂drop.

Remark 2. There are many choices of ε, τ for which
we get favorable privacy parameters in Theorem 3.
For instance, choosing ε = 1√

τn
gives that Mτ,ε,G

STLap is(
1√
τn
, e
−Ω(
√
τn)

√
τn

)
-DP, provided τ is such that

√
τn ≥ 2.

Note that τ is the maximum overall fraction of ele-
ments we drop from each bar of the histogram. For
example, by choosing τ = 1

n1/2 , we get thatMτ,ε,G
STLap is(

1
n1/4 ,

e−Ω(n1/4)

n1/4

)
-DP and ( t

n1/4 , 0, 0)-accurate. See Ap-
pendix H.4 for more parameter choices and discussion.

Remark 2 shows that the privacy parameters of
Mτ,ε,G

STLap improve as the database size |x| grows, while
dropping only a small number of elements, provided
that the support size t is not too large. To handle
larger supports, this mechanism can be composed with
a simple fixed width w bucketing mechanism.

Algorithm 2 Bucketing Mechanism,Mw,[0,B)
buc

Input: A histogram x over [0, B).
Output: A histogram y over S = {w(i − 1

2 ) : i ∈
[t], t = dBw e}, and |y| = |x|.

1: For all s ∈ S, set y(s) :=
∑
g:g−s∈[−w2 ,w2 ) x(g)

2: Return y

Bucketed, Shifted-Truncated Laplace mecha-
nism. In order to explain the idea behind our bucket-
ing mechanism, for simplicity, we consider the ground
set G = [0, B).7 We divide the interval [0, B) into
t = dBw e sub-intervals (buckets) of length w, and map
each input point to the center of the nearest sub-
interval (bucket). This mapping of input points to the
nearest bucket introduces error in the output space,
and the value of w depends on the amount of error we
want to tolerate in the output space. Our bucketing
mechanismMw,[0,B)

buc and the final bucketed-histogram
mechanism Mα,β,[0,B)

BucHist are presented in Algorithm 2
and Algorithm 3, respectively.

Algorithm 3 BucketHist Mechanism,Mα,β,[0,B)
BucHist

Input: A histogram x over [0, B).
Output: A histogram y over [0, B).

1: w := 2β, t := dBw e, τ := α/t

2: ReturnMτ,ε,[0,B)
STLap ◦Mw,[0,B)

buc (x)

Since Mw,[0,B)
buc introduces error in the output space,

we need a metric over H[0,B) to analyze its flexi-
ble accuracy. We use the following natural metic
dhist over H[0,B), which is defined as dhist(y,y

′) :=

W∞( y
|y| ,

y′

|y′| ). Here, y
|y| is treated as a probability

distribution and the underlying metric for W∞ is the
standard distance metric over R.

We prove the following theorem in Appendix G.

Theorem 4. On inputs of size n, Mα,β,[0,B)
BucHist is

(α, β, 0)-accurate for the identity function, w.r.t. the
distortion measure ∂drop and metric dhist. Further-
more, for any ε > 0, and τ = α( 2β

B ), if ετn ≥ 2, then
Mα,β,[0,B)

BucHist is
(
ε, εe−Ω(ετn)

)
-DP.

5.2 Histogram-Based-Statistics

Theorem 4 provides a powerful tool to obtain a
DP mechanism for any deterministic histogram-based-
statistic fHBS : H[0,B) → A, simply by defining

Mα,β,[0,B)
fHBS

= fHBS ◦Mα,β,[0,B)
BucHist . (10)

7We also present the general results for G = [0, B)d in
Appendix J. Also see Remark 5 in Appendix I.
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Figure 3: For each evaluation, a typical histogram used is shown in inset. Functions evaluated are maxk(x) := max{i |
x(i) ≥ k}, max := max1, and mode(x) := arg maxi x(i). For max, we used histogram of 10,000 items drawn i.i.d. from a
Cauchy distribution with median 45 and scale 4, restricted to 100 bars, with the last 10 set to empty bars. For max500, we
used step histogram with 100 bars, with two steps (height × width): [540× 50, 490× 50]. For mode (3rd figure), we used
histogram of 30 bars, each bar has height drawn from i.i.d. Poisson with mean 250. For mode (4th figure), we used noisy
step histogram, with steps [130× 120, 200× 5, 185× 85, 190× 10, 130× 80]. All cases use best parameters available for ε
shown in the x-axis and δ = 2−20. Errors are shown in the y-axis as a percentage of the full range. Actual error (dotted
lines) and flexible errors (solid lines) allowing ∂drop distortion of 0.005 are plotted. While our mechanism (New) yields
low errors (sometimes without distortion), none of the other mechanisms achieve this consistently (even with distortion).

To analyze the flexible accuracy of MfHBS , we define
the metric sensitivity function of fHBS.
Definition 6. The metric sensitivity of a histogram-
based-statistic fHBS : H[0,B) → A, is given by ∆fHBS :
R≥0 → R≥0, in terms of a metric dA over A,

∆fHBS
(β) = sup

x,x′∈H[0,B):

dhist(x,x
′)≤β

dA(fHBS(x), fHBS(x′)). (11)

We prove the following theorem in Appendix H.1.

Theorem 5. On inputs of size n, Mα,β,[0,B)
fHBS

is
(α,∆fHBS

(β), 0)-accurate for fHBS w.r.t. distortion
∂drop and metric dA. Furthermore, for any ε > 0,
and τ = α( 2β

B ), if ετn ≥ 2, then Mα,β,[0,B)
fHBS

is(
ε, εe−Ω(ετn)

)
-DP.

Applications to high-sensitivity functions. The-
orem 5 has direct applications to functions that have
high sensitivity (defined w.r.t. the neighborhood rela-
tion ∼), but low metric sensitivity. We point out two
such examples: maximum and the support functions.

Maximum function: We define fmax for histograms
over real numbers as fmax(x) := max{g : x(g) > 0}.
It can be shown that, the metric sensitivity of fmax is
∆fmax

(β) ≤ β. Substituting this in Theorem 5, we get
the result for fmax. See Appendix H.2 for more details.

Support function: We define fsupp (or sim-
ply support) for histograms over real numbers as
fsupp(x) := {g : x(g) > 0}. To measure accuracy,
we use a metric dsupp over the set of finite subsets of
R: for finite subsets U ,V ⊆ R, define dsupp(U ,V) :=
max {maxu∈U minv∈V |u− v|, maxv∈V minu∈U |v − u|} .
dsupp measures the farthest that a point in one of
the sets is from any point on the other set. It

can be shown that, the metric sensitivity of fsupp

is ∆fsupp
(β) ≤ β. Substituting ∆fHBS

(β) ≤ β in
Theorem 5, we get the same result for fsupp. See
Appendix H.3 for more details.

6 Empirical Evaluation

We empirically compare our basic mechanismMτ,ε,G
STLap

(Algorithm 1) against competing mechanisms, for
accuracy on a few histogram-based statistics com-
puted on it. The considered mechanisms are: Ex-
ponential Mechanism [McSherry and Talwar, 2007],
Propose-Test-Release Mechanism [Dwork and Lei,
2009], Smooth-sensitivity Mechanism [Nissim et al.,
2007], Stability-Based Sanitized Histogram [Bun et al.,
2019], and Choosing-Based Histogram [Beimel et al.,
2016]. We describe these all briefly in Appendix L.2.

We plot average errors (actual and flexible), on dif-
ferent histograms in Figure 3. We emphasize that for
these functions, the other mechanisms do not offer any
worst-case guarantees (with or without flexible accu-
racy), while we do. We provide more details and ad-
ditional comparisons in Appendix L.
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Supplementary Material
A Details Omitted from Section 2

In all our proofs in this paper, when dealing with infimum/supremum (for example, in the definitions of the lossy
Wasserstein distance, measure of distortion, distortion and error sensitivities, etc.), for simplicity, we assume that
the infimum/supremum is always achieved; all our proofs can be easily extended to work without this assumption
by taking appropriate limits when working with infinitesimal quantities.

A.1 Lossy ∞-Wasserstein Distance

As mentioned in Section 2, first we prove Lemma 1 for the special case when γ1 = γ2 = 0. This is easy and can
be shown using standard tools from Villani [2008]. Then, we will prove Lemma 1 in its full generality, which
requires a significantly more involved proof.

Lemma 3 (Lemma 1 at γ1 = γ2 = 0). For distributions P , Q, and R over a metric space (Ω, d), we have

W∞(P,R) ≤W∞(P,Q) +W∞(Q,R).

Proof. Let φ2 ∈ Φ(P,Q) and φ3 ∈ Φ(Q,R) denote the optimal couplings for W∞(P,Q) and W∞(Q,R), respec-
tively, i.e., W∞(P,Q) = sup (x,y):

φ2(x,y) 6=0

d(x, y) and W∞(Q,R) = sup (y,z):
φ3(y,z)6=0

d(y, z). It follows from the Gluing

Lemma Villani [2008] that we can find a coupling φ′ over Ω × Ω × Ω such that the projection of φ′ onto its
first two coordinates is equal to φ2 and its last two coordinates is equal to φ3. Let φ1 denote the projection of
φ′ onto its first and the third coordinates. Note that φ1 ∈ Φ(P,R), but it may not be an optimal coupling for
W∞(P,R). Now the triangle inequality follows from the following set of inequalities:

W∞(P,R) = inf
φ∈Φ(P,R)

sup
(x,z):

φ(x,z)6=0

d(x, z) ≤ sup
(x,z):

φ1(x,z) 6=0

d(x, z) = sup
(x,y,z):

φ′(x,y,z)6=0

d(x, z)

(a)
≤ sup

(x,y,z):
φ′(x,y,z) 6=0

d(x, y) + d(y, z)

= sup
(x,y,z):

φ′(x,y,z) 6=0

d(x, y) + sup
(x,y,z):

φ′(x,y,z)6=0

d(y, z)

= sup
(x,y):

φ2(x,y) 6=0

d(x, y) + sup
(y,z):

φ3(y,z)6=0

d(y, z)

= W∞(P,Q) +W∞(Q,R),

where (a) follows from the fact that d is a metric, and so it satisfies the triangle inequality.

Now we prove Lemma 1 in its full generality, and along the way derive useful properties about lossy Wasserstein
distance, that may be of independent interest. For convenience, we rewrite Lemma 1 below.

Lemma (Restating Lemma 1). For distributions P , Q, and R over a metric space (Ω, d) and for all γ1, γ2 ∈ [0, 1],
we have

W∞γ1+γ2
(P,R) ≤W∞γ1

(P,Q) +W∞γ2
(Q,R). (12)

The following lemma is crucial to proving Lemma 1.

Lemma 4. Let P and Q be any two distributions over a metric space (Ω, d). If W∞γ (P,Q) = β, then for all
γ1 ∈ [0, γ], there exist distributions P ′ and Q′ s.t. ∆(P, P ′) ≤ γ1, ∆(Q,Q′) ≤ γ − γ1, and W∞(P ′, Q′) = β.

Proof of Lemma 4. Let P and Q be any two distributions over a metric space (Ω, d). Let us assume that the
optimal W∞γ (P,Q) (= β) is obtained at the joint distribution φopt. Let the first and the second marginal
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distributions of φopt be Popt and Qopt, respectively. Let ∆(P, Popt) = γopt, which implies that ∆(Q,Qopt) ≤
γ − γopt. Define a function Ropt : Ω→ R as Ropt(ω) := Popt(ω)−P (ω) for all ω ∈ Ω. Clearly,

∫
Ω
Ropt(ω) dω = 0

and
∫

Ω
|Ropt(ω)|dω = 2γopt.

In the discussion below, we shall take a general γ1 ∈ [0, γopt) and construct distributions P ′ and Q′ s.t. ∆(P, P ′) ≤
γ1, ∆(Q,Q′) ≤ γ − γ1, and W∞(P ′, Q′) = β, as required in the conclusion of Lemma 4. We can show a similar
result for the other case also when γ1 ∈ (γopt, γ] (by swapping the roles of P and Q in the above as well as in
the argument below). This will complete the proof of Lemma 4.

Define a function R′ : Ω → R as R′(ω) := γ1

γopt
Ropt(ω). For any ω ∈ Ω, let P ′(ω) = P (ω) + R′(ω). After

substituting the value of Ropt(ω) = Popt(ω)− P (ω), we get P ′(ω) = γ1

γopt
Popt(ω) +

(
1− γ1

γopt

)
P (ω). Since P ′ is

a convex combination of two distributions, it is also a valid distribution. It is easy to see that ∆(P, P ′) = γ1.
Define a joint distribution φ′ as follow: for every (x, y) ∈ Ω× Ω, define

φ′(x, y) :=

{
φopt(x, y) P ′(x)

Popt(x) if Popt(x) > 0

P ′(x)δ(x− y) otherwise

where δ(·) is the Dirac delta function. It follows from the definition that
∫

Ω
φ′(x, y) dy = P ′(x), i.e., the first

marginal of φ′ is P ′(·). This also implies that φ′ is a valid joint distribution because (i) φ′(x, y) ≥ 0 for all
(x, y) ∈ Ω× Ω, and (ii)

∫
Ω×Ω

φ′(x, y) dxdy =
∫

Ω
P ′(x) dx = 1.

Let the second marginal of φ′ be Q′. We show in Claim 2 in Appendix A.1.1 that ∆(Q,Q′) ≤ γ − γ1.

The only thing left to prove is to show that W∞(P ′, Q′) = β for the above constructed P ′ and Q′. First, we
show W∞(P ′, Q′) ≥ β and then show W∞(P ′, Q′) ≤ β.

• Showing W∞(P ′, Q′) ≥ β: This follows from the following claim, which we prove in Appendix A.1.1.

Claim 1. For distributions P and Q over a metric space (Ω, d) and γ ∈ [0, 1], we have

W∞γ (P,Q) = inf
P̂ ,Q̂:

∆(P,P̂ )+∆(Q,Q̂)≤γ

W∞(P̂ , Q̂). (13)

Now, since P ′, Q′ satisfy ∆(P, P ′) + ∆(Q,Q′) ≤ γ, we have W∞γ (P,Q) ≤ W∞(P ′, Q′). Since W∞γ (P,Q) = β,
we have shown that W∞(P ′, Q′) ≥ β.

• Showing W∞(P ′, Q′) ≤ β: For the sake of contradiction, let us assume that W∞(P ′, Q′) > β. Then there
is a pair (x, y) ∈ Ω2 such that φ′(x, y) > 0 and d(x, y) > β. This implies that φopt(x, y) = 0, because,
otherwise, we would have W∞γ (P,Q) > β, which contradicts our hypothesis that W∞γ (P,Q) = β. So, we
know that φ′(x, y) > 0 and φopt(x, y) = 0. From the definition of φ′, this is only possible if Popt(x) = 0 and
P ′(x)δ(x− y) > 0. This can happen only if x = y, but this implies d(x, y) = 0 ≤ β, which is a contradiction.
Hence W∞(P ′, Q′) ≤ β.

This completes the proof of Lemma 4.

Now we are ready to prove Lemma 1.

Proof of Lemma 1. Let W∞γ1
(P,Q) = β1 and W∞γ2

(Q,R) = β2. It follows from Lemma 4 that there exists a
distribution P ′ such that ∆(P, P ′) ≤ γ1 and W∞(P ′, Q) = β1. Similarly, there exists a distribution R′ such that
∆(R,R′) ≤ γ2 and W∞(Q,R′) = β2. Using these, we have from Lemma 3 that W∞(P ′, R′) ≤ β1 + β2.

Now, the result follows from the following set of inequalities.

W∞γ1+γ2
(P,R)

(d)
= inf

P̂ ,R̂:

∆(P,P̂ )+∆(R,R̂)≤γ1+γ2

W∞(P̂ , R̂)
(e)
≤ W∞(P ′, R′) ≤ β1 + β2 = W∞γ1

(P,Q) +W∞γ2
(Q,R),

where (d) follows from Claim 1 and (e) follows because P ′, R′ satisfy ∆(P, P ′) + ∆(R,R′) ≤ γ1 + γ2.

This concludes the proof of Lemma 1.
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A.1.1 Omitted Details from the Proof of Lemma 4

Claim 2. ∆(Q,Q′) ≤ γ − γ1.

Proof. The claim follows from the following set of inequalities.

∆(Q,Q′) ≤ ∆(Q,Qopt) + ∆(Qopt, Q
′)

≤ γ − γopt +
1

2

∫
Ω

|Qopt(y)−Q′(y)| dy (Since ∆(Q,Qopt) ≤ γ − γopt)

=
1

2

∫
Ω

∣∣∣∣∫
Ω

φopt(x, y) dx−
∫

Ω

φ′(x, y) dx

∣∣∣∣ dy + (γ − γopt)

≤ 1

2

∫
Ω

∫
Ω

|φopt(x, y)− φ′(x, y)| dxdy + (γ − γopt)

Define Ω1 := {x ∈ Ω : Popt(x) > 0} and Ω1 := Ω \ Ω1. Since Popt(x) = 0 for all x ∈ Ω1 and Popt() is the first
marginal of φopt, we have that φopt(x, y) = 0 for all x ∈ Ω1 and y ∈ Ω. Now, continuing from above, we get

∆(Q,Q′) ≤ 1

2

∫
Ω

∫
x∈Ω1

|φopt(x, y)− φ′(x, y)| dx dy +
1

2

∫
Ω

∫
x∈Ω1

|φopt(x, y)− φ′(x, y)| dx dy + (γ − γopt)

=
1

2

∫
Ω

∫
Ω1

φopt(x, y)

∣∣∣∣1− P ′(x)

Popt(x)

∣∣∣∣ dxdy +
1

2

∫
Ω

∫
Ω1

|φ′(x, y)| dxdy + (γ − γopt)

=
1

2

∫
Ω1

∣∣∣∣1− P ′(x)

Popt(x)

∣∣∣∣ dx

∫
Ω

φopt(x, y) dy +
1

2

∫
Ω

∫
Ω1

P ′(x)δ(x− y) dxdy + (γ − γopt)

(Since φ′(x, y) = P ′(x)δ(x− y) for x ∈ Ω1)

=
1

2

∫
Ω1

|Popt(x)− P ′(x)| dx+
1

2

∫
Ω1

P ′(x) dx+ (γ − γopt)

(Since
∫

Ω
φopt(x, y) dy = Popt(x) and

∫
Ω
δ(x− y) dy = 1 for any x)

=
1

2

∫
Ω1

|Popt(x)− P ′(x)| dx+
1

2

∫
Ω1

|Popt(x)− P ′(x)| dx+ (γ − γopt)

(Since Popt(x) = 0 whenever x ∈ Ω1)

=
1

2

∫
Ω

|Popt(x)− P ′(x)| dx+ (γ − γopt)

(a)
=

1

2

∫
Ω

∣∣∣∣(1− γ1

γopt

)
Ropt(x)

∣∣∣∣ dx+ (γ − γopt)

=
(γopt − γ1)

2γopt

∫
Ω

|Ropt(x)| dx+ (γ − γopt)

= γopt − γ1 + (γ − γopt) (Since
∫

Ω
|Ropt(ω)|dω = 2γopt)

= γ − γ1 (14)

Here (a) follows because for every x ∈ Ω, we have Popt(x)−P ′(x) = Ropt(x) +P (x)−P ′(x) = Ropt(x)−R′(x) =
Ropt(x)− γ1

γopt
Ropt(x).

Claim (Restating Claim 1). For distributions P and Q over a metric space (Ω, d) and γ ∈ [0, 1], we have

W∞γ (P,Q) = inf
P̂ ,Q̂:

∆(P,P̂ )+∆(Q,Q̂)≤γ

W∞(P̂ , Q̂).

Proof. This claim simply follows by by viewing the infimum set in the definition of γ-Lossy ∞-Wasserstein
distance differently.

W∞γ (P,Q)
(a)
= inf

φ∈Φγ(P,Q)
max

(x,y)←φ
d(x, y)
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(b)
= inf

P̂ ,Q̂:

∆(P,P̂ )+∆(Q,Q̂)≤γ

inf
φ∈Φ0(P̂ ,Q̂)

max
(x,y)←φ

d(x, y)

(c)
= inf

P̂ ,Q̂:

∆(P,P̂ )+∆(Q,Q̂)≤γ

W∞(P̂ , Q̂).

where (a) follows from the definition of γ-Lossy ∞-Wasserstein distance; (b) trivially holds by viewing the
infimum set differently; in (c) we substituted the definition of W∞; and (d) follows because P ′, Q′ satisfies
∆(P, P ′) + ∆(Q,Q′) ≤ γ.

A.2 Average Version of Lossy Wasserstein Distance

Our definition of W∞θ uses a worst case notion of distance. Many of the results using this notion have analogues
using an average case version. We formally present this definition below, as it may be of interest elsewhere.

Definition 7 (θ-Lossy Average Wasserstein Distance). Let P and Q be two probability distributions over a
metric space (Ω, d), and let θ ∈ [0, 1]. The θ-lossy average Wasserstein distance between P and Q is defined as:

Wθ(P,Q) = inf
φ∈Φθ(P,Q)

E
(x,y)←φ

[d(x, y)]. (15)

The following lemma relates lossy average Wasserstein and lossy ∞-Wasserstein distances.

Lemma 5. For any two distributions P,Q, and 0 ≤ β′ < β ≤ 1,

Wβ(P,Q) ≤W∞β (P,Q) ≤ Wβ′(P,Q)

(β − β′)
.

Proof. Clearly from the definitions, Wβ(P,Q) ≤W∞β (P,Q).

Suppose Wβ′(P,Q) = γ and φ ∈ Φβ
′
(P,Q) is an optimal coupling that realizes this. Then, in φ, the total mass

that is transported more than a distance γ′ is at most γ/γ′ and the total mass that is lost is at most β′. By
choosing to simply not transport this mass at all, one loses β′ + γ/γ′ mass, but no mass is transported more
than a distance γ′. Choosing γ′ = γ/(β − β′) this upper bound on loss is β, and hence this modified coupling
shows that W∞β (P,Q) ≤ γ′.

A.3 γ-Lossy ∞-Wasserstein Distance Generalizes Existing Notions

Lemma 6. Let (Ω, d) be a metric space. Let Ff be a point distribution on some f ∈ Ω and G be a distribution
over Ω. Then for any γ ∈ [0, 1] and β ≥ 0, we have

W∞γ (Ff , G) ≤ β ⇐⇒ Pr
g←G

[d(f, g) > β] ≤ γ.

Proof. We show both the directions below.

• Only if part (⇒): Suppose W∞γ (Ff , G) ≤ β. It follows from Lemma 4 that there exists a distribution G′
such that ∆(G′, G) ≤ γ and W∞(Ff , G

′) ≤ β. Since Ff is a point distribution, all couplings φ ∈ Φ0(Ff , G
′)

will be such that φ1 = Ff and φ2 = G′, which implies that W∞(Ff , G
′) = supg′←G′ d(f, g′) ≤ β. Now we

show that, together with ∆(G′, G) ≤ γ, this implies Prg←G[d(f, g) > β] ≤ γ:

Pr
g←G

[d(f, g) > β] = Pr
g←G

[d(f, g) > β | g ∈ support(G′)]︸ ︷︷ ︸
= 0

Pr
g←G

[g ∈ support(G′)]

+ Pr
g←G

[d(f, g) > β | g /∈ support(G′)]︸ ︷︷ ︸
≤ 1

Pr
g←G

[g /∈ support(G′)]

≤ Pr
g←G

[g /∈ support(G′)]
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=

∫
g∈Ω: pG(g)>0 & pG′ (g)=0

pG(g)dg

=

∫
g∈Ω: pG(g)>0 & pG′ (g)=0

(pG(g)− pG′(g))dg

(a)
≤
∫
g∈Ω: pG(g)>pG′ (g)

(pG(g)− pG′(g))dg

(b)
= ∆(G,G′) ≤ γ,

where (a) follows because {g ∈ Ω : pG(g) > 0 & pG′(g) = 0} ⊆ {g ∈ Ω : pG(g) > pG′(g)}, and (b) follows from
the reasoning given below.
Define Ω+

G := {g ∈ Ω : pG(g) > pG′(g)} and Ω−G := {g ∈ Ω : pG(g) < pG′(g)}. Since
∫
g∈Ω

pG(g)dg =∫
g∈Ω

pG′(g)dg, it follows that
∫
g∈Ω+

G
(pG(g) − pG′(g))dg =

∫
g∈Ω−G

(pG′(g) − pG(g))dg. Substituting this in the
definition of ∆(G,G′), we get ∆(G,G′) =

∫
g∈Ω+

G
(pG(g)− pG′(g))dg.

• If part (⇐): Suppose Prg←G[d(f, g) > β] ≤ γ. Let Ω′ = {g ∈ Ω : d(f, g) ≤ β} and G′ be a distribution
supported on Ω′ such that pG′(g) = 1

ηpG(g) when g ∈ Ω′, otherwise pG′(g) = 0. Here η =
∫
g∈Ω′

pG(g)dg ≥
(1− γ) is the normalizing constant. First we show that ∆(G,G′) ≤ γ.

∆(G,G′) =
1

2

∫
g∈Ω

|pG′(g)− pG(g)|dg

=
1

2

∫
g∈Ω′

|pG′(g)− pG(g)|dg +
1

2

∫
g∈Ω\Ω′

pG(g)dg (Since pG′(g) = 0 when g ∈ Ω \ Ω′)

=
1

2

∫
g∈Ω′

pG(g)(
1

η
− 1)dg +

1

2

∫
g∈Ω\Ω′

pG(g)dg

=
1

2
(
1

η
− 1)η +

1

2
(1− η) (Since

∫
g∈Ω′

pG(g)dg = η)

= 1− η ≤ γ. (16)

Now define a joint distribution φ, whose first marginal is the point distribution Ff and the second marginal
is G′, which implies that sup(x,y)←φ d(x, y) = supg′∈Ω′ d(f, g′). It follows from the argument above that
φ ∈ Φγ(Ff , G), which implies that W∞γ (Ff , G) ≤ sup(x,y)←φ d(x, y) = supg′∈Ω′ d(f, g′) ≤ β, where the last
inequality is by definition of Ω′. Hence, we get W∞γ (Ff , G) ≤ β.

This completes the proof of Lemma 6.

Lemma 7. For any two distributions P,Q over a metric space (Ω, d) and γ ∈ [0, 1], we have

W∞γ (P,Q) = 0 ⇐⇒ ∆(P,Q) ≤ γ.

Proof. We show both the directions below.

• Only if part (⇒): Suppose W∞γ (P,Q) = 0. This implies that there exists a joint distribution φ ∈ Φγ(P,Q)
such that sup(x,y)←φ d(x, y) = 0. Since d is a metric, this implies that for all (x, y)← φ, we have x = y. Hence,
the first marginal φ1 and the second marginal φ2 of φ are equal, which implies that ∆(φ1, P ) + ∆(φ2, Q) ≤ γ.
Then, by triangle inequality and that φ1 = φ2, we get ∆(P,Q) ≤ γ.

• If part (⇐): Suppose ∆(P,Q) ≤ γ. Define a joint distribution φ := P × P . Since φ1 = φ2 = P , we have
φ ∈ Φγ(P,Q). This, by definition, implies W∞γ (P,Q) ≤ sup(x,y)←φ d(x, y). Since both the marginals of φ
are the same, we have d(x, y) = 0 for every (x, y) ← φ. This, by the non-negativity of W∞γ (P,Q), gives
W∞γ (P,Q) = 0.
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B Details Omitted from Section 3 – Usefulness [Blum et al., 2013] vs. Flexible
Accuracy

To express accuracy guarantees of their mechanisms, Blum et al. [2013] introduced a notion of (β, γ, ψ)-usefulness
that parallels (α, β, γ)-accuracy, except that ψ measures perturbation of the function rather than input distortion.
Note that this is a reasonable notion for the function classes they considered (half-space queries, range queries
etc.), but it is not applicable to queries like maximum.

Flexible accuracy generalizes the notion of usefulness. Firstly, mechanisms which are (β, γ, 0)-useful are (0, β, γ)-
accurate (in [Blum et al., 2013], such mechanisms were given for interval queries). But even general usefulness
can be translated to flexible accuracy generically, by redefining the function to have an extra input parameter
that specifies perturbation. Further, the specific (β, γ, ψ)-useful DP mechanism of Blum et al. [2013] for half-
space counting queries – with data points on a unit sphere, and the perturbation of the function corresponded
to rotating the half-space by ψ radians – is (ψ, β, γ)-accurate for the same functions, w.r.t. the distortion ∂move.
This is because, the rotation of the half-space can be modeled as moving all the points on the unit sphere by a
distance of at most ψ.

C Details Omitted from Section 4

C.1 More Details about Distortion Sensitivity

Distortion sensitivity of deterministic bijective functions. When f : A → B is a deterministic and
bijective map, then for every x, Y such that ∂̂2(f(x), p

Y
) ≤ α, there is only one choice of X for which f(X) =

Y holds, that is X = f−1(Y ). Since for any point x ∈ A and distribution P over A, we have ∂̂1(x, P ) =
supx′∈support(P ) ∂1(x, x′), it follows that

σf (α) = sup
x,Y :

∂̂2(f(x),p
Y

)≤α

∂̂1(x, p
f−1(Y )

) = sup
x∈A,y∈B:

∂2(f(x),y)≤α

∂1(x, f−1(y)). (17)

In particular, if f : A→ A is an identity function and ∂1 = ∂2, then we have σf (α) ≤ α. Many of our mechanisms
in this paper for which we derive flexible accuracy guarantees are given for the identity function over the space of
histograms; see, for example, the result for our basic histogram mechanism (Theorem 3), the bucking mechanism
(see Claim 6), and their composition (Theorem 4), etc.

A relaxed definition of distortion sensitivity. Though the distortion sensitivity is bounded in many
circumstances (including all the applications we consider in this paper); however, due to the strict requirement
of having an X such that f(X) = Y (under infimum) in its definition, it may be infinite in other situations
where this condition cannot be satisfied. To accommodate more functions, we can relax the definition with more
parameters θ ∈ [0, 1], ω ≥ 0 as follows:

σγ,ωf (α) = sup
x,Y :

∂̂2(f(x),p
Y

)≤α

inf
X:

W∞γ (f(X),p
Y

)≤ω

∂̂1(x, p
X

). (18)

All the results in this paper can be extended to work with this more general definition of distortion sensitivity.

C.2 More Details about Error Sensitivity

Motivation. Suppose we want to compose an (α1, β1, γ1)-accurate mechanismM1 for f1 : A→ B with another
flexibly accurate mechanismM2 for f2 : B → C to obtain flexible accuracy guarantee of the composed mechanism
M2 ◦M1 for f2 ◦ f1 : A → C. For this, on any input x ∈ A, first we measure the output error of M1 on input
x in terms of W∞γ1

(M1(x), f1(X ′)), where X ′ is an α1-distortion of the same x on which we run the mechanism
M1; see (4). Now, for composition, we need to run M2 on M1(x) and distort f1(X ′) to obtain another r.v. Y ,
and the output error of the composed mechanism is given by W∞γ (M2(M1(x)), f2(Y )). The problem here is that
since the input (distribution) f(X ′) that we distort is not the same as the input (distribution) M1(x) that we
run M2 on, we cannot directly obtain the output error guarantee of the composed mechanism from that of M2.
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Therefore, we need a way to generalize the measure of accuracy (output error) of a flexibly accurate mechanism
when the input (distribution) to the mechanism is not the same as the input (distribution) that we distort, but
they are at a bounded distance from each other (as measured in terms on the lossy ∞-Wasserstein distance).
The notion of error sensitivity formalizes this intuition. Informally, it captures the sensitivity of the output error
of a flexibly accurate mechanism in such situations.

C.3 More Details about Composition Theorem for Flexible Accuracy

Theorem 1 requires computing/bounding the error sensitivity ofM2 in order to compute the flexible accuracy
parameter β of M2 ◦ M1. Now we show that the expression of error sensitivity can be simplified in some
important special cases.

•WhenM1, f1 are deterministic maps andM1 is (0, β1, 0)-accurate. This setting arises when we compute
the flexible accuracy parameters of our bucketed histogram mechanismMBucHist =MSTLap◦Mbuc (Algorithm 3)
while proving Theorem 4.

In this case, for any x ∈ A, both M1(x), f1(x) are point distributions. This means that in order to compute
the error sensitivity of M2, we only need to take the supremum in (7) over point distributions p

x
, p

x′ over
B (where p

x
, p

x′ can be thought of being supported on x := M1(x) and x′ := f1(x), respectively) such that
W∞(p

x
, p

x′ ) ≤ β1. Since W∞(p
x
, p

x′ ) = dB(x, x′), we only need to take the supremum in (7) over x, x′ ∈ B such
that dB(x, x′) ≤ β1.

•WhenM2, f2 are deterministic maps andM1 is (α1, β1, 0)-accurate and α2 = γ2 = 0. This setting arises
in the case of histogram-based-statistics (denoted by a deterministic function fHBS) in Section 5.2, in which we use
the composed mechanism fHBS◦MBucHist for computing fHBS, whereMBucHist is our final histogram mechanism
that is (α, β, 0)-accurate (see Theorem 4) and fHBS (as a mechanism) is (0, 0, 0)-accurate for computing fHBS.

Upon substituting these parameters in (7), the expression for the error sensitivity reduces to computing
τ0,0
M2,f2

(β1, 0) = supX,X′:W∞(p
X
,p
X′

)≤β1
W∞(M2(X), f2(X ′)), which can be simplified further as shown in the

lemma below, which we prove in Appendix C.4.

C.4 Proof of Lemma 2

For convenience, we write the lemma statement below.

Lemma (Restating Lemma 2). Let M : B → C be a deterministic mechanism for a deterministic function
f : B → C. Then, for any β1 ≥ 0, we have

τ0,0
M,f (β1, 0) = sup

X,X′:
W∞(p

X
,p
X′

)≤β1

W∞(M(X), f(X ′)) = sup
x,x′∈A:

dB(x,x′)≤β1

dC(M(x), f(x′)).

Proof. The first equality follows from the definition of error sensitivity. We only need to prove the second
equality.

• LHS ≥ RHS: This is the easy part.

sup
X,X′:

W∞(p
X
,p
X′

)≤β1

W∞(M(X), f(X ′)) ≥ sup
x,x′∈B:

W∞(px ,px′
)≤β1

W∞(M(x), f(x′)) = sup
x,x′∈B:

dB(px ,px′
)≤β1

dC(M(x), f(x′)),

where the inequality holds because considering only point distributions restricts the set over which we take
supremum and the equality holds because the ∞-Wasserstein distance between any two point distributions in
any metric is just the distance between the points on which the distributions are supported in that metric.

• LHS ≤ RHS: Consider any two distributions p
X
, p

X′ over B s.t. W∞(p
X
, p

X′ ) ≤ β. Let φ1 be the optimal
coupling between p

X
, p

X′ such that

W∞(p
X
, p

X′ ) = sup
(x,x′)←φ1

dB(x,x′) ≤ β1.
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Using φ1,M, f , we define a joint distribution φ2 over C × C as follows: For any a,b ∈ C, define

φ2(a,b) :=
∑
x,x′:

M(x)=a,f(x′)=b

φ1(x,x′).

It can be verified that φ2 ∈ Φ(M(X), f(X ′)), i.e., φ2 is a valid coupling betweenM(X), f(X ′). Now

W∞(M(X), f(X ′)) ≤ sup
(a,b)←φ2

dC(a,b) = sup
(x,x′)←φ1

dC(M(x), f(x′)) ≤ sup
x,x′∈B:

dB(x,x′)≤β1

dC(M(x), f(x′)),

where the last inequality holds because {(x,x′) : (x,x′)← φ1} ⊆ {(x,x′) : dB(x,x′) ≤ β1}.
Note that the RHS of the last inequality does not depend on X,X ′. So, taking supremum over all distributions
X,X ′ such that W∞(p

X
, p

X′ ) ≤ β1 gives the required result.

This completes the proof of Lemma 2.

D Proof of Theorem 1 – Composition Theorem for Flexible Accuracy

The following lemma will be useful in proving Theorem 1. It translates the definition of distortion sensitivity
(Definition 4) to apply to distortion of input distributions.
Lemma 8. Suppose f : A → B has distortion sensitivity σf w.r.t. (∂1, ∂2). For all r.v.s X0 over A and Y

over B such that ∂̂2(f(X0), p
Y

) ≤ α for some α ≥ 0, there must exist a r.v. X over A such that Y = f(X) and
∂̂1(p

X0
, p

X
) ≤ σf (α), provided σf (α) is finite.

Proof. Fix random variables X0 over A and Y over B such that ∂̂2(f(X0), p
Y

) ≤ α. Let φ be an optimal coupling
that achieves the infimum in the definition of ∂̂2(f(X0), p

Y
), i.e.,

∂̂2(f(X0), p
Y

) = sup
(u,y)←φ

∂2(u, y) ≤ α. (19)

For each x0 ∈ support(X0), consider the conditional distribution φx0
= φ|{X0 = x0}. Clearly, the first marginal

of φx0
is a point distribution supported at f(x0). Let its second marginal be denoted by p

Yx0
. First we show

that for each x0 ∈ support(X0), we have ∂̂2(f(x0), p
Yx0

) ≤ α.

∂̂2(f(x0), p
Yx0

) = inf
φ∈Φ0(f(x0),p

Yx0
)

sup
(u,y)←φ

∂2(u, y) ≤ sup
(u,y)←φx0

∂2(u, y)
(a)
≤ sup

(u,y)←φ
∂2(u, y)

(b)
≤ α.

Here (a) follows from the fact that support(φx0
) ⊆ support(φ) and (b) follows from (19). Thus for each x0 ∈

support(X0), we have ∂̂2(f(x0), p
Yx0

) ≤ α. Since σf (α) is finite, by the definition of σf , there exist a r.v. Xx0

such that

Yx0
= f(Xx0

), (20)

∂̂1(x0, pXx0
) ≤ σf (α). (21)

Define X =
∑
x0∈support(X0) pX0

(x0)Xx0
. Now we show that Y = f(X) and ∂̂1(p

X0
, p

X
) ≤ σf (α).

• Showing Y = f(X): Note that Y =
∑
x0∈support(X0) pX0

(x0)Yx0 and f(X) =
∑
x0∈support(X0) pX0

(x0)f(Xx0).
Now the claim follows because because Yx0

= f(Xx0
) for each x0 ∈ support(X0) (from (20)).

• Showing ∂̂1(p
X0
, p

X
) ≤ σf (α): For each x0 ∈ support(X0), let ψx0 be the optimal coupling that achieves

the infimum in the definition of ∂̂1(x0, pXx0
). That is, for each x0, ψx0

∈ Φ0(x0, pXx0
) and ∂̂1(x0, pXx0

) =

sup(a,b)←ψx0
∂1(a, b). Let ψ be defined by ψ(a, b) = p

X0
(x0)ψx0(a, b). It is easy to verify that ψ ∈ Φ0(p

X0
, p

X
).

Further,

∂̂1(p
X0
, p

X
) ≤ sup

(a,b)←ψ
∂1(a, b) = sup

x0←p
X0

sup
(a,b)←ψx0

∂1(a, b) = sup
x0←p

X0

∂̂1(x0, pXx0
) ≤ σf (α),

where the last inequality follows from (21).
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This completes the proof of Lemma 8.

Now we prove Theorem 1, which is essentially formalizing the pictorial proof given in Figure 2. For convenience,
we rewrite the statement of Theorem 1 below.

Theorem (Restating Theorem 1). Let M1 : A → B and M2 : B → C be mechanisms, respectively, with
(α1, β1, γ1)-accuracy for f1 : A → B and τM2,f2 error sensitivity for f2 : B → C, w.r.t. measures of distortion
∂1, ∂2 defined on A,B and metrics d1, d2 defined on B,C, respectively. Suppose f1, α2 are such that σf1

(α2) is
finite. Then, for any α2 ≥ 0 and γ2 ∈ [0, 1], the mechanism M2 ◦ M1 : A → C is (α, β, γ)-accurate for the
function f2 ◦ f1 w.r.t. ∂1 and d2, where α = α1 + σf1

(α2), β = τα2,γ2

M2,f2
(β1, γ1), and γ = γ2.

Proof. For a given element x ∈ A, sinceM1 is (α1, β1, γ1)-accurate mechanism for f1, we have from Definition 3
that there exists a r.v. X ′ such that

∂̂1(x, p
X′ ) ≤ α1, (22)

W∞γ1
(f1(X ′),M1(x)) ≤ β1. (23)

Now, applying the mechanismM2 onM1(x), we incur an overall error of at most τα2,γ2

M2,f2
(β1, γ1) to the output

of function f2 over a distorted input (see Definition 5). Therefore, there exists a r.v. Y ∗ such that,

∂̂2(f1(X ′), p
Y ∗ ) ≤ α2, (24)

W∞γ2
(f2(Y ∗),M2(M1(x))) ≤ τα2,γ2

M2,f2
(β1, γ1). (25)

Since σf1
(α2) is finite (by assumption), it follows from (24) and Lemma 8 that there exists a r.v. X over A such

that

∂̂1(p
X′ , pX ) ≤ σf1

(α2), (26)

Y ∗ = f1(X). (27)

Since ∂1 is a quasi-metric, it follows that ∂̂1 is also a quasi-metric; see Lemma 13 in Appendix K for a proof.
This, together with (22) and (26), implies that

∂̂1(x, p
X

) ≤ α1 + σf1
(α2). (28)

Substituting Y ∗ = f1(X) from (27) into (25) gives

W∞γ2
(f2(f1(X)),M2(M1(x))) ≤ τα2,γ2

M2,f2
(β1, γ1). (29)

(28) and (29) imply that M2 ◦ M1 is (α, β, γ)-accurate for f2 ◦ f1 w.r.t. the distortion measure ∂1 on A and
metric d2 on C, where α = α1 + σf1

(α2), β = τα2,γ2

M2,f2
(β1, γ1), and γ = γ2.

This concludes the proof of Theorem 1.

E Proof of Theorem 2 – Differential Privacy Under Composition

Differential Privacy. Let X denote a universe of possible “databases” with a symmetric neighborhood relation
∼. In typical applications, two databases x and x′ are considered neighbors if one is obtained from the other by
removing the data corresponding to a single “individual.” A mechanism M over X is an algorithm that takes
x ∈ X as input and samples from an output space Y, according to some distribution. We shall denote this
distribution byM(x).

Definition 8 (Differential Privacy [Dwork et al., 2006b,a]). A randomized algorithm M : X → Y is (ε, δ)-
differentially private (DP), if for all neighboring databases x,x′ ∈ X and all measurable subsets S ⊆ Y, we have
Pr[M(x) ∈ S] ≤ eε Pr[M(x′) ∈ S] + δ.

Definition 9 (Neighborhood preserving Mechanism). A mechanism M : A → B is neighborhood preserving
w.r.t. neighborhood relations ∼A over A and ∼B over B, if for all x, y ∈ A s.t. x ∼A y, there exists a pair of
jointly distributed random variables (X,Y ) s.t. p

X
=M(x), p

Y
=M(y), and Pr[X ∼B Y ] = 1.
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Theorem (Restating Theorem 2). Let M1 : A → B and M2 : B → C be any two mechanisms. If M1

is neighborhood-preserving w.r.t. neighborhood relations ∼A and ∼B over A and B, respectively, and M2 is
(ε, δ)-DP w.r.t. ∼B, thenM2 ◦M1 : A→ C is (ε, δ)-DP w.r.t. ∼A.

Proof. For simplicity, we consider the case when B is discrete. The proof can be generalized to the continuous
setting.

Since the mechanism M1 is neighborhood preserving, for x, x′ ∈ A s.t. x1 ∼A x2, there exists a pair of jointly
distributed random variables (X1, X2) over B ×B s.t, p

X1
=M1(x), p

X2
=M1(x′) and Pr[X1 ∼B X2] = 1. So,

for all (x1, x2) such that p
X1,X2

(x1, x2) > 0, we have x1 ∼B x2 and hence, by the (ε, δ)-differential privacy of the
mechanismM2, for all subsets S ⊆ C, we have,

Pr(M2(x1) ∈ S) ≤ eε Pr(M2(x2) ∈ S) + δ.

Thus, if x ∼A x′, then for any subset S ⊆ C, we have,

Pr[M2(M1(x)) ∈ S] =
∑
x1

p
X1

(x1) Pr[M2(x1) ∈ S]

=
∑

(x1,x2)

p
X1,X2

(x1, x2) Pr[M2(x1) ∈ S]

≤
∑

(x1,x2)

p
X1,X2

(x1, x2) (eε Pr[M2(x2) ∈ S] + δ)

= eε

 ∑
(x1,x2)

p
X1,X2

(x1, x2) Pr[M2(x2) ∈ S]

+ δ

= eε

(∑
x2

p
X2

(x2) Pr[M2(x2) ∈ S]

)
+ δ

= eε Pr[M2(M1(x′)) ∈ S] + δ

This completes the proof of Theorem 2.

F Proof of Theorem 3 – Truncated Laplace Mechanism for Histograms

First, we prove the flexible accuracy part, which is easy, and then we will move on to proving the privacy part,
which is more involved than the existing privacy analysis of differentially-private histogram mechanisms. We
also note that the requirement of |support(x)| ≤ t is only needed the accuracy result.

Flexible accuracy. Note that the noise added by Mτ,ε,G
STLap in each bar of the histogram is bounded by

−q = −τ |x|, which can lead to a drop of at most τ fraction of total number of elements from each bar.
Combined with the fact that |support(x)| ≤ t, the fraction of the maximum fraction of elements that can be
dropped is τt. Hence,Mτ,ε,G

STLap is (τt, 0, 0)-accurate.

Differential privacy. Our proof of the privacy part of Theorem 3 depends on the following lemma.

Lemma 9. For any ν ≥ 0, ε > 0 and on inputs x s.t. |x| ≥ 2
ετ ln

(
1 + 1−e−

ετ
2

eε(ν+ τ
2

)−1

)
, Mτ,ε,G

STLap is(
(1 + ν)ε, eε−1

2(eεq/2−1)

)
-DP w.r.t. ∼hist, where q = τ |x|.

Proof. We shall, in fact, prove that a mechanism that outputs ŷ with ŷ(i) := x(i) + zi (without rounding, and
without replacing negative values with 0) is already differentially private as desired. Then, since the actual
mechanism is a post-processing of this mechanism, it will also be differentially private with the same parameters.

Let x and x′ be two neighbouring histograms. For simplicity, for every i ∈ G, define xi := x(i) and x′i := x′(i).
Since x ∼ x′, there exists an i∗ ∈ G such that |xi∗ − x′i∗ | = 1 and that xi = x′i for every i ∈ G \ {i∗}. Without



Aman Bansal, Rahul Chunduru, Deepesh Data, Manoj Prabhakaran

loss of generality, assume that xi∗ = x′i∗ + 1, which implies |x| = |x′|+ 1 = n+ 1. Let q = τ(n+ 1) and q′ = τn.
For simplicity of notation, we will denote support(y) by Gy for any y ∈ {x,x′}.

In order to prove the lemma, for every subset S ⊆ HG , we need to show that

Pr[Mτ,ε,G
STLap(x′) ∈ S] ≤ e(1+ν)ε Pr[Mτ,ε,G

STLap(x) ∈ S] + δ, (30)

Pr[Mτ,ε,G
STLap(x) ∈ S] ≤ e(1+ν)ε Pr[Mτ,ε,G

STLap(x′) ∈ S] + δ, (31)

where δ = eε−1
2(eεq/2−1)

. We only prove (30); (31) can be shown similarly.

Fix an arbitrary subset S ⊆ HG . SinceMτ,ε,G
STLap adds independent noise to each bar of the histogram according

to πq(z), we have that for every s ∈ HG , we have p
Mτ,ε,G

STLap
(x)

(s) =
∏
i∈Gx πq(si − xi) where si = s(i). Thus, we

have

Pr[Mτ,ε,G
STLap(x) ∈ S] =

∫
S

[ ∏
i∈Gx

πq(si − xi)
]

ds, (32)

Pr[Mτ,ε,G
STLap(x′) ∈ S] =

∫
S

[ ∏
i∈Gx′

πq′(si − x′i)
]

ds. (33)

Now, using the fact that ∀k 6= i∗, xk = x′k and xi∗ = x′i∗ + 1, we partition S into three disjoint sets:

1. S0 := {s ∈ HG : si∗ − x′i∗ < −q′} ∪ {s ∈ HG : 0 < si∗ − x′i∗}.
2. S1 := {s ∈ HG : −q′ ≤ si∗ − x′i∗ < −q′ + (1− τ)}.
3. S2 := {s ∈ HG : −q′ + (1− τ) ≤ si∗ − x′i∗ ≤ 0)}.

The proof of (30) is a simple corollary of the following two claims, which we prove in Appendix F.1.

Claim 3. Pr[Mτ,ε,G
STLap(x′) ∈ S0 ∪ S2] ≤ e(1+ν)ε Pr[Mτ,ε,G

STLap(x) ∈ S0 ∪ S2], provided n ≥ 2
ετ ln

(
1 + 1−e−

ετ
2

eε(ν+ τ
2

)−1

)
.

Claim 4. Pr[Mτ,ε,G
STLap(x′) ∈ S1] ≤ δ, where δ = eε−1

2(eεq/2−1)
.

The above two claims together imply (30) as follows:

Pr[Mτ,ε,G
STLap(x′) ∈ S] = Pr[Mτ,ε,G

STLap(x′) ∈ S0 ∪ S2] + Pr[Mτ,ε,G
STLap(x′) ∈ S1]

≤ e(1+ν)ε Pr[Mτ,ε,G
STLap(x) ∈ S0 ∪ S2] + δ

≤ e(1+ν)ε Pr[Mτ,ε,G
STLap(x) ∈ S] + δ. (Since S0 ∪ S2 ⊆ S)

This completes the proof of Lemma 9.

In Lemma 9, ν is a free variable. By taking ν = 0, we get the following result in Corollary 1. We can also get
different guarantees by restricting to ν > 0; see Remark 3 below for this.

Corollary 1. For any ε, τ,x such that τ |x|ε ≥ 2,Mτ,ε,G
STLap is

(
ε, eε−1

2(eεq/2−1)

)
-DP w.r.t. ∼hist, where q = τ |x|.

Proof. Substituting ν = 0 in Lemma 9 gives that when x satisfies |x| ≥ 2
ετ ln

(
1 + 1−e−

ετ
2

e
ετ
2 −1

)
, we have that

Mτ,ε,G
STLap is

(
ε, eε−1

2(eεnτ/2−1)

)
-DP w.r.t. ∼hist. Now, the corollary follows because 2

ετ ≥
2
ετ e
− ετ2 ≥ 2

ετ ln
(
1 + e−

ετ
2

)
=

2
ετ ln

(
1 + 1−e−

ετ
2

e
ετ
2 −1

)
, where the first inequality uses x ≥ ln(1 + x) for x > 0.

Remark 3. We show in Lemma 10 in Appendix F.1 that by restricting Lemma 9 to ν > 0, we can get a weaker
condition than what we have in Corollary 1 with a slight increase in the privacy parameter ε. In particular, we
show that for all ε,x such that εν ≥ ln

(
1 + 1

|x|

)
,Mτ,ε,G

STLap is
(

(1 + ν)ε, eε−1
2(eεq/2−1)

)
-DP w.r.t. ∼hist. We can take

ν = 1 here.
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Now the privacy part of Theorem 3 follows because q = τ |x| and τ |x|ε ≥ 2 (note that τ |x|ε is typically a much
bigger number than 2 as it scales with the size of the dataset), which implies that eε−1

2(eεq/2−1)
= εe−Ω(ετ |x|). Hence,

Mτ,ε,G
STLap is (ε, εe−Ω(ετ |x|))-DP.

This completes the proof of Theorem 3.

F.1 Details Omitted from the Proof of Theorem 3

Claim (Restating Claim 3). Pr[Mτ,ε,G
STLap(x′) ∈ S0 ∪ S2] ≤ e(1+ν)ε Pr[Mτ,ε,G

STLap(x) ∈ S0 ∪ S2], provided n ≥
2
ετ ln

(
1 + 1−e−

ετ
2

eε(ν+ τ
2

)−1

)
.

Proof. First we show that for s ∈ S0 ∪ S2, we have, πq′(si∗ − x′i∗) ≤ e(1+ν)επq(si∗ − xi∗), provided n ≥
2
ετ ln

(
1 + 1−e−

ετ
2

eε(ν+ τ
2

)−1

)
, and then we show how this implies the result.

For s ∈ S0, πq′(si∗ − x′i∗) = 0 so the inequality trivially holds. For s ∈ S2, both πq′(si∗ − x′i∗) > 0 and
πq(si∗ − xi∗) > 0; hence, we will be done if we show that πq′ (si∗−x

′
i∗ )

πq(si∗−xi∗ ) ≤ e(1+ν)ε. Note that we are given the
following inequality:

n ≥ 2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
,

which can be rewritten as (which we show in Claim 5 after this proof):

ln

(
1− e−ε

τ(n+1)
2

1− e−ε τn2

)
≤ ε(ν +

τ

2
). (34)

By substituting q = τ(n+ 1) and q′ = τn, (34) is equivalent to

1

ε
ln

(
1− e−ε

q
2

1− e−ε q
′

2

)
+ (1− τ

2
) ≤ 1 + ν.

This, using the triangle inequality, implies that

1

ε
ln

(
1− e−ε

q
2

1− e−ε q
′

2

)
+
∣∣∣si∗ − xi∗ +

q

2

∣∣∣− ∣∣∣si∗ − xi∗ +
q

2
+ (1− τ

2
)
∣∣∣ ≤ 1 + ν.

Putting q′ = q − τ and x′i∗ = xi∗ − 1, we get

1

ε
ln

(
1− e−ε

q
2

1− e−ε q
′

2

)
+
∣∣∣si∗ − xi∗ +

q

2

∣∣∣− ∣∣∣∣si∗ − x′i∗ +
q′

2

∣∣∣∣ ≤ 1 + ν.

By taking exponents of both sides, this is equivalent to showing

(1− e−ε
q
2 )

(1− e−ε q
′

2 )

e−ε|si∗−x
′
i∗+ q′

2 |

e−ε|si∗−xi∗+ q
2 |
≤ e(1+ν)ε

By substituting the values of πq(si∗ − xi∗) and πq′(si∗ − x′i∗), this can be equivalently written as

πq′(si∗ − x′i∗)
πq(si∗ − xi∗)

≤ e(1+ν)ε. (35)

Now we show Pr[Mτ,ε,G
STLap(x′) ∈ S0 ∪ S2] ≤ e(1+ν)ε Pr[Mτ,ε,G

STLap(x) ∈ S0 ∪ S2]. Recall that Gx = support(x) for
any histogram x ∈ HG .

Pr[Mτ,ε,G
STLap(x′) ∈ S0 ∪ S2] =

∫
S0∪S2

[ ∏
i∈Gx′

πq′(si − x′i)
]

ds
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=

∫
S0∪S2

[ ∏
i∈Gx′ :i6=i

∗

πq′(si − x′i)
]
πq′(si∗ − x′i∗) ds

≤
∫
S0∪S2

[ ∏
i∈Gx:i 6=i∗

πq(si − xi)
]
e(1+ν)επq(si∗ − xi∗) ds

(Using (35) and that xi = x′i,∀i 6= i∗)

= e(1+ν)ε

∫
S0∪S2

[ ∏
i∈Gx

πq(si − xi)
]

ds

= e(1+ν)ε Pr[Mτ,ε,G
STLap(x) ∈ S0 ∪ S2]

This completes the proof of Claim 3.

Claim 5.

n ≥ 2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
⇐⇒ ln

(
1− e−ε

τ(n+1)
2

1− e−ε τn2

)
≤ ε(ν +

τ

2
).

Proof. We will start with the RHS and show that it is equivalent to the LHS.

1− e−ε
τ(n+1)

2

1− e−ε τn2
≤ eε(ν+ τ

2 )

⇐⇒ 1− e−ε
τ(n+1)

2 ≤ eε(ν+ τ
2 ) − eε(ν+ τ

2 )e−ε
τn
2

⇐⇒ 1− e−ε τn2 e−ε τ2 ≤ eε(ν+ τ
2 ) − eε(ν+ τ

2 )e−ε
τn
2

⇐⇒ e−ε
τn
2

(
eε(ν+ τ

2 ) − e−ε τ2
)
≤ eε(ν+ τ

2 ) − 1

⇐⇒ eε
τn
2 ≥ eε(ν+ τ

2 ) − e−ε τ2
eε(ν+ τ

2 ) − 1

⇐⇒ eε
τn
2 ≥ 1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

⇐⇒ n ≥ 2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
.

Claim (Restating Claim 4). Pr[Mτ,ε,G
STLap(x′) ∈ S1] ≤ eε−1

2(eεq/2−1)
.

Proof. Observe that, for every s ∈ S1, we have −q′ ≤ si∗ − x′i∗ < −q′ + (1 − τ). Recall that Gx′ = support(x′)
and |x′| = n. Let |Gx′ | = t for some t ≤ n, and, for simplicity, assume that Gx′ = {1, 2, . . . , t}. For i ∈ [t], define
S1(i) := {ŝi : ∃s ∈ S1 s.t. ŝi = si}, which is equal to the collection of the multiplicity of i in the histograms in
S1.

Pr[Mτ,ε,G
STLap(x′) ∈ S1] =

∫
S1

[ t∏
i=1

πq′(si − x′i)
]

ds

=

∫
S1(1)

. . .

∫
S1(i∗)

. . .

∫
S1(t)

[ t∏
i=1

πq′(si − x′i)
]

dst . . . dsi∗ . . . ds1

=

∫
S1(i∗)

πq′(si∗ − x′i∗)
(∫

S1(1)

. . .

∫
S1(t)

[ t∏
i=1:i6=i∗

πq′(si − x′i)
]

dst . . . ds1

)
︸ ︷︷ ︸

≤ 1

dsi∗

≤
∫
S1(i∗)

πq′(si∗ − x′i∗) dsi∗

=

∫ q′+(1−τ)

q′
πq′(z) dz (Since ∀s ∈ S1, (si∗ − x′i∗) ∈ [−q′,−q′ + (1− τ)))
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=
e(1−τ)ε − 1

2(1− e−εq/2)
e−ε

q/2

≤ eε − 1

2(eεq/2 − 1)
. (Since τ > 0)

This proves Claim 4.

Lemma 10. For any ν, ε > 0 and x such that εν > ln
(

1 + 1
|x|

)
, Mτ,ε,G

STLap is
(

(1 + ν)ε, eε−1
2(eεq/2−1)

)
-DP w.r.t.

∼hist, where q = τ |x|.

Proof. We use Lemma 9 and put a restriction that ν should be > 0. We will analyze the effect of this restriction
on the bound of |x|. We restate the bound on |x| here again for convenience:

|x| ≥ 2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
It can be easily checked that for any fixed ε, ν > 0, the RHS is a decreasing function of τ . Hence, if we set τ to
its minimum value, we get a lower bound on |x| which is independent of τ . Since this expression is not defined
at τ = 0, we will take its one-sided limit as τ → 0+, i.e.,

lim
τ→0+

2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
We will replace ετ

2 with l. As τ → 0+, l→ 0+, and we get

lim
τ→0+

2

ετ
ln

(
1 +

1− e−ε τ2
eε(ν+ τ

2 ) − 1

)
= lim
l→0+

1

l
ln

(
1 +

1− e−l

eεν+l − 1

)
= lim
l→0+

1

l
ln

(
1 +

1− e−l

eεν+l − 1

)(
1− e−l

eεν+l − 1

)(
eεν+l − 1

1− e−l

)

= lim
l→0+

(
1

eεν+l − 1

)(
1− e−l

l

) ln
(

1 + 1−e−l
eεν+l−1

)
1−e−l
eεν+l−1


=

1

eεν − 1
(limx→0+

1−e−x
x = 1; limx→0+

ln(1+x)
x = 1)

We have proved that on inputs x s.t. |x| > 1
eεν−1 , which is equivalent to the condition that εν > ln

(
1 + 1

|x|

)
,

Mτ,ε,G
STLap is

(
(1 + ν)ε, eε−1

2(eεq/2−1)

)
-DP w.r.t. ∼hist, where q = τ |x|.

G Proof of Theorem 4 – Bucketed, Shifted and Truncated Laplace Mechanism

Note thatMα,β,[0,B)
BucHist =Mτ,ε,[0,B)

STLap ◦Mw,[0,B)
buc , with w = 2β and τ = α

t , where t = d B2β e. We will use Theorem 2

to show the DP guarantee and Theorem 1 to show the flexible accuracy guarantee ofMα,β,[0,B)
BucHist .

Differential privacy. First note thatMw,[0,B)d

buc is a neighborhood-preserving mechanism w.r.t. the neighbor-
hood relation ∼hist. This follows because adding/removing any one element changes the output of bucketing
by at most one element; hence, neighbors remain neighbors after bucketing. Now, since Mw,[0,B)

buc outputs a
histogram whose support size is at most t = dBw e, andM

τ,ε,[0,B)
STLap on input histograms with support size at most t

is
(
ε, εe−Ω(ετn)

)
-differentially private w.r.t. ∼hist, it follows from Theorem 2 thatMα,β,[0,B)

BucHist is also differentially
private w.r.t. ∼histwith the same parameters.
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Flexible accuracy. We claim the following flexible accuracy guarantee of the bucketing mechanism
Mw,[0,B)

buc (x) that is proved in Appendix G.1.

Claim 6. Mw,[0,B)
buc is

(
0, w2 , 0

)
-accurate for the identity function fid over H[0,B) w.r.t the metric dhist.

Note that when we apply Theorem 3 to compute the flexible accuracy parameters of the composed mechanism
Mτ,ε,[0,B)

STLap ◦Mw,[0,B)
buc , the parameters of the composed mechanism depend on the distortion sensitivity σf1

(α2)

and the error sensitivity ofMτ,ε,[0,B)
STLap . We compute them below.

• Distortion sensitivity of f1: Since f1 is the identity function fid over H[0,B), we have (as noted in the first
example in Section ??) that σf1

(α2) ≤ α2.

• Error sensitivity ofMτ,ε,[0,B)
STLap : Note that the bucketing mechanismMw,[0,B)

buc : H[0,B) → H[0,B) is a deterministic
map, and is (0, β, 0)-accurate (see Claim 6) for computing the identity function fid, where β = w

2 . As mentioned
in the first bullet after the statement of Theorem 1, this implies that when computing the error sensitivity of
Mτ,ε,[0,B)

STLap (which is required for calculating the output error β of the composed mechanismMτ,ε,[0,B)
STLap ◦M

w,[0,B)
buc ),

we only need to take supremum in (7) over point distributions x,x′ such that dhist(x,x
′) ≤ β, where dhist(, ) is

the metric that we use over H[0,B). In other words, in order to compute the error sensitivity ofMτ,[0,B)
STLap , we only

need to bound supx,x′:dhist(x,x′)≤β infY :∂̂(x′,Y )≤αW
∞(Mτ,ε,G

STLap(x), p
Y

). We bound this in Lemma 11 below.

Lemma 11. For any α, β ≥ 0, we have

τα,0
Mτ,ε,[0,B)

STLap ,fid

(β, 0) = sup
x,x′:

dhist(x,x
′)≤β

inf
Y :

∂̂(x′,Y )≤α

W∞(Mτ,ε,G
STLap(x), p

Y
) ≤ β

w.r.t. the distortion ∂drop and the metric dhist. Here, input histograms to the mechanismMτ,ε,G
STLap are restricted

to t bars and τ = α/t.

Proof. For simplicity, we denote [0, B) by G. For any two histograms x,x′ ∈ HG such that dhist(x,x
′) ≤ β,

we will construct a r.v. Y over HG such that ∂̂drop(x′, p
Y

) ≤ α and W∞(Mτ,ε,G
STLap(x), p

Y
) ≤ β. The claim then

immediately follows from this. Details follow.

Consider any two histograms x,x′ ∈ HG such that dhist(x,x
′) ≤ β. Let dG(·, ·) denote the underlying metric over

G (consists of t elements) and |x| denote number of elements in the histogram x. By definition of dhist(·, ·), we
have dhist(x,x

′) = W∞( x
|x| ,

x′

|x′| ). Let φ be an optimal coupling of x
|x| and

x′

|x′| such that

dhist(x,x
′) = W∞(

x

|x|
,
x′

|x′|
) = sup

(a,b)←φ
dG(a, b) ≤ β. (36)

Using φ we define a transformation fφ, which, when given a histogram z that is α-distorted from x, returns
fφ(z) that is an α-distorted histogram from x′. Recall that for a histogram x and a ∈ G, we denote by x(a) the
multiplicity of a in x. Now, for any b ∈ [0, B), we define fφ(z)(b) as follows:

fφ(z)(b) := |x′|
∑
a∈G

z(a)φ(a, b)

x(a)
.

The following claim is proved in Appendix G.1.

Claim 7. For any x ∈ HG, if z is α-distorted from x, then fφ(z) is α-distorted from x′.

Recall that Mτ,ε,G
STLap(x) outputs α-distorted histograms from x. This suggests defining a r.v. Y :=

fφ

(
Mτ,ε,G

STLap(x)
)
over HG , whose distribution is given as follows:

For y ∈ HG , define Pr[Y = y] := Pr[Mτ,ε,G
STLap(x) ∈ f−1

φ (y)],
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where f−1
φ (y) := {z ∈ HG : fφ(z) = y} is the inverse mapping of fφ.

In the following two claims (which we prove in Appendix G.1), we show that the above defined Y satisfies
∂̂drop(x′, p

Y
) ≤ α and W∞(Mτ,ε,G

STLap(x), p
Y

) ≤ β.

Claim 8. ∂̂drop(x′, p
Y

) ≤ α.

Claim 9. W∞(Mτ,ε,G
STLap(x), p

Y
) ≤ β.

It follows from Claim 8 and Claim 9 that infY :∂̂(x′,Y )≤αW
∞(Mτ,ε,G

STLap(x), p
Y

) ≤ β. Since this holds for any two
histograms x,x′ ∈ HG such that dhist(x,x

′) ≤ β, we have proved Lemma 11.

Now, applying Theorem 1 toMα,β,[0,B)
BucHist =Mτ,ε,[0,B)

STLap ◦Mt,[0,B)
buc , we get thatMα,β,[0,B)

BucHist is (α, β, 0)-accurate.

This completes the proof of Theorem 4.

G.1 Details Omitted from the Proof of Theorem 4

Claim (Restating Claim 6). Mw,[0,B)
buc is

(
0, w2 , 0

)
-accurate for the identity function fid over H[0,B) w.r.t the

metric dhist.

Proof. Since both fid andMw,[0,B)
buc are deterministic maps, on any input x ∈ H[0,B), we denote x (as the output

of fid(x)) and Mw,[0,B)
buc as point distributions over H[0,B). Now, in order to prove the claim, we need to show

that W∞(Mw,[0,B)
buc (x),x) ≤ w

2 holds for any x ∈ H[0,B).

Fix any x ∈ H[0,B) and define y := Mw,[0,B)
buc (x). Since x,y are point distributions and the underlying metric

is dhist, we have W∞(y,x) = dhist(y,x), where dhist is defined as dhist(y,x) = W∞( y
|y| ,

x
|x| ). Since y is a

deterministic function of x, W∞( y
|y| ,

x
|x| ) is upper bounded by the maximum distance any point in x moves to

form y, which is equal to the the maximum distance of the center of a bucket from any point in that bucket,
which is w

2 .

Claim (Restating Claim 7). For any x ∈ HG, if z is α-distorted from x, then fφ(z) is α-distorted from x′.

Proof. We need to show two things: (i) fφ(z)(b) ≤ x′(b) holds for every b ∈ G, and (ii)
∑
b∈G fφ(z)(b) ≥

(1 − α)
∑
b∈G x

′(b). The first condition holds because z(a) ≤ x(a),∀a ∈ G (since z is α-distorted from x) and
that

∑
a∈G φ(a, b) = x′(b)

|x′| . For the second condition,

∑
b∈G

fφ(z)(b) =
∑
b∈G

|x′|
∑
a∈G

z(a)φ(a, b)

x(a)
= |x′|

∑
a∈G

z(a)

x(a)

∑
b∈G

φ(a, b)
(a)
=
|x′|
|x|

∑
a∈G

z(a)
(b)
≥ (1− α)|x′|, (37)

where (a) follows from
∑
b∈G φ(a, b) = x(a)

|x| and (b) follows because z is α-distorted from x, which implies that∑
a∈G z(a) = |z| ≥ (1− α)|x|. Therefore, fφ(z) is α-distorted from x′.

Claim (Restating Claim 8). ∂̂drop(x′, p
Y

) ≤ α.

Proof. Note that the support of Mτ,ε,G
STLap(x) is the set of all α-distorted histograms from x. We have shown

in Claim 7 that for any z ∈ HG such that ∂drop(x, z) ≤ α, we have ∂drop(x′, fφ(z)) ≤ α. This implies that
supy∈support(fφ(Mτ,ε,G

STLap(x))) ∂drop(x′,y) ≤ α, which in turn implies that ∂̂drop(x′, p
Y

) ≤ α.

Claim (Restating Claim 9). W∞(Mτ,ε,G
STLap(x), p

Y
) ≤ β.

Proof. Define a coupling φx ofMτ,ε,G
STLap(x) and p

Y
over HG ×HG as follows:

φx(z,y) :=

{
Pr[Mτ,ε,G

STLap(x) = z] if y = fφ(z),

0 otherwise.
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It is easy to verify that the above defined φx is a valid coupling ofMτ,ε,G
STLap(x) and p

Y
, i.e., its first marginal is

equal toMτ,ε,G
STLap(x) and the second marginal is equal to p

Y
. Note that φx(z,y) is non-zero only when y = fφ(z).

This implies that

W∞(Mτ,ε,G
STLap(x), p

Y
) ≤ sup

(z,y)←φx

dhist(z,y) = sup
(z,fφ(z))←φx

dhist(z, fφ(z)) ≤ β,

where the last inequality follows from Claim 10 (stated and proven below) and using the fact that z ∼Mτ,ε,G
STLap(x)

is α-distorted from x.

Claim 10. Let x,x′ ∈ HG be such that dhist(x,x
′) ≤ β. Then, for any z that is α-distorted from x, we have

dhist(z, fφ(z)) ≤ dhist(x,x
′) ≤ β.

Proof. Define φ′(a, b) = z(a)|x|φ(a,b)
x(a)|z| . For any a ∈ G, its first marginal is equal to

∑
b∈G φ

′(a, b) = z(a)
|z| . For any

b ∈ G, its second marginal is equal to
∑
a∈G φ

′(a, b) = |x|
|z|
∑
a∈G

z(a)
x(a)φ(a, b) = |x|

|x′||z|fφ(z)(b). We would like to

say that the quantity on the RHS is equal to fφ(z)(b)
|fφ(z)| . We show this as follows: Since |z| ≥ (1 − α)|x|, there

exists c ≥ 0 such that |z| = (1 − α + c)|x|. If we put this instead of |z| ≥ (1 − α)|x| in (37), we would get∑
b∈G fφ(z)(b) = (1 − α + c)|x′|. With these substitutions, we get |x|

|x′||z|fφ(z)(b) =
fφ(z)(b)∑
b∈G fφ(z)(b) , which implies

that the second marginal of φ′ is equal to
∑
a∈G φ

′(a, b) =
fφ(z)(b)
|fφ(z)| for any b ∈ G.

This means that φ′(a, b) is a valid coupling of z, fφ(z). This implies that

dhist(z, fφ(z)) = W∞(z, fφ(z)) ≤ sup
(a′,b′)←φ′

dG(a′, b′)
(c)
≤ sup

(a′,b′)←φ
dG(a′, b′) = dhist(x,x

′) ≤ β,

where (c) holds because support(φ′) ⊆ support(φ) (by the definition of φ′).

H Omitted Proofs from Section 5.2 – Histogram-Based-Statistics

In this section, we will prove Theorem 5, Corollary 2, and Corollary 3.

H.1 Proof of Theorem 5 – Any Histogram-Based-Statistic

First we show the flexible accuracy and then the differential privacy guarantee of our composed mechanism
Mα,β,[0,B)

fHBS
= fHBS ◦Mα,β,[0,B)

BucHist .

Flexible accuracy. Note that fHBS (as a mechanism) for computing fHBS is (0, 0, 0)-accurate, and we have
from Theorem 4 that Mα,β,[0,B)

BucHist is (α, β, 0)-accurate for the identity function fid w.r.t. the distortion measure
∂drop and the metric dhist. Applying Theorem 1, we get that Mα,β,[0,B)

fHBS
is (α + σfid

(0), τ0,0
fHBS,fHBS

(0, β), 0)-
accurate. It follows from (8) (by substituting M = fHBS as a mechanism for f = fHBS) and the definition of
the metric sensitivity (11), that τ0,0

fHBS,fHBS
(0, β) = ∆fHBS

(β). We have also noted after (5) that the distortion
sensitivity of any randomized function at zero is equal to zero; in particular, σfid

(0) = 0. Substituting these in
the flexible accuracy parameters ofMα,β,[0,B)

fHBS
, we get thatMα,β,[0,B)

fHBS
is (α,∆fHBS

(β), 0)-accurate for fHBS w.r.t.
distortion ∂drop and metric dA.

Differential privacy. Since MBucHist is
(
ε, εe−Ω(ετn)

)
-DP, and MfHBS

is a post-processing of MBucHist, it
follows thatMfHBS

is also differentially private with the same parameters.

This completes the proof of Theorem 5.

H.2 Computing the Maximum or Minimum Element of a Multi-set

We define fmax (or simply max) for histograms over real numbers as fmax(x) := max{g : x(g) > 0}. Similarly,
we can define fmin (or simply min) as fmin(x) := min{g : x(g) > 0}. We give our result for fmax only; the same
result holds for fmin as well.
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Corollary 2. On inputs of size n, Mα,β,[0,B)
max is (α, β, 0)-accurate for fmax w.r.t. the distortion ∂drop and the

standard distance metric over R. Furthermore, for any ε > 0, and τ = α( 2β
B ), if ετn ≥ 2, then Mα,β,[0,B)

max is(
ε, εe−Ω(ετn)

)
-DP.

Proof. For any two histograms y, y′, by definition of dhist(y,y
′) = W∞( y

|y| ,
y′

|y′| ) and fmax, it follows that
|fmax(y) − fmax(y′)| ≤ dhist(y,y

′). Using this in (11) implies that ∆fmax
(β) ≤ β for every β ≥ 0. Then, the

corollary follows from Theorem 5, with fHBS = fmax.

We can instantiate Corollary 2 with different parameter settings to achieve favorable privacy-accuracy tradeoffs.
See Appendix H.4 for more details.

H.3 Computing the Support of a Multi-set

fsupp (or simply support) is defined as fsupp(x) := {g : x(g) > 0}, which maps a multiset to the set that forms
its support. To measure accuracy, we use a metric dsupp over the set of finite subsets of R: for any two finite
subsets S1,S2 ⊆ R, define

dsupp(S1,S2) := max

{
max
s1∈S1

min
s2∈S2

|s1 − s2|, max
s2∈S2

min
s1∈S1

|s2 − s1|
}
.

dsupp measures the farthest that a point in one of the sets is from any point on the other set. For example, if
smin
i := mins∈Si{s} and smax

i := maxs∈Si{s} denote the minimum and the maximum elements of the set Si (for
i = 1, 2), respectively, then it can be verified that dsupp(S1,S2) = max{|smin

1 − smin
2 |, |smax

1 − smax
2 |}.

Corollary 3. On inputs of size n,Mα,β,[0,B)
supp is (α, β, 0)-accurate for fsupp w.r.t. the distortion ∂drop and metric

dsupp. Furthermore, for any ε > 0, and τ = α( 2β
B ), if ετn ≥ 2, thenMα,β,[0,B)

supp is
(
ε, εe−Ω(ετn)

)
-DP.

Proof. Since dsupp(S1,S2) is the difference between the maximum or the minimum elements of S1 and S2, it follows
that for any two histograms y and y′, we have dsupp(fsupp(y), fsupp(y′)) ≤ max{|fmax(y)− fmax(y′)|, |fmin(y)−
fmin(y′)|}, where |fmax(y) − fmax(y′)| ≤ dhist(y,y

′) (from Corollary 2), and similarly, |fmin(y) − fmin(y′)| ≤
dhist(y,y

′). Using this in (11) implies that ∆fsupp
(β) ≤ β for every β ≥ 0. Then, the corollary follows from

Theorem 5, with fHBS = fsupp.

We can instantiate Corollary 3 with different parameter settings to achieve favorable privacy-accuracy tradeoffs.
See Appendix H.4 for more details.

H.4 Choosing the Parameters

As mentioned in Remark 2 for Theorem 3, there are many choices of ε, τ for which we can get favorable privacy,
accuracy parameters in Theorems 4, 5, and Corollaries 2, 3. For concreteness, in the following, we illustrate the
privacy accuracy trade-off by choosing parameters for theMα,β,[0,B)

max mechanism in Corollary 2; the same result
applies to Theorems 4, 5, and Corollary 3 as well.

If we choose ε = 1√
τn

and τ is such that 1
ε =
√
τn ≥ 2, then by dropping only αn = 1

ε2
2β
B elements from the entire

dataset, the mechanismMα,β,[0,B)
max achieves

(
1√
τn
, e
−Ω(
√
τn)

√
τn

)
-differential privacy. If β/B is a small constant (say,

1/100), which corresponds to perturbing the output by a small constant fraction of the whole range B, then by
dropping only αn = O( 1

ε2 ) elements,Mα,β,[0,B)
max achieves (ε, εe−Ω( 1

ε ))-differential privacy. We can set any τ that
satisfies 1

ε =
√
τn ≥ 2 in this result. For example,

By setting ε = 1
(logn)2 , we get that by dropping only O((log n)4) elements from the entire dataset, Mα,β,[0,B)

max

achieves ( 1
(logn)2 ,

n−Ω(logn)

(logn)2 )-differential privacy while incurring only a small constant error (of the entire range)
in the output.

Note that in the above setting of parameters, we take ε = 1√
τn

, which implies that the bound on δ can at best
be a small constant for any constant ε. This is because ετn =

√
τn = 1

ε is a constant, which implies that
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δ = εe−Ω( 1
ε ) will be a constant too. Therefore, for getting privacy guarantees with small constant ε such that δ

(exponentially) decays with n, we will work with the general privacy result of (ε, εe−Ω(ετn))-DP as in Corollary 2.
For example,

By setting ε = 0.1 and τ = 1
nc (for any c ∈ (0, 1)), we get that by dropping only αn = τn B

2β = O(n1−c)

elements from the entire dataset,Mα,β,[0,B)
max achieves (0.1, e−Ω(n1−c))-differential privacy while incurring only a

small constant error (of the entire range) in the output.

For other parameter settings, see the result on page 2 after we stated our informal result for max.

I Further Applications: Beyond ∂drop

Useful variants of Theorem 5 can be obtained with measures of distortion other than ∂drop. In the following, we
define two distortions ∂move and ∂ηdrmv, respectively, where ∂move allows moving/perturbing of data points and
∂ηdrmv allows both dropping and moving.

1. Perturbing/Moving elements: For finite x,y ∈ X , we define ∂move, a measure of distortion for moving
elements, as follows:

∂move(x,y) =

{
W∞( x

|x| ,
y
|y| ) if |x| = |y|,

∞ otherwise,
(38)

where x
|x| (similarly, y

|y| ) is treated as a probability vector of size |G|, indexed by the elements of G; the i’th
element of x

|x| is equal to
x(i)
|x| . We show in that Claim 11 in Appendix I.1 that ∂move is a metric.

2. Both dropping and moving elements: For finite x,y ∈ X , we define ∂ηdrmv, a measure of distortion for
both moving and dropping elements, as follows:

∂ηdrmv(x,y) = inf
z

(∂drop(x, z) + η · ∂move(z,y)) . (39)

We show in Claim 12 in Appendix I.1 that ∂ηdrmv is a quasi-metric.

The following theorem provides the privacy and accuracy guarantees of Mα,β,[0,B)
fHBS

(defined in (10)) w.r.t. the
distortion measure ∂ηdrmv.

Theorem 6. On inputs of size n, Mα,β,[0,B)
fHBS

is (α + ηβ, 0, 0)-accurate for fHBS w.r.t. the distortion measure

∂ηdrmv. Furthermore, for any ε > 0, and τ = α( 2β
B ), if ετn ≥ 2, thenMα,β,[0,B)

fHBS
is
(
ε, εe−Ω(ετn)

)
-DP.

We prove Theorem 6 after the following two remarks.

Remark 4. This is analogous to Theorem 5, but with the important difference that it does not refer to the metric
sensitivity of the function fHBS, and does not even require a metric over its codomain A. This makes this result
applicable to complex function families like maximum-margin separators or neural net classifiers. However, the
accuracy notion uses a measure of distortion that allows dropping a (small) fraction of the data and (slightly)
moving all data points, which may or may not be acceptable to all applications.

Remark 5 (Extending the results from [0, B) to [0, B)d). Note that the bucketing mechanism Mw,[0,B)
buc and

the bucketed-histogram mechanism Mα,β,[0,B)
BucHist in Algorithm 3 are given for the ground set G = [0, B). However,

as mentioned in Footnote 7, they can easily be extended to the d-dimensional ground set G = [0, B)d, and we
present the d-dimensional analogues of the above two mechanisms in Appendix J. All our results in Theorem 4,
Theorem 5, and Theorem 6 will hold verbatim with these generalized mechanisms, except for the value of τ , which
will be replaced by τ = α( 2β

B
√
d
)d; see Appendix J for a proof of this.

Proof of Theorem 6. SinceMα,β,[0,B)
fHBS

is the same mechanism for which the results in Theorem 4 hold, the same
privacy results as in Theorem 4 will also hold here. In the rest of this proof, we prove the flexible accuracy part.

Since fHBS is a (0, 0, 0)-accurate mechanism for fHBS (which implies that ∆fHBS
(0) = 0), in order to prove the

accuracy guarantee ofMα,β,[0,B)
fHBS

, it suffices to show thatMα,β,[0,B)
BucHist is (α+ ηβ, 0, 0)-accurate w.r.t. ∂ηdrmv. Note
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that Mα,β,[0,B)
fHBS

= Mτ,ε,[0,B)
STLap ◦ Mw,[0,B)

buc . On any input x, first we produce an intermediate bucketed output

z := Mw,[0,B)
buc (x) and then produce y := Mτ,ε,[0,B)

STLap (z) as the final output. We have shown in Claim 6 in the

proof of Theorem 4 that the output z produced by Mw,[0,B)
buc on input x satisfies W∞(x, z) ≤ β. This, by

definition of the distortion ∂move, implies ∂move(x, z) ≤ β. We have also shown in the proof of Theorem 3 that
the output y produced by Mτ,ε,[0,B)

STLap on input z satisfies ∂drop(z,y) ≤ α. So, we have ∂move(x, z) ≤ β and
∂drop(z,y) ≤ α. This, together with Lemma 12, implies the existence of a histogram s such that ∂drop(x, s) ≤ α
and ∂move(s,y) ≤ β. Using these in the definition of ∂ηdrmv in (39) implies that ∂ηdrmv(x,y) ≤ α + ηβ. Since we
have attributed all the error to the input distortion, we have shown that Mα,β,[0,B)

BucHist is (α + ηβ, 0, 0)-accurate
w.r.t. the distortion ∂ηdrmv.

This completes the proof of Theorem 6.

I.1 Proofs of ∂move Being a Metric and ∂ηdrmv Being a Quasi-Metric

Showing that ∂move(·, ·) is a metric is trivial; however, showing that ∂ηdrmv is a quasi-metric is non-trivial, and
most of this section is devoted to proving that.
Claim 11. ∂move(·, ·) is a metric.

Proof. Since ∂move(·, ·) is defined as the ∞-Wasserstein distance between normalized histograms, it suffices to
show that the ∞-Wasserstein distance is a metric. We need to show three things for any triple of distributions
P,Q,R over a metric space (Ω, d): (i) W∞(P,Q) ≥ 0 and equality holds if and only if P = Q, (ii) W∞(P,Q) =
W∞(Q,P ), and (iii) W∞(P,R) ≤W∞(P,Q) +W∞(Q,R).

By definition, W∞(P,R) = infφ∈Φ(P,R) sup(x,z):φ(x,z)6=0 d(x, z). Now, the first two conditions follow because d is
a metric, and the last condition (triangle inequality) we show in Lemma 3 in Appendix A.1.

Note that when |x| = |y| = 0, the Wasserstein distance is undefined, but we have defined ∂move(x,y) in this case
separately as 0, which is consistent with the properties of a metric.

We first give an intermediate result (Lemma 12 below) which will be used in proving that ∂ηdrmv is a quasi-metric.
The result of this lemma is also used in the proof of Theorem 6.
Lemma 12. Let x, y and z be any three histograms over a ground set G ,associated with a metric d, such that
∂move(x, z) = α1 and ∂drop(z,y) = α2 with α1 ≥ 0 and α2 < 1. Then there exists a histogram s such that
∂drop(x, s) = α2 and ∂move(s,y) ≤ α1.

Proof. Using the definitions of ∂drop and ∂move, we have the following:

Z.1 |x| = |z|
Z.2 W∞( x

|x| ,
z
|z| ) ≤ α1. We will use φz to denote the optimal joint distribution which achieves the infimum in

the definition of W∞( x
|x| ,

z
|z| ).

Z.3 |y| = (1− α2)|z|
Z.4 For all g ∈ G, 0 ≤ y(g) ≤ z(g)

Now we want to prove the existence of a histogram s with the following property:

S.1 |s| = (1− α2)|x|
S.2 For all g ∈ G, 0 ≤ s(g) ≤ x(g)

S.3 |s| = |y|
S.4 W∞( s

|s| ,
y
|y| ) ≤ α1.

Consider the following joint distribution φs:

φs(gx, gy) =

{
1

1−α2
φz(gx, gy)

y(gy)
z(gy) if z(gy) > 0

0 otherwise
(40)
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We denote the first marginal of φs by s
|s| , where s corresponds to the histogram that we want to show.

By definition, for all gx, gy ∈ G, we have φs(gx, gy) ≥ 0. Also note that, if z(gy) = 0, then for all gx ∈ G, we have
φz(gx, gy) = 0; this is because z

|z| is the second marginal of φz. Now we show that the above-defined φs satisfies
properties S.1-S.4 – we show these in the sequence of S.4, S.3, S.1, S.2.

• Proof of S.4. Note that the first marginal of φs is assumed to be s
|s| . Now we show that its second marginal

is y
|y| and that max(gx,gy)←φs d(gx, gy) ≤ α1. Note that these together imply that W∞( s

|s| ,
y
|y| ) ≤ α1.

– Second marginal of φs is y
|y| : We show it in two parts, first for gy ∈ G for which z(gy) = 0 and then for

the rest of the gy ∈ G. Note that when z(gy) = 0, we have from Z.4 that y(gy) = 0. Now we show that∫
G φs(gx, gy) dgx = 0. It follows from (40) that for all gy such that z(gy) = 0, we have φs(gx, gy) = 0,∀gx ∈ G,
which implies that

∫
G φs(gx, gy) dgx = 0. Now we analyze the case when z(gy) > 0.∫

G
φs(gx, gy) dgx =

∫
G

1

1− α2
φz(gx, gy)

y(gy)

z(gy)
dgx (using (40))

=
1

1− α2

y(gy)

z(gy)

∫
G
φz(gx, gy) dgx

=
1

1− α2

y(gy)

z(gy)

z(gy)

|z|
(using Z.2)

=
y(gy)

(1− α2)|z|

=
y(gy)

|y|
. (Using Z.3)

– W∞( s
|s| ,

y
|y| ) ≤ α1: We have shown that the first and the second marginals of φs are s

|s| and
y
|y| , respectively.

So, it suffices to show that max(gx,gy)←φs d(gx, gy) ≤ α1. Consider any pair (gx, gy) ∈ G2 s.t. φs(gx, gy) > 0.
This is possible only if φz(gx, gy) > 0 (see (40)), which, when combined with Z.2, gives d(gx, gy) ≤ α1.
Hence, for any pair (gx, gy) ∈ G2 s.t. φs(gx, gy) > 0, we have d(gx, gy) ≤ α1.

• Proof of S.3. Note that (40) gives the normalized s, but we still have the freedom to choose |s|. To satisfy
S.3, we set |s| = |y|.

• Proof of S.1. Note that S.1 is already satisfied using Z.1, Z.3, and S.3.
• Proof of S.2. Let us denote {g ∈ G | z(g) > 0} by Gz. We will show that for any g ∈ G, we have x(g)−s(g) ≥ 0:

x(g)− s(g) = |x|
∫
G
φz(g, gy) dgy − |s|

∫
G
φs(g, gy) dgy (using Z.2 and S.4)

= |x|
∫
Gz
φz(g, gy) dgy − |s|

∫
G
φs(g, gy) dgy (Since z(gy) = 0⇒ φz(g, gy) = 0,∀g ∈ G; Z.2)

= |x|
∫
Gz
φz(g, gy) dgy − |s|

∫
Gz

1

1− α2
φz(g, gy)

y(gy)

z(gy)
dgy (using (40))

= |x|
∫
Gz
φz(g, gy) dgy −

(1− α2)|x|
1− α2

∫
Gz
φz(g, gy)

y(gy)

z(gy)
dgy (using S.1)

= |x|
∫
Gz
φz(g, gy) dgy − |x|

∫
Gz
φz(g, gy)

y(gy)

z(gy)
dgy

= |x|
∫
Gz
φz(g, gy)

(
1− y(gy)

z(gy)

)
dgy

≥ 0 (using Z.4, y(gy)
z(gy) ≤ 1)

Thus, we have shown that the joint distribution φs defined in (40) satisfies all four properties S.1-S.4. This
completes the proof of Lemma 12.

Claim 12. For all η ∈ R≥0, ∂
η
drmv(·, ·) is a quasi metric.



Flexible Accuracy for Differential Privacy

Proof. Note that both ∂drop and ∂move are quasi-metrics. Hence, for any x,y, ∂drop(x,y) ≥ 0 and ∂move(x,y) ≥ 0.
This implies that for every x,y, ∂ηdrmv(x,y) ≥ 0. Now we one by one prove that ∂ηdrmv satisfies the properties of
quasi-metric:

Property #1: For all x and y, x = y⇔ ∂ηdrmv(x,y) = 0.

1. For all x, ∂ηdrmv(x,x) = 0:

∂ηdrmv(x,x) = inf
z

(∂drop(x, z) + η · ∂move(z,x))

≤ ∂drop(x,x) + η · ∂move(x,x) (infimum over a set is ≤ the value at any fixed point in set)
= 0

Since ∂ηdrmv(x,x) ≥ 0 as well as ≤ 0, ∂ηdrmv(x,x) = 0.
2. For all x,y, ∂ηdrmv(x,y) = 0⇒ x = y:
∂ηdrmv(x,y) = 0 implies that infz (∂drop(x, z) + η · ∂move(z,y)) = 0. As both ∂drop(x, z) and ∂move(z,y) are
≥ 0 for any value of x,y, z, this is possible only if ∂drop(x, z) = ∂move(z,y) = 0 which means that x = z = y.
Hence x = y.

Property #2: For all x, y and z, ∂ηdrmv(x, z) ≤ ∂ηdrmv(x,y) + ∂ηdrmv(y, z).

We assume that the infimum in both ∂ηdrmv(x,y) and ∂ηdrmv(y, z) is achieved by s1 and s2, respectively (the proof
can be easily extended to the case when the infimum is not achieved). This means that there exists a, b, c, d ≥ 0,
such that

∂drop(x, s1) = a; ∂move(s1,y) = b; ∂drop(y, s2) = c; ∂move(s2, z) = d,

which implies ∂ηdrmv(x,y) = a+ηb and ∂ηdrmv(y, z) = c+ηd. We need to show that ∂ηdrmv(x, z) ≤ (a+c)+η(b+d).

Using Lemma 12 with ∂move(s1,y) = b and ∂drop(y, s2) = c, we get that there is a y′ such that ∂drop(s1,y
′) = c

and ∂move(y′, s2) ≤ b. This gives the following:

∂drop(x, s1) = a; ∂drop(s1,y
′) = c; ∂move(y′, s2) ≤ b; ∂move(s2, z) = d.

Now we prove that ∂ηdrmv(x, z) ≤ (a+ c) + η(b+ d):

∂ηdrmv(x, z) = inf
z

(∂drop(x,y) + η · ∂move(y, z))

≤ ∂drop(x,y′) + η · ∂move(y′, z)

≤ ∂drop(x, s1) + ∂drop(s1,y
′) + η · ∂move(y′, z) (∂drop is a quasi-metric)

≤ ∂drop(x, s1) + ∂drop(s1,y
′) + η · (∂move(y′, s2) + ∂move(s2, z)) (∂move is a metric)

≤ (a+ c) + η(b+ d).

This concludes the proof of Claim 12

J d-Dimensional Analogues of our Mechanisms/Results

Algorithm 4 Bucketing Mechanism over [0, B)d,Mw,[0,B)d

buc

Parameter: Bucket (which is d-dimensional cube) side length w, ground set [0, B)d.
Input: A histogram x over [0, B).
Output: A histogram y over S = T d where T = {w(i− 1

2 ) : i ∈ [t], t = dBw e}, and |y| = |x|.

1: for all s ∈ S do
2: y(s) :=

∑
g:g−s∈[−w2 ,w2 )d x(g)

3: end for
4: Return y

In our d-dimensional bucketing mechanism for G = [0, B)d, we divide [0, B)d into t = dBw e
d d-dimensional cubes

(buckets), each of side length w, and map each input point to the center of the nearest cube (bucket). Note that
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Algorithm 5 BucketHist Mechanism over [0, B)d,Mα,β,[0,B)d

BucHist

Parameter: Accuracy parameters α, β; ground set [0, B)d.
Input: A histogram x over [0, B)d.
Output: A histogram y over [0, B)d.

1: w := 2β, t := dBw e
d, τ := α/t

2: ReturnMτ,ε,[0,B)d

STLap ◦Mw,[0,B)d

buc (x)

the distance between any point in [0, B)d to the center of the nearest bucket is w
2

√
d. In the following, we will

ignore the ceil/floor for simplicity.

Our d-dimensional bucketing mechanismMw,[0,B)d

buc and the final d-dimensional bucketed-histogram mechanism
Mα,β,[0,B)d

BucHist are presented in Algorithm 4 and Algorithm 5, respectively.

As mentioned in Remark 5 in Appendix I, with these modified mechanisms, all our results in Theorem 4,
Theorem 5, and Theorem 6 will hold verbatim, except for the value of τ , which will be replaced by τ = α( 2β

B
√
d
)d.

Note that for the one dimensional case, we have τ = α
t = α(wB ), where w = 2β, which comes from the (0, w2 , 0)-

accuracy of the bucketing mechanism Mw,[0,B)
buc (see Claim 6 in Appendix G). The d-dimensional analogue of

that result is stated in the following claim which can be proven along the lines of Claim 6.

Claim 13. Mw,[0,B)d

buc is
(

0, w2
√
d, 0
)
-accurate for the identity function fid over H[0,B)d w.r.t the metric dhist.

It follows from Claim 13 that the output error ofMw,[0,B)d

buc is β = w
2

√
d. This implies τ = α

t = α(wB )d = α( 2β

B
√
d
)d.

K Details Omitted from Section 3

In this section, we prove that ∂̂ is a quasi-metric (assuming that ∂ is a quasi-metric).

Lemma 13. If ∂ is a quasi-metric, then ∂̂ is a quasi-metric.

Proof. We need to show that for any three distributions P , Q, and R over the same space A, we have (i)
∂̂(P,Q) ≥ 0, where the equality holds if and only if P = Q, and (ii) ∂̂ satisfies the triangle inequality: ∂̂(P,Q) ≤
∂̂(P,R) + ∂̂(R,Q). We show them one by one below:

1. The first property follows from the definition of ∂̂ (see Definition 2): If ∂̂(P,Q) = 0, then the optimal
φ ∈ Φ(P,Q) is a diagonal distribution, which means that P = Q. On the other hand, if P = Q, then there
exists a coupling φ in Φ(P,Q), which is a diagonal distribution and hence ∂̂(P,Q) = 0.

2. Since the definition of ∂̂ is the same as that of W∞, except for that the former is defined w.r.t. a quasi-metric,
whereas, the latter is defined w.r.t. a metric, we can show the triangle inequality for ∂̂ along the lines of
the proof of Lemma 3. Note that we did not use the symmetric property of W∞ while proving Lemma 3;
we only used that the underlying metric d satisfies the triangle inequality, which also holds for ∂̂ which is a
quasi-metric.

This completes the proof of Lemma 13.

L Details Omitted from Section 6 and Additional Experimental Evaluations

We empirically compare our basic mechanism Mτ,ε,G
STLap (Algorithm 1) on a ground set G = {1, · · · , B}, against

various competing mechanisms, for accuracy on a few histogram-based statistics computed on it. We plot average
errors (actual and flexible), on different histogram distributions8 for functions maxk(x) := max{i | x(i) ≥ k},

8For each data distribution, the plots were averaged over 100 data sets, with 100 runs each for each mechanism.



Flexible Accuracy for Differential Privacy

max := max1, and mode(x) := arg maxi x(i); note that mode(x) is equal to the most frequently occurring data
item in x. The parameters forMτ,ε,G

STLap that we will use in the section are given in Corollary 1.

We emphasize that the plots are only indicative of the performance of our algorithm on specific histograms, and
do not suggest worst-case accuracy guarantees. On the other hand, our theorems do provide worst-case accuracy
guarantees.

We will empirically compare our results against the Exponential Mechanism [McSherry and Talwar, 2007],
Propose-Test-Release Mechanism [Dwork and Lei, 2009], Smooth-sensitivity Mechanism [Nissim et al., 2007],
Stability-Based Sanitized Histogram [Bun et al., 2019], and Choosing-Based Histogram Mechanism [Beimel et al.,
2016]. We describe these mechanisms briefly in Appendix L.2. We point out one notable omission from our plots:
the Encode-Shuffle-Analyze histogram mechanism [Erlingsson et al., 2020], which appeared independently and
concurrently to our mechanism,9 also uses a shifted (but not truncated) Laplace mechanism, and in all the
examples plotted, yields a behavior that is virtually identical to our mechanism’s. However, we emphasize that
Erlingsson et al. [2020] claim accuracy only for the histogram itself, and indeed, for the functions that we consider,
it does not enjoy the worst-case accuracy guarantees that we provide.

L.1 Evaluations Carried Out

In each of the following empirical evaluations, a histogram distribution and one of the following functions were
fixed: maxk(x) := max{i | x(i) ≥ k}, max := max1, and mode(x) := arg maxi x(i).

(1) Function max. Histogram of about 10,000 items drawn i.i.d. from a Cauchy distribution with median 45 and
scale 4, restricted to 100 bars, with the last 10 set to empty bars.

(2) Function max. Step histogram with two steps (height × width) : [1000× 50, 1× 50].
(3) Function max500. Same histogram distribution as in (1) above, but without zeroing out the right-most bars.
(4) Function max500. Step histogram with 100 bars, with two steps (height × width) : [540× 50, 490× 50].
(5) Function mode. Histogram of 30 bars, each bar has height drawn from i.i.d. Poisson with mean 250.
(6) Function mode. Noisy step histogram, with steps [130× 120, 200× 5, 185× 85, 190× 10, 130× 80].

The results are shown in Figure 4. In each experiment, a range of values for ε are chosen, while we fixed δ = 2−20.
Errors are shown in the y-axis as a percentage of the full range [0, B). For each experiment and mechanism, we
also compute flexible accuracy allowing a distortion of ∂drop = 0.005.

L.2 Description of the Compared Mechanisms

Exponential Mechanism. The Exponential Mechanism [McSherry and Talwar, 2007] can be tailored for an
abstract utility function. We consider the negative of the error as the utility of a response y on input histogram
x, i.e., q(x, y) = −err(x, y) = −|max(x) − y|. However, for both maxk and mode, error has high sensitivity
– changing a single element in the histogram can change the error by as much as the number of bars in the
histogram. Since the mechanism produces an output r with probability proportional to e

εq(x,r)
2∆err , where ∆err is

the sensitivity of err(·, ·), having a large sensitivity has the effect of moving the output distribution close to a
uniform distribution. This is reflected in the performance of this mechanism in all our plots.

Propose-Test-Release Mechanism (PTR). We consider the commonly used form of the PTR mechanism of
Dwork and Lei [Dwork and Lei, 2009], namely, “releasing stable values” (see [Vadhan, 2017, Section 3.3]). On input
x, the mechanism either releases the correct result f(x) or refuses to do so (replacing it with a random output
value), depending on whether the radius of the neighborhood of x where it remains constant is sufficiently large
(after adding some noise). For computing a function f and a setting of parameter β = 0 and privacy parameters
ε, δ, the mechanism calculates this radius for an input x as, r = d(x, {x′ : LSf (x′) > 0})+Lap(1/ε), where d(x,S)
is the minimum Hamming distance between x and any point in the set S and LSf (y) := max{|f(y)−f(z)| : y ∼ z}
is local sensitivity of function f at y. If this radius r is greater than ln (1/δ)/ε, the mechanism will output the exact
answer f(x), otherwise it outputs a random value from the domain. For the functions we consider, this radius

9A preliminary version of the current work was presented as an invited talk at a pre-pandemic conference, in December
2019 (citation omitted for anonymity).
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Figure 4: For each evaluation, a typical histogram used is shown in inset. The different data distributions elicit
a variety of behaviors of the different mechanisms. Experiment (2) shows an instance which is hard for all the
mechanisms without considering flexible accuracy; on the other hand, in Experiment (3), flexible accuracy makes
no difference (the plots overlap). In these two experiments, BNS and our new mechanism match each other.
In all the other experiments, our new mechanism dominates the others, with or without considering flexible
accuracy.
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of stable region can be computed efficiently and is typically small or even zero for input distributions considered
which is reflected in our plots.

Smooth-sensitivity Mechanism (SS). This mechanism, due to Nissim et al. [Nissim et al., 2007], uses the
smooth sensitivity of query f as SSεf (x) = max{LSf (x′)e−εd(x,x′)|x′ ∈ HG}, where LSf (x′) denotes the local
sensitivity of f at x′, and d(·, ·) is the Hamming distance. Given an input histogram x, the mechanism adds noise
roughly O(SSεf (x)/ε) to f(x) for (ε, δ)-privacy. For functions like maxk and mode, again, the local sensitivity
tends to be large on many histograms, and this affects the performance of this mechanism on such inputs.

Stability-Based Sanitized Histogram Mechanism. This mechanism was proposed by Bun et al. [Bun
et al., 2019] (also see [Vadhan, 2017, Theorem 3.5]) for releasing histograms with provable worst-case guarantees.
However, these guarantees are in terms of the errors in the individual bar heights of the histogram, and does not
necessarily translate to the histogram based functions, as we consider. Nevertheless, this mechanism provides a
potential candidate for a mechanism for any histogram based statistic.

For each bar of the histogram, the mechanism adds Laplace noise to the bar height, and the resulting value is
reported only if it is more than a threshold, and otherwise a 0 is reported. By treating empty bars differently,
this mechanism achieves comparable flexible accuracy as our mechanism in the case of max. However, this does
not generalize to maxk. In particular, in the example in (4) in Figure 4, by adding (possibly positive) noise to
histogram bars of height lower than k, the mechanism is very likely to find a bar which is much further to the
right than the point where the bar heights cross k.

Choosing-Based Histogram Mechanism. Beimel et al. [Beimel et al., 2016] presented a mechanism San-
Points for producing a sanitized histogram, with formal (α, β) PAC-guarantees for approximating the height of
each bar of the histogram. For a given α, β and privacy paramters ε, δ, on an input x with m elements, the
mechanism adds little noise, Lap(1/mε) to heights of bars which are iteratively chosen without repetition as per
a choosing mechanism. The choosing mechanism privately picks the index with maximum bar height. It either
chooses the max height index if its bar height is sufficiently large after adding some Laplace noise or otherwise
chooses as per an exponential mechanism with bar height as an index’s score.

For a given input x with m elements and parameters β, ε, δ, the mechanism guarantees α =

O(
(√ln (1/δ) ln (ln (1/δ))

εm

)2/3). Again though the mechanism doesn’t give formal guarantees for the functions we
consider, such a histogram-release mechanism can be heuristically used for any histogram based statistic. In our
evaluations, SanPoints yields mixed results, but is dominated by BNS and our new mechanism.


