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Abstract

We present simple methods for out-of-
distribution detection using a trained gen-
erative model. These techniques, based on
classical statistical tests, are model-agnostic
in the sense that they can be applied to any
differentiable generative model. The idea is
to combine a classical parametric test (Rao’s
score test) with the recently introduced typi-
cality test. These two test statistics are both
theoretically well-founded and exploit differ-
ent sources of information based on the like-
lihood for the typicality test and its gradi-
ent for the score test. We show that combin-
ing them using Fisher’s method overall leads
to a more accurate out-of-distribution test.
We also discuss the benefits of casting out-of-
distribution detection as a statistical testing
problem, noting in particular that false pos-
itive rate control can be valuable for prac-
tical out-of-distribution detection. Despite
their simplicity and generality, these methods
can be competitive with model-specific out-
of-distribution detection algorithms without
any assumptions on the out-distribution.

1 Introduction

The ability to recognise when data are anomalous, i.e.
if they originate from a distribution different from that
of the training data, is a necessary property for ma-
chine learning models for safe and reliable applica-
tions in the real world. Historically, Bishop (1994)
proposed to use a one-sided threshold on the log-
likelihoods of a learned model as a decision rule to
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identify outliers in a dataset. However, recently, Nal-
isnick et al. (2018); Hendrycks et al. (2019) showed
that state-of-the-art deep generative models (DGMs)
failed in this task, assigning higher a likelihood to out-
of-distribution (OOD) data than in-distribution data.
Most of the recent works focused on proposing new test
statistics to alleviate the problem of using the plain
likelihood, see Section 5 for details.

We believe that OOD detection should be formulated
as statistical hypothesis testing (Nalisnick et al., 2019;
Ahmadian and Lindsten, 2021; Haroush et al., 2021).
Since the power of a single test depends on the out-
distribution (Zhang et al., 2021), we propose to ap-
proach this problem by using a combination of multi-
ple statistical tests. While the power of the combined
test also depends on the out-distribution, we hypoth-
esise that the combined test empirically will perform
better, especially in situations where one of the statis-
tics fails. Furthermore, the use of the statistical testing
framework has several advantages. Since we obtain a
p-value, it is more natural deciding on a threshold as
this corresponds to the significance level. In addition
to that, it also allow us to correct for the multiple com-
parisons problem when identifying outliers in a dataset
by controlling the number of Type I errors through the
false discovery rate (FDR).

In summary, our contributions are the following:

• We illustrate the benefits of combining multiple
statistical tests to perform OOD detection with
DGMs using well-established methods. This al-
lows for a proper decision procedure to control
the FDR in a real outlier detection setting.

• We revisit some proposed detection scores and
highlight their alternative formulation as classical
significance tests.

• Empirically we show the complementarity of the
typicality and the score statistics and that their
combination leads to a robust score for anomaly
detection.



Model-agnostic out-of-distribution detection using combined statistical tests

2 Using statistical tests for
out-of-distribution detection

We consider some data of interest that live in a space
X . Assume that we have a curated dataset x1, . . . , xm,
i.e. there are no outliers, and we are interested in un-
derstanding if some new data x̃1, . . . , x̃n are collec-
tively anomalies. In other words, we wonder whether
or not x̃1, . . . , x̃n are likely to come from the same
distribution that generated our curated dataset. We
present in this section two different approaches for do-
ing out-of-distribution detection using statistical tests:
one based on classical parametric tests and one based
on maximum mean discrepancy. A convenient prop-
erty of the tests we consider is that they are all one-
sided, which means we can expect them to be larger
when the data are more likely to be OOD. This allows
us to compute p-values by simply using the empirical
CDF, which is hyperparameter-free.

Note that in this problem formulation, the case n = 1
corresponds to the situation where we need to decide if
a single data point is out-of-distribution. This hardest
setting will be of particular interest, and this is also
the main focus of recent work, see Section 5.

2.1 Parametric tests for out-of-distribution
detection

The typical approach is to consider a parametric fam-
ily (pθ)θ∈Θ of probability densities over X and learn
a suitable θ0 ∈ Θ using any inference technique,
for example maximum likelihood, and the clean data
x1, . . . , xm. Depending on the input domain, (pθ)θ∈Θ

could be composed of DGMs (in that case, θ would be
neural network weights) or Gaussian mixture models
(in that case, θ would be composed of means, covari-
ances, and proportions). The question we wish to an-
swer may then be phrased: is pθ0 an appropriate model
for x̃1, . . . , x̃n?

We choose to formalize this problem as a paramet-
ric test whose alternative hypothesis is that x̃ is out-
of-distribution. More specifically, if we assume that
x̃1, . . . , x̃n ∼i.i.d. pθ̃ for some unknown θ̃ ∈ Θ, we wish

to test H0 : θ̃ = θ0 against H : θ̃ ̸= θ0, where the alter-
native hypothesis H is that the test points are OOD.

Many tests have been proposed for this purpose. The
three most famous are the likelihood ratio test of Ney-
man and Pearson (1928), Rao’s (1948) score test, and
the Wald test (Wald, 1943). These three classics are
nicely reviewed by Buse (1982) or by Rao (2005), who
called them the “Holy Trinity”. A recent and inter-
esting one is the gradient test of Terrell (2002), which
is reviewed in great detail in Lemonte’s (2016) mono-
graph.

Let us review the statistics of these four tests:

• likelihood ratio statistic is SLR = 2(ℓ(θ̂)− ℓ(θ0)),

• Wald statistic is SW = (θ̂ − θ0)
T I(θ̂)(θ̂ − θ0),

• score statistic is SS = ∇ℓ(θ0)
T I(θ0)

−1∇ℓ(θ0),

• gradient statistic is SG = ∇ℓ(θ0)
T (θ̂ − θ0),

where ℓ(θ) = log pθ(x̃1, . . . , x̃n) is the likelihood func-
tion, I(θ) = Epθ

[∇ℓ(θ)∇ℓ(θ)T ] is the Fisher informa-

tion matrix (FIM), and θ̂ ∈ argmaxθ∈Θ ℓ(θ).

The likelihood ratio statistic, the Wald statistic and
the gradient statistic all require to fit a model on the
additional datapoints x̃1, . . . , x̃n in order to compute
either ℓ(θ̂) or θ̂. In our setting, if we want to use
one of those statistics as an OOD score for a single
example, we should fit a DGM on that single data-
point. Xiao et al. (2020) did this for a variational au-
toencoder (VAE, Kingma and Welling, 2013; Rezende
et al., 2014) by only re-fitting inference network (or
encoder) to the additional example, which is a typ-
ical approach to dealing with out-of-sample data in
VAEs, as argued by Cremer et al. (2018) and Mat-
tei and Frellsen (2018). However, much of the recent
works in the literature (Ren et al., 2019; Schirrmeister
et al., 2020; Serrà et al., 2020) mainly focus on deriving
different versions of what they call a likelihood ratio
statistic.

We tried to derive a general way to compute both the
Wald statistic and the gradient statistic, by computing
θ̂ with a few steps of a gradient-based optimization al-
gorithm initialized at θ0, but this resulted in a very un-
stable update leading to computational issues (results
not shown). Therefore, in this work we focus on study-
ing the relevance of the score statistic for performing
out-of-distribution detection since it is the only statis-
tic that does not require fitting an additional model to
the OOD data.

2.2 Maximum mean discrepancy for
out-of-distribution detection

Another way of approaching out-of-distribution detec-
tion from a testing perspective is through a two-sample
test. Denoting pdata the true training data distribu-
tion, the goal is to test H0 : x̃1, . . . , x̃n ∼ pdata against
H : x̃1, . . . , x̃n ̸∼ pdata, where the alternative hypothe-
sis H again is that the test points are OOD.

A popular way of building statistics for two-sample
tests is to use a measure of distance between pdata
and the distribution of x̃1, . . . , x̃n. The key idea here
will be to use the trained generative model to build
this measure of distance. To this end, we will use the
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maximum mean discrepancy (MMD) of Gretton et al.
(2012), which is a kernel-based measure of distance.
Then, pθ will be used to specify an appropriate kernel.

More specifically, given a kernel whose feature map is
Φ : X → H, the MMD between two distributions P
and Q over X is defined as

MMDΦ(P,Q) = ∥EX∼P [Φ(X)]−EY∼Q[Φ(Y )]∥H. (1)

In our context, the test statistics will be of the form

MMDΦ

(
1

m

m∑
i=1

xi,
1

n

n∑
i=1

x̃i

)
=∥∥∥∥∥ 1

m

m∑
i=1

Φ(xi)−
1

n

n∑
i=1

Φ(x̃i)

∥∥∥∥∥
H

, (2)

where Φ is a kernel feature map built using the gen-
erative model and x1, . . . , xm is the training data,
i.e. samples from pdata. When H is a simple finite-
dimensional Hilbert space and Φ can be computed eas-
ily, then (2) can be computed by going through the
data and computing the means in an online fashion.

As always with kernel methods, a key question is how
to choose the kernel, or its feature map Φ. Here, we
want to use the trained generative model pθ to build
our kernel feature map Φ.

The Fisher kernel An important example of kernel
based on a generative model is the Fisher kernel of
Jaakkola and Haussler (1999). The embedding of this
kernel is the Fisher score

ΦFisher(x) = I(θ)−
1
2∇ log pθ(x), (3)

and the corresponding reproducing kernel Hilbert
space norm is just the ℓ2 norm: || · ||H = || · ||2. In
the case of the Fisher kernel, this means that Equa-
tion (2) becomes:

MMDΦFisher

(
1

m

m∑
i=1

xi,
1

n

n∑
i=1

x̃i

)
=∥∥∥∥∥I(θ)−

1
2

m

m∑
i=1

∇ log pθ(xi)−
I(θ)−

1
2

n

n∑
i=1

∇ log pθ(x̃i)

∥∥∥∥∥
2

.

(4)

We will see later that MMD with a Fisher kernel is
closely related to the score statistic. In Appendix B,
we additionally show that another popular OOD met-
ric known as the Mahalanobis score (Lee et al., 2018)
can be interpreted as a MMD statistic with a certain
Fisher kernel.

The typicality kernel A very simple approach of
embedding the data using pθ is to choose ΦTypical(x) =
log pθ(x). Then, MMD is exactly equivalent to the
typicality test statistic of Nalisnick et al. (2019), al-
though this connection was not explicitly stated by
Nalisnick et al. (2019). Because of this, we call the
kernel k(x, y) = log pθ(x) · log pθ(y) the typicality ker-
nel. While ΦTypical is not as well motivated as a ker-
nel as ΦFisher, the concepts of typicality and typical
set can be used to explain unintuitive behaviours of
probability distributions in high-dimensional space as
highlighted by Nalisnick et al. (2018). We also found
that using this kernel generally gives good results for
OOD tasks. An interesting analysis that we d not con-
sider in this paper would be to study the properties of
this kernel.

In general, neither of these two kernels are character-
istic, meaning that our MMD can be zero even if the
distributions are not identical. This could be solved
by combining them with a characteristic kernel, as in
Liu et al. (2020), at the price of including a new hy-
perparameter.

3 Combining different test statistics

For single-sample OOD detection, Zhang et al. (2021)
proved that there is not a single statistic that is con-
stantly better compared to all the possible alternatives
of interest. For this reason, we believe that using a
combination of different test statistics should lead to
an overall better OOD detection in settings where a
single statistic might fail. Assume we compute k dif-
ferent test statistics T1, . . . , Tk, each testingH0 against
H as defined in Sections 2.1 and 2.2. The goal is to
combine these different tests into a single statistical
test that ideally will perform better than the initial
single tests. However, different tests can have differ-
ent magnitudes and they can differ also in the direction
of out-of-distribution detection, i.e. for some statistics
having a higher values is associated with being OOD,
while for other smaller values are OOD. This makes a
combination non-trivial.

Morningstar et al. (2021) proposed the density of
states estimator (DoSE) to overcome this problem.
They only focused on the single-sample detection task,
i.e. n = 1 following our problem formulation. Their
idea is to fit different nonparametric density estima-
tors, such as a kernel-density estimator (KDE) or a
one-class support vector machines (SVM), for each
different statistic T1, . . . , Tk by using the values com-
puted on the training set examples. For a single
test example, x̃1, they first compute T1, . . . , Tk and
then combine those statistics by summing the different
KDEs log-density. While this approach can be used for
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any type of statistic, and thus is more general, it uses
less prior information. Indeed, if we use only statis-
tics that are truly one-sided, then we assume that a
method that leverages the true nature of the statistics
should work better. In addition to that, fitting a KDE
introduces an additional hyperparameter.

In our work, instead, we propose a different approach
and leverage the fact that we use only one-sided test
statistics. This setting is a well-studied problem in the
literature both for independent (Fisher, 1925; Folks
and Little, 1971) and dependent one-sided test statis-
tics (Brown, 1975; Wilson, 2019). All these approaches
rely on the computation of p-values of each statistic for
the test set x̃1, . . . , x̃n. This corresponds to comput-
ing pj = Pr(Tj > tj | H0), i.e. the probability that the
j’th test is bigger than the observed value under the
null hypothesis H0, where we assume that each Tj has
a continuous distribution. Using p-values also solves
the problem of the statistics having different scales.
Indeed, p-values transform the different test statistics
into the unit interval.

Computation of p-values We want to approxi-
mate the distribution of the p-values p1, . . . , pk of
x̃1, . . . , x̃n under the null hypothesis H0. When H0

is true, then pj is uniformly distributed on the inter-
val [0, 1]. To succeed in this, we should be able to
compute pj = Pr(Tj > tj | H0), therefore we need
to estimate the distribution of each statistic Tj under
H0. As done by Nalisnick et al. (2019), we assume
the existence of a validation set X′ that was not used
to train our generative model. From X′ we bootstrap
S new datasets {X′

s}Ss=1 of size M ′ by using boot-
strap resampling. When n is small, for example n = 1
or n = 2, where n = 1 corresponds to single-sample
OOD detection, and the validation set is big, a conve-
nient alternative to bootstrapping is to directly eval-
uate each test statistic Tj on every single validation
example. Asymptotically, this is equivalent to creat-
ing S new datasets of size M ′ = 1 when S → ∞. In
case of n = 2, i.e. two-samples OOD detection, and
a big validation set we can simply bootstrap without
resampling. We then use these values to estimate the
empirical distribution function (eCDF) of the consid-
ered statistic Tj under H0. To obtain the p-values of
test examples x̃1, . . . , x̃n for the test statistic Tj = tj ,
we simply compute pj = 1 − Pr(Tj < tj | H0) using
the eCDF.

Combining test statistics by combining p-values
Fisher’s (1925) method is a procedure to combine dif-
ferent p-values p1, . . . , pk. This method assumes that
all the considered test statistics are independent, and
Folks and Little (1971) proved that it is asymptotically
optimal among all methods of combining independent

tests. Given T1, . . . , Tk and corresponding p-values
p1, . . . , pk, Fisher’s method combines the p-values into
a test statistic X2 defined as

X2 ∼ −2

k∑
j=1

ln(pj). (5)

In case all null-hypotheses are accepted, the resulting
test statisticX2 follows a chi-squared distribution with
2k degrees of freedom. In the Appendix D.2 , we also
consider the Harmonic mean p-value (Wilson, 2019)
as a way to combine p-values from different statistics.
This method usually works best when the statistics are
not independent.

4 From test statistics to practical
out-of-distribution scores

Several of the test statistics that we consider make use
of the inverse of the Fisher information matrix I(θ).
The true Fisher information matrix requires an iden-
tifiable model to be invertible (Watanabe, 2009) and
computing its inverse isO(m3), wherem is the number
of model parameters. For DGMs, the Fisher informa-
tion matrix might not be invertible due to the fact
that DGMs typically do not satisfy the identifiability
condition. Also, the inversion may be computationally
impractical, since state-of-the-art DGMs involve very
high-dimensional parameter spaces Θ. For the same
reason, storing I(θ) can also be challenging.

We replace it by using a proxy matrix that has to be
easy to compute and invert. A first idea is to simply
replace I(θ) by the identity matrix. A more refined
way is to look for a diagonal approximation. In Ap-
pendix A, we describe cheap ways of computing such
approximations. In particular, we will study two cases:
the case where I(θ) is replaced by the identity matrix
and the case where I(θ) is replaced by a diagonal ma-
trix estimated using the training data.

A possible third option would be to estimate the diag-
onal of I(θ) using samples from the model. However,
for autoregressive models as the PixelCNN, sampling
is a sequential procedure and therefore it is compu-
tationally expensive to generate many samples when
the input-space is high-dimensional. For this reason,
we do not consider it in this work. More complex and
precise approximations of the FIM exists, such as the
Kronecker-factored Approximate Curvature (K-FAC,
Martens and Grosse, 2015), but these are not defined
for all types of layers used by state-of-the-art models.

On the difficulty of computing per-example gra-
dients Both the diagonal approximation of the FIM
and the computation of the MMD with Fisher kernel of
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Equation (4) require the gradient computation for all
training and test examples. This is known as a costly
procedure. For example, if we have to compute the
gradient for N examples using a simple fully connected
network with l layers of size p, the naive procedure of
using a batch-size of dimension 1 is O(Nlp2) (Good-
fellow, 2015). While more efficient per-example gra-
dient computations were proposed (Goodfellow, 2015;
Rochette et al., 2019), these techniques can only be
applied on simple fully connected or convolutional net-
works. While for this paper we relied on the naive solu-
tion of looping through every example one at the time,
a more efficient solution is provided by the BackPACK
library (Dangel et al., 2020) which allows to compute
the gradient with respect each sample in a minibatch.

4.1 Relationship between MMD with Fisher
kernel and the score statistic and
gradient norm

Depending on the choice of the Fisher information
approximation, we can notice that there is a strong
connection between the MMD using a Fisher ker-
nel, the score statistic and the gradient norm in
terms of expected OOD performance. Let us start
by looking at the case where we approximate I(θ)
with a diagonal matrix estimated using the train-
ing data. At the maximum likelihood estimate, we
have that E[∇ log pθ(x)] = 0, i.e. the first term in-
side the norm is 0. Therefore, we expect that the
differences between the OOD scores computed by us-
ing Equation (4) will be preserved if we only consider∥∥I(θ)−1/2∇ log pθ(x̃1, . . . , x̃n)

∥∥
2
, which corresponds to

the square root of the score statistic. Since taking
the square root still preserves the difference between
values, we can expect that the MMD using a Fisher
kernel will perform closely to the score statistic. The
same reasoning also holds in case we replace the FIM
with an identity matrix. In this specific case, instead,
we will get that

∥∥I(θ)−1/2∇ log pθ(x̃1, . . . , x̃n)
∥∥
2

=
∥∇ log pθ(x̃1, . . . , x̃n)∥2, which corresponds to consid-
ering the gradient norm.

Computationally speaking, considering the score
statistic instead of the MMD Fisher lets us avoid going
through the entire training set to compute the average
gradient (first term in Equation (4)) while carrying
the same information. Therefore, in this paper, we
will mainly focus on the combination of the typicality
test and the score statistic.

4.2 Why does it make sense to combine the
score statistic and the typicality test?

Let us discuss our choice of combining the score statis-
tic and the typicality test. We will try to look in

which situations one of the test fails and the other
works and vice versa. Both examples assume that
the in-distribution data follows a N (0, ID) distribu-
tion, and that the correct model has been learned by
fitting (N (θ, ID))θ∈RD via maximum-likelihood. Even
in this simple setting with no model misspecification,
we will see that the two statistics that we consider may
have very different strengths.

In this simple Gaussian case, the score statistic can be
computed exactly and will be ||x̃1+ . . .+ x̃n||22. On the
other hand, the typicality statistic will be |(||x̃1||22 +
. . . + ||x̃n||22)/(2 · n) − D/2|. One interesting regime
is the very high-dimensional one (D → ∞). Indeed,
by the law of large numbers, these random statistics
become deterministic quantities.

Typicality fails, the score succeeds Assume that
we have two independent OOD data samples that fol-
low a product of truncated normal distributions, with
density proportional to

N (x|0, ID) · 1{x1 > 0, . . . , xD > 0}.

We denote by T ood
score, T

id
score and T ood

typicality, T
id
typicality the

statistics obtained when confronted with either OOD
data from the truncated normal, or the in-distribution
data. While these statistics are random in general,
they will become deterministic when D → ∞, by
virtue of the law of large numbers.

For the typicality statistic, these two OOD samples
will be indistinguishable from Gaussian ones. Indeed,
when D → ∞, both T ood

typicality and T id
typicality will be

O(D). On the other hand, for the score, one can show
that

T ood
score − T id

score ∼ 2Dµ2
TN, (6)

where µTN > 0 is the mean of the truncated normal
distribution.

Typicality succeeds, the score fails Let us now
consider as the OOD distribution a Dirac distribution
with mean 0. Suppose that we see a single sample
from this distribution. In this case, the score statistic
will be 0, and will therefore not detect that the point
is actually OOD. However, when D is large, the typ-
icality test will be able to declare that this point is
anomalous, as shown by Nalisnick et al. (2019).

Therefore, we have that the typicality test and the
score statistic are complementary and measure a dif-
ferent type of information. In Appendix D.1, we em-
pirically show that they are not correlated, by plotting
the two measures against each other and by computing
the correlation matrix.
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5 Related works

Since Nalisnick et al. (2018) and Hendrycks et al.
(2019), different test statistics or methodologies for
OOD detection using DGMs were proposed. Most of
the recent solutions were highly influenced by three
major lines of work: typicality set, likelihood ratio test
statistics, and model misestimation.

The typicality set hypothesis was introduced by Nal-
isnick et al. (2019) as a possible explanation for the
DGMs assigning higher likelihood to OOD data. The
typicality set is the subset of the model full support
where the model samples from and this does not in-
tersect with the region of higher likelihood. While the
typicality test was introduced for batch-OOD detec-
tion, Morningstar et al. (2021) shows that it also works
well in the single-sample case. This is also confirmed
by our own experiments.

The likelihood ratio test statistic method by Ren et al.
(2019) assumes that every input is composed by a
background component and a semantic component.
For OOD detection, only the semantic component
matters. In addition to a model trained on the in-
distribution data, they proposed to train a background
model on perturbed inputs data and then for each test
example consider as OOD score the likelihood ratio
between the two models. Schirrmeister et al. (2020),
instead, trained the background model on a more gen-
eral distribution of images by considering 80 million
general tiny images. Similarly to these approaches,
Serrà et al. (2020) argued that the failure of DGMs
is due to the high-influence that the input complex-
ity has on the likelihood. Therefore, they proposed to
use a general lossless image compression algorithm as
a background model. All these methods, however, re-
quire additional knowledge of the OOD data for either
choosing an image augmentation procedure to perturb
the input data or for choosing a specific compressor.

Another line of works blame the models themselves
and not the test statistics. Zhang et al. (2021) ar-
gued that model misestimation is the main cause of
higher likelihood assigned to OOD data. This can
be due to both the model architecture and the max-
imum likelihood objective. Kirichenko et al. (2020)
and Schirrmeister et al. (2020) showed that normaliz-
ing flows can achieve better OOD performance despite
achieving a worse likelihood if one changes some model
design choices. Other works in the literature focused
on deriving specific test statistics that works only for
a specific model, for example for VAEs (Xiao et al.,
2020; Maaløe et al., 2019; Havtorn et al., 2021), or for
normalizing flows (Kirichenko et al., 2020; Ahmadian
and Lindsten, 2021).

As mentioned in the introduction, we frame the OOD
detection problem in terms of statistical tests prob-
lem. Recently, Haroush et al. (2021) showed that
adopting hypothesis testing at the layer and channel
level of a neural network can be used for OOD de-
tection in the discriminative setting. They used both
Fisher’s method and Simes’ method to combine class-
conditional p-values computed for each convolutional
and dense layer of a deep neural network. We focus
on the unsupervised setting using DGMs and use hy-
pothesis testing on statistics that can be computed on
all differentiable DGM. As already explained in sec-
tion Section 3, Morningstar et al. (2021) considered
the combination of different statistics for OOD detec-
tion. The main difference with their approach is that
we propose statistics that can be applied to any dif-
ferentiable generative model and combine them by us-
ing Fisher’s method, which takes advantage of using
only one-sided independent statistics. Concurrently,
Choi et al. (2021) derived the score statistic by start-
ing from the likelihood ratio statistic and applying
a Laplace approximation. They computed the score
statistic only for certain layers of the model and for a
specific example, the OOD score is given by the infinity
norm of these different layer scores after a ReLU oper-
ation. Our procedure differs both in the derivation of
the score statistic and its usage since we compute the
score statistic for the entire model.

6 Experimental Setup

To evaluate the performance of the combination of
the typicality test and the score statistic in detect-
ing OOD data, we follow the experiments of Nalis-
nick et al. (2018); Hendrycks et al. (2019) and consid-
ered the OOD detection task on three image dataset
pairs that have been proven challenging for DGMs, i.e.
FashionMNIST (Xiao et al., 2017) vs MNIST (LeCun,
1998), CIFAR10 (Krizhevsky, 2009) vs SVHN (Netzer
et al., 2011), and CIFAR10 vs CIFAR100. Winkens
et al. (2020) divide these tasks into far -OOD tasks,
where the in-distribution and out-distribution are dif-
ferent such as in the case of CIFAR10 against SVHN,
and near -OOD where the two distributions are pretty
similar, such as CIFAR10 and CIFAR100. Near -OOD
tasks are usually most challenging.

For each task, we trained three different state-of-the-
art DGMs, a PixelCNN++ (Salimans et al., 2017), a
Glow model (Kingma and Dhariwal, 2018), and a hier-
archical variational autoencoder (Kingma andWelling,
2013; Rezende et al., 2014) with bottom-up infer-
ence (HVAE, Burda et al., 2016). These are DGMs
parametrized by neural networks that make different
assumptions in the modelling choice of the target dis-
tribution. In addition to that, for PixelCNN++ and
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Figure 1: First plot : p-values of the typicality test on the two test sets. We can see that under H0, they should
be uniformly distributed. Second plot : p-values of the score statistic. Third plot : values obtained by the Fisher’s
method. In red, we plot the density function of a χ2-distribution with 4 degrees. This shows that the statistics
are independent. Fourth plot : p-values obtained of the combination. These plots refer to a PixelCNN++ trained
on FashionMNIST without dropout.

Glow we have a tractable likelihood while for HVAE we
can only estimate a lower bound. A more in-depth de-
scription of these methods and additional results test-
ing MNIST against FashionMNIST and SVHN against
CIFAR10 can be found in Appendix D.6. We also ex-
tensively analyzed, focusing mostly in the influence of
the preprocessing, the results on CIFAR10 vs CelebA
(Liu et al., 2015) in Appendix E. In Appendix D.7,
we also considered a Gaussian Mixture Model and a
Probabilistic PCA as simple generative models.

Models To analyze the effect of model architecture
choices and optimization choice, we also consider dif-
ferent versions of the same model that reaches a sim-
ilar log-likelihood. We consider 5 different models for
each dataset pair. On FashionMNIST, we consider
two Glow models, one trained using Adam and one
using RMSProp and two PixelCNN++, trained with
and without dropout. For CIFAR10, we consider two
different PixelCNN++, one trained by us (model1)
and one using a checkpoint given by the repository
we used1 (model2), and two Glow models (Adam and
RMSProp). For both datasets, instead, we consider
only one HVAE.

Baselines We are mostly interested in testing our
methods with other model-agnostic test statistics in
the literature. Apart from using the plain likelihood
as an OOD score, the only test statistic we are aware
of that can be applied to any generative model without
requiring any background model or OOD assumptions
is the typicality test statistic of Nalisnick et al. (2019).
We also considered the gradient norm, which in general
seem to work well but fails in the case of SVHN vs
CIFAR10 (see Appendix D.6). In addition to that,

1https://github.com/pclucas14/pixel-cnn-pp

we compare our methods to a model-agnostic version
of DoSE by Morningstar et al. (2021), where we used
KDEs to combine the score statistic and the typicality
test statistic.

Evaluation We compare our methods with the base-
lines by computing the area under the receiver oper-
ating characteristic curve (AUROC) as done in previ-
ous works (Hendrycks et al., 2019; Ren et al., 2019;
Morningstar et al., 2021). We also evaluate our meth-
ods in terms of False Discovery Rate (FDR) control
Benjamini and Hochberg (1995), i.e. the proportion
of false positive among the rejected hypothesis. Note
that both quantities need to know the true label (OOD
or in-distribution) to be computed.

7 Results

One-sample OOD We first evaluate our proposed
method in the single-sample OOD detection task. Re-
sults are summarized in Table 1. We start by consider-
ing the OOD task on FashionMNIST against MNIST.
Looking at the single statistics, we notice that the
score statistic is the one that works the best and the
combination of the typicality test and the score statis-
tic usually improve the AUROC than the two stan-
dalone statistics. In addition to that, it is better than
the combination of the two statistics by using a KDE.
DoSE seems to perform better on Glow trained with
RMSProp, where the typicality is failing.

On natural images, instead, we have a different trend.
The typicality test is better than the score statis-
tic overall. The gradient norm surprisingly performs
well in the two dataset pairs, but it fails badly when
the model is trained on SVHN (see Appendix D.6).
Regarding the combination of the two statistics, the

https://github.com/pclucas14/pixel-cnn-pp
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Table 1: AUROC↑ for single-sample OOD detection. For Fisher’s method we mean the combination of the
typicality test and the test statistic. These are also combined using DoSE.

FashionMNIST (in) / MNIST (out)

single statistics combination

models log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (dropout) 0.0762 0.8709 0.8314 0.8822 0.9369 0.8822
PixelCNN++ (no dropout) 0.1048 0.9532 0.7575 0.9381 0.9536 0.9382

Glow (RMSProp) 0.1970 0.8904 0.4807 0.9114 0.8598 0.8901
Glow (Adam) 0.1223 0.7705 0.6987 0.8745 0.8839 0.8752

HVAE 0.2620 0.8714 0.4884 0.9578 0.9383 0.9498

CIFAR10 (in) / SVHN (out)

single statistics combination

models log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (model1) 0.1553 0.8006 0.6457 0.6407 0.6826 0.6571
PixelCNN++ (model2) 0.1567 0.7923 0.6498 0.7067 0.7300 0.7243

Glow (RMSProp) 0.0630 0.8585 0.8651 0.7940 0.8683 0.8510
Glow (Adam) 0.0627 0.7844 0.8624 0.7655 0.8613 0.8588

HVAE 0.0636 0.8067 0.8679 0.7335 0.8603 0.8179

CIFAR10 (in) / CIFAR100 (out)

single statistics combination

models log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (model1) 0.5153 0.5306 0.5458 0.5362 0.5563 0.5477
PixelCNN++ (model2) 0.5150 0.5230 0.5455 0.5325 0.5543 0.5453

Glow (RMSProp) 0.5206 0.5547 0.5507 0.5801 0.5844 0.5842
Glow (Adam) 0.5206 0.5593 0.5508 0.5692 0.5775 0.5767

HVAE 0.5340 0.5280 0.5493 0.5798 0.5879 0.5941

Fisher’s method is always better than DoSE, but in
this setting, it improves over the best of the single
statistics three out of five times. In the near -OOD
task, we have that both our method and DoSE us-
ing our suggested statistics perform closely. We want
to highlight that for this challenging task we get re-
sults that are comparable with those reported in Morn-
ingstar et al. (2021), but by using two model-agnostic
statistics instead of three model-specific ones. It can
be noticed that the way we train our models has a
strong influence on both the typicality test and the
score statistic, although the models get the same test
log-likelihood. In Appendix D.4, we also show that
this can happen between different checkpoints of the
same model.

In Figure 1, we show that the p-values distributions
for both the typicality and the score statistic are uni-
formly distributed under the null-hypothesis and that
the combination under the null follows a χ2 distribu-
tion with 4 degrees of freedom. This also supports the
fact that the typicality test and the score statistic are
independent.

Two-sample OOD As Nalisnick et al. (2019), we
consider how these test statistics change when per-
forming two-sample OOD detection. Results are sum-

marized in Table 2. As shown by Nalisnick et al.
(2019), the typicality improves but also the score
statistic gets better if we consider more samples. Com-
bining those leads to an improvement of performance
in terms of AUROC with almost all the models. When
training on FashionMNIST, the model can almost per-
fectly distinguish between the in-distribution test set
and the OOD test set. While the performance im-
proves for the two far -OOD task, we have that the
improvement is slightly less evident in the near -OOD
task of CIFAR10 vs CIFAR100.

7.1 Practical OOD detection with FDR
control

One of the advantages of framing the problem as mul-
tiple testing is that we have a well-defined procedure
to decide on which hypotheses to reject while control-
ling the False Discovery Rate (FDR, Benjamini and
Hochberg, 1995). Imagine we are interested in finding
the outliers from the dataset given by the combina-
tion of the two test-sets but we do not want to dis-
card too many inliers, then we can use the Benjamini-
Hochberg (BH) procedure (Benjamini and Hochberg,
1995) to decide a threshold and reject all hypothesis
below that threshold. For a specific significance level
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Table 2: AUROC↑ for two-sample OOD detection us-
ing the usual considered model.

FashionMNIST (in) / MNIST (out)

models Typicality Score Stat Fisher’s method DoSEKDE

PCNN++ (drop.) 0.9514 0.9828 0.9934 0.9912
PCNN++ (no drop) 0.9081 0.9853 0.9916 0.9921
Glow (RMSProp) 0.6190 0.9588 0.9187 0.7201
Glow (Adam) 0.8525 0.9716 0.9708 0.9736

HVAE 0.6634 0.9881 0.9837 0.9889

CIFAR10 (in) / SVHN (out)

models Typicality Score Stat Fisher’s method DoSEKDE

PCNN++ (m1) 0.7675 0.6555 0.7800 0.7046
PCNN++ (m2) 0.7720 0.7235 0.8227 0.7850

Glow (RMSProp) 0.9497 0.8624 0.9536 0.9379
Glow (Adam) 0.9480 0.8370 0.9519 0.9329

HVAE 0.9623 0.7754 0.9560 0.9133

CIFAR10 (in) / CIFAR100 (out)

models Typicality Score Stat Fisher’s method DoSEKDE

PCNN++ (m1) 0.5433 0.5450 0.5540 0.5508
PCNN++ (m2) 0.5435 0.5370 0.5533 0.5470

Glow (RMSProp) 0.5550 0.6211 0.6165 0.6233
Glow (Adam) 0.5558 0.6073 0.6083 0.6117

HVAE 0.5594 0.6188 0.6218 0.6273

α, the procedure guarantees that the FDR stays below
that level. Therefore, we can guarantee that the rate
of inliers that are classified as outliers is less than the
chosen α.

We leverage the fact that when the null hypothesis is
true and the p-values are independent, then the scores
obtained by combining k different statistics are χ2

2k

distributed to compute the p-values. Alternatively,
the procedure can be also applied to the p-values of
a single test-statistic. Usually, it is better to use a
FDR control when it is actually possible to make few
false discoveries, i.e. when we have a strong statistic.
Therefore, we expect the procedure to work well when
the AUROC is good, for examples on models trained
on FashionMNIST.

As can be seen in Figure 2, we have that the Type I ra-
tio line stays below the identity line, meaning that the
BH correction is working. When deciding for a specific
threshold α, we usually have to trade-off between Type
I and Type II error and in most cases the threshold to
choose depends on the application domain. Ideally, we
would like to have a low Type I and a low Type II error
rate, meaning that we are not considering a lot of in-
distribution examples as OOD and at the same time
considering a lot of outliers as in-distribution. Fig-
ure 2 shows that we can achieve this for low values of
α. When training on CIFAR, instead, we are able to
control the FDR only from a certain significance level
(see Appendix D.5). This is expected given that the
AUROC is not as good as when testing on MNIST.

8 Discussion and Conclusions

In this paper we studied the task of out-of-distribution
detection using deep generative models and a combina-
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HVAE trained on FashionMNIST
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Figure 2: Type I (probability of an inlier to be clas-
sified as outlier) and Type II (probability of an out-
lier to be considered as inlier) errors versus the sig-
nificance level α on the combination values. By using
Benjamini-Hochberg correction, we get that the Type
I error stays below identity line.

tion of multiple statistical tests. We tested our method
using different state-of-the art DGMs on classic image
benchmark for OOD detection. We found that com-
bining the two statistic leads to a more robust score
that in some cases is close to state-of-the-art model-
specific scores that require more assumptions. We also
noticed that both the model design choice and the op-
timization choices have an influence on the score we
are computing.

When considering only one-sided independent statis-
tics, we showed that the Fisher’s method tends to
works better than combine them by summing the log-
density of a KDE.We also noticed that the score statis-
tic tends to perform a bit worse when the number of
parameters of the models increases, i.e. in the context
of natural images. One possible reason can be that in
this setting the diagonal approximation is not good,
and therefore one could consider different approxima-
tions, such as K-FAC.

DGMs have recently been used for handling missing
data (see e.g. Mattei and Frellsen, 2019; Ma et al.,
2019; Nazábal et al., 2020; Ipsen et al., 2021). An
interesting future direction would be to extend these
OOD detection methods to handle missing values.

The methods presented in this paper can also easily be
applied when using model-specific one-sided statistics.
In addition to obtain a more accurate score if one want
to combine the test statistics, this also allows one to
use well-defined procedure to control the FDR when
choosing a which example to mark as outliers. Having
this control, is necessary when we want to apply these
methods in real settings.
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Supplementary Material:
Model-agnostic out-of-distribution detection

using combined statistical tests

A Crude approximation of the Fisher information

The Fisher information is defined as:

I(θ) = Ex∼pθ
[∇ log pθ(x)∇ log pθ(x)

T ]. (7)

A crude diagonal approximation can be computed by simply estimating the diagonal of I(θ) and setting all
off-diagonal elements to zero. Such diagonal approximations have been used in machine learning for decades: for
instance, LeCun (1987, Section 3.12.2) used a similar approximation of the Hessian matrix, and called it “outra-
geously simplifying”. Much more complex approximations have been derived, although diagonal approximations
have been consistently used (e.g. by Kirkpatrick et al., 2017, who used essentially the same approximation in
a supervised context), and are linked to several adaptive optimisation techniques like Adam (Kingma and Ba,
2015) or RMSProp (Tieleman et al., 2012). A good discussion on these issues is provided in Martens’s (2020)
recent review.

The approximation we used in the paper works as follows:

• By using the training examples x1, ..., xT , we form the estimate

DT (θ) =
1

T

T∑
t=1

Diag(∇ log pθ(xt)
2),

where the square in ∇ log pθ(xt)
2 is computed elementwise.

• While we could directly use DT (θ) as an estimate. A slightly more refined approach is to slightly regularise
DT (θ). Following Martens (2020), our final estimate of the Fisher information matrix is

ÎT (θ) = (DT (θ) + ε)ξ, (8)

with all operations performed elementwise. The diagonal matrix ÎT (θ) is then easy to invert and can be
used to compute our statistics.

How to choose ε and ξ? The Adam optimizer uses a similar estimate, with default hyperparameters ε = 10−8

and ξ = 1. As argued by Martens (2020), it can be interesting to use ξ < 1 in order to diminish the influence of
extreme values of DT (θ). In particular, Martens (2020) suggests taking ξ = 0.75. When ξ −→ 0, then ÎT (θ) will
approach the identity matrix. We tested the two settings by using a PixelCNN++ trained on CIFAR. Results
are shown in table 3. In terms of OOD detection, it seems that using ε = 10−8 and ξ = 1 is slightly better. All
results presented in the paper and in the supplementary material are computed by using ε = 10−8 and ξ = 1.

A few notes on the computation of DT (θ) While it seems more sensible to use samples x1, ..., xm ∼ pθ
from the model, we decided to simply reuse the training data x1, ..., xT instead. There are two computational
advantages to this. The first one is that sampling many data points can be expensive (in particular for deep
autoregressive models à la PixelCNN). The second advantage is that, if we wish to compute a MMD statistic,
such as the MMD with the Fisher kernel or the MMD typicality (that require the average of gradient or the
average log-likelihood over the training), computing the average of the square of the gradient costs very little.
One can just do a single loop over the data, and use the usual formulas for online estimation of a mean, see
Algorithm 1.
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Table 3: AUROC↑ for single-sample OOD detection. Comparison between two different estimates of the Fisher
information matrix. For (‡) we used the Adam parameter choice, i.e. ε = 10−8 and ξ = 1. For (§), instead, we
used ε = 10−8 and ξ = 0.75, as suggested by Martens (2020). As a results we have that using Adam parameters
choice is slightly better for our task.

CIFAR10 (in) / SVHN (out)

models MMD Diagonal Typicality Score Stat Fisher’s method

PixelCNN++ (model2) (‡) 0.7070 0.6498 0.7067 0.7300
PixelCNN++ (model2) (§) 0.6881 0.6498 0.6878 0.7176

(‡) With ε = 10−8 and ξ = 1
(§) With ε = 10−8 and ξ = 0.75

Do we really need to approximate the diagonal of I(θ)? Another possibility is to just use the identity
matrix as FIM instead of of approximating the diagonal through the procedure explained above. In our experi-
ments (see table 5 and table 9), we can see that sometimes using the identity matrix seems to work equally well
or a bit better for some models trained on FashionMNIST and CIFAR10. However, when we train on SVHN or
MNIST, there are a cases where the statistic that is using the identity matrix as approximation fails, sometimes
being worse than random chance. In those setting, using the diagonal approximation leads to way better results.
Therefore, considering a test statistic that uses the diagonal approximation of the FIM is more robust for OOD
detection.

B The Mahalanobis score as MMD

Lee et al. (2018) introduced a simple metric to perform OOD detection with a trained deep classifier. The key
idea is to train a simple generative model (linear discriminant analysis) in the feature space of the classifier. Let
y denote the labels, and z = f(x) the data in feature space. In the simplest case, f is just the trained deep net
devoid of the last softmax layer. The linear discriminant analysis model is

y ∼ Cat(π), z|y ∼ N (µy,Σ), (9)

where µ1, ..., µK are class-dependent means, Σ a common covariance matrix, and π1, ..., πK are the class propor-
tions, estimated by maximum-likelihood. The Mahalanobis score is then

M(x) = max
k∈{1,...,K}

−(z − µk)
TΣ−1(z − µk), (10)

which may be rewritten
M(x) = max

k∈{1,...,K}
p(z|k), (11)

under the assumption of equal class proportions (i.e. π1 = ... = πK = 1/K).

We show here that it is possible to re-interpret this score as a MMD score with a certain Fisher kernel. The
generative model induced on z by linear disciminant analysis is a Gaussian mixture:

pπ,µ,Σ(z) =

K∑
k=1

πkN (z|µk,Σ). (12)

If we want a powerful deep kernel, it seems somewhat natural to consider the Fisher kernel associated with this
generative model. The most important part of this mixture model are arguably the class-specific means (indeed,
the model has been trained to discriminate the classes as well as possible). Therefore, we will only include these
means in the Fisher kernel, and look at

ΦFisher(x) = I(µ)−1/2∇µ log pπ,µ,Σ(z), (13)

assuming that π and Σ are fixed at their maximum likelihood estimates. Similar mixture-based Fisher kernels
have been very popular in the past, and were actually a key element of state-of-the art classification models on
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Imagenet before deep nets won the competition (Perronnin et al., 2010). Our idea is to re-use ideas introduced
by this computer vision litterature. Under the assumption that the Gaussian clusters are well-separated, Tanaka
et al. (2013), extending an earlier analysis of Sánchez et al. (2013, Appendix A), showed that

[ΦFisher(x)]µk
≈

√
p(z|k)
πk

Σ−1/2(z − µk). (14)

Now, using the fact that the expected value of the score is approximatively zero, we can write that

MMD2
ΦFisher

≈
K∑

k=1

||[ΦFisher(x)]µk
||22 ≈

K∑
k=1

p(z|k)
πk

(z − µk)
TΣ−1(z − µk). (15)

Using again the fact that the clusters are well-separated, we may say that z|k is approximatively a point mass

at the most probable label, i.e. that p(z|k) ≈ δ
argmaxcp(z|c)
k . This leads to the approximation

MMD2
ΦFisher

≈ max
k∈{1,...,K}

1

πk
(z − µk)

TΣ−1(z − µk). (16)

Finally, assuming that the class proportions are equal leads to the equivalence of MMDΦFisher
and the Mahalanobis

score.

C More Information on the experimental setup

C.1 A bit more background

The three considered DGMs are both parametrized by neural networks but they differ in the way they model the
data distribution of interest. Assume we are interested in approximating a target distribution p∗(x), for example
a distribution of natural images, as it is done when using CIFAR10. PixelCNN++ is an autoregressive model
and it models p∗(x) as a product of conditional distribution over the variables, i.e. p(x) = p(x1)

∏D
d=2 p(xd |

x<d), where x<d = [x1, . . . , xd−1]
T . Glow is a normalizing flow model and it approximate p∗(x) by using a

sequence of bijiective transformations starting from a simple distribution, also called base distribution. If we
use only a single invertible transformation f , the normalizing flow is defined as x = f(z), where z ∼ pZ(z), and
pX(x) = pZ(z)|det Jf (z)|−1, where we used the change of variable formula. For these two types of model we
have a tractable likelihood that can be used to optimize the model parameters. The Variational Autoencoder
(VAE), instead, is a framework to model the data with a latent variable model, i.e. p(x, z) = p(x | z)p(z), where
x is the observed input data and z is a stochastic latent variable and the prior distribution p(z) is usually a
standard Normal. Since the posterior p(z | x) is not tractable, a variational distribution qϕ(z | x) is used as an
approximation. Due to the intractability of the posterior, we cannot directly optimize the likelihood of the model,
but instead the model parameters are optimized by maximizing the evidence lower bound (ELBO): log pθ(x) ≥
Eqϕ(z|x)

[
log p(x,z)

qϕ(z|x)

]
≡ L. In this work we are considering an Hierarchical VAE (HVAE) with bottom-up inference

as done in Havtorn et al. (2021). This is an extension of the VAE framework that consider an hierarchy of L

latent variables z = z1, . . . , zL. The bottom-up inference is defined as qϕ(z | x) = qϕ(z1 | x)
∏L

i=2 qθ(zi | zi−1),
while the generative path is top-down, meaning pθ(x | z) = p(x | z1)pθ(z1 | z2) · · · pθ(zL−1 | zL). This is still
trained by maximizing the ELBO. For a more in-depth explanation of these models we refer to their papers.

C.2 Generative model details

We will briefly describe the different model architectures and training procedures used in this paper. Since most
of the models are taken from public code repositories and related papers, we will mostly invite the reader to
have a look at the cited paper for a more in-depth description of the training details. For MNIST, CIFAR10,
and FashionMNIST we used 3000 examples from the test set as validation set. For SVHN, instead, we used
6032 datapoints from the test set as validation, leaving the remaining 20000 examples as test set. In Table 4, we
reported test log-likelihood of the models used in this paper.



Model-agnostic out-of-distribution detection using combined statistical tests

Table 4: Test log-likelihood (bits/dim) achieved by the models used in the paper.

Models trained on FashionMNIST)

models Log-Likelihood (bits/dim)

PixelCNN++ (dropout) 2.75
PixelCNN++ (no dropout) 2.72

Glow (RMSProp) 3.04
Glow (Adam) 3.02
HVAE (∗∗) 0.43

Models trained on CIFAR10

models Log-Likelihood (bits/dim)

PixelCNN++ (model1) 2.94
PixelCNN++ (model2) 2.94

Glow (RMSProp) 3.62
Glow (Adam) 3.62

HVAE 3.87

(∗∗) Binarized FashionMNIST

Models trained on MNIST

models Log-Likelihood (bits/dim)

PixelCNN++ (dropout) 0.90
Glow (RMSProp) 1.32
Glow (Adam) 1.30
HVAE (∗∗) 0.16

Models trained on SVHN

models Log-Likelihood (bits/dim)

PixelCNN++ (dropout) 1.58
Glow (RMSProp) 2.23
Glow (Adam) 2.21

HVAE 2.38

(∗∗) Binarized MNIST

PixelCNN++ For PixelCNN++ we used the code available in this repository2. For the greyscale images,
we used one residual block per stage with 32 filters and 5 logistic components in the discretized mixture of
logistics. For natural images, instead, we used 5 residual blocks per stage with 160 filters and 10 components in
the mixture. We trained all the models using Adam optimizer.

Glow For training Glow models we follow Kirichenko et al. (2020) and their repository3. They closely follow
Nalisnick et al. (2018) and Kingma and Dhariwal (2018) implementation for multi-scale Glow, where a scale
is defined as the sequence of actorm, invertible 1 × 1 convolution and coupling layers. While Kirichenko et al.
(2020) only considers the RMSProp optimizer, we trained two different models, one using RMSProp and one
using Adam with batch-size 32. For the greyscale dataset our Glow is made up of 2 scales with 16 coupling
layers, and a 3-layers highway network with 200 hidden units is used to predict the scale and shift parameters.
For CIFAR10 and SVHN, instead, we used 3 scales with 8 coupling layers, and 400 hidden units for the 3-layers
highway network. For a more in-depth description, we refer to the codebase and the Appendix C of Kirichenko
et al. (2020).

Hierarchical VAE We follow Havtorn et al. (2021) for both model architecture design and training choices
for our hierarchical VAEs. We used their open-sourced repository4. As mentioned in the paper, the HVAE model
we used has a bottom-up inference path and a top-down generative path. We trained each model for 1000 epochs
using Adam optimizer with learning rate 3e − 4 and a batch-size of 128. All models were initialized using the
data-dependent initialization and they used weight-normalization (Salimans and Kingma, 2016). In addition to
that, we always consider a hierarchy of three latent variables. For greyscale images (MNIST and FashionMNIST)
we used a latent dimension of 8−16−8 for z1, z2, z3 respectively, while for natural images (CIFAR10 and SVHN)
we used 8 − 16 − 32. For a more in depth description of the model, we refer to Appendix B of Havtorn et al.
(2021).

D Additional results

D.1 Typicality test and score statistic are uncorrelated

To test if the typicality test and the score statistic are uncorrelated, we plot the two scores computed on the
validation set. As can be seen from figure 3, we have that the two measures are not correlated as it is also
highlight by the correlation coefficient.

2https://github.com/pclucas14/pixel-cnn-pp
3https://github.com/PolinaKirichenko/flows ood
4https://github.com/JakobHavtorn/hvae-oodd
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Figure 3: Correlation of Typicality Test and Score Statistic computed on the validation set using a PixelCNN++
trained on FashionMNIST. The correlation coefficient is −0.014. This can also be seen by looking at the regression
line, which is almost straight.

D.2 Harmonic Mean

In the paper we mentioned that another way to combine p-values from different test statistics is the Harmonic
mean (Wilson, 2019). This is defined as:

p̊ =

∑k
i=1 wi∑k

i=1 wi/pi
, (17)

where w1, . . . , wk are weights that sum up to 1. In our setting, we considered equal weights, i.e. wi = 1/k.
Therefore, if we simply consider two test statistics T1 and T2 and corresponding p-values p1 and p2, the harmonic
mean p-values becomes:

p̊ =
2p1p2
p1 + p2

. (18)

As expected, this combination should work better when the statistics that we are combining are somewhat
correlated. Indeed, since in our setting we have that the typicality and the score statistic are independent, we
would expect this to work worse than the Fisher’s combination. This is confirmed by table 6, where we are
reporting the results when combining the two statistics using the three different ways we analyzed.

D.3 Results considering maximum-mean-discrepancy

In Section 4, we discussed the relationship between the maximum-mean-discrepancy with a Fisher kernel and the
score statistic and the gradient norm, which depends on the choice of approximation of the Fisher information
matrix we use. In table 5 we reported also the AUROC scores for the MMD with Fisher kernel considering both
the diagonal approximation of the FIM (calledMMD Diagonal in the table) and the FIM being the identity matrix
(called MMD Identity). As expected, we have that the AUROC of the MMD with the diagonal approximated
FIM is pretty close to the AUROC we obtained by using the score statistic. Likewise, we have that the AUROC
of MMD with the identity matrix as FIM is close to the gradient norm when we trained on FashionMNIST and
CIFAR10.

So, why did we decide to use the score statistic instead of the MMD with Fisher kernel and diagonal approximation
of the FIM? The main reason is Occam’s razor. If we have two things that work equally well, we should keep
the simplest one. In our case, we have that for computing the MMD with the Fisher kernel, we need to compute
both the average gradient and the FIM using the training set. For the score statistic, instead, we just need the
FIM. In addition to that, from all our experiments (see table 5 and table 9) we do not have any evidence for one
statistic working better than the other, because they are always pretty close to each other.
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Table 5: AUROC↑ for single-sample OOD detection. In this table we consider all the different single statistics
we mentioned in the paper. One can notice that MMD Diagonal is pretty close to the score statistic and the
MMD Identity is close to the gradient norm, as expected (see Section 4.1 in the paper).

FashionMNIST (in) / MNIST (out)

single statistics

models log p(x) ∥∇ log p(x)∥2 MMD Diagonal MMD Identity Typicality Score Stat

PixelCNN++ (dropout) 0.0762 0.8709 0.8903 0.8690 0.8314 0.8822
PixelCNN++ (no dropout) 0.1048 0.9532 0.9393 0.9539 0.7575 0.9381

Glow (RMSProp) 0.1970 0.8904 0.9115 0.8986 0.4807 0.9114
Glow (Adam) 0.1223 0.7705 0.8540 0.7217 0.6987 0.8745

HVAE 0.0653 0.8714 0.9574 0.8726 0.8336 0.9578

CIFAR10 (in) / SVHN (out)

single statistics

models log p(x) ∥∇ log p(x)∥2 MMD Diagonal MMD Identity Typicality Score Stat

PixelCNN++ (model1) 0.1553 0.8006 0.6406 0.8126 0.6457 0.6407
PixelCNN++ (model2) 0.1567 0.7923 0.7070 0.7955 0.6498 0.7067

Glow (RMSProp) 0.0630 0.8585 0.7929 0.8621 0.8651 0.7940
Glow (Adam) 0.0627 0.7844 0.7620 0.7838 0.8624 0.7655

HVAE 0.0455 0.8041 0.7268 0.7634 0.8845 0.7334

Table 6: AUROC↑ for single-sample OOD detection. Comparison between the three method we mentioned to
combine different statistics. Since the typicality and the score statistic are not correlated, we have that the
Fisher’s method is mostly working better than the other two methods.

FashionMNIST (in) / MNIST (out)

combinations

models Fisher’s method Harmonic mean DoSEKDE

PixelCNN++ (dropout) 0.9369 0.9148 0.8822
PixelCNN++ (no dropout) 0.9536 0.9392 0.9382

Glow (RMSProp) 0.8598 0.8853 0.8901
Glow (Adam) 0.8839 0.8632 0.8752

HVAE 0.9708 0.9569 0.9630

CIFAR10 (in) / SVHN (out)

combinations

models Fisher’s method Harmonic mean DoSEKDE

PixelCNN++ (model1) 0.6826 0.6667 0.6571
PixelCNN++ (model2) 0.7300 0.7105 0.7243

Glow (RMSProp) 0.8683 0.8551 0.8510
Glow (Adam) 0.8613 0.8493 0.8588

HVAE 0.8699 0.8525 0.8245

D.4 Variability within the same model in different checkpoints

As mentioned in the paper, we noticed that all statistics depend on choices we made about our model and the
training procedure, such as deciding between Adam or RMSProp, or between using dropout or not. In addition
to that, we find out that they can differ also within the same model at different checkpoints that obtain almost
the same log-likelihood. Here we consider two Glow models, one trained with Adam and one using RMSProp on
CIFAR10. For both, we consider two checkpoints that achieve the same test log-likelihood. Those trained with
Adam get a log-likelihood of 3.63 bits/dim, while the ones trained with RMSProp get 3.62 bits/dim. Results are
shown in Table 7. It can be noticed, that although the models are similar in terms of test bits/dim the statistics
vary a lot, mostly when training with RMSProp.

D.5 Benjamini-Hochberg procedure when training on CIFAR10

In the main paper we focused on the Benjamini-Hochberg procedure applied to a model trained on FashionM-
NIST. Although one should use a False Discovery Rate control procedure when the statistics we are using are
strong, for completeness, we will present what happens when we apply the BH procedure on a model trained
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Table 7: AUROC↑ for single-sample OOD detection. In this table we are comparing two different Glow models
trained on CIFAR10 by considering two different checkpoints with almost the same test log-likelihood. We can
see that both statistics vary a bit.

CIFAR10 (in) / SVHN (out)

single statistics combination

models Typicality Score Stat Fisher’s method DoSEKDE

Glow (RMSProp) {check1} 0.8651 0.7940 0.8683 0.8510
Glow (RMSProp) {check2} 0.8532 0.6894 0.8275 0.7815

Glow (Adam) {check1} 0.8624 0.7655 0.8613 0.8588
Glow (Adam) {check2} 0.8558 0.7327 0.8402 0.8303

0.0 0.2 0.4 0.6 0.8 1.0
Significance level α

0.0

0.2

0.4

0.6

0.8

1.0

HVAE trained on CIFAR10

Type I error

Type II error

Figure 4: Type I and Type II errors versus the significance level α on the combination values. We can control
the FDR only for α > 0.2 in this case. For α > 0.2, since we are using Benjamini-Hochberg procedure, we get
that the Type I error stays below identity line.

on CIFAR10. In Fig. 4, we report the Type I error ratio and the Type II error ratio for different significance
levels α. We can see that we can actually control the FDR for α > 0.2, and for these significance levels we are
actually controlling the FDR. What is happening for α < 0.2? We have that the procedure is only rejecting 5
hypotheses and all these hypotheses corresponds to in-distribution examples. Therefore, we have that the ratio
of Type I error is still low, but we are making a lot of Type II errors because we are accepting all the examples
whose hypotheses should be rejected.

D.6 Results when training on MNIST and SVHN

We also evaluated our methods in the two dataset pairs, MNIST against FashionMNIST and SVHN against
CIFAR10, that are usually considered easier than the tasks presented in the main paper. For both tasks, we
trained two Glow models, one trained with Adam and one trained with RMSProp, one PixelCNN++ trained
with dropout and a hierarchical-VAE. Results are reported in table 8. We can see that almost all the statistics
we considered are able to almost perfectly distinguish between the in-distribution test-set and the OOD test-set.
However, we can notice that the gradient norm is failing sometimes both when we trained on CIFAR10 and when
we trained on FashionMNIST. From table 9, instead, it is clear that we need to approximate the diagonal of the
Fisher Information Matrix because if we simply consider the identity matrix, this will also fail as the gradient
norm is doing.

D.7 Application of our method to Gaussian Mixture Model and Probabilistic PCA

Since the method we propose is model-agnostic, we show that it can be used for out-of-distribution detection
also using two simple generative models, Gaussian Mixture Model (GMM) and Probabilistic PCA (PPCA). We
consider the two pairs of datasets as before, i.e. FashionMNIST vs MNIST and CIFAR10 vs SVHN. Results can
be seen in Table 10 and Table 11. For both GMM and PPCA trained on FashionMNIST the likelihood can be
used to perform OOD detection. Indeed, in this setting, they are not assigning higher likelihood to OOD data as
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Table 8: AUROC↑ for single-sample OOD detection when training on MNIST and testing again FashionMNIST
and when training on SVHN and testing against CIFAR10. As before, Fisher’s method is the combination of
the typicality test and the test statistic. These are also combined using DoSE.

MNIST (in) / FashionMNIST (out)

single statistics combination

models log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (dropout) (†) 0.9999 0.8534 0.9996 0.9993 0.9999 0.9999
Glow (RMSProp) 0.9997 0.9936 0.9991 0.9936 0.9992 0.9994
Glow (Adam) 0.9999 0.6506 0.9995 0.9992 0.9998 0.9999

HVAE 0.9999 0.9998 0.9997 0.9999 0.9999 0.9999

SVHN (in) / CIFAR10 (out)

single statistics combination

models log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (dropout) 0.9820 0.2670 0.9590 0.9543 0.9914 0.9824
Glow (RMSProp) 0.9917 0.9180 0.9830 0.9823 0.9913 0.9913
Glow (Adam) 0.9913 0.5658 0.9779 0.9641 0.9883 0.9863

HVAE 0.9943 0.1011 0.9857 0.9862 0.9934 0.9862

(†) Trained using 50000 datapoints

Table 9: AUROC↑ for single-sample OOD detection. In this table we consider all the different single statistics we
mentioned in the paper but for the models trained on MNIST and SVHN this time. In this case, it is important
to notice that the gradient norm and the MMD identity sometimes fail to a different extent.

MNIST (in) / FashionMNIST (out)

single statistics

models log p(x) ∥∇ log p(x)∥2 MMD Diagonal MMD Identity Typicality Score Stat

PixelCNN++ (dropout) (†) 0.9999 0.8534 0.9993 0.8608 0.9996 0.9993
Glow (RMSProp) 0.9997 0.9936 0.9942 0.6609 0.9991 0.9936
Glow (Adam) 0.9999 0.6506 0.9993 0.9124 0.9997 0.9992

HVAE 0.9999 0.9998 0.9999 0.9999 0.9999 0.9999

SVHN (in) / CIFAR10 (out)

single statistics

models log p(x) ∥∇ log p(x)∥2 MMD Diagonal MMD Identity Typicality Score Stat

PixelCNN++ (dropout) 0.9820 0.2670 0.9543 0.3185 0.9590 0.9543
Glow (RMSProp) 0.9917 0.9180 0.9824 0.9317 0.9830 0.9823
Glow (Adam) 0.9913 0.5658 0.9653 0.7096 0.9779 0.9641

HVAE 0.9943 0.1011 0.9865 0.4508 0.9857 0.9862

(†) Trained using 50000 datapoints

it is the case for DGMs. This happens instead when we fit these models on CIFAR10. However, this behaviour
can be due to the fact that they are really poor generative models for this dataset. It is also surprising that
when training on CIFAR10 the score statistic is failing in both models. We think that this is also due to the fact
that both the GMM and the PPCA are far from being good generative models for this dataset.

D.8 More in depth analysis of the variability of the results for different HVAE

As we have pointed out before, test statistics and consequentially out-of-distribution performances can vary
between the same model trained several times on the same dataset. To test the variability of the results shown
in the main paper, we trained five different hierarchical VAEs and compute mean and standard deviations of the
final AUROC scores. All models have the same architecture and were trained with the same procedure. Results
can be found in Table 12. For the models trained on CIFAR10, most of the variability in terms of performance is
due to the score statistic, which has the highest standard deviation. When training on FashionMNIST, instead,
it seems that the typicality performance is the one varying the most between the five models.
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Table 10: AUROC↑ for single-sample OOD detection using a Gaussian mixture model (GMM). For Fisher’s
method we mean the combination of the typicality test and the test statistic. These are also combined using
DoSE.

FashionMNIST (in) / MNIST (out)

single statistics combination

components log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

50 0.6627 0.5514 0.5196 0.8777 0.7689 0.8152
100 0.6872 0.5509 0.5575 0.8742 0.7965 0.7989

CIFAR10 (in) / SVHN (out)

single statistics combination

components log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

50 0.2335 0.6087 0.6759 0.3512 0.6098 0.6569
100 0.2372 0.6136 0.6714 0.3294 0.5898 0.6573

Table 11: AUROC↑ for single-sample OOD detection using a Probabilistic PCA. For Fisher’s method we mean
the combination of the typicality test and the test statistic. These are also combined using DoSE.

FashionMNIST (in) / MNIST (out)

single statistics combination

components log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

50 0.9727 0.9637 0.9587 0.9505 0.9635 0.9610
100 0.9557 0.9715 0.9309 0.9626 0.9566 0.9585

CIFAR10 (in) / SVHN (out)

single statistics combination

components log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

50 0.0770 0.1494 0.8468 0.1308 0.7568 0.8210
100 0.0357 0.0778 0.8944 0.0755 0.7966 0.8830

E Yes, we should talk about CelebA

Out-of-distribution detection performance is not only influenced by the model architecture or the training process.
Indeed, transformations applied to the input data play an important role by transforming a difficult task into an
easier problem where the likelihood can detect OOD data. By looking at the different results for Glow trained
on CIFAR10 and tested on CelebA shown in Hendrycks et al. (2019), Kirichenko et al. (2020), Morningstar
et al. (2021), and Ahmadian and Lindsten (2021) we can see that the AUROC scores obtain by the plain log-
likelihood are pretty different. In Hendrycks et al. (2019) and Kirichenko et al. (2020) the log-likelihood gets a
poor performance, confirming that CIFAR10-CelebA is a challenging pair for DGMs, while in Morningstar et al.
(2021) the likelihood is able to distinguish OOD data. While the main reason for these different results can be
due to model implementation and training procedure, we decided to investigate how different transformations
can influence OOD detection. Indeed, CelebA examples originally have a shape of (218, 178, 3) and to transform
them into (32, 32, 3)-shaped images, as CIFAR10, we have to resize them and then crop their center. The resize
function is performing an interpolation, therefore we analyze how different interpolation strategies influence the
OOD task.

We considered three different interpolations: bilinear (default in PyTorch), Lanczos, and nearest. As can be
seen from Fig. 5, these transformations mostly affect the sharpness of the images. In Table 13 we show how
the OOD performance changes for our considered models when testing on CelebA where we applied different
interpolations. We can notice that when using the bilinear interpolation we get results that are pretty similar
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Table 12: Mean and standard deviation of the performance in terms of AUROC of our method. Quantities are
computed by taking the performance of 5 different trained HVAEs both trained on CIFAR10 and FashionMNIST.

Dout log p(x) Typicality Score Stat Fisher’s method DoSEKDE

HVAE trained on CIFAR10

SVHN 0.0631 (0.0008) 0.8711 (0.0028) 0.7808 (0.0255) 0.8844 (0.0140) 0.8519 (0.0194)
CIFAR100 0.5349 (0.0007) 0.5496 (0.0003) 0.5857 (0.0042) 0.5924 (0.0029) 0.5985 (0.0028)
CelebA 0.9004 (0.0035) 0.8203 (0.0046) 0.7565 (0.0369) 0.8505 (0.0138) 0.8247 (0.0228)

HVAE trained on FashionMNIST

MNIST 0.2487 (0.0152) 0.5064 (0.0245) 0.9532 (0.0084) 0.9220 (0.01491) 0.9377 (0.0126)

Bilinear Lanczos Nearest

Figure 5: Comparison of different interpolation methods for CelebA dataset.

to Hendrycks et al. (2019), Kirichenko et al. (2020), and Ahmadian and Lindsten (2021) in terms of likelihood
OOD performance. When using the nearest interpolation, instead, we get results that are closer to Morningstar
et al. (2021).

In conclusion, with these experiments, we wanted to highlight the importance of reporting the preprocessing
steps used in loading CelebA in order to be able to make a fair comparison with the other proposed methods in
the literature.

F Comparison with the original DoSE statistics

As the last experiment, we study how our proposed method with our model agnostic statistic performs against
DoSE using the original statistics proposed in Morningstar et al. (2021). For the VAEs model, they suggested
to use the following 5 statistics: the posterior/prior cross-entropy H[qϕ(z | x), p(z)], the posterior entropy
H[qϕ(z | x)], the posterior/prior KL divergence DKL[qϕ(z | x) || p(z)], the posterior expected log-likelihood

Eqϕ(z|x)[log qϕ(z | x)], and the log-likelihood logEqϕ(z|x)

[
pθ(x,z)
qϕ(z|x)

]
. For DoSE on Glow, instead, they considered

three metrics: the log-likelihood pX(x | θn) and its two components, i.e. the log-probability of the latent variable
pZ(z | x, θn) and the log-determinant of the Jacobian log |Jf (x)|.

In this setting, since DoSE is using statistics that are HVAE and Glow specific, it is not model agnostic anymore.
Indeed, we cannot use those statistics also for a PixelCNN++ for example or any other DGM. We want also to
highlight that the models used in Morningstar et al. (2021) are a bit different from the ones used in this work.
For example, they are considering a beta-VAE with only one stochastic layer, while in our case we used a HVAE
with 3-stochastic layers.

G Algorithmic implementation

A pseudocode describing step-by-step how to implement our method is given in Algorithm 1.
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Table 13: AUROC↑ for single-sample OOD detection for CIFAR10 vs CelebA considering all the three interpo-
lations when using CelebA.

CIFAR10 (in) / CelebA (out) (†)

single statistics combination

models log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (model1) 0.7027 0.5856 0.5581 0.7001 0.6450 0.6931
PixelCNN++ (model2) 0.7034 0.4298 0.5554 0.7505 0.6879 0.7430

Glow (RMSProp) 0.5337 0.5616 0.3926 0.6561 0.5400 0.5866
Glow (Adam) 0.5308 0.5820 0.3914 0.5850 0.4818 0.5212

HVAE 0.5643 0.5214 0.4011 0.6712 0.5483 0.5987

CIFAR10 (in) / CelebA (out) (∦)

single statistics combination

models log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (model1) 0.8284 0.5035 0.7399 0.6714 0.7477 0.7123
PixelCNN++ (model2) 0.8284 0.3530 0.7370 0.70088 0.7631 0.7446

Glow (RMSProp) 0.7556 0.4427 0.6222 0.7865 0.7423 0.7632
Glow (Adam) 0.7499 0.4800 0.6177 0.6442 0.6460 0.6467

HVAE 0.7561 0.4097 0.6051 0.6779 0.6775 0.6772

CIFAR10 (in) / CelebA (out) (‡)

single statistics combination

models log p(x) ∥∇ log p(x)∥2 Typicality Score Stat Fisher’s method DoSEKDE

PixelCNN++ (model1) 0.9270 0.4196 0.8902 0.8320 0.9287 0.8908
PixelCNN++ (model2) 0.9270 0.3065 0.8886 0.8448 0.9339 0.9236

Glow (RMSProp) 0.9364 0.5345 0.8880 0.9286 0.9390 0.9423
Glow (Adam) 0.9322 0.5957 0.8829 0.8350 0.9017 0.8933

HVAE 0.8964 0.3515 0.8158 0.7952 0.8620 0.8455

(†) Bilinear interpolation
(∦) Lanczos interpolation
(‡) Nearest interpolation

Table 14: Comparison between our method and DoSE using the original statistics. In these experiments we
considered only Glow trained with Adam.

Dout Our method DoSEorig

GLOW trained on CIFAR10

SVHN 0.8613 0.7819
CIFAR100 0.5775 0.5700
CelebA 0.9017 0.9663

GLOW trained on FashionMNIST

MNIST 0.8839 0.9568

HVAE trained on FashionMNIST

MNIST 0.9383 0.9762
HVAE trained on CIFAR10

SVHN 0.8605 0.8823
CIFAR100 0.5888 0.5608
CelebA 0.8620 0.8203
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Algorithm 1 Computing p-values for OOD detection using a trained generative model.

Input: Training data X = (x1, . . . , xm)T , validation data X′, trained model pθ(x).

Approximation of the diagonal of the Fisher Information Matrix I(θ) and average log-likelihood
(1/m) log pθ(x1, . . . , xm), indicated by L(θ). We do it in an online fashion.
Initialize I(θ) = 0 and L(θ) = 0
For all i ∈ {1, . . . ,m}:

Compute log pθ(xi)
Compute ∇θ log p(xi | θ)
Set I(θ) = 1

i+1 · (i · I(θ) + (∇θ log pθ(xi))
2)

Set L(θ) = 1
i+1 · (i · L(θ) + log pθ(xi))

Estimation of distributions over the test statistics
Sample S M ′-sized datasets from X′ using bootstrap resampling.
(For single-sample OOD we just cycle through each example, see Sec. 3)
Initialize T typicality = [ ] and T score = [ ]
For every bootstrapped dataset X′

s = (x1, . . . , xM ′)T :

Compute 1
m′

∑M ′

m′=1 log pθ(xm′)

Compute 1
m′

∑M ′

m′=1 ∇θ log pθ(xm′)

Compute MMD Typicality for xm′ by
∥∥∥ 1
m′

∑M ′

m′=1 log pθ(xm′)− L(θ)
∥∥∥
2
and add it to T typicality

Compute Score Statistic for xm′ by
∥∥∥I(θ)−1/2 1

m′

∑M ′

m′=1 ∇ log pθ(xm′)
∥∥∥
2
and add it to T score

Return Two vectors of size S containing the two statistics for T typicality and T score

Compute F̂ typicality and F̂ score, the two empirical CDFs, from T typicality and T score. For example, we used
statsmodels library (Seabold and Perktold, 2010).

Given a test set x̃1, . . . , x̃n:
(n = 1 corresponds to perform single-sample OOD detection)

Compute 1
n

∑n
i=1 log pθ(x̃i) and

1
n

∑n
i=1 ∇θ log pθ(x̃i)

Compute MMD Typicality t̃ and Score Statistic s̃
Compute p-values pT = 1− F̂ typicality(t̂) and pS = 1− F̂ score(s̃)
Combine the two p-values using Fisher’s method Eq. 5
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