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Abstract

Recent numerical experiments have demon-
strated that the choice of optimization geom-
etry used during training can impact gener-
alization performance when learning expres-
sive nonlinear model classes such as deep neu-
ral networks. These observations have im-
portant implications for modern deep learn-
ing, but remain poorly understood due to the
difficulty of the associated nonconvex opti-
mization. Towards an understanding of this
phenomenon, we analyze a family of pseu-
dogradient methods for learning generalized
linear models under the square loss – a sim-
plified problem containing both nonlinearity
in the model parameters and nonconvexity
of the optimization which admits a single
neuron as a special case. We prove non-
asymptotic bounds on the generalization er-
ror that sharply characterize how the inter-
play between the optimization geometry and
the feature space geometry sets the out-of-
sample performance of the learned model.
Experimentally, selecting the optimization
geometry as suggested by our theory leads to
improved performance in generalized linear
model estimation problems such as nonlinear
and nonconvex variants of sparse vector re-
covery and low-rank matrix sensing.

1 Introduction

Optimization geometry, whereby the loss gradient
is computed with respect to a non-Euclidean met-
ric, is a common tool in modern machine learn-
ing. Notable examples of algorithms that use non-

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Euclidean metrics to improve convergence include mir-
ror descent (Beck and Teboulle, 2003; Nemirovski and
Yudin, 1983; Krichene et al., 2015), natural gradient
descent (Amari, 1998; Gunasekar et al., 2021), and
adaptive gradient methods such as AdaGrad (Duchi
et al., 2011) and Adam (Kingma and Ba, 2015).

Recently, Azizan et al. (2021) showed empirically that
varying the optimization geometry through choice of
a mirror descent potential can improve the general-
ization performance of expressive model classes such
as deep neural networks, but a theoretical character-
ization of when and why this will occur is currently
absent. One path towards explaining these observa-
tions could be to consider the effect of mirror descent
in linear regression. However, nonconvexity of the op-
timization problem and nonlinearity in the parameters
are hallmarks of deep networks, and it is not clear that
conclusions about linear models lacking these proper-
ties will carry over to deep learning.

The simplest model class with both nonlinearity and
nonconvexity is the class of generalized linear mod-
els (GLMs). GLMs extend linear models by incorpo-
rating a single “layer” of nonlinearity in the param-
eters (McCullagh and Nelder, 1989), wherein the de-
pendent variables are assumed to be given as a known
nonlinear activation of a linear predictor of the data.
From a modern perspective, a GLM represents a single
neuron, and as such can be seen as the simplest model
of a neural network that allows for rigorous analysis
yet still contains both nonconvexity and nonlinearity.
As a result, guarantees for GLMs may provide insight
into the theoretical properties of more complex mod-
els, an observation that has been exploited by several
recent works (Maillard et al., 2021; Barbier et al., 2019;
Frei et al., 2020).

In this work, we revisit the GLM-tron of Kakade et al.
(2011). Leveraging recent developments in continuous-
time optimization and adaptive control theory (Boffi
and Slotine, 2021), we extend the continuous-time
limit of the GLM-tron iteration to a mirror descent-
like flow that we call the Reflectron. The Reflectron
is specified by the choice of a pseudogradient ξ and a
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strongly convex potential function ψ; these two ingre-
dients together define a search direction and a search
geometry. As particular cases, the Reflectron recovers
both the GLM-tron and gradient descent.

Outline of results We first prove non-asymptotic
generalization error bounds for mirror descent applied
to a GLM in the full-batch setting. Our results high-
light how the choice of ψ can improve the statistical
performance of the model if selected in a way that
respects the underlying geometric structure of the fea-
ture space. In the realizable setting, we further charac-
terize the learned parameters as minimizing the Breg-
man divergence under ψ between the initialization and
the interpolating manifold.

We then discretize the continuous dynamics via the
forward-Euler method to obtain an implementable
algorithm, and we show that the corresponding it-
eration enjoys guarantees that match those of the
continuous-time flow. We further consider a stochastic
gradient-like setting for learning GLMs in the realiz-
able and bounded noise settings, and proveO (1/t) and
O
(
1/
√
t
)
bounds for the generalization error, respec-

tively. We conclude with experiments highlighting the
ability of our theoretical results to capture the impor-
tance of optimization geometry in practice. By choos-
ing the mirror descent potential as suggested by our
analysis in nonlinear and nonconvex sparse vector and
low-rank matrix recovery problems – both of which
amount to GLM estimation under the square loss –
we demonstrate improved generalization performance
of the learned model.

1.1 Related work and significance

Applications of the GLM-Tron The GLM-tron
of Kakade et al. (2011) was the first known computa-
tionally and statistically efficient algorithm for learn-
ing both GLMs and Single Index Models (SIMs). A
recent extension known as the BregmanTron (Nock
and Menon, 2020) obtains improved guarantees for
the SIM problem by applying Bregman divergences to
directly learn the loss function; here, we instead fo-
cus on the GLM-tron as a primitive that allows us to
analyze the role of optimization geometry in learning
nonlinear models. Frei et al. (2020) use similar proof
techniques to Kakade et al. (2011) to analyze gradi-
ent descent on the square loss for learning a single
neuron. Our work extends their results to the mir-
ror descent and pseudogradient settings, and charac-
terizes the role of optimization geometry in general-
ization. Foster et al. (2020) utilize the GLM-tron for
system identification in a particular nonlinear discrete-
time dynamics model, and Goel and Klivans (2019) use
a kernelized GLM-tron to provably learn two-hidden-

layer neural networks. Similar update laws have inde-
pendently been developed in the adaptive control liter-
ature (Tyukin et al., 2007), along with mirror descent
and momentum variants (Boffi and Slotine, 2021).

Implicit bias and generalization Modern ma-
chine learning frequently takes place in a high-
dimensional regime with many more parameters than
examples. It is now well-known that deep networks
will interpolate noisy data, yet exhibit low generaliza-
tion error despite interpolation when trained on mean-
ingful data (Zhang et al., 2017). Defying classical sta-
tistical wisdom, an explanation for this apparent para-
dox has been given in the implicit bias (Soudry et al.,
2018) of optimization algorithms and the double de-
scent curve (Belkin et al., 2019; Bartlett et al., 2020;
Muthukumar et al., 2019; Hastie et al., 2019). The no-
tion of implicit bias captures the proclivity of a method
to converge to a particular kind of interpolating solu-
tion – such as minimum norm – when many options
exist.

Implicit bias has been categorized for gradient-
based algorithms on separable classification prob-
lems (Soudry et al., 2018; Nacson et al., 2018), re-
gression problems (Gunasekar et al., 2018b), and
multilayer models (Gunasekar et al., 2018a; Wood-
worth et al., 2020; Gunasekar et al., 2017). Approx-
imate results are also available for the implicit bias
of gradient-based algorithms when used to train deep
networks (Azizan et al., 2019). Moreover, it was shown
empirically (Azizan et al., 2021) that the choice of mir-
ror descent potential affects the generalization error of
deep networks, and a qualitative explanation was pro-
vided in terms of changing the specific form of implicit
bias. Our focus on the GLM setting allows us to distin-
guish between the generalization performance of mod-
els trained with different potentials, which provides a
quantitative and geometric explanation. While we fo-
cus on the square loss, a number of recent works have
investigated the possibility of using the square loss for
training deep networks for classification (Demirkaya
et al., 2020; Hui and Belkin, 2021; Han et al., 2022).

2 Problem setting and background

Our problem setting follows the original work
of Kakade et al. (2011). Let {xi, yi}ni=1 denote an
i.i.d. dataset sampled from a distribution D supported
on X × [0, 1], X ⊆ Rd, where E [yi|xi] = u (⟨θ,xi⟩)
for θ ∈ Rd a fixed, unknown vector of parameters.
u : R → [0, 1] is assumed to be a known, nondecreas-
ing, and L-Lipschitz activation function. Our goal is
to approximate E [yi|xi] as measured by the expected
square loss. To this end, for a hypothesis h : Rd → R,
we define the generalization error err(h) and the excess
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risk compared to the Bayes-optimal predictor ε(h) as

err(h) = Ex,y

[
(h (x)− y)

2
]
, (1)

ε(h) = Ex,y

[
(h(x)− u (⟨θ,x⟩))2

]
, (2)

with êrr(h) and ε̂(h) their empirical counterparts over
the dataset. Towards minimizing err(h), we present
a family of mirror descent-like algorithms for mini-
mizing ε̂(h) over parametric hypotheses of the form

h(x) = u
(〈

θ̂,x
〉)

. Via standard statistical tech-

niques (Bartlett and Mendelson, 2002), we transfer our
guarantees on ε̂(h) to ε(h), which in turn implies a
small err(h). The starting point of our analysis is the
GLM-tron of Kakade et al. (2011), which is an iterative
update law of the form

θ̂t+1 = θ̂t −
1

n

n∑
i=1

(
u
(〈

θ̂,xi

〉)
− yi

)
xi, (3)

with initialization θ̂1 = 0. Equation (3) is a
pseudogradient-based update law obtained from gra-
dient descent on the square loss êrr(h) by replacing all
appearances of u′ by the fixed value 1. It admits a
continuous-time limit for an infinitesimal step size,

d

dt
θ̂ = − 1

n

n∑
i=1

(
u
(〈

θ̂,xi

〉)
− yi

)
xi, (4)

where (3) is obtained from (4) via a forward-Euler dis-
cretization with a timestep ∆t = 1.

Notation. Throughout this paper, we will use the
notation d

dtx = ẋ interchangeably for any time-
dependent function x(t). Moreover, we will denote

Rn (F) = Exi,ϵi

[
sup
h∈F

1

n

n∑
i=1

ϵih(xi)

]

the Rademacher complexity of a function class F on
n samples, and the shorthand ζ(h) = max{ε(h), ε̂(h)}
in our generalization error bounds.

3 Continuous-time theory

In this section, we analyze a continuous-time flow
that we will discretize to obtain implementable al-
gorithms in Section 4. Our continuous-time anal-
ysis sketches the essence of the techniques required
to obtain discrete-time guarantees, and provides intu-
ition for our main results while avoiding discretization-
specific details. The class of algorithms we consider is

captured by the dynamics

d

dt
∇ψ

(
θ̂
)

= − 1

n

n∑
i=1

(
u
(〈

θ̂,xi

〉)
− yi

)
ξ
(
θ̂,xi

)
xi. (5)

for ψ : M → R, M ⊆ Rd, and ξ : M×X → R with ξ ≥
0. To obtain guarantees on the algorithms represented
by (5), we require two primary assumptions.

Assumption 3.1. ψ : M → R is σ-strongly
convex with respect to a norm ∥·∥. Moreover,
minw∈M ψ(w) = 0.

Note that any ψ with finite minimum can be shifted
to satisfy the final requirement of Assumption 3.1, as
our algorithms only depend on gradients and Bregman
divergences of ψ.

Assumption 3.2. The activation function u : R →
[0, 1] is known, nondecreasing, and L-Lipschitz.

The parameters of the hypothesis ht at time t are com-
puted by applying the inverse gradient of ψ, which
is guaranteed to exist by strong convexity. The mir-
ror descent generalization of the GLM-tron is obtained
from (5) by setting ξ (w,x) = 1, while mirror descent
itself is obtained by setting ξ (w,x) = u′ (⟨w,x⟩). In
order to outline the intuition behind our results, we
focus exclusively on the case when ξ (w,x) = 1 and
defer the analysis with arbitrary ξ to discrete-time.

3.1 Statistical guarantees

The following theorem gives a statistical guarantee for
the Reflectron in continuous-time. It shows that for
any choice of potential function ψ, the Reflectron even-
tually finds a nearly Bayes-optimal predictor.

Theorem 3.1. Suppose that {xi, yi}ni=1 are drawn
i.i.d. from a distribution D supported on X × [0, 1]
where E [y|x] = u (⟨θ,x⟩), u satisfies Assumption 3.2,
and θ ∈ Rd is an unknown vector of parame-
ters. Let ψ satisfy Assumption 3.1. Assume that∥∥ 1
n

∑n
i=1 (u (⟨θ,xi⟩)− yi)xi

∥∥
∗ ≤ η where ∥·∥∗ denotes

the dual norm to ∥·∥. Then for any δ ∈ (0, 1), there

exists some time t <
√

ψ(θ)σ
2η2 such that the hypothesis

ht = u
(〈

θ̂(t),x
〉)

satisfies

ζ (ht) ≤
√

8L2η2ψ(θ)

σ
+ 4Rn (F) +

√
8 log(1/δ)

n
,

with probability at least 1 − δ, where
θ̂(0) = argminw∈M ψ(w), and F =
{x 7→ ⟨w,x⟩ : w ∈ M, dψ (θ ∥ w) ≤ ψ(θ)}.
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Proof. Consider the rate of change of the Bregman
divergence between the parameters for the Bayes-
optimal predictor θ and the parameter estimates θ̂(t),

d

dt
dψ

(
θ
∥∥∥ θ̂
)
=
〈
θ̂ − θ,∇2ψ

(
θ̂
)
˙̂
θ
〉
.

Observe that d
dt∇ψ

(
θ̂
)
= ∇2ψ

(
θ̂
)
˙̂
θ, so that

d

dt
dψ

(
θ
∥∥∥ θ̂
)
=

1

n

n∑
i=1

(yi − u (⟨xi,θ⟩))
〈
xi, θ̂ − θ

〉
+

1

n

n∑
i=1

(
u (⟨xi,θ⟩)− u

(〈
xi, θ̂

〉))〈
xi, θ̂ − θ

〉
.

Using that u is L-Lipschitz and nondecreasing, we may
upper bound the second term by − 1

L ε̂(ht),

d

dt
dψ

(
θ
∥∥∥ θ̂
)

≤ 1

n

n∑
i=1

(yi − u (⟨xi,θ⟩))
〈
xi, θ̂ − θ

〉
− 1

L
ε̂(ht) . (6)

By assumption, ∥ 1
n

∑n
i=1 (yi − u(⟨xi,θ⟩))xi∥∗ ≤ η.

Now, observe that by strong convexity of ψ and by
the initialization,

∥∥∥θ̂(0)− θ
∥∥∥ ≤

√√√√2dψ

(
θ
∥∥∥ θ̂(0)

)
σ

≤
√

2ψ(θ)

σ
.

By induction, assume that dψ

(
θ
∥∥∥ θ̂(t)

)
≤ ψ(θ) at

time t. Then we have the bound

d

dt
dψ

(
θ
∥∥∥ θ̂
)
≤ − 1

L
ε̂(ht) + η

√
2ψ(θ)

σ
,

so that either d
dtdψ

(
θ
∥∥∥ θ̂
)
< −η

√
2ψ(θ)
σ or ε̂(ht) ≤

2Lη
√

2ψ(θ)
σ . In the latter case, we have obtained the

desired bound on ε̂(ht). Otherwise, t cannot exceed

tf =
dψ

(
θ
∥∥∥ θ̂(0)

)
√

2ψ(θ)
σ η

=

√
ψ(θ)σ

2η2

to satisfy ε̂(ht) ≤ 2Lη
√

2ψ(θ)
σ . Hence there is some ht

with t < tf such that ε̂(ht) ≤ 2Lη
√

2ψ(θ)
σ . To transfer

this bound on ε̂ to ε, we need to bound |ε̂(ht)− ε(ht)|.
Application of a standard uniform convergence result
(cf. Theorem B.3) to the square loss1 implies

|ε̂(ht)− ε(ht)| ≤ 4Rn (F) +

√
8 log(1/δ)

n

with probability at least 1− δ.

1Note that while the square loss is neither bounded nor
Lipschitz in general, it is both over the domain [0, 1] with
bound b = 1 and Lipschitz constant L′ = 1.

Because ε(ht) = err(ht) up to a constant, we can find
a good predictor by using a hold-out set to estimate
err(ht) throughout learning.

The statement of Theorem 3.1 uses a specific initializa-
tion strategy to write the generalization error bound
in terms of ψ(θ); with an arbitrary initialization, ψ(θ)

can be replaced by dψ

(
θ
∥∥∥ θ̂(0)

)
, and our definition

of F can be modified accordingly. As the bound de-
pends on ψ(θ), C, and η, the potential ψ may be cho-
sen in correspondence with available knowledge on the
problem structure to optimize the guarantee on the
generalization error. In Corollaries 4.1-4.3, we pro-
vide explicit illustrations of this fact. In the experi-
ments in Section 6, we show how this can be used for
improved estimation over the GLM-tron in problems
such as sparse vector and low-rank matrix recovery.

Our proof of Theorem 3.1 is similar to the correspond-
ing proof for the GLM-tron (Kakade et al., 2011),
but has two primary modifications. First, we con-
sider the Bregman divergence under ψ between the
Bayes-optimal parameters and the current parameter
estimates, rather than the squared Euclidean distance.
Our use of Bregman divergence critically relies on the
Bayes-optimal parameters appearing in the first ar-
gument. Second, rather than analyzing the iteration
on ∥θ̂t − θ∥22 as in the discrete-time case, we ana-
lyze the dynamics of the Bregman divergence. Taking
ψ = 1

2∥ · ∥22 recovers the guarantee of the GLM-tron
up to forward Euler discretization-specific details.

3.2 Implicit regularization

We now study how the choice of ψ impacts the model
learned by (5). To do so, we require a realizability
assumption on the dataset.

Assumption 3.3. There exists a fixed θ ∈ Rd such
that yi = u (⟨θ,xi⟩) for all i = 1, . . . , n.

In many cases, even the noisy dataset of Section 3.1
may satisfy Assumption 3.3 for a θ̄ ̸= θ. We now begin
by proving convergence of the training error.

Lemma 3.1. Suppose that {xi, yi}ni=1 are drawn i.i.d.
from a distribution D supported on X × [0, 1]. Let
the dataset satisfy Assumption 3.3, let u satisfy As-
sumption 3.2, and let ψ satisfy Assumption 3.1. Sup-
pose ∥xi∥∗ ≤ C. Then ε̂(ht) → 0 where ht(x) =

u
(〈

θ̂(t),x
〉)

and θ̂(0) = argminw∈M ψ(w). Fur-

thermore, mint′∈[0,t] {ε̂(ht′)} ≤ O (1/t).

Proof. Under the assumptions, (6) implies

d

dt
dψ

(
θ
∥∥∥ θ̂
)
≤ − 1

L
ε̂(ht) ≤ 0 .
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Integrating both sides of the above gives the bound∫ t

0

ε̂(ht′)dt
′ ≤ Ldψ

(
θ
∥∥∥ θ̂(0)

)
.

Explicit computation shows that d
dt ε̂(ht) is bounded,

so that ε̂(ht) is uniformly continuous in t. By Bar-
balat’s Lemma (cf. Lemma B.1), this implies that
ε̂→ 0 as t→ ∞. Now, note that

inf
t′∈[0,t]

{ε̂(ht′)} t =
∫ t

0

inf
t′∈[0,t]

{ε̂(ht′)} dt′′

≤
∫ t

0

ε̂(ht′)dt
′ ≤ Ldψ

(
θ
∥∥∥ θ̂(0)

)
,

so that inft′∈[0,t] {ε̂(ht′)} ≤ Ldψ(θ ∥ θ̂(0))
t .

Lemma 3.1 shows that (5) will converge to an inter-
polating solution for a realizable dataset, and that the
best hypothesis up to time t does so at an O (1/t) rate;
the proof is given in the appendix.

In general, there may be many possible vectors θ̂ con-
sistent with the data. The following theorem provides
insight into the parameters learned by (5). Our result
is analogous to the characterization of the implicit bias
of mirror descent due to Gunasekar et al. (2018a), and
uses a continuous-time proof technique inspired by the
discrete-time technique in Azizan et al. (2019). A sim-
ilar continuous-time proof first appeared in Boffi and
Slotine (2021) in the context of adaptive control.

Theorem 3.2. Consider the setting of Lemma 3.1.
Let A = {θ̄ ∈ M : u

(〈
θ̄,xi

〉)
= yi, i = 1, . . . , n}

be the set of parameters that interpolate the data, and
assume that θ̂(t) → θ̂∞ ∈ A. Further assume that u(·)
is invertible. Then θ̂∞ = argminθ̄∈A dψ

(
θ̄
∥∥∥ θ̂(0)

)
.

In particular, if θ̂(0) = argminw∈M ψ(w), then θ̂∞ =
argminθ̄∈A ψ(θ̄).

Proof. Let θ̄ ∈ A be arbitrary. Define the error on ex-

ample i as ỹi

(
θ̂(t)

)
=
(
u
(〈

θ̂(t),xi

〉)
− yi

)
. Then,

d

dt
dψ

(
θ̄
∥∥∥ θ̂(t)

)
= − 1

n

n∑
i=1

ỹi

(
θ̂(t)

)〈
θ̂(t)− θ̄,xi

〉
,

= − 1

n

n∑
i=1

ỹi

(
θ̂(t)

)(〈
θ̂(t),xi

〉
− u−1 (yi)

)
.

Above, we used that θ̄ ∈ A and that u(·) is invertible,
so that u

(〈
θ̄,xi

〉)
= yi implies that

〈
θ̄,xi

〉
= u−1(yi).

Integrating both sides of the above, we find that

dψ

(
θ̄
∥∥∥ θ̂∞

)
− dψ

(
θ̄
∥∥∥ θ̂(0)

)
=

− 1

n

n∑
i=1

∫ ∞

0

ỹi

(
θ̂(t)

)(〈
θ̂(t),xi

〉
− u−1 (yi)

)
dt.

The above relation is true for any θ̄ ∈ A. Fur-
thermore, the integral on the right-hand side is inde-
pendent of θ̄. Hence the argmin of the two Breg-
man divergences must be equal, which shows that

θ̂∞ = argminθ̄∈A dψ

(
θ̄
∥∥∥ θ̂(0)

)
.

Theorem 3.2 elucidates the implicit bias of pseudogra-
dient algorithms captured by (5). Out of all possible
interpolating parameters, (5) finds those that mini-
mize the Bregman divergence between the set of inter-
polating parameters and the initialization.

4 Discrete-time algorithms

Equation (5) can be discretized via Forward-Euler to
form an implementation with a step size λ > 0,

∇ψ
(
ϕ̂t+1

)
−∇ψ

(
θ̂t

)
= −λ

n

n∑
i=1

(
u
(〈

θ̂t,xi

〉)
− yi

)
ξ
(
θ̂,xi

)
xi, (7)

θ̂t+1 = ΠψC

(
ϕ̂t+1

)
. (8)

In (8), C denotes a convex constraint set and ΠψC (z) =
argminx∈C∩M dψ (x ∥ z) denotes the Bregman projec-
tion. To analyze the iteration (7) & (8), we need two
assumptions on ξ.

Assumption 4.1 (Adapted from Frei et al. (2020)).
For any a > 0 and b > 0, there exists a γ > 0 such
that inf∥w∥≤a,∥x∥∗≤b ξ (w,x) ≥ γ > 0.

For mirror descent, Assumption 4.1 reduces to a re-
quirement that the derivative of the activation remains
nonzero over any compact set.

Assumption 4.2. There exists a constant B > 0 such
that ξ (w,x) ≤ B for all w ∈ M, x ∈ X .

For mirror descent, we take B = L, while for the
mirror descent generalization of GLM-tron, we take
B = 1. We may now state our statistical guarantees.

Theorem 4.1. Suppose that {xi, yi}ni=1 are drawn
i.i.d. from a distribution D supported on X ×
[0, 1] where E [y|x] = u (⟨θ,x⟩), u satisfies As-
sumptions 3.2 & 4.1, and θ ∈ C is an un-
known vector of parameters. Let ψ satisfy Assump-
tion 3.2, and let ξ satisfy Assumptions 4.1 & 4.2.
Assume that ∥xi∥∗ ≤ C, ∥θ∥ ≤ W , and
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∥∥ 1
n

∑n
i=1 (u (⟨θ,xi⟩)− yi) ξ (⟨θ,xi⟩)xi

∥∥
∗ ≤ η. Let γ

correspond to a = C and b = W +
√

2ψ(θ)
σ in As-

sumption 4.1. Then for λ ≤ σ
2C2BL there exists some

iteration t < 1
λ

√
σψ(θ)
2η2 such that ht = u

(〈
θ̂t,x

〉)
satisfies with probability at least 1− δ

ζ(ht) ≤

√
32L2η2ψ(θ)

γ2σ

(
2C2LB + 1

2C2LB

)
+ 4Rn (F) +

√
8 log(1/δ)

n
,

where θ̂1 = argminw∈C∩M ψ(w), and where F =
{x 7→ ⟨w,x⟩ : w ∈ M, dψ (θ ∥ w) ≤ ψ(θ)}.

Theorem 4.1 shows that, for a suitable choice of step
size, the discrete-time iteration (7) & (8) preserves the
guarantees of the continuous-time flow (5). The proof
(and all subsequent proofs) are given in the appendix.
We now state several consequences of Theorem 4.1 in
standard settings that highlight the impact of the po-
tential on generalization in nonconvex learning.

Corollary 4.1 (p/q dual norm pairs with p ∈ [2,∞)).

Let ∥·∥∗ = ∥·∥p with p ∈ [2,∞). Then ψ(w) = 1
2 ∥w∥2q

is (q − 1)-strongly convex with respect to ∥·∥q where
1/q + 1/p = 1. The generalization error is bounded as

ζ(ht) ≤
4LWC

q − 1

(√
2 log(4/δ)(q − 1) + 1√

n

)
2C2LB + 1

2C2LB

+
4CW√
n(q − 1)

(
1 +

1√
q − 1

)
+

√
8 log(2/δ)

n
.

Corollary 4.2 (∞/1 dual norm pairs, global setup).

Let ∥·∥ = ∥·∥1 and ∥·∥∗ = ∥·∥∞. Then ψ(w) = 1
2 ∥w∥2q

with q = log(d)
log(d)−1 is 1

3 log(d) -strongly convex with respect

to ∥·∥1. Then, the generalization error can be bounded

ζ(ht) ≤
4CW (1 +

√
3 log d)2

n1/2
+

√
8 log(2/δ)

n

+
12LCW

√
3 log(d)(2C2LB + 1)

C2LB

√
log(4d/δ)

n
.

Corollary 4.3 (∞/1 dual norm pairs, simplex setup).
Let ∥·∥ = ∥·∥1 and ∥·∥∗ = ∥·∥∞. Take ψ(w) =
dKL (w ∥ u) where u is the discrete uniform distribu-
tion in d dimensions and where dKL denotes the KL
divergence. Then ψ(w) is 1-strongly convex with re-
spect to ∥·∥1 over the probability simplex and ψ(w) ≤
log(d) for any w. Then,

ζ(ht) ≤ 4C

√
2 log d

n
+

√
8 log(2/δ)

n

+
3LC

√
32 log d(2C2LB + 1)

C2LB

√
log(4d/δ)

n
.

In the above results, the dimensionality dependence of
the generalization error has been reduced by judicious
choice of ψ. In particular, Corollaries 4.2 and 4.3 are
merely logarithmic in dimension, while a bound for the
GLM-tron would be polynomial in dimension.

Similar to Theorem 4.1, we now show that Lemma 3.1
and Theorem 3.2 are preserved when discretizing (5).
We first state a convergence guarantee.

Lemma 4.1. Suppose that {xi, yi}ni=1 are drawn i.i.d.
from a distribution D supported on X × [0, 1]. Let
the dataset satisfy Assumption 3.3 let u satisfy As-
sumption 3.2, and let ψ satisfy Assumption 3.1. Sup-
pose ∥xi∥∗ ≤ C. Then for λ ≤ 2σ

C2BL , ε̂(ht) →
0 where ht(x) = u

(〈
θ̂(t),x

〉)
is the hypothe-

sis with parameters output by (7) & (8) at time

t with θ̂1 = argminw∈C∩M ψ(w). Furthermore,
mint′∈[0,t] {ε̂(ht′)} ≤ O (1/t).

We conclude by showing that the implicit bias prop-
erties of (7) & (8) match those of (5).

Theorem 4.2. Consider the setting of Lemma 4.1,
and assume that u(·) is invertible. Let A = {θ̄ ∈
C ∩ M : u

(〈
θ̄,xi

〉)
= yi, i = 1, . . . , n} be the set of

parameters that interpolate the data, and assume that

θ̂t → θ̂∞ ∈ A. Then θ̂∞ = argminθ̄∈A dψ

(
θ̄
∥∥∥ θ̂1

)
.

In particular, if θ̂1 = argminw∈C∩M ψ(w), then θ̂∞ =
argminθ̄∈A ψ(θ̄).

Taken together, the results in this section show that
the continuous guarantees are preserved by discretiza-
tion, though the analysis requires care of higher-order
terms that vanish in the continuous limit.

5 Stochastic optimization

In this section, we provide guarantees for the iteration

∇ψ
(
ϕ̂t+1

)
−∇ψ

(
θ̂t

)
= −λ

(
u
(〈

θ̂t,xt

〉)
− yt

)
ξ
(
θ̂t,xt

)
xt, (9)

θ̂t+1 = ΠψC

(
ϕ̂t+1

)
, (10)

which is similar to stochastic gradient descent. We first
consider the bounded noise setting, where we conclude
aO(1/

√
t) convergence rate of the generalization error.

Theorem 5.1. Suppose that {xt, yt}∞t=1 are drawn
i.i.d. from a distribution D supported on X × [0, 1]
where E [y|x] = u (⟨θ,x⟩), θ ∈ C is an unknown vector
of parameters, and u satisfies Assumption 3.2. As-
sume that C is compact, and let R = Diam(C) as mea-
sured in the norm ∥·∥. Suppose that ψ satisfies As-
sumption 3.1, and that ∥xt∥∗ ≤ C for all t. Fix a
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horizon T , and choose λ < min
{

2σ
C2LB ,

1√
T

}
. Then

for any δ ∈ (0, 1), with probability at least 1− δ,

min
t<T

ε(ht)

≤ O
(

L√
Tγ

(
ψ(θ) +

√
CBR log(6/δ) +

C2B2

σ

))
where ht is the hypothesis output by (9) & (10) at iter-

ation t with θ̂1 = argminθ∈C ψ(θ), and γ corresponds
to a = C and b = R+ ∥θ∥ in Assumption 4.1.

We now consider the realizable setting, where we ob-
tain fast O(1/t) rates.

Theorem 5.2. Suppose that {xt, yt}∞t=1 are drawn
i.i.d. from a distribution D supported on X . Let As-
sumption 3.3 be satisfied with θ ∈ C an unknown vector
of parameters, let u satisfy Assumption 3.2, let ψ sat-
isfy Assumption 3.1, and assume that ∥xt∥∗ ≤ C for
all t. Fix λ < 2σ

LC2B . Then for any δ ∈ (0, 1), for all
T ≥ 1, with probability at least 1− δ

min
t<T

ε(ht) ≤ O
(
L2C2Bψ(θ) log(1/δ)

σTγ

)
,

where ht is the hypothesis output by (9) & (10) at
iteration t and where γ corresponds to a = C and

b = ∥θ∥+
√

2ψ(θ)
σ in Assumption 4.1.

6 Experiments

We now illustrate our theoretical results in two con-
crete problem settings. We first study a scalar-valued
output problem where the Bayes-optimal parameter
vector is sparse. We then consider a vector-valued sys-
tem identification problem where the Bayes-optimal
parameter matrix is low-rank.

We compare three variants of the Reflectron with three
different choices of potential. The first is the GLM-
tron, which is equivalent to the use of the Euclidean
potential ψ2(x) = 1

2 ∥x∥
2
2. The second is the p-norm

algorithm (Gentile, 2003), which uses the potential

ψp(x) = 1
2 ∥x∥

2
p for p ∈ [1,∞]. The third vari-

ant is the hypentropy algorithm (Ghai et al., 2020),
which generalizes the setup considered in Corollary 4.3
beyond the probability simplex and uses the poten-
tial ψβ(x) =

∑d
i=1(xi arcsinh(xi/β) −

√
x2
i + β2) for

β ∈ (0,∞). A complete description of the experimen-
tal setup is given in the appendix.

6.1 Sparse vector GLMs

In this setting, the learner receives measurements
yi = σ(⟨θ,xi⟩) + wi with xi ∼ Unif([−1, 1]d), wi ∼
Unif([−σw, σw]d), and where σ(·) is the sigmoid acti-
vation. θ is taken to be an s-sparse vector with s≪ d,

and we compare the GLM-tron with explicit ℓ1 projec-
tion to the Reflectron with matching explicit ℓ1 projec-
tion and the implicit regularization due to the either
the hypentropy or p-norm potentials.

The learner has knowledge that θ is sparse, as well
as access to the upper bounds ∥θ∥p ≤ Wp. In the
experiments, we set Wp = 2 ∥θ∥p. Let Bp(r) denote

the closed ℓp-ball in Rd of radius r centered at the
origin. For the GLM-tron, we set C = B1(W1) and
the projection onto C is Euclidean. For the p-norm
algorithm, we set C = Bp(Wp) and apply a Bregman
projection onto C. For hypentropy, we set C = B1(W1)
and again use the Bregman projection onto C. We
compare each algorithm in two experimental regimes.

In the first regime, the ambient dimension d = 10000
and sparsity s = 100 are fixed, and we study the per-
formance of each algorithm as a function of the number
of data points n. For each pair of (n, alg), we run the
full-batch pseudogradient algorithm for 5000 iterations
over a grid of hyperparameters, and we tune the step
size λ and the p value for the p-norm algorithm (resp. β
for hypentropy). As suggested by Theorem 4.1, we use
a holdout set of size nhold = 500 to select the parame-
ters with lowest validation error over 5000 iterations.
Each algorithm is run for 5 trials and the configuration
that achieves the lowest median test error (over the 5
trials) is shown in the figures. The size of the test set
is ntest = 1000, and the error bars correspond to the
min/median/max over the 5 trials.

Figure 1a shows the training error and holdout er-
ror of the best configuration for each algorithm with
n = 1000. Each algorithm overfits, and the holdout
set is necessary to find the predictor with lowest gen-
eralization error. Figure 1b shows the resulting test
error of each algorithm. For each value of n, both the
p-norm and hypentropy algorithms have lower test er-
ror when compared to the GLM-tron, in line with the
generalization error predictions of Theorem 4.1.

In the second regime, the number of data points is
fixed at n = 1000 while the ambient dimension d is var-
ied for fixed s/d = 0.01. Figure 1c shows the test error
for each algorithm, which increases with the ambient
dimension d in all cases. As in Figure 1b, for fixed
d, both the p-norm and hypentropy algorithms have
lower test error than the GLM-tron. Taken together,
Figures 1(a)-(c) validate the claims of Theorem 4.1.

To verify the predictions of Theorem 4.2, we remove
the explicit projection onto C for both the GLM-tron
and hypentropy and visualize the structure of the
learned parameter vector in Figure 1d (d = 1000,
s = 10, and n = 1000). Figure 1d shows that hy-
pentropy recovers a much sparser solution than the
GLM-tron despite the lack of an explicit projection
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Figure 1: (a) Risk curves. Solid indicates training error and dashed indicates holdout error. (b) Test error with
d and s fixed as n varies. (c) Test error with n and s/d fixed as d varies. (d) Weights learned without explicit
projection. (e) Test error with d and r fixed as n varies. (f) Test error with fixed r/d as n = d varies.

onto the ℓ1-ball. In particular, 971 coordinates have
absolute value greater than 0.001 for the parameters
found by the GLM-tron, while there are only 56 for
hypentropy. Moreover, the qualitative structure of the
parameter vector found by hypentropy is much closer
to that of the true parameters, and quantitatively∥∥∥θ̂glm − θ

∥∥∥
1
= 24.609 while

∥∥∥θ̂hyp − θ
∥∥∥
1
= 0.421. The

parameters found by the p-norm algorithm have sim-
ilar structure to those found by hypentropy and are
omitted for visual clarity.

6.2 Low rank system identification

We now consider a nonlinear system identification
problem similar to Foster et al. (2020), where the
system dynamics are given by a vector-valued GLM
and the parameters may be identified using a spectral
variant of the Reflectron. In this setting, the learner
observes n trajectories {xit}

T,n
t=0,i=1 from the discrete-

time dynamical system xit+1 = ρxit + σ(Θxit) + wit.
The system is initialized from xi0 ∼ Unif([−1, 1]d),
the process noise is given by wit ∼ Unif([−σw, σw]d),
σ(·) is the element-wise sigmoid activation, and Θ is
a d × d matrix with r = rank(Θ) ≪ d. This model
is motivated by applications in computational neu-
roscience, where the system state can be interpreted
as a vector of firing rates in a recurrent neural net-

work, and the learned parameters represent the synap-
tic weights (Rutishauser et al., 2015). In the experi-
ments, we fix ρ = 0.9, T = 5, and σw = 0.1.

The generalization error for an estimate Θ̂ is

ε(Θ̂) = 1
2T

∑T−1
t=0 Ex0

[∥∥∥xt+1 − ρxt − σ(Θ̂xt)
∥∥∥2],

which measures the ability of the learned con-
nectivity to correctly predict a new random tra-
jectory in a mean square sense. We search
for Θ̂ by minimizing the empirical loss ε̂(Θ̂) =

1
2nT

∑n,T−1
i=1,t=0

∥∥∥xit+1 − ρxit − σ(Θ̂xit)
∥∥∥2.

Similar to Section 6.1, the learner has knowledge
that Θ is low-rank, and we compare how the im-
plicit bias of each method impacts its generaliza-
tion performance. Let λ(M) denote the vector
of singular values of a matrix M. For both the
GLM-tron and hypentropy algorithms, we project

onto C =
{
Θ̂ ∈ Rd×d :

∥∥∥λ(Θ̂)
∥∥∥
1
≤ 2 ∥λ(Θ)∥1

}
. For

the p-norm algorithm, we project onto C ={
Θ̂ ∈ Rd×d :

∥∥∥λ(Θ̂)
∥∥∥
p
≤ 2 ∥λ(Θ)∥p

}
. Hyperparame-

ters are tuned just as in the sparse vector setting.

In Figure 1e, the ambient dimension and rank are fixed
to be d = 1000 and r = 20, and we study the impact
of the number of trajectories n on the generalization



Nicholas M. Boffi, Stephen Tu, Jean-Jacques Slotine

error. Both the p-norm and hypentropy algorithms
achieve lower test error than the GLM-tron algorithm
for fixed n. In Figure 1f, the ambient dimension d
is varied with fixed r/d = 0.02, and the number of
trajectories is held equal to the dimension n = d. A
heuristic explanation of this scaling is provided in Ap-
pendix A.3. As the dimension increases, the gap be-
tween the test error for the GLM-tron and hypentropy
increases. This trend also holds for the p-norm algo-
rithm for n < 1200, which begins to become brittle to
the choice of hyperparameter for large n. As in the
previous section, these results validate the predictions
of Theorem 4.1, now with vector-valued outputs.

7 Conclusions and future directions

In this work, we studied the effect of optimization ge-
ometry on the statistical performance of generalized
linear models trained with the square loss. We ob-
tained strong non-asymptotic guarantees that identify
how the interplay between optimization geometry and
feature space geometry can reduce dimensionality de-
pendence of both the training and generalization er-
rors. We demonstrated the validity of our theoretical
results on sparse vector and low-rank matrix recovery
problems, where it was shown that pairing the opti-
mization geometry with the feature space geometry as
suggested by our analysis consistently led to improved
out-of-sample performance.

Single neurons and GLMs highlight important aspects
of more complex deep models, so that our work pro-
vides insight into the observations by Azizan et al.
(2021) that the choice of mirror descent potential af-
fects the generalization performance of deep networks.
Moreover, our results provide a quantitative charac-
terization of this effect.

There are a number of natural directions for future
work. A first goal is to classify the typical feature space
geometry for neural networks on standard datasets.
Given such a classification, a well-tailored potential
function could be developed to improve generalization
performance. A second question is whether there are
pseudogradient methods suitable for multilayer archi-
tectures, and if they could lead to improved perfor-
mance or a simpler analysis relative to gradient de-
scent.
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A Details on experimental setup

A.1 Projections

Euclidean projection onto ℓ1-ball. For the GLM-tron algorithm, we use the following projection step after
every iteration:

argmin
x:∥x∥1≤R

∥x− y∥ .

The algorithm used to compute this is described in Figure 1 of Duchi et al. (2008).

ℓp projection onto ℓp-ball. For the p-norm algorithm, we use the following Bregman projection:

argmin
x:∥x∥p≤R

dψp(x,y) .

The solution is y for ∥y∥p ≤ R and y
∥y∥p

R otherwise. Note that we did not implement the Bregman projection

argmin
x:∥x∥1≤R

dψp(x,y) .

since we are not aware of an efficient (nearly linear time in dimension) algorithm for doing so.

Hypentropy Bregman projection onto ℓ1-ball. For the hypentropy algorithm, we use the following Breg-
man projection:

argmin
x:∥x∥1≤R

dψβ (x,y) .

To implement this projection, we use the following bisection search algorithm communicated to us by Udaya
Ghai, which was also used in Ghai et al. (2020). Define the shrinkage function sβθ : Rd → Rd as:

sβθ (x) = sign(x)max

{
θ(
√

x2 + β2 + |x|)
2

−
√
x2 + β2 − |x|

2θ
, 0

}
,

where the operations above are all elementwise. One can show that there must exist a θ ∈ (0, 1] such that:

sβθ (y) = argmin
x:∥x∥1≤R

dψβ (x,y) .

From the above considerations, we can use bisection to search for a θ ∈ (0, 1] such that∥∥∥sβθ (y)∥∥∥
1
= R.

A.2 Hyperparameter values

In this section, we list the hyperparameters that were gridded over for each figure.

Parameters for Figure 1a

Parameter Values
λ {1.0, 0.1, 0.01, 0.001}
β {1.0, 10−1, 10−2, 10−3, 10−4}

Parameters for Figure 1b

Parameter Values
λ {1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}
β {1.0, 10−1, 10−2, 10−3, 10−4}
p {1.1, 1.2, 1.3, 1.4, 1.5}
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Parameters for Figure 1c Same parameters as Figure 1b.

Parameters for Figure 1e

Parameter Values
λ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}
β {1.0, 10−1, 10−2, 10−3, 10−4}
p {1.1, 1.2, 1.3, 1.4, 1.5}

Parameters for Figure 1f Same parameters as Figure 1e.

A.3 Heuristic argument for keeping n = d in Figure 1f

Recall that the empirical loss is

ε̂(Θ̂) =
1

2nT

T−1∑
t=0

n∑
i=1

∥∥∥xit+1 − ρxit − σ(Θ̂xit)
∥∥∥2 ,

while the pseudogradient g(Θ̂) is

g(Θ̂) =
1

nT

T−1∑
t=0

n∑
i=1

(σ(Θ̂xit)− xit+1 + ρxit)(x
i
t)

T .

A key term in the statistical bound for the Reflectron is the dual norm of the pseudogradient g(Θ̂). For the

GLM-tron, this is the Frobenius norm
∥∥∥g(Θ̂)

∥∥∥
F
, while for hypentropy this is the operator norm

∥∥∥g(Θ̂)
∥∥∥. The

p-norm case is similiar to hypentropy for the purpose of this discussion, and we omit the details.

Estimating these norms in general is non-trivial due to both the nonlinearity of the activation function and
the time-dependence of the trajectory. Instead, we consider a simpler problem based on random matrices to
heuristically understand relevant scalings with n and d. In particular, we set T = 1 and consider the d×d matrix
H defined as:

H =
1

n

n∑
i=1

xix
T
i , xi ∼ N(0, I) .

Above, each of the xi’s are independent. Let X ∈ Rn×d be a matrix with i-th row given by xi; then we have
H = 1

nX
TX. We first estimate a bound on E ∥H∥F via Jensen’s inequality

E ∥H∥F ≤
√
E ∥H∥2F =

√√√√√ 1

n2
Tr

E
∑
i,j

xixT
i xjx

T
j

 =

√
1

n2

∑
i,j

E ⟨xi,xj⟩2

=

√
1

n2

(
nE ∥x1∥4 + n(n− 1)E ⟨x1,x2⟩2

)
=

√
1

n2
(n(d2 + 2d) + n(n− 1)d)

=

√
d2

n
+

(
1 +

1

n

)
d

≍
√
d+

d√
n
.

On the other hand, ∥X∥ ≲
√
n+

√
d w.h.p. Therefore,

∥H∥ =
1

n
∥X∥2 ≲

1

n
(
√
n+

√
d)2 ≍ 1 +

d

n
.

Now consider setting n ≍ d. Then as n→ ∞, we have that ∥H∥ ≲ 1 while ∥H∥F tends to ∞.
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B Preliminary results

In this section, we present some results required for our proofs.

The following theorem gives a bound on the Rademacher complexity of a linear predictor, where the weights in
the linear function class admit a bound in terms of a strongly convex potential function.

Theorem B.1 (Kakade et al. (2009)). Let S be a closed convex set and let X = {x : ∥x∥∗ ≤ C}. Let ψ : S → R
be σ-strongly convex with respect to ∥·∥ such that infw∈S ψ(w) = 0. Define W = {w ∈ S : ψ(w) ≤W 2}, and let
FW = {x 7→ ⟨w,x⟩ : w ∈ W} Then,

Rn(FW) ≤ CW

√
2

σn

The following theorem is useful for bounding the Rademacher complexity of the generalized linear models con-
sidered in this work, as well as for bounding the generalization error in terms of the Rademacher complexity of
a function class.

Theorem B.2 (Bartlett and Mendelson (2002)). Let ϕ : R → R be Lϕ-Lipschitz, and assume that ϕ(0) = 0. Let
F be a class of functions. Then Rn(ϕ ◦ F) ≤ 2LϕRn(F).

The following theorem allows for a bound on the generalization error if bounds on the empirical risk and the
Rademacher complexity of the function class are known.

Theorem B.3 (Bartlett and Mendelson (2002)). Let {xi, yi}ni=1 be an i.i.d. sample from a distribution P
over X × Y and let L : Y ′ × Y → R be an L-Lipschitz and b-bounded loss function in its first argument. Let
F = {f | f : X → Y ′} be a class of functions. For any positive integer n ≥ 0 and any scalar δ ≥ 0,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

L(f(xi), yi)− E(x,y)∼P [L(f(x), y)]

∣∣∣∣∣ ≤ 4LRn(F) + 2b

√
2

n
log

(
1

δ

)
with probability at least 1− δ over the draws of the {xi, yi}.

The following lemma is a technical result from functional analysis which has seen widespread application in
adaptive control theory (Slotine and Li, 1991).

Lemma B.1 (Barbalat’s Lemma). Assume that x : R → Rn is such that x ∈ L1. If x(t) is uniformly continuous
in t, then limt→∞ x(t) = 0.

Note that a sufficient condition for uniform continuity of x(t) is that ẋ(t) ∈ L∞.

The following two results will be used to obtain concentration inequalities in arbitrary p norms for empirical
averages of random vectors.

Lemma B.2. Let {Xi}ni=1 be random variables in a Banach space X equipped with a norm ∥·∥ such that ∥Xi∥ ≤
C. Then for any δ > 0, with probability at least 1− δ,∣∣∣∣∣

∥∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥∥− E

[∥∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥∥
]∣∣∣∣∣ ≤

√
2C2

n
log(2/δ)

Proof. Observe that by the reverse triangle inequality, f(X1, X2, . . . , Xn) = ∥
∑n
i=1Xi∥ satisfies the bounded

differences inequality with uniform bound 2C.

Lemma B.3. Let {Xi}ni=1 be random vectors in Euclidean space Xi ∈ X ⊆ Rd such that ∥Xi∥p ≤ C and
E [Xi] = 0 with p ∈ [1,∞]. Then the following bound holds

E

∥∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥∥
p

 ≤


d2/p−121/2C√

n
p ∈ [1, 2)

C√
n(q−1)

p ∈ [2,∞)

4C
√

log(d)
n p = ∞
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Proof. Let ϵi denote a Rademacher random variable. By a standard symmetrization argument,

EXi

∥∥∥∥∥
n∑
i=1

(Xi − EXi
[Xi])

∥∥∥∥∥
p

 ≤ 2EXi,ϵi

∥∥∥∥∥
n∑
i=1

ϵiXi

∥∥∥∥∥
p

 .
Let F = {x 7→ ⟨x,w⟩ : ∥w∥q ≤ 1} with 1

q +
1
p = 1. Observe that by definition of the dual norm

EXi,ϵi

∥∥∥∥∥
n∑
i=1

ϵiXi

∥∥∥∥∥
p

 = nRn(F).

By Theorem B.1, noting that ∥·∥2q is 1
2(q−1) -strongly convex with respect to ∥·∥q for q ∈ (1, 2], we then have that

E

∥∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥∥
p

 ≤ C√
n(q − 1)

,

where q ∈ (1, 2] implies that p ∈ [2,∞).

Now consider the case p = ∞. Because each ∥Xi∥∞ ≤ C, each component of each Xi is sub-Gaussian. Hence,

E

[∥∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥∥
∞

]
≤ 4C

√
log(d)

n
.

Last, consider p ∈ [1, 2). Then we have the elementary bound via equivalence of norms

E

∥∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥∥
p

 ≤ d1/p−1/2E

[∥∥∥∥∥ 1n
n∑
i=1

Xi

∥∥∥∥∥
2

]
≤ d2/p−121/2C√

n
.

This completes the proof.

To analyze our discrete-time iterations, we require three basic properties of the Bregman divergence.

Lemma B.4 (Bregman three-point identity). Let ψ : M → Rp denote a σ-strongly convex function with respect
to some norm ∥·∥. Then for all x,y, z ∈ M,

⟨∇ψ(x)−∇ψ(y),x− z⟩ = dψ (x ∥ y) + dψ (z ∥ x)− dψ (z ∥ y) . (11)

Lemma B.5 (Generalized Pythagorean Theorem). Let ψ : M → R denote a σ-strongly convex function with

respect to some norm ∥·∥. Let x0 ∈ M and let x∗ = ΠψC (x0) be its projection onto a closed and convex set C.
Then for any y ∈ C,

dψ (y ∥ x0) ≥ dψ (y ∥ x∗) + dψ (x∗ ∥ x0) . (12)

Lemma B.6 (Bregman duality). Let ψ : M → R denote a σ-strongly convex function with respect to some norm
∥·∥, and let ψ∗ denote its Fenchel conjugate. Then ψ∗ is 1/σ-smooth with respect to ∥·∥∗, and moreover

dψ (x ∥ y) = dψ (∇ψ∗(y) ∥ ∇ψ∗(x)) (13)

To obtain fast rates in the realizable online learning setting, we require the following martingale Bernstein bound,
which has been used in similar analyses prior to this work (Ji and Telgarsky, 2020; Frei et al., 2020).

Lemma B.7 (Beygelzimer et al. (2011)). Let {Yt}∞t=1 be a martingale adapted to the filtration {Ft}∞t=1. Let
{Dt}∞t=1 be the corresponding martingale difference sequence. Define

Vt =

t∑
k=1

E
[
D2
k|Fk−1

]
,

and assume that Dt ≤ R almost surely. Then for any δ ∈ (0, 1), with probability at least 1− δ,

Yt ≤ R log(1/δ) + (e− 2)Vt/R.
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C Omitted proofs

C.1 Proof of Theorem 4.1

To make progress in the general setting, we require a definition of a modified error function for a parametric

hypothesis h(x) = u
(〈

θ̂,x
〉)

. The empirical version over the dataset Ĥ(h) is defined analogously.

H(h) = E
[(
u
(〈

θ̂,x
〉)

− u (⟨θ,x⟩)
)2
ξ
(
θ̂,x

)]
Intuitively, under Assumption 4.1, we can relate H to ε. The following lemma makes this rigorous, and is adapted
from Frei et al. (2020). The proof is a trivial modification of the proof given in their work.

Lemma C.1. Let ξ satisfy Assumption 4.1. Let h denote a parametric hypothesis of the form h(x) = u
(〈

θ̂,x
〉)

.

Then if
∥∥∥θ̂∥∥∥ ≤ a and ∥x∥∗ ≤ b, we have the bound ε̂(h) ≤ Ĥ(h)/γ where γ is a fixed constant defined in

Assumption 4.1.

We now begin the proof of Theorem 4.1.

Proof. By the Bregman three-point identity (11), with z = θ, x = ϕ̂t+1, and y = θ̂t,

dψ

(
θ
∥∥∥ ϕ̂t+1

)
= dψ

(
θ
∥∥∥ θ̂t

)
− dψ

(
ϕ̂t+1

∥∥∥ θ̂t

)
+
〈
∇ψ(ϕ̂t+1)−∇ψ(θ̂t), ϕ̂t+1 − θ

〉
,

= dψ

(
θ
∥∥∥ θ̂t

)
− dψ

(
ϕ̂t+1

∥∥∥ θ̂t

)
−

〈
λ

n

n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi, ϕ̂t+1 − θ

〉
,

= dψ

(
θ
∥∥∥ θ̂t

)
− dψ

(
ϕ̂t+1

∥∥∥ θ̂t

)
−

〈
λ

n

n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi, θ̂t − θ

〉

−

〈
λ

n

n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi, ϕ̂t+1 − θ̂t

〉
.

After grouping the second and final terms in the above expression as in the proof of Theorem 4.1, the iteration
becomes

dψ

(
θ
∥∥∥ ϕ̂t+1

)
= dψ

(
θ
∥∥∥ θ̂t

)
+ dψ

(
θ̂t

∥∥∥ ϕ̂t+1

)
+
λ

n

〈
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi,θ − θ̂t

〉
.

By the generalized Pythagorean Theorem (12),

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
+ dψ

(
θ̂t

∥∥∥ ϕ̂t+1

)
+
λ

n

〈
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi,θ − θ̂t

〉
. (14)

By duality (13), we may replace dψ

(
θ̂t

∥∥∥ ϕ̂t+1

)
by dψ

(
∇ψ∗

(
ϕ̂t+1

) ∥∥∥ ∇ψ∗
(
θ̂t

))
,

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
+ dψ∗

(
∇ψ

(
ϕ̂t+1

) ∥∥∥ ∇ψ
(
θ̂t

))
+
λ

n

〈
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi,θ − θ̂t

〉
.
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Because ψ is σ-strongly convex with respect to ∥ · ∥, ψ∗ is 1
σ -smooth with respect to ∥ · ∥∗. Thus,

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
+

1

2σ

∥∥∥∇ψ (ϕ̂t+1

)
−∇ψ

(
θ̂t

)∥∥∥2
∗

+
λ

n

〈
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi,θ − θ̂t

〉
,

= dψ

(
θ
∥∥∥ θ̂t

)
+
λ2

2σ

∥∥∥∥∥ 1n
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi

∥∥∥∥∥
2

∗

+
λ

n

〈
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi,θ − θ̂t

〉
. (15)

Above, we applied 1
σ -smoothness and then used (7) to express the increment in ∇ψ. The second term in (15)

can be bounded as∥∥∥∥∥ 1n
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi

∥∥∥∥∥
2

∗

≤ 2

∥∥∥∥∥ 1n
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− u (⟨xi,θ⟩)

)
ξ
(
θ̂t,xi

)
xi

∥∥∥∥∥
2

∗

+ 2

∥∥∥∥∥ 1n
n∑
i=1

(u (⟨xi,θ⟩)− yi) ξ
(
θ̂t,xi

)
xi

∥∥∥∥∥
2

∗

.

By Jensen’s inequality, and using that ξ
(
θ̂t,xi

)
≤ B,∥∥∥∥∥ 1n

n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− u (⟨xi,θ⟩)

)
ξ
(
θ̂t,xi

)
xi

∥∥∥∥∥
2

∗

≤ 1

n

n∑
i=1

∥∥∥(u(〈θ̂,xi〉)− u (⟨θ,xi⟩)
)
ξ
(
θ̂t,xi

)
xi

∥∥∥2
∗
,

=
1

n

n∑
i=1

(
u
(〈

θ̂,xi

〉)
− u (⟨θ,xi⟩)

)2
ξ
(
θ̂t,xi

)2
∥xi∥2∗ ,

≤ C2BĤ(ht).

By assumption, ∥ 1
n

∑n
i=1 (yi − u(⟨xi,θ⟩)) ξ

(
θ̂t,xi

)
xi∥∗ ≤ η. Combining this with the above, we find that∥∥∥∥∥ 1n

n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)
xi

∥∥∥∥∥
2

∗

≤ 2
(
C2BĤ(ht) + η2

)
.

By an induction argument identical to that used in the proof of Theorem 4.1, the iteration of the Bregman
divergence between the Bayes-optimal parameters and the parameters of our hypothesis becomes

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
− λĤ(ht)

(
1

L
− λBC2

σ

)
+ ηλ

(
λη

σ
+

√
2ψ(θ)

σ

)
.

Assume that η ≤
√

2ψ(θ)
σ . For λ ≤ σ

2BC2L , we have

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
− λ

2L
Ĥ(ht) + ηλ

√
2ψ(θ)

σ

(
2BC2L+ 1

2BC2L

)
.

Thus, at each iteration we either have the decrease condition

dψ

(
θ
∥∥∥ θ̂t+1

)
− dψ

(
θ
∥∥∥ θ̂t

)
≤ −ηλ

√
2ψ(θ)

σ

(
2BC2L+ 1

2BC2L

)
or the error bound

Ĥ(ht) < 4Lη

√
2ψ(θ)

σ

(
2BC2L+ 1

2BC2L

)
.
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In the former case there can be at most

tf =
dψ

(
θ
∥∥∥ θ̂(0)

)
ηλ
√

2ψ(θ)
σ

(
2BC2L+1
2BC2L

) ≤ 1

λ

√
σψ(θ)

2η2

iterations before Ĥ(ht) ≤ 4Lη
√

2ψ(θ)
σ

(
2BC2L+1
2BC2L

)
. Furthermore, note that

∥∥∥θ̂(t)∥∥∥ ≤
√

2ψ(θ)
σ + ∥θ∥ ≤ (1 +

W )
√

2ψ(θ)
σ . Then by Lemma C.1, ε̂(ht) ≤ 4Lη

γ

√
2ψ(θ)
σ

(
2BC2L+1
2BC2L

)
where γ corresponds to a = (1 +W )

√
2ψ(θ)
σ

and b = C in Lemma C.1. The conclusion of the theorem now follows by application of Theorem B.3 to transfer
the bound on ε̂(ht) to ε(ht).

C.2 Proof of Corollary 4.1

Proof. Note that F ⊆
{
x 7→ ⟨w,x⟩ : ∥w∥q ≤W

(
1 + 1√

q−1

)}
. Hence by Theorem B.1, Rn(F) ≤

CW√
n(q−1)

(
1 + 1√

q−1

)
. By Lemmas B.2 and B.3, η = C

(√
2 log(4/δ)

n + 1√
n(q−1)

)
.

C.3 Proof of Corollary 4.2

Proof. Observe that we have the inclusion

F ⊆
{
x 7→ ⟨w,x⟩ : ∥w∥1 ≤W

(
1 +

√
3 log(d)

)}
⊆
{
x 7→ ⟨w,x⟩ : ∥w∥q ≤W

(
1 +

√
3 log(d)

)}
.

Hence Rn(F) ≤ CW (1+
√
3 log d)2

n1/2 by Theorem B.1. By Lemmas B.2 and B.3,

η = C

(√
2 log(4/δ)

n
+ 4

√
log(d)

n

)
.

C.4 Proof of Corollary 4.3

Proof. Note that F ⊆ {x 7→ ⟨w,x⟩ : ψ(w) ≤ log(d)} and Rn ≤ C
√

2 log d
n . By Lemmas B.2 and B.3, η =

C

(√
2 log(4/δ)

n + 4
√

log(d)
n

)
.

C.5 Proof of Lemma 4.1

Proof. From (15), we have a bound on the iteration for the Bregman divergence between the interpolating
parameters and the current parameter estimates,

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
+
λ2

2σ

∥∥∥∥∥ 1n
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
xiξ

(
θ̂,xi

)∥∥∥∥∥
2

2

+
λ

n

〈
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂,xi

)
xi,θ − θ̂t

〉
.

Under the realizability assumption of the lemma, we may bound the second term above as

λ2

2σ

∥∥∥∥∥ 1n
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂,xi

)
xi

∥∥∥∥∥
2

2

≤ λ2C2B

2σ
Ĥ(ht).

We may similarly bound the final term, exploiting monotonicity and Lipschitz continuity of u(·), as

λ

n

〈
n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂,xi

)
xi,θ − θ̂t

〉
≤ −λ

L
Ĥ(ht).
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Putting these together, we have the refined bound on the iteration

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
+ λ

(
λC2B

2σ
− 1

L

)
Ĥ(ht).

Let 0 < α < 1. For λ ≤ 2σ(1−α)
C2BL ,

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
− λα

L
Ĥ(ht).

Note that this shows dψ

(
θ
∥∥∥ θ̂t

)
≤ dψ

(
θ
∥∥∥ θ̂1

)
for all t, so that

∥∥∥θ̂t∥∥∥ ≤ ∥θ∥+
√

2ψ(θ)
σ . Summing both sides of

the above inequality from t = 1 to T reveals that

T∑
t=1

Ĥ(ht) ≤
L

λα

(
dψ (θ ∥ θ1)− dψ

(
θ
∥∥∥ θ̂T+1

))
≤ L

λα
dψ (θ ∥ θ1) .

Because T was arbitrary and the upper bound is independent of T ,
∑∞
t=1 Ĥ(ht) exists and hence Ĥ(ht) → 0 as

t→ ∞. Furthermore,

min
t′∈[1,T ]

{
Ĥ(ht′)

}
T =

T∑
t=1

min
t′∈[1,T ]

{
Ĥ(ht′)

}
≤

T∑
t=1

Ĥ(ht) ≤
L

λα
dψ (θ ∥ θ1) ,

so that mint′∈[1,T ]

{
Ĥ(ht′)

}
≤ Ldψ(θ ∥ θ1)

αλT . By taking α→ 0, we obtain the requirement λ < 2σ
C2BL . To conclude

the proof, apply Lemma C.1 with a =
√

2ψ(θ)
σ + ∥θ∥ and b = C.

C.6 Proof of Theorem 4.2

The proof discretizes the proof of Theorem 3.2, and is similar to the proof of implicit regularization for mirror
descent due to Azizan et al. (2019).

Proof. Let θ̄ ∈ A be arbitrary. From (14),

dψ

(
θ̄
∥∥∥ θ̂t+1

)
≤ dψ

(
θ̄
∥∥∥ θ̂t

)
+ dψ

(
θ̂t

∥∥∥ ϕ̂t+1

)
+
λ

n

n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)〈
xi, θ̄ − θ̂t

〉
,

= dψ

(
θ̄
∥∥∥ θ̂t

)
+ dψ

(
θ̂t

∥∥∥ ϕ̂t+1

)
+
λ

n

n∑
i=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t,xi

)(
u−1 (yi)−

〈
xi, θ̂t

〉)
,

where we have used that θ ∈ A and applied invertibility of u(·). Summing both sides from t = 1 to ∞,

dψ

(
θ
∥∥∥ θ̂∞

)
≤ dψ

(
θ
∥∥∥ θ̂1

)
+

∞∑
t=1

dψ

(
θ̂t

∥∥∥ ϕ̂t+1

)
+
λ

n

n∑
i=1

∞∑
t=1

(
u
(〈

xi, θ̂t

〉)
− yi

)
ξ
(
θ̂t, ξi

)(
u−1 (yi)−

〈
xi, θ̂t

〉)
.

The above relation is true for any θ ∈ A. Furthermore, the only dependence of the right-hand side on θ is
through the first Bregman divergence. Hence the argmin of the two Bregman divergences involving θ must

be equal, which shows that θ̂∞ = argminθ∈A dψ

(
θ
∥∥∥ θ̂1

)
. Choosing θ̂1 = argminw∈C∩M ψ(w) completes the

proof.
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C.7 Proof of Theorem 5.1

Proof. Let ξt = ξ
(
θ̂t,xt

)
. From (15) adapted to the stochastic optimization setting, we have the bound

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
+
λ2

2σ

∥∥∥(u(〈xt, θ̂t〉)− yt

)
xtξt

∥∥∥2
∗
+ λ

〈(
u
(〈

xt, θ̂t

〉)
− yt

)
xtξt,θ − θ̂t

〉
.

Note that we can write(
u
(〈

xt, θ̂t

〉)
− yt

)2
=
(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
+ (u (⟨xt,θ⟩)− yt)

2

+ 2
(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)
(u (⟨xt,θ⟩)− yt) .

Using that u is nondecreasing and L-Lipschitz,〈(
u
(〈

xt, θ̂t

〉)
− yt

)
xtξt,θ − θ̂t

〉
≤ − 1

L

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt

+ (u (⟨xt,θ⟩)− yt) ξt

〈
xt,θ − θ̂t

〉
.

Putting these together, we conclude the bound,

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
− λ

(
1

L
− λC2B

2σ

)(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt

+ λξt (u (⟨xt,θ⟩)− yt)

(〈
xt,θ − θ̂t

〉
+
λC2B

σ

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

))
+
λ2C2B2

2σ
(u (⟨xt,θ⟩)− yt)

2
.

Summing both sides from t = 1 to T ,

dψ

(
θ
∥∥∥ θ̂T+1

)
≤ dψ

(
θ
∥∥∥ θ̂1

)
− λ

(
1

L
− λC2B

2σ

) T∑
t=1

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt

+ λ

T∑
t=1

ξt (u (⟨xt,θ⟩)− yt)

(〈
xt,θ − θ̂t

〉
+
λC2B

σ

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

))

+
λ2C2B2

2σ

T∑
t=1

(u (⟨xt,θ⟩)− yt)
2
.

Define the filtration {Ft = σ(x1, y1,x2, y2, . . . ,xt, yt,xt+1)}∞t=1, and note that

D
(1)
t = ξt (u (⟨xt,θ⟩)− yt)

〈
xt,θ − θ̂t

〉
,

D
(2)
t = ξt (u (⟨xt,θ⟩)− yt)

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)
,

are martingale difference sequences adapted to {Ft}. Furthermore, note that |D(1)
t | ≤ CBR and |D(2)

t | ≤ LCBR
almost surely where R = Diam(C). Hence, by an Azuma-Hoeffding bound, with probability at least 1− δ/3,

T∑
t=1

D
(1)
t ≤

√
CBRT log(6/δ),

T∑
t=1

D
(2)
t ≤

√
LCBRT log(6/δ).

The variance term is trivially bounded almost surely,

T∑
t=1

(u (⟨xt,θ⟩)− yt)
2 ≤ T.
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Putting these bounds together and rearranging, we conclude that with probability at least 1− 2δ/3,

λ

(
1

L
− λC2B

2σ

) T∑
t=1

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt ≤ dψ

(
θ
∥∥∥ θ̂1

)
− dψ

(
θ
∥∥∥ θ̂T+1

)
+ λ

√
CBRT log(6/δ) +

λ2C2

σ

√
LCBRT log(6/δ) +

λ2C2B2T

2σ
.

Let β ∈ (0, 1) and take λ = min
{

2σ(1−β)
C2BL , 1√

T

}
. Define β′ = 1 − C2LB

2σ
√
T
, and define β̄ = max{β, β′}. Then

1
L − λC2B

2σ = β̄
L > 0. Defining ht =

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt, we find

T∑
t=1

ht ≤
L

β̄
max

{√
T ,

C2BL

2σ(1− β)

}
dψ

(
θ
∥∥∥ θ̂1

)
+
L

β̄

√
CBRT log(6/δ)

+
C2L

σβ̄

√
LCBR log (6/δ) +

C2L
√
TB2

2σβ̄
. (16)

By Assumption 4.1, noting that ∥xt∥∗ ≤ C and
∥∥∥θ̂t∥∥∥ ≤ R+ ∥θ∥, there exists a fixed γ > 0 such that

∑T
t=1 εt ≤

1
γ

∑T
t=1 ht. We now want to transfer this bound to a bound on ε(ht) via Lemma B.7. Define D

(3)
t = ε(ht)− εt,

and note that this is a martingale difference sequence adapted to the filtration {Ft = σ(x1, y1,x2, y2, . . . ,xt, yt)}.
D

(3)
t satisfies the following inequalities almost surely,

D
(3)
t ≤ 1

2
L2C2R,

E
[(
D

(3)
t

)2
|Ft−1

]
≤ 1

2
L2C2Rε(ht).

Thus, by Lemma B.7, with probability at least 1− δ/3,

T∑
τ=1

ε(hτ ) ≤
L2C2R

2(3− e)
log(3/δ) +

1

3− e

T∑
τ=1

ετ .

Using (16), we then have with probability at least 1− δ,

T∑
τ=1

ε(hτ ) ≤
L2C2R

2(3− e)
log(3/δ) +

L

β̄γ(3− e)
max

{√
T ,

C2BL

2σ(1− β)

}
dψ

(
θ
∥∥∥ θ̂1

)
+

L

β̄γ(3− e)

√
CBRT log(6/δ) +

C2L

σβ̄γ(3− e)

√
LCBR log (6/δ) +

C2L
√
TB2

2σβ̄γ(3− e)
.

Noting that mint<T ε(hτ ) ≤ 1
T

∑T
τ=1 ε(hτ ) completes the proof.

C.8 Proof of Theorem 5.2

Proof. Again from (15) adapted to the stochastic optimization setting, we have the bound

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
+
λ2

2σ

∥∥∥(u(〈xt, θ̂t〉)− u (⟨xt,θ⟩)
)
ξtxt

∥∥∥2
∗

+ λ
〈(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)
ξtxt,θ − θ̂t

〉
,

≤ dψ

(
θ
∥∥∥ θ̂t

)
+
λ2C2B

2σ

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt

− λ

L

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt,

= dψ

(
θ
∥∥∥ θ̂t

)
− λ

L

(
1− λLC2B

2σ

)(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt.
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Let 0 < β < 1. Taking λ = (1−β)2σ
LC2B ,

dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
− 2σ(1− β)β

L2C2B

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt,

so that dψ

(
θ
∥∥∥ θ̂t+1

)
≤ dψ

(
θ
∥∥∥ θ̂t

)
≤ . . . ≤ dψ

(
θ
∥∥∥ θ̂1

)
. Let W be such that ∥θ∥ = W

√
2ψ(θ)
σ . Then

dψ

(
θ
∥∥∥ θ̂1

)
≤ ψ(θ) so that

∥∥∥θ̂t∥∥∥ ≤ (1 +W )
√

2ψ(θ)
σ by σ-strong convexity of ψ with respect to ∥·∥. Summing

both sides from 1 to T − 1 leads to the inequality

dψ

(
θ
∥∥∥ θ̂T

)
≤ dψ

(
θ
∥∥∥ θ̂1

)
− 2σ(1− β)β

L2C2B

T−1∑
t=1

(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt.

Rearranging, using positivity of the Bregman divergence, and defining ht =
(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)2
ξt, we

conclude that
T−1∑
t=1

ht ≤
L2C2B

2σ(1− β)β
dψ

(
θ
∥∥∥ θ̂1

)
.

Applying Assumption 4.1 shows that there exists a γ > 0 such that

T−1∑
t=1

εt ≤
L2C2B

2σ(1− β)βγ
dψ

(
θ
∥∥∥ θ̂1

)
. (17)

We would now like to transfer the bound (17) to a bound on ε(ht). Define Dt = ε (ht) − εt, and note that
{Dt}∞t=1 is a martingale difference sequence adapted to the filtration {Ft = σ(x1,x2, . . . ,xt)}∞t=1. Note that,
almost surely,

Dt ≤ ε(ht) =
1

2
Ex∼D

[(
u
(〈

θ̂t,x
〉)

− u (⟨θ,x⟩)
)2]

≤ 1

2
L2C2∥θ̂t − θ∥2 ≤ L2C2

σ
dψ

(
θ
∥∥∥ θ̂t

)
≤ L2C2

σ
dψ

(
θ
∥∥∥ θ̂1

)
where we have applied σ-strong convexity of ψ with respect to ∥·∥ to upper bound ∥θ̂t−θ∥2 by the corresponding
Bregman divergence. Now, consider the following bound on the conditional variance

E
[
D2
t |Ft−1

]
= E

[
ε(ht)

2 − 2ε(ht)εt + ε2t |Ft−1

]
,

= ε(ht)
2 − 2ε(ht)

2 + E
[
ε2t |Ft−1

]
,

≤ E
[
ε2t |Ft−1

]
,

=
1

4
E
[(
u
(〈

xt, θ̂t

〉)
− u (⟨xt,θ⟩)

)4
|Ft−1

]
,

≤
L2C2dψ

(
θ
∥∥∥ θ̂1

)
σ

ε(ht).

Hence by Lemma B.7, with probability at least 1− δ,

t∑
τ=1

(ε(hτ )− ετ ) ≤
L2C2

σ
dψ

(
θ
∥∥∥ θ̂1

)
log(1/δ) + (e− 2)

t∑
τ=1

ε(hτ ).

Rearranging terms,

(3− e)

t∑
τ=1

ε(hτ ) ≤
L2C2

σ
dψ

(
θ
∥∥∥ θ̂1

)
log(1/δ) +

t∑
τ=1

ετ .
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Applying the bound from (17),

(3− e)

t∑
τ=1

ε(hτ ) ≤
L2C2

σ
dψ

(
θ
∥∥∥ θ̂1

)(
log(1/δ) +

1

2(1− β)βγ

)
.

We then conclude

min
t<T

ε(ht) ≤
1

T

T∑
τ=1

ε(hτ ) ≤
L2C2dψ

(
θ
∥∥∥ θ̂1

)
σ(3− e)T

(
log(1/δ) +

B

2(1− β)βγ

)
,

which completes the proof.
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